Knowledge

Polar metal

Source 📝

48:. A polarization was observed along one (001) axis by pyroelectric effect measurements, and the sign of the polarization was shown to be reversible, while its magnitude could be increased by poling with an electric field. The polarization was found to disappear in the superconducting state. The lattice distortions responsible were considered to be a result of oxygen ion displacements induced by doped charges that break inversion symmetry. The effect was utilized for fabrication of pyroelectric detectors for space applications, having the advantage of large pyroelectric coefficient and low intrinsic resistance. Another substance family that can produce a polar metal is the 36:. Its components have an ordered electric dipole. Such metals should be unexpected, because the charge should conduct by way of the free electrons in the metal and neutralize the polarized charge. However they do exist. Probably the first report of a polar metal was in single crystals of the cuprate superconductors YBa 75:) was interpreted to be both conductor and a polar material at room temperature. The resistivity of this system, however, shows an upturn with decreasing temperature, hence does not strictly adhere to the definition of a metal. Also, when grown 3 or 4 unit cells thick (1-2 nm) on the (100) crystal face of LaAlO 111:
losing its centrosymmetry. At room temperature and below, lithium osmate is an electric conductor, in single crystal, polycrystalline or powder forms, and the ferroelectric form only appears below 140K. Above 140K the material behaves like a normal metal. Artificial two-dimensional polar metal by
155:, has been observed in the low-thickness limit of two- and three-layers. Calculations suggest this originates from vertical charge transfer between the layers, which is switched by interlayer sliding. In April 2022 another polar metal at room temperature was reported which was also magnetic, 181:
alloy. They realised that the free electrons in the metal would neutralise the effect of the polarization at a global level, but that the conduction electrons do not strongly affect transverse optical phonons, or the local electric field inherent in
173:. The prediction was that atoms do not move far and only a slight crystal non-symmetrical deformation occurs, say from cubic to tetragonal. This transition they called martensitic. They suggested looking at 169:
and E. I. Blount predicted that a ferroelectric metal could exist in 1965. They were inspired to make this prediction based on superconducting transitions, and the ferroelectric transition in
822:
Paredes Aulestia EI, Cheung YW, Fang YW, He J, Yamaura K, Lai KT, Goh SK, Chen H (2018-07-02). "Pressure-induced enhancement of non-polar to polar transition temperature in metallic LiOsO3".
147:(TMDC). It has bistable and electrically switchable spontaneous polarization states indicating ferroelectricity. Coexistence of metallic behavior and switchable electric polarization in WTe 1168:
Zhang H, Shao YT, Chen R, Chen X, Susarla S, Raftrey D, Reichanadter JT, Caretta L, Huang X, Settineri NS, Chen Z (2022-04-06). "A room temperature polar magnetic metal".
56: 595:
Butler DP, Çelik-Butler Z, Jahanzeb A, Gray JE, Travers CM (1998). "Micromachined YBaCuO capacitor structures as uncooled pyroelectric infrared detectors".
84: 883:
Shi Y, Guo Y, Wang X, Princep AJ, Khalyavin D, Manuel P, et al. (November 2013). "A ferroelectric-like structural transition in a metal".
761:
Shi Y, Guo Y, Wang X, Princep AJ, Khalyavin D, Manuel P, et al. (November 2013). "A ferroelectric-like structural transition in a metal".
732: 1060:
Fei Z, Zhao W, Palomaki TA, Sun B, Miller MK, Zhao Z, et al. (August 2018). "Ferroelectric switching of a two-dimensional metal".
229:
Benedek NA, Birol T (2016). "'Ferroelectric' metals reexamined: fundamental mechanisms and design considerations for new materials".
178: 1343:
Anderson PW, Blount EI (15 February 1965). "Symmetry Considerations on Martensitic Transformations: "Ferroelectric" Metals?".
464:
Mihailovic D, Poberaj I, Mertelj A (December 1993). "Characterization of the pyroelectric effect in YBa2Cu3O7- delta".
1389: 633:
Kim TH, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, et al. (May 2016). "Polar metals by geometric design".
