Knowledge

Polyhydroxyalkanoates

Source 📝

347: 20: 335: 107: 35: 131:
organisms can also be dependent on overall nutrient limitation, not just macro elements. This is especially the case in the 'feast/famine' cycle method for induction of PHA production, wherein carbon is periodically added and depleted to cause famine, which encourages cells to produce PHA during 'feast' as a storage method for periods of famine.
260:
As raw material for the fermentation, carbohydrates such as glucose and sucrose can be used, but also vegetable oil or glycerine from biodiesel production. Researchers in industry are working on methods with which transgenic crops will be developed that express PHA synthesis routes from bacteria and
130:
The biosynthesis of PHA is usually caused by deficiency conditions (e.g. lack of macro elements such as phosphorus, nitrogen, trace elements, or lack of oxygen) and the excess supply of carbon sources. However, the prevalence of PHA production within either a mono-culture or a set of mixed-microbial
126:
can be placed in a suitable medium and fed appropriate nutrients so that it multiplies rapidly. Once the population has reached a substantial level, the nutrient composition can be changed to force the micro-organism to synthesize PHA. The yield of PHA obtained from the intracellular granule
280:
PHA polymers are thermoplastic, can be processed on conventional processing equipment, and are, depending on their composition, ductile and more or less elastic. They differ in their properties according to their chemical composition (homo-or copolyester, contained hydroxy fatty acids).
323:(PP), has a good resistance to moisture and aroma barrier properties. Polyhydroxybutyric acid synthesized from pure PHB is relatively brittle and stiff. PHB copolymers, which may include other fatty acids such as beta-hydroxyvaleric acid, may be elastic. 155:
PHA synthases are the key enzymes of PHA biosynthesis. They use the coenzyme A - thioester of (r)-hydroxy fatty acids as substrates. The two classes of PHA synthases differ in the specific use of hydroxy fatty acids of short or medium chain length.
431:, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone.lling augmentation material), 1060:
Mohapatra, S.; Sarkar, B.; Samantaray, D. P.; Daware, A.; Maity, S.; Pattnaik, S.; Bhattacharjee, S. (2017). "Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process".
981:
Amelia, Tan Suet May; Govindasamy, Sharumathiy; Tamothran, Arularasu Muthaliar; Vigneswari, Sevakumaran; Bhubalan, Kesaven (2019), Kalia, Vipin Chandra (ed.), "Applications of PHA in Agriculture",
98:
of PHA can also be changed by blending, modifying the surface or combining PHA with other polymers, enzymes and inorganic materials, making it possible for a wider range of applications.
207:
Another even larger scale synthesis can be done with the help of soil organisms. For lack of nitrogen and phosphorus they produce a kilogram of PHA per three kilograms of sugar.
416:
There are potential applications for PHA produced by micro-organisms within the agricultural, medical and pharmaceutical industries, primarily due to their biodegradability.
851:
Cataldi, P. (July 2020). "Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications".
596: 953: 200: 72:
can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of
134:
Polyesters are deposited in the form of highly refractive granules in the cells. Depending upon the microorganism and the cultivation conditions, homo- or
222:
In the industrial production of PHA, the polyester is extracted and purified from the bacteria by optimizing the conditions of microbial fermentation of
667:
Jacquel, Nicolas; Lo, Chi-Wei; Wei, Yu-Hong; Wu, Ho-Shing; Wang, Shaw S. (2008). "Isolation and purification of bacterial poly(3-hydroxyalkanoates)".
163:
Poly (HA SCL) from hydroxy fatty acids with short chain lengths including three to five carbon atoms are synthesized by numerous bacteria, including
1098:
Mohapatra, Swati; Maity, Sudipta; Dash, Hirak Ranjan; Das, Surajit; Pattnaik, Swati; Rath, Chandi Charan; Samantaray, Deviprasad (December 2017).
261:
so produce PHA as energy storage in their tissues. Several companies are working to develop methods of producing PHA from waste water, including
204:, synthesize copolyester from the above two types of hydroxy fatty acids, or at least possess enzymes that are capable of part of this synthesis. 563:
Bhubalan, Kesaven; Lee, Wing-Hin; Sudesh, Kumar (2011-05-03), Domb, Abraham J.; Kumar, Neeraj; Ezra, Aviva (eds.), "Polyhydroxyalkanoate",
410: 242: 776: 808: 182:
Poly (HA MCL) from hydroxy fatty acids with medium chain lengths including six to 14 carbon atoms, can be made for example, by
998: 705: 635: 580: 547: 492:
Lu, Jingnan; Tappel, Ryan C.; Nomura, Christopher T. (2009-08-05). "Mini-Review: Biosynthesis of Poly(hydroxyalkanoates)".
