Knowledge

Potential temperature

Source đź“ť

325:. When the potential temperature is used instead, these apparently unstable conditions vanish as a parcel of fluid is invariant along its isolines. In the oceans, the potential temperature referenced to the surface will be slightly less than the in-situ temperature (the temperature that a water volume has at the specific depth that the instrument measured it in) since the expansion due to reduction in pressure leads to cooling. The numeric difference between the in situ and potential temperature is almost always less than 1.5 degrees Celsius. However, it's important to use potential temperature when comparing temperatures of water from very different depths. 346: 334:
cool as it ascends the slope, then compress and warm as it descends on the other side- but the potential temperature will not change in the absence of heating, cooling, evaporation, or condensation (processes that exclude these effects are referred to as dry adiabatic). Since parcels with the same potential temperature can be exchanged without work or heating being required, lines of constant potential temperature are natural flow pathways.
304:
for air (meteorology). The reference point for potential temperature in the ocean is usually at the ocean's surface which has a water pressure of 0 dbar. The potential temperature in the ocean doesn't account for the varying heat capacities of seawater, therefore it is not a conservative measure of
333:
Potential temperature is a more dynamically important quantity than the actual temperature. This is because it is not affected by the physical lifting or sinking associated with flow over obstacles or large-scale atmospheric turbulence. A parcel of air moving over a small mountain will expand and
321:. The reason that it is used in both fields is that changes in pressure can result in warmer fluid residing under colder fluid – examples being dropping air temperature with altitude and increasing water temperature with depth in very deep ocean trenches and within the ocean 337:
Under almost all circumstances, potential temperature increases upwards in the atmosphere, unlike actual temperature which may increase or decrease. Potential temperature is conserved for all dry adiabatic processes, and as such is an important quantity in the
491:(ABL) potential temperature perturbation is defined as the difference between the potential temperature of the ABL and the potential temperature of the free atmosphere above the ABL. This value is called the potential temperature deficit in the case of a 455:
is likely. Since convection acts to quickly mix the atmosphere and return to a stably stratified state, observations of decreasing potential temperature with height are uncommon, except while vigorous convection is underway or during periods of strong
1180: 1017: 840: 179: 1292: 446: 397: 353:
Potential temperature is a useful measure of the static stability of the unsaturated atmosphere. Under normal, stably stratified conditions, the potential temperature increases with height,
564: 302: 1218: 885: 726: 1319: 96: 1366: 1074: 1047: 765: 257: 76: 908: 637: 590: 1339: 681: 661: 614: 226: 202: 45: 1082: 921: 1578: 305:
heat content. Graphical representation of potential temperature will always be less than the actual temperature line in a temperature vs depth graph.
773: 108: 1226: 1297:
is the theoretical potential temperature of the dry air which would have the same density as the humid air at a standard pressure P
479:, a form of synoptic analysis which allows visualization of air motions and in particular analysis of large-scale vertical motion. 1380:
is a closely related quantity that uses potential temperature and is used extensively in investigations of atmospheric stability.
472: 408: 359: 1571: 1720: 2017: 1377: 2022: 1740: 1564: 1538: 1531: 1492: 1444: 1434: 1888: 1404: 495:
flow, because the surface will always be colder than the free atmosphere and the PT perturbation will be negative.
461: 2027: 1935: 1389: 1767: 1735: 1682: 1996: 1493:
Dr. James T. Moore (Saint Louis University Dept. of Earth & Atmospheric Sciences) (August 5, 1999).
313:
The concept of potential temperature applies to any stratified fluid. It is most frequently used in the
1930: 1687: 1394: 488: 1910: 1844: 1672: 517: 1550: 1777: 1629: 1399: 339: 266: 471:
air motions, in steady, adiabatic flow lines or surfaces of constant potential temperature act as
345: 1978: 1900: 1460:
Stewart, Robert H. (September 2008). "6.5: Density, Potential Temperature, and Neutral Density".