144: 160: 135:
Native metallicity and ferroelectricity has been observed at room temperature in bulk single-crystalline
546:
Viskadourakis Z, Sunku SS, Mukherjee S, Andersen BM, Ito T, Sasagawa T, Panagopoulos C (October 2015).
152: 92: 687:
Kumah DP, Malashevich A, Disa AS, Arena DA, Walker FJ, Ismail-Beigi S, Ahn CH (6 November 2015).
507:
Mihailovic D, Heeger AJ (1990). "Pyroelectric and piezoelectric effects in single crystals of YBa
327:
Mihailović D, Heeger AJ (1990). "Pyroelectric and piezoelectric effects in single crystals of YBa
1121:
Yang Q, Wu M, Li J (December 2018). "Origin of Two-Dimensional Vertical Ferroelectricity in WTe
204: 174: 166: 33: 83:
can be a polar insulator or polar metal depending on the atomic termination of the surface.
1352: 1299: 1234: 1187: 1079: 1016: 967: 902: 841: 780: 704: 642: 604: 473: 395: 136: 8: 68: 1356: 1303: 1238: 1191: 1083: 1020: 971: 946:"Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator" 906: 845: 784: 708: 646: 608: 477: 399: 1320: 1271: 1252: 1203: 1177: 1150: 1103: 1069: 1037: 1004: 957: 926: 892: 865: 831: 804: 770: 666: 572: 547: 309: 283: 256: 238: 1199: 1325: 1256: 1207: 1142: 1095: 1042: 1003:
Sharma P, Xiang FX, Shao DF, Zhang D, Tsymbal EY, Hamilton AR, Seidel J (July 2019).
985: 918: 869: 857: 796: 658: 577: 532: 489: 450: 352: 313: 301: 1154: 1107: 930: 808: 717: 688: 260: 1360: 1315: 1307: 1242: 1195: 1134: 1087: 1032: 1024: 975: 910: 849: 788: 712: 650: 612: 567: 559: 528: 481: 446: 403: 348: 293: 248: 183: 670: 1384: 170: 1270:
Zhang H, Raftrey D, Chan YT, Shao YT, Chen R, Chen X, et al. (March 2022).
1138: 297: 1364: 1091: 980: 945: 485: 407: 1378: 989: 861: 305: 944:
Zhou WX, Wu HJ, Zhou J, Zeng SW, Li CJ, Li MS, et al. (December 2019).
1329: 1311: 1247: 1222: 1146: 1099: 1046: 1028: 922: 800: 662: 581: 493: 274:
Zhou WX, Ariando A (2020-06-01). "Review on ferroelectric/polar metals".
96: 52: 654: 366:
Poberaj I, Mihailovic D (1992). "Pyroelectric effect measurements in YBa
252: 112:
charge transfer to a ferroelectric insulator has been realized in LaAlO
853: 563: 914: 792: 616: 49: 689:"Effect of Surface Termination on the Electronic Properties of LaNiO 1182: 1074: 962: 897: 836: 775: 545: 288: 243: 156: 594: 55:. One example interpreted to show polar metallic behavior is 29: 821: 1272:"Room-temperature skyrmion lattice in a layered magnet (Fe 686: 205:"Researchers open path to finding rare, polarized metals" 463: 421:
Mihailovic D, Poberaj I (1991). "Ferroelectricity in YBa