346: 300:
can lie in the range of a few to 70%. Processability, impact strength and flexibility improves with a higher percentage of
334: 413:(small business category) for their development and commercialisation of a cost-effective method for manufacturing PHAs. 138:
with different hydroxyalkanoic acids are generated. PHA granules are then recovered by disrupting the cells. Recombinant
600: 369:
as a means to create plastics from non-fossil fuel sources. Furthermore, active research is being carried out for the
249:
obtained via fermentation that was named "Biopol". It was sold under the name "Biopol" and distributed in the U.S. by
964: 402:(poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is less stiff and tougher, and it may be used as packaging material. 68:. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different 1021:
Chen, Guo-Qiang; Wu, Qiong (2005). "The application of polyhydroxyalkanoates as tissue engineering materials".
272:
PHAs are processed mainly via injection molding, extrusion and extrusion bubbles into films and hollow bodies.
837: 238: 148:
str. pBE2C1AB were used in production of polyhydroxyalkanoates (PHA) and it was shown that they could use
365:
with novel properties, much interest exists to develop the use of PHA-based materials. PHA fits into the
265:
subsidiary Anoxkaldnes. and start-ups, Micromidas, Mango Materials, Full Cycle Bioplastics, Newlight and
57: 961:
The Presidential Green Chemistry Challenge Awards Program: Summary of 2005 Award Entries and Recipients
752: 382: 301: 1183: 729: 1168: 695: 1173: 448: 194: 792: 8: 1178: 1146:"A Strategic Review on Use of Polyhydroxyalkanoates as an Immunostimulant in Aquaculture" 211: 176: 165: 122: 24: 120:
To induce PHA production in a laboratory setting, a culture of a micro-organism such as
1128: 1099: 1086: 1034: 1004: 878: 860: 517: 424: 391: 210:
The simplest and most commonly occurring form of PHA is the fermentative production of
184: 1145: 1133: 1078: 1038: 1008: 994: 882: 701: 649: 641: 631: 576: 543: 509: 370: 171: 140: 112: 521: 1123: 1115: 1090: 1070: 1030: 986: 909: 870: 838:"Paques Biomaterials investeert 58 miljoen in demo-installatie en fabriek in Emmen" 676: 623: 568: 501: 432: 358: 95: 1074: 898:"Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations" 990: 896:
Jacquel, Nicolas; Lo, Chi-Wei; Wu, Ho-Shing; Wei, Yu-Hong; Wang, Shaw S. (2007).
420: 309: 289: 1119: 313: 680: 572: 505: 1162: 645: 513: 378: 366: 320: 297: 231: 88: 80: 627: 19: 1137: 1082: 1042: 874: 653: 386: 1153: 456: 285: 135: 106: 73: 34: 471:
substitutes, bone graft substitutes, bone dowels, wound dressings, and
468: 362: 305: 914: 897: 822: 809:"Full Cycle Bioplastics Turns Bacteria Waste into "Nature's Plastic"" 464: 440: 406: 374: 266: 254: 84: 50: 980: 865: 472: 460: 250: 54: 614:
Kim, Y. B.; Lenz, R. W. (2001). "Polyesters from microorganisms".
451:
repair devices, pericardial patches, bulking and filling agents,
227: 69: 53:
produced in nature by numerous microorganisms, including through
1059: 565:
Biodegradable Polymers in Clinical Use and Clinical Development
444: 304:
in the material. PHAs are soluble in halogenated solvents such
288:
stable, in contrast to other bioplastics from polymers such as
262: 214:, which consists of 1000 to 30000 hydroxy fatty acid monomers. 127:
inclusions can be as high as 80% of the organism's dry weight.
436: 428: 223: 65: 61: 954:"The Presidential Green Chemistry Challenge Awards Program" 756: 452: 399: 149: 963:. Environmental Protection Agency: 8. 2005. Archived from 152:
waste as carbon source for lower cost of PHA production.
38:
Chemical structures of P3HB, PHV and their copolymer PHBV
1144:
Adhithya Sankar Santhosh; Mridul Umesh (December 2020).