1196: 1301:. It is used as a practical substitute for density in buoyancy calculations. In this definition 848: 1832: 1792: 1745: 1730: 1712: 692: 452: 16:
Temperature that a fluid would attain if adiabatically brought to a standard reference pressure
1772: 1762: 1725: 1304: 81: 1958: 1925: 1827: 1822: 1787: 1344: 1052: 1025: 738: 314: 235: 54: 8: 1920: 1905: 1191: 476: 402:
and vertical motions are suppressed. If the potential temperature decreases with height,
1494: 890: 619: 572: 1692: 1324: 1175:{\displaystyle T_{0}=T_{1}\left({\frac {p_{0}}{p_{1}}}\right)^{R/c_{p}}\equiv \theta .} 666: 646: 599: 211: 187: 30: 1461: 1049:, the temperature a parcel would acquire if moved adiabatically to the pressure level 464:
decreases with height, indicating instability in saturated air, are much more common.
1973: 1869: 1757: 1599: 1534: 1527: 1440: 1012:{\displaystyle \left({\frac {p_{1}}{p_{0}}}\right)^{R/c_{p}}={\frac {T_{1}}{T_{0}}},} 732: 48: 1556: 686:
For adiabatic processes, the change in entropy is 0 and the 1st law simplifies to:
731:
For approximately ideal gases, such as the dry air in the Earth's atmosphere, the
1624: 1915: 508: 78:, usually 1,000 hPa (1,000 mb). The potential temperature is denoted 2011: 1697: 260: 1874: 1849: 1782: 1659: 318: 229: 1963: 1802: 1702: 322: 205: 767:
can be substituted into the 1st law yielding, after some rearrangement:
1968: 1940: 1854: 1649: 1634: 1614: 468: 457: 24: 1810: 1639: 1619: 1604: 492: 99: 835:{\displaystyle {\frac {dp}{p}}={{\frac {c_{p}}{R}}{\frac {dT}{T}}},} 1988: 1950: 1864: 1609: 912: 593: 504: 174:{\displaystyle \theta =T\left({\frac {P_{0}}{P}}\right)^{R/c_{p}},} 1526:, published by Butterworth-Heinemann, January 1, 1989, 304 pages. 1859: 640: 1287:{\displaystyle \theta _{v}=\theta \left(1+0.61r-r_{L}\right),} 1667: 467:
Since potential temperature is conserved under adiabatic or
1644: 441:{\displaystyle {\frac {\partial \theta }{\partial z}}<0} 392:{\displaystyle {\frac {\partial \theta }{\partial z}}>0} 1677: 482: 1586: 1347: 1327: 1307: 1229: 1199: 1085: 1055: 1028: 924: 893: 851: 776: 741: 695: 669: 649: 622: 602: 575: 520: 475:
or flow surfaces, respectively. This fact is used in
411: 362: 269: 238: 214: 190: 111: 84: 57: 33: 1439:(Sixth ed.). Boston: Elsevier. pp. 29–65. 887:
was used and both terms were divided by the product
451:
the atmosphere is unstable to vertical motions, and
342:(which is often very close to being dry adiabatic). 47:is the temperature that the parcel would attain if 1360: 1333: 1313: 1286: 1212: 1174: 1068: 1041: 1011: 902: 879: 834: 759: 720: 675: 655: 631: 608: 584: 558: 440: 391: 296: 251: 220: 196: 173: 90: 70: 39: 2009: 1495:"Isentropic Analysis Techniques: Basic Concepts" 1368:is the mixing ratio of liquid water in the air. 1185: 349:Potential temperature and hydrostatic stability 1572: 1721:Convective available potential energy (CAPE) 1524:Short Course in Cloud Physics, Third Edition 1579: 1565: 708: 546: 533: 51:brought to a standard reference pressure 1428: 1426: 1424: 1422: 1420: 1341:is the mixing ratio of water vapor, and 344: 1488: 1486: 1484: 1459: 2010: 1432: 1560: 1463:Introduction To Physical Oceanography 1417: 1371: 1481: 98:and, for a gas well-approximated as 1683:Convective condensation level (CCL) 483:Potential temperature perturbations 13: 1889:Equivalent potential temperature ( 423: 415: 374: 366: 14: 2039: 1741:Conditional symmetric instability 1587:Meteorological data and variables 1551:Eric Weisstein's World of Physics 1544: 1436:Descriptive Physical Oceanography 263:capacity at a constant pressure. 