1269: 1002: 1059: 632: 548:"Ferroelectricity in underdoped La-based cuprates" 1167: 882: 760: 420: 365: 202: 1376: 506: 326: 1342: 943: 733:"When is a ferroelectric not a ferroelectric?" 1005:"A room-temperature ferroelectric semimetal" 228: 359: 273: 1319: 1246: 1220: 1181: 1127:The Journal of Physical Chemistry Letters 1073: 1036: 979: 961: 896: 835: 774: 716: 571: 287: 242: 1120: 682: 680: 1377: 876: 756: 754: 628: 626: 677: 1223:"Elusive Polar Magnetic Metal Found" 751: 623: 276:Japanese Journal of Applied Physics 67:grown on the (111) crystal face of 13: 203:Drexel University (2 April 2014). 95:when it is cooled below 140K. The 14: 1401: 1200:10.1103/PhysRevMaterials.6.044403 231:Journal of Materials Chemistry C 132:complex oxide heterostructures. 1336: 1263: 1214: 1161: 1114: 1053: 996: 937: 815: 725: 718:10.1103/PhysRevApplied.2.054004 588: 145:transition metal dichalcogenide 539: 500: 457: 414: 320: 267: 222: 196: 1: 189: 533:10.1016/0038-1098(90)90904-P 451:10.1016/0921-4534(91)91614-A 443:Physica C: Superconductivity 353:10.1016/0038-1098(90)90904-P 7: 1139:10.1021/acs.jpclett.8b03654 10: 1406: 1365:10.1103/PhysRevLett.14.217 1221:Wilkinson R (2022-04-06). 521:Solid State Communications 341:Solid State Communications 1170:Physical Review Materials 1125:Bilayer and Multilayer". 1092:10.1038/s41586-018-0336-3 981:10.1038/s42005-019-0227-4 486:10.1103/PhysRevB.48.16634 408:10.1080/00150199208015091 298:10.35848/1347-4065/ab8bbf 93:ferrorelectric transition 1390:Ferroelectric materials 1345:Physical Review Letters 824:Applied Physics Letters 697:Physical Review Applied 161:Rashba–Edelstein effect 1312:10.1126/sciadv.abm7103 1248:10.1103/Physics.15.s44 1029:10.1126/sciadv.aax5080 950:Communications Physics 175:sodium tungsten bronze 63:. A thin film of LaNiO 34:electric dipole moment 22:metallic ferroelectric 137:tungsten ditelluride 1357:1965PhRvL..14..217A 1304:2022SciA....8M7103Z 1239:2022PhyOJ..15..s44W 1192:2022PhRvM...6d4403Z 1084:2018Natur.560..336F 1021:2019SciA....5.5080S 972:2019CmPhy...2..125Z 907:2013NatMa..12.1024S 846:2018ApPhL.113a2902P 785:2013NatMa..12.1024S 737:www.isis.stfc.ac.uk 709:2014PhRvP...2e4004K 655:10.1038/nature17628 647:2016Natur.533...68K 609:1998JAP....84.1680B 478:1993PhRvB..4816634M 472:(22): 16634–16640. 400:1992Fer...128..197P 69:lanthanum aluminate 57:lanthanum nickelate 26:ferroelectric metal 552:Scientific Reports 441:single crystals". 253:10.1039/C5TC03856A 1133:(24): 7160–7164. 1068:(7718): 336–339. 891:(11): 1024–1027. 854:10.1063/1.5035133 769:(11): 1024–1027. 564:10.1038/srep15268 466:Physical Review B 237:(18): 4000–4015. 91:also undergoes a 32:that contains an 1397: 1369: 1368: 1340: 1334: 1333: 1323: 1298:(12): eabm7103. 1292:Science Advances 1267: 1261: 1260: 1250: 1218: 1212: 1211: 1185: 1165: 1159: 1158: 1118: 1112: 1111: 1077: 1057: 1051: 1050: 1040: 1009:Science Advances 1000: 994: 993: 983: 965: 941: 935: 934: 915:10.1038/nmat3754 900: 885:Nature Materials 880: 874: 873: 839: 819: 813: 812: 793:10.1038/nmat3754 778: 763:Nature Materials 758: 749: 748: 746: 744: 729: 723: 722: 720: 684: 675: 674: 630: 621: 620: 617:10.1063/1.368257 592: 586: 585: 575: 543: 537: 536: 504: 498: 497: 461: 455: 454: 445:. 