439:, guided tissue repair/regeneration devices, articular 983:
Biotechnological Applications of Polyhydroxyalkanoates
929: 467:
cell implants, spinal fusion cages, skin substitutes,
1152:, Vol. 8 No. 1 (2021), 14 December 2020 , Page 1-18. 1097: 777:
Mango Materials selected for Phase II STTR NASA award
116:
bacteria can be used to produce polyhydroxyalkanoates
419:
Fixation and orthopaedic applications have included
835: 616:Advances in Biochemical Engineering/Biotechnology 567:, John Wiley & Sons, Inc., pp. 247–315, 562: 1160: 727: 750: 538:Doi, Yoshiharu; Steinbuchel, Alexander (2002). 895: 666: 597:"Polyhydroxyalkanoates for tissue engineering" 537: 491: 319:PHB is similar in its material properties to 411:Presidential Green Chemistry Challenge Award 753:"Micromidas to test sludge-to-plastic tech" 693: 533: 531: 459:scaffolds, meniscus regeneration devices, 352:Structure of poly-4-hydroxybutyrate (P4HB) 296:, and show a low permeation of water. The 1127: 1104:and biopolymer: Prospects and challenges" 913: 864: 687: 595:Michael, Anne John (September 12, 2004). 340:Structure of poly-3-hydroxyvalerate (PHV) 23:Structure of poly-(R)-3-hydroxybutyrate ( 985:, Springer Singapore, pp. 347–361, 793:How Close Are We to Reinventing Plastic? 217: 105: 33: 18: 1154:https://doi.org/10.22037/afb.v8i1.31255 850: 613: 594: 528: 159:The resulting PHA is of the two types: 1161: 1020: 728:Seb Egerton-Read (September 9, 2015). 275: 1108:Biochemistry and Biophysics Reports 13: 1053: 1035:10.1016/j.biomaterials.2005.04.036 14: 1195: 292:, partial ca. temperatures up to 751:Martin Lamonica (May 27, 2010). 542:. Weinheim, Germany: Wiley-VCH. 345: 333: 91:ranging from 40 to 180 °C. 1014: 974: 946: 922: 889: 844: 829: 815: 801: 786: 770: 669:Biochemical Engineering Journal 326: 101: 744: 721: 660: 607: 588: 556: 485: 443:repair devices, nerve guides, 94:The mechanical properties and 1: 1075:10.1080/09593330.2017.1291759 853:ACS Applied Polymer Materials 823:"Paques biomaterials website" 697:Compostable Polymer Materials 694:Ewa Rudnik (3 January 2008). 478: 991:10.1007/978-981-13-3759-8_13 239:Imperial Chemical Industries 7: 1120:10.1016/j.bbrep.2017.10.001 730:"A New Way to Make Plastic" 10: 1200: 1150:Applied Food Biotechnology 836:Provincie Drenthe (2022). 383:polyethylene terephthalate 192:A few bacteria, including 681:10.1016/j.bej.2007.11.029 573:10.1002/9781118015810.ch8 506:10.1080/15583720903048243 405:In June 2005, US company 212:poly-beta-hydroxybutyrate 1063:Environmental Technology 700:. Elsevier. p. 21. 361:and potential to create 628:10.1007/3-540-40021-4_2 409:, Inc. received the US 398:A PHA copolymer called 243:poly(3-hydroxybutyrate- 875:10.1021/acsapm.0c00539 117: 39: 31: 218:Industrial production 109: 43:Polyhydroxyalkanoates 37: 22: 603:on January 28, 2007. 