1688:Lifting condensation level (LCL) 1405:Equivalent potential temperature 462:equivalent potential temperature 1673:Cloud condensation nuclei (CCN) 1516: 559:{\displaystyle dh=T\,ds+v\,dp,} 1936:Wet-bulb potential temperature 1778:Level of free convection (LFC) 1453: 1390:Wet-bulb potential temperature 1321:is the potential temperature, 1: 1979:Pressure-gradient force (PGF) 1901:Sea surface temperature (SST) 1736:Convective momentum transport 1410: 1186:Potential virtual temperature 498: 297:{\displaystyle R/c_{p}=0.286} 1793:Bulk Richardson number (BRN) 7: 1997:Maximum potential intensity 1763:Free convective layer (FCL) 1726:Convective inhibition (CIN) 1383: 1213:{\displaystyle \theta _{v}} 328: 308: 10: 2044: 2018:Atmospheric thermodynamics 1931:Wet-bulb globe temperature 1788:Maximum parcel level (MPL) 1469:. Academia. pp. 83–88 1395:Atmospheric thermodynamics 880:{\displaystyle dh=c_{p}dT} 489:atmospheric boundary layer 460:. Situations in which the 2023:Meteorological quantities 1987: 1949: 1911:Thermodynamic temperature 1845:Forest fire weather index 1801: 1711: 1658: 1592: 1522:M K Yau and R.R. Rogers, 1433:Talley, Lynne D. (2011). 721:{\displaystyle dh=v\,dp.} 663:the specific volume, and 507:form of the first law of 1833:Equivalent temperature ( 1746:Convective temperature ( 1630:Surface weather analysis 1400:Conservative temperature 340:planetary boundary layer 204:is the current absolute 1880:Potential temperature ( 1625:Surface solar radiation 1378:Brunt–Väisälä frequency 1314:{\displaystyle \theta } 91:{\displaystyle \theta } 1870:Relative humidity (RH) 1758:Equilibrium level (EL) 1731:Convective instability 1362: 1335: 1315: 1288: 1214: 1176: 1070: 1043: 1013: 904: 881: 836: 761: 722: 677: 657: 633: 610: 586: 560: 442: 393: 350: 298: 253: 222: 208:(in K) of the parcel, 198: 175: 92: 72: 41: 2028:Physical oceanography 1363: 1361:{\displaystyle r_{L}} 1336: 1316: 1289: 1215: 1177: 1071: 1069:{\displaystyle p_{0}} 1044: 1042:{\displaystyle T_{0}} 1014: 905: 882: 837: 762: 760:{\displaystyle pv=RT} 723: 678: 658: 634: 611: 587: 561: 443: 394: 348: 299: 254: 252:{\displaystyle c_{p}} 223: 199: 176: 93: 73: 71:{\displaystyle P_{0}} 42: 27:of fluid at pressure 21:potential temperature 1959:Atmospheric pressure 1926:Wet-bulb temperature 1828:Dry-bulb temperature 1823:Dew point depression 1345: 1325: 1305: 1227: 1197: 1083: 1053: 1026: 922: 891: 849: 774: 739: 693: 667: 647: 620: 600: 573: 518: 409: 360: 315:atmospheric sciences 267: 236: 212: 188: 109: 82: 55: 31: 1921:Virtual temperature 1906:Temperature anomaly 1600:Adiabatic processes 1553:at Wolfram Research 1192:virtual temperature 511:can be written as: 477:isentropic analysis 1693:Precipitable water 1372:Related quantities 1358: 1331: 1311: 1284: 1210: 1172: 1066: 1039: 1009: 903:{\displaystyle pv} 900: 877: 832: 757: 718: 673: 653: 632:{\displaystyle ds} 629: 606: 585:{\displaystyle dh} 