185–189: 781. 418: 412: 411: 363: 357: 356: 324: 318: 317: 291: 271: 265: 264: 246: 226: 220: 219: 217: 215: 200: 184:ferroelectricity 153:layered material 104: 1405: 1404: 1400: 1399: 1398: 1396: 1395: 1394: 1375: 1374: 1373: 1372: 1341: 1337: 1287: 1283: 1279: 1275: 1268: 1264: 1219: 1215: 1166: 1162: 1124: 1119: 1115: 1058: 1054: 1015:(7): eaax5080. 1001: 997: 942: 938: 881: 877: 820: 816: 759: 752: 742: 740: 731: 730: 726: 692: 685: 678: 641:(7601): 68–72. 631: 624: 593: 589: 544: 540: 518: 514: 510: 505: 501: 462: 458: 440: 436: 432: 428: 424: 419: 415: 385: 381: 377: 373: 369: 364: 360: 338: 334: 330: 325: 321: 272: 268: 227: 223: 213: 211: 201: 197: 192: 171:barium titanate 163:were observed. 150: 142: 131: 127: 123: 119: 115: 102: 90: 82: 78: 74: 66: 62: 47: 43: 39: 12: 11: 5: 1403: 1393: 1392: 1387: 1371: 1370: 1351:(7): 217–219. 1335: 1285: 1281: 1277: 1273: 1262: 1213: 1160: 1122: 1113: 1052: 995: 936: 875: 814: 750: 724: 690: 676: 622: 587: 538: 516: 512: 508: 499: 456: 438: 434: 430: 426: 422: 413: 388:Ferroelectrics 383: 379: 375: 371: 367: 358: 336: 332: 328: 319: 282:(SI): SI0802. 266: 221: 194: 193: 191: 188: 167:P. W. Anderson 148: 140: 129: 125: 121: 117: 113: 88: 85:Lithium osmate 80: 76: 72: 64: 60: 45: 41: 37: 9: 6: 4: 3: 2: 1402: 1391: 1388: 1386: 1383: 1382: 1380: 1366: 1362: 1358: 1354: 1350: 1346: 1339: 1331: 1327: 1322: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1266: 1258: 1254: 1249: 1244: 1240: 1236: 1232: 1228: 1224: 1217: 1209: 1205: 1201: 1197: 1193: 1189: 1184: 1179: 1176:(4): 044403. 1175: 1171: 1164: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1117: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1076: 1071: 1067: 1063: 1056: 1048: 1044: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 999: 991: 987: 982: 977: 973: 969: 964: 959: 955: 951: 947: 940: 932: 928: 924: 920: 916: 912: 908: 904: 899: 894: 890: 886: 879: 871: 867: 863: 859: 855: 851: 847: 843: 838: 833: 830:(1): 012902. 829: 825: 818: 810: 806: 802: 798: 794: 790: 786: 782: 777: 772: 768: 764: 757: 755: 738: 734: 728: 719: 714: 710: 706: 703:(5): 054004. 702: 698: 694: 683: 681: 672: 668: 664: 660: 656: 652: 648: 644: 640: 636: 629: 627: 618: 614: 610: 606: 602: 598: 597:J. Appl. Phys 591: 583: 579: 574: 569: 565: 561: 557: 553: 549: 542: 534: 530: 526: 522: 503: 495: 491: 487: 483: 479: 475: 471: 467: 460: 452: 448: 444: 417: 409: 405: 401: 397: 393: 389: 362: 354: 350: 346: 342: 323: 315: 311: 307: 303: 299: 295: 290: 285: 281: 277: 270: 262: 258: 254: 250: 245: 240: 236: 232: 225: 210: 206: 199: 195: 187: 185: 180: 176: 172: 168: 164: 162: 158: 154: 151:, which is a 146: 138: 133: 110: 106: 99:changes from 98: 94: 86: 70: 58: 54: 51: 35: 31: 27: 23: 19: 1348: 1344: 1338: 1295: 1291: 1265: 1230: 1226: 1216: 1173: 1169: 1163: 1130: 1126: 1116: 1065: 1061: 1055: 1012: 1008: 998: 953: 949: 939: 888: 884: 878: 827: 823: 817: 766: 762: 741:. Retrieved 736: 727: 700: 696: 638: 634: 600: 596: 590: 555: 551: 541: 524: 520: 502: 469: 465: 459: 442: 416: 391: 387: 386:materials". 