449:atrial septal defect 423:, suture fasteners, 201:Thiococcus pfennigii 195:Aeromonas hydrophila 29:polyhydroxyalkanoate 781:BioplasticsMagazine 463:and tendon grafts, 276:Material properties 267:Paques Biomaterials 247:-3-hydroxyvalerate) 166:Cupriavidus necator 123:Cupriavidus necator 110:Certain strains of 79:They can be either 392:Pseudomonas putida 185:Pseudomonas putida 118: 40: 32: 1000:978-981-13-3758-1 930:"Homepage - P4SB" 915:10.1002/aic.11274 707:978-0-08-045371-2 637:978-3-540-41141-3 582:978-1-118-01581-0 549:978-3-527-30225-3 433:adhesion barriers 389:) into PHA using 371:biotransformation 172:Alcaligenes latus 146:Bacillus subtilis 141:Bacillus subtilis 113:Bacillus subtilis 1191: 1141: 1131: 1094: 1047: 1046: 1018: 1012: 1011: 978: 972: 971: 969: 958: 950: 944: 943: 941: 940: 926: 920: 919: 917: 893: 887: 886: 868: 859:(8): 3525–3534. 848: 842: 841: 833: 827: 826: 819: 813: 812: 805: 799: 790: 784: 774: 768: 767: 765: 763: 748: 742: 741: 739: 737: 725: 719: 718: 716: 714: 691: 685: 684: 664: 658: 657: 611: 605: 604: 599:. Archived from 592: 586: 585: 560: 554: 553: 535: 526: 525: 489: 447:repair devices, 427:repair devices, 359:biodegradability 349: 337: 295: 144:str. pBE2C1 and 96:biocompatibility 87:materials, with 16:Polyester family 1199: 1198: 1194: 1193: 1192: 1190: 1189: 1188: 1159: 1158: 1056: 1054:Further reading 1051: 1050: 1029:(33): 6565–78. 1019: 1015: 1001: 979: 975: 967: 956: 952: 951: 947: 938: 936: 928: 927: 923: 908:(10): 2704–14. 894: 890: 849: 845: 834: 830: 821: 820: 816: 811:. 11 July 2019. 807: 806: 802: 795:(Dec 18, 2019) 791: 787: 779:(10. Aug 2017) 775: 771: 761: 759: 749: 745: 735: 733: 726: 722: 712: 710: 708: 692: 688: 665: 661: 638: 612: 608: 593: 589: 583: 561: 557: 550: 536: 529: 494:Polymer Reviews 490: 486: 481: 353: 350: 341: 338: 329: 310:dichloromethane 293: 290:polylactic acid 278: 220: 104: 17: 12: 11: 5: 1197: 1187: 1186: 1184:Thermoplastics 1181: 1176: 1171: 1157: 1156: 1142: 1095: 1055: 1052: 1049: 1048: 1013: 999: 973: 970:on 2012-07-08. 945: 921: 888: 843: 828: 814: 800: 785: 769: 743: 720: 706: 686: 659: 636: 606: 587: 581: 555: 548: 527: 500:(3): 226–248. 483: 482: 480: 477: 355: 354: 351: 344: 342: 339: 332: 328: 325: 314:dichloroethane 277: 274: 237:In the 1980s, 219: 216: 190: 189: 180: 103: 100: 89:melting points 15: 9: 6: 4: 3: 2: 1196: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1166: 1164: 1155: 1151: 1147: 1143: 1139: 1135: 1130: 1125: 1121: 1117: 1113: 1109: 1105: 1103: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1058: 1057: 1044: 1040: 1036: 1032: 1028: 1024: 1017: 1010: 1006: 1002: 996: 992: 988: 984: 977: 966: 962: 955: 949: 935: 931: 925: 916: 911: 907: 903: 902:AIChE Journal 899: 892: 884: 880: 876: 872: 867: 862: 858: 854: 847: 839: 832: 824: 818: 810: 804: 798: 794: 789: 782: 778: 773: 758: 754: 747: 731: 724: 709: 703: 699: 698: 690: 682: 678: 674: 670: 663: 655: 651: 647: 643: 639: 633: 629: 625: 621: 617: 610: 602: 598: 591: 584: 578: 574: 570: 566: 559: 551: 545: 541: 534: 532: 523: 519: 515: 511: 507: 503: 499: 495: 488: 484: 476: 474: 470: 466: 462: 458: 454: 450: 446: 442: 438: 434: 430: 426: 422: 417: 414: 412: 408: 403: 401: 396: 394: 393: 388: 384: 380: 379:plastic waste 376: 372: 368: 367:green economy 364: 360: 348: 343: 336: 331: 330: 324: 322: 321:polypropylene 317: 315: 311: 307: 303: 299: 298:crystallinity 291: 287: 282: 273: 270: 268: 264: 258: 256: 252: 248: 246: 240: 235: 233: 232:vegetable oil 229: 225: 215: 213: 208: 205: 203: 202: 197: 196: 187: 186: 181: 178: 174: 173: 168: 167: 162: 