582: 556: 438: 389: 351: 294: 249: 218: 194: 171: 88: 68: 37: 2005: 2004: 1974:Pressure gradient 1783:Lifted index (LI) 1334:{\displaystyle r} 1136: 1004: 952: 826: 811: 790: 733:equation of state 676:{\displaystyle p} 656:{\displaystyle v} 616:the temperature, 609:{\displaystyle T} 430: 381: 221:{\displaystyle R} 197:{\displaystyle T} 141: 40:{\displaystyle P} 2035: 1581: 1574: 1567: 1558: 1557: 1510: 1509: 1507: 1505: 1499: 1490: 1479: 1478: 1476: 1474: 1468: 1457: 1451: 1450: 1430: 1367: 1365: 1364: 1359: 1357: 1356: 1340: 1338: 1337: 1332: 1320: 1318: 1317: 1312: 1293: 1291: 1290: 1285: 1280: 1276: 1275: 1274: 1239: 1238: 1219: 1217: 1216: 1211: 1209: 1208: 1181: 1179: 1178: 1173: 1162: 1161: 1160: 1159: 1150: 1141: 1137: 1135: 1134: 1125: 1124: 1115: 1108: 1107: 1095: 1094: 1075: 1073: 1072: 1067: 1065: 1064: 1048: 1046: 1045: 1040: 1038: 1037: 1022:and solving for 1018: 1016: 1015: 1010: 1005: 1003: 1002: 993: 992: 983: 978: 977: 976: 975: 966: 957: 953: 951: 950: 941: 940: 931: 909: 907: 906: 901: 886: 884: 883: 878: 870: 869: 841: 839: 838: 833: 828: 827: 822: 814: 812: 807: 806: 797: 791: 786: 778: 766: 764: 763: 758: 727: 725: 724: 719: 682: 680: 679: 674: 662: 660: 659: 654: 638: 636: 635: 630: 615: 613: 612: 607: 591: 589: 588: 583: 565: 563: 562: 557: 447: 445: 444: 439: 431: 429: 421: 413: 398: 396: 395: 390: 382: 380: 372: 364: 303: 301: 300: 295: 287: 286: 277: 258: 256: 255: 250: 248: 247: 227: 225: 224: 219: 203: 201: 200: 195: 180: 178: 177: 172: 167: 166: 165: 164: 155: 146: 142: 137: 136: 127: 97: 95: 94: 89: 77: 75: 74: 69: 67: 66: 46: 44: 43: 38: 2043: 2042: 2038: 2037: 2036: 2034: 2033: 2032: 2008: 2007: 2006: 2001: 1983: 1945: 1895: 1839: 1817: 1797: 1752: 1707: 1654: 1588: 1585: 1547: 1519: 1514: 1513: 1503: 1501: 1497: 1491: 1482: 1472: 1470: 1466: 1458: 1454: 1447: 1431: 1418: 1413: 1386: 1374: 1352: 1348: 1346: 1343: 1342: 1326: 1323: 1322: 1306: 1303: 1302: 1300: 1270: 1266: 1250: 1246: 1234: 1230: 1228: 1225: 1224: 1204: 1200: 1198: 1195: 1194: 1188: 1155: 1151: 1146: 1142: 1130: 1126: 1120: 1116: 1114: 1110: 1109: 1103: 1099: 1090: 1086: 1084: 1081: 1080: 1060: 1056: 1054: 1051: 1050: 1033: 1029: 1027: 1024: 1023: 998: 994: 988: 984: 982: 971: 967: 962: 958: 946: 942: 936: 932: 930: 926: 925: 923: 920: 919: 892: 889: 888: 865: 861: 850: 847: 846: 815: 813: 802: 798: 796: 795: 779: 777: 775: 772: 771: 740: 737: 736: 694: 691: 690: 668: 665: 664: 648: 645: 644: 621: 618: 617: 601: 598: 597: 574: 571: 570: 519: 516: 515: 501: 485: 422: 414: 412: 410: 407: 406: 373: 365: 363: 361: 358: 357: 331: 311: 282: 278: 273: 268: 265: 264: 243: 239: 237: 234: 233: 213: 210: 209: 189: 186: 185: 160: 156: 151: 147: 132: 128: 126: 122: 121: 110: 107: 106: 83: 80: 79: 62: 58: 56: 53: 52: 32: 29: 28: 17: 12: 11: 5: 2041: 2031: 2030: 2025: 2020: 2003: 2002: 2000: 1999: 1993: 1991: 1985: 1984: 1982: 1981: 1976: 1971: 1966: 1961: 1955: 1953: 1947: 1946: 1944: 1943: 1938: 1933: 1928: 1923: 1918: 1916:Vapor pressure 1913: 1908: 1903: 1898: 1893: 1886: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1837: 1830: 1825: 1820: 1815: 1807: 1805: 1799: 1798: 1796: 1795: 1790: 1785: 1780: 1775: 1770: 1765: 1760: 1755: 1750: 1743: 1738: 1733: 1728: 1723: 1717: 1715: 1709: 1708: 