161: 160: 157: 153: 151: 147: 143: 142: 137: 132: 128: 125: 124: 115: 114: 108: 99: 97: 92: 90: 86: 82: 81:thermoplastic 77: 75: 71: 67: 63: 59: 56: 52: 48: 44: 36: 30: 26: 21: 1169:Biomaterials 1149: 1111: 1107: 1101: 1066: 1062: 1026: 1023:Biomaterials 1022: 1016: 982: 976: 965:the original 960: 948: 937:. Retrieved 933: 924: 905: 901: 891: 856: 852: 846: 831: 817: 803: 796: 788: 780: 772: 760:. Retrieved 746: 734:. Retrieved 723: 711:. Retrieved 696: 689: 675:(1): 15–27. 672: 668: 662: 619: 615: 609: 601:the original 590: 564: 558: 539: 497: 493: 487: 418: 415: 404: 397: 390: 387:polyurethane 356: 327:Applications 318: 283: 279: 271: 259: 244: 236: 221: 209: 206: 199: 193: 191: 183: 170: 164: 158: 154: 145: 139: 136:copolyesters 133: 129: 121: 119: 111: 102:Biosynthesis 93: 78: 58:fermentation 46: 42: 41: 28: 1174:Bioplastics 1069:(24): 1–8. 934:www.p4sb.eu 762:October 23, 736:October 23, 732:. Circulate 540:Biopolymers 457:bone marrow 363:bioplastics 357:Due to its 85:elastomeric 74:bioplastics 1179:Polyesters 1163:Categories 1114:: 206–13. 939:2017-10-26 866:2005.08525 479:References 395:bacteria. 306:chloroform 253:and later 241:developed 51:polyesters 1009:139827723 883:218673849 646:0724-6145 622:: 51–79. 514:1558-3724 473:hemostats 441:cartilage 407:Metabolix 375:upcycling 284:They are 255:Metabolix 55:bacterial 1138:29090283 1102:Bacillus 1083:28162048 1043:15946738 654:11217417 522:96937618 461:ligament 455:valves, 425:meniscus 302:valerate 251:Monsanto 70:monomers 1129:5651552 1091:1080507 713:10 July 421:sutures 381:(e.g., 228:glucose 1136:  1126:  1089:  1081:  1041:  1007:  997:  881:  797:Seeker 704:  652:  644:  634:  579:  546:  520:  512:  465:ocular 445:tendon 437:stents 429:rivets 294:180 °C 263:Veolia 66:lipids 62:sugars 1087:S2CID 1005:S2CID 968:(PDF) 957:(PDF) 879:S2CID 861:arXiv 518:S2CID 469:dural 377:" of 230:, or 224:sugar 27:), a 1134:PMID 1079:PMID 1039:PMID 995:ISBN 783:.com 764:2015 757:CNET 738:2015 715:2012 702:ISBN 650:PMID 642:ISSN 632:ISBN 577:ISBN 544:ISBN 510:ISSN 453:vein 400:PHBV 385:and 198:and 169:and 150:malt 49:are 47:PHAs 25:P3HB 1124:PMC 1116:doi 1071:doi 1031:doi 987:doi 910:doi 871:doi 677:doi 624:doi 569:doi 502:doi 312:or 177:PHB 83:or 64:or 60:of 45:or 1165:: 1148:. 1132:. 1122:. 1112:12 1110:. 1106:. 1085:. 1077:. 1067:38 1065:. 1037:. 1027:26 1025:. 1003:, 993:, 959:. 932:. 906:53 904:. 900:. 877:. 869:. 855:. 755:. 673:39 671:. 648:. 640:. 630:. 620:71 618:. 575:, 530:^ 516:. 508:. 498:49 496:. 475:. 435:, 316:. 308:, 286:UV 269:. 257:. 245:co 234:. 226:, 179:). 76:. 1140:. 1118:: 1100:" 1093:. 1073:: 1045:. 1033:: 989:: 942:. 918:. 912:: 885:. 873:: 863:: 857:2 840:. 825:. 766:. 740:. 717:. 683:. 679:: 656:. 626:: 571:: 552:. 524:. 504:: 373:" 188:. 175:(

Index


P3HB

polyesters
bacterial
fermentation
sugars
lipids
monomers
bioplastics
thermoplastic
elastomeric
melting points
biocompatibility

Bacillus subtilis
Cupriavidus necator
copolyesters
Bacillus subtilis
malt
Cupriavidus necator
Alcaligenes latus
PHB
Pseudomonas putida
Aeromonas hydrophila
Thiococcus pfennigii
poly-beta-hydroxybutyrate
sugar
glucose
vegetable oil

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.