1706: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1664: 1662: 1656: 1655: 1653: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1602: 1596: 1594: 1590: 1589: 1584: 1583: 1576: 1569: 1561: 1555: 1554: 1546: 1545:External links 1543: 1542: 1541: 1518: 1515: 1512: 1511: 1480: 1452: 1445: 1415: 1414: 1412: 1409: 1408: 1407: 1402: 1397: 1392: 1385: 1382: 1373: 1370: 1355: 1351: 1330: 1310: 1298: 1295: 1294: 1283: 1279: 1273: 1269: 1265: 1262: 1259: 1256: 1253: 1249: 1245: 1242: 1237: 1233: 1207: 1203: 1190:The potential 1187: 1184: 1183: 1182: 1171: 1168: 1165: 1158: 1154: 1149: 1145: 1140: 1133: 1129: 1123: 1119: 1113: 1106: 1102: 1098: 1093: 1089: 1063: 1059: 1036: 1032: 1020: 1019: 1008: 1001: 997: 991: 987: 981: 974: 970: 965: 961: 956: 949: 945: 939: 935: 929: 899: 896: 876: 873: 868: 864: 860: 857: 854: 843: 842: 831: 825: 821: 818: 810: 805: 801: 794: 789: 785: 782: 756: 753: 750: 747: 744: 729: 728: 717: 714: 711: 707: 704: 701: 698: 683:the pressure. 672: 652: 639:the change in 628: 625: 605: 581: 578: 567: 566: 555: 552: 549: 545: 542: 539: 536: 532: 529: 526: 523: 509:thermodynamics 500: 497: 484: 481: 449: 448: 437: 434: 428: 425: 420: 417: 400: 399: 388: 385: 379: 376: 371: 368: 330: 327: 310: 307: 293: 290: 285: 281: 276: 272: 246: 242: 217: 193: 182: 181: 170: 163: 159: 154: 150: 145: 140: 135: 131: 125: 120: 117: 114: 102:, is given by 87: 65: 61: 36: 15: 9: 6: 4: 3: 2: 2040: 2029: 2026: 2024: 2021: 2019: 2016: 2015: 2013: 1998: 1995: 1994: 1992: 1990: 1986: 1980: 1977: 1975: 1972: 1970: 1969:Barotropicity 1967: 1965: 1962: 1960: 1957: 1956: 1954: 1952: 1948: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1892: 1887: 1885: 1883: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1836: 1831: 1829: 1826: 1824: 1821: 1819: 1814: 1809: 1808: 1806: 1804: 1800: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1754: 1749: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1718: 1716: 1714: 1710: 1704: 1701: 1699: 1698:Precipitation 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1665: 1663: 1661: 1657: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1597: 1595: 1591: 1582: 1577: 1575: 1570: 1568: 1563: 1562: 1559: 1552: 1549: 1548: 1540: 1539:0-7506-3215-1 1536: 1533: 1532:9780750632157 1529: 1525: 1521: 1520: 1500:. COMET COMAP 1496: 1489: 1487: 1485: 1465: 1464: 1456: 1448: 1446:9780750645522 1442: 1438: 1437: 1429: 1427: 1425: 1423: 1421: 1416: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1387: 1381: 1379: 1369: 1353: 1349: 1328: 1308: 1281: 1277: 1271: 1267: 1263: 1260: 1257: 1254: 1251: 1247: 1243: 1240: 1235: 1231: 1223: 1222: 1221: 1220:, defined by 1205: 1201: 1193: 1169: 1166: 1163: 1156: 1152: 1147: 1143: 1138: 1131: 1127: 1121: 1117: 1111: 1104: 1100: 1096: 1091: 1087: 1079: 1078: 1077: 1061: 1057: 1034: 1030: 1006: 999: 995: 989: 985: 979: 972: 968: 963: 959: 954: 947: 943: 937: 933: 927: 918: 917: 916: 914: 910: 897: 894: 874: 871: 866: 862: 858: 855: 852: 829: 823: 819: 816: 808: 803: 799: 792: 787: 783: 780: 770: 769: 768: 754: 751: 748: 745: 742: 734: 715: 712: 709: 705: 702: 699: 696: 689: 688: 687: 684: 670: 650: 642: 626: 623: 603: 595: 579: 576: 553: 550: 547: 543: 540: 537: 534: 530: 527: 524: 521: 514: 513: 512: 510: 506: 496: 494: 490: 480: 478: 474: 470: 465: 463: 459: 454: 435: 432: 426: 418: 405: 404: 403: 386: 383: 377: 369: 356: 355: 354: 347: 343: 341: 335: 326: 324: 320: 316: 306: 291: 288: 283: 279: 274: 270: 262: 261:specific heat 244: 240: 231: 215: 207: 191: 168: 161: 157: 152: 148: 143: 138: 133: 129: 123: 118: 115: 112: 105: 104: 103: 101: 85: 63: 59: 50: 49:adiabatically 34: 26: 22: 1890: 1881: 1879: 1875:Mixing ratio 1850:Haines Index 1834: 1812: 1747: 1660:Condensation 1523: 1517:Bibliography 1502:. Retrieved 1471:. Retrieved 1462: 1455: 1435: 1375: 1296: 1189: 1021: 911: 844: 730: 685: 592:denotes the 568: 502: 486: 466: 450: 401: 352: 336: 332: 319:oceanography 312: 232:of air, and 230:gas constant 183: 20: 18: 1964:Baroclinity 1811:Dew point ( 1803:Temperature 1703:Water vapor 1076:, you get: 913:Integrating 473:streamlines 323:mixed layer 206:temperature 2012:Categories 1941:Wind chill 1855:Heat index 1713:Convection 1650:Wind shear 1635:Visibility 1615:Lapse rate 1411:References 845:where the 499:Derivation 469:isentropic 458:insolation 453:convection 1640:Vorticity 1620:Lightning 1605:Advection 1309:θ 1264:− 1244:θ 1232:θ 1202:θ 1167:θ 1164:≡ 493:katabatic 424:∂ 419:θ 416:∂ 375:∂ 370:θ 367:∂ 113:θ 86:θ 1989:Velocity 1951:Pressure 1865:Humidity 1768:Helicity 1610:Buoyancy 1504:March 8, 1473:March 8, 1384:See also 915:yields: 596:change, 594:enthalpy 505:enthalpy 329:Comments 309:Contexts 1860:Humidex 1773:K Index 1593:General 641:entropy 259:is the 228:is the 1537:  1530:  1443:  569:where 184:where 25:parcel 1668:Cloud 1498:(PDF) 1467:(PDF) 292:0.286 100:ideal 23:of a 1645:Wind 1535:ISBN 1528:ISBN 1506:2017 1475:2017 1441:ISBN 1376:The 1258:0.61 503:The 487:The 433:< 384:> 317:and 19:The 1678:Fog 2014:: 1483:^ 1419:^ 735:, 643:, 1896:) 1894:e 1891:θ 1884:) 1882:θ 1840:) 1838:e 1835:T 1818:) 1816:d 1813:T 1753:) 1751:c 1748:T 1580:e 1573:t 1566:v 1508:. 1477:. 1449:. 1354:L 1350:r 1329:r 1299:0 1282:, 1278:) 1272:L 1268:r 1261:r 1255:+ 1252:1 1248:( 1241:= 1236:v 1206:v 1170:. 1157:p 1153:c 1148:/ 1144:R 1139:) 1132:1 1128:p 1122:0 1118:p 1112:( 1105:1 1101:T 1097:= 1092:0 1088:T 1062:0 1058:p 1035:0 1031:T 1007:, 1000:0 996:T 990:1 986:T 980:= 973:p 969:c 964:/ 960:R 955:) 948:0 944:p 938:1 934:p 928:( 898:v 895:p 875:T 872:d 867:p 863:c 859:= 856:h 853:d 830:, 824:T 820:T 817:d 809:R 804:p 800:c 793:= 788:p 784:p 781:d 755:T 752:R 749:= 746:v 743:p 716:. 713:p 710:d 706:v 703:= 700:h 697:d 671:p 651:v 627:s 624:d 604:T 580:h 577:d 554:, 551:p 548:d 544:v 541:+ 538:s 535:d 531:T 528:= 525:h 522:d 436:0 427:z 387:0 378:z 289:= 284:p 280:c 275:/ 271:R 245:p 241:c 216:R 192:T 169:, 162:p 158:c 153:/ 149:R 144:) 139:P 134:0 130:P 124:( 119:T 116:= 64:0 60:P 35:P

Index

parcel
adiabatically
ideal
temperature
gas constant
specific heat
atmospheric sciences
oceanography
mixed layer
planetary boundary layer

convection
insolation
equivalent potential temperature
isentropic
streamlines
isentropic analysis
atmospheric boundary layer
katabatic
enthalpy
thermodynamics
enthalpy
entropy
equation of state
Integrating
virtual temperature
Brunt–Väisälä frequency
Wet-bulb potential temperature
Atmospheric thermodynamics
Conservative temperature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