361: 344: 340: 322: 279: 275: 269: 234: 230: 224: 212:. Retrieved 208: 198: 165: 134: 108: 100: 25: 21: 17: 15: 603:(3): 1680. 97:point group 79:, the LaNiO 53:perovskites 18:polar metal 1379:Categories 1183:2106.00833 1075:1809.04575 963:2007.05903 956:(1): 125. 898:1509.01849 837:1806.00639 776:1509.01849 394:(1): 197. 289:2007.11200 244:1511.06187 190:References 1257:249250986 1208:248011242 990:2399-3650 870:119058864 862:0003-6951 558:: 15268. 314:219092553 306:0021-4922 157:skyrmions 50:nickelate 1330:35319983 1155:56147713 1147:30540485 1108:49907122 1100:30038286 1047:31281902 931:27226642 923:24056805 809:27226642 801:24056805 743:21 April 663:27096369 582:26486276 494:10008248 261:59457320 214:23 April 209:phys.org 159:and the 71:, (LaAlO 1353:Bibcode 1321:8942374 1300:Bibcode 1235:Bibcode 1227:Physics 1188:Bibcode 1080:Bibcode 1038:6611688 1017:Bibcode 968:Bibcode 903:Bibcode 842:Bibcode 781:Bibcode 705:Bibcode 643:Bibcode 605:Bibcode 573:4614081 527:: 319. 474:Bibcode 396:Bibcode 347:: 319. 87:, LiOsO 59:, LaNiO 1385:Metals 1328:  1318:  1255:  1206:  1153:  1145:  1106:  1098:  1062:Nature 1045:  1035:  988:  929:  921:  868:  860:  807:  799:  739:. 2013 693:Films" 671:518197 669:  661:  635:Nature 580:  570:  492:  433:and La 378:and La 312:  304:  259:  128:/SrTiO 1253:S2CID 1204:S2CID 1178:arXiv 1151:S2CID 1104:S2CID 1070:arXiv 958:arXiv 927:S2CID 893:arXiv 866:S2CID 832:arXiv 805:S2CID 771:arXiv 667:S2CID 310:S2CID 284:arXiv 257:S2CID 239:arXiv 143:); a 30:metal 28:is a 24:, or 1326:PMID 1284:GeTe 1143:PMID 1096:PMID 1043:PMID 986:ISSN 919:PMID 858:ISSN 797:PMID 745:2016 659:PMID 578:PMID 490:PMID 302:ISSN 216:2016 179:InTl 177:and 139:(WTe 1361:doi 1316:PMC 1308:doi 1278:0.5 1274:0.5 1243:doi 1196:doi 1135:doi 1088:doi 1066:560 1033:PMC 1025:doi 976:doi 911:doi 850:doi 828:113 789:doi 713:doi 651:doi 639:533 613:doi 568:PMC 560:doi 529:doi 519:". 517:7−d 482:doi 447:doi 439:4+δ 437:CuO 431:7−δ 404:doi 392:128 382:CuO 376:6+y 349:doi 339:". 337:7−d 294:doi 249:doi 124:TiO 122:0.2 118:0.8 116:/Ba 109:R3c 107:to 46:7−δ 1381:: 1359:. 1349:14 1347:. 1324:. 1314:. 1306:. 1294:. 1290:. 1276:Co 1251:. 1241:. 1233:. 1231:15 1229:. 1225:. 1202:. 1194:. 1186:. 1172:. 1149:. 1141:. 1129:. 1102:. 1094:. 1086:. 1078:. 1064:. 1041:. 1031:. 1023:. 1011:. 1007:. 984:. 974:. 966:. 952:. 948:. 925:. 917:. 909:. 901:. 889:12 887:. 864:. 856:. 848:. 840:. 826:. 803:. 795:. 787:. 779:. 767:12 765:. 753:^ 735:. 711:. 699:. 695:. 679:^ 665:. 657:. 649:. 637:. 625:^ 611:. 601:84 599:. 576:. 566:. 554:. 550:. 525:75 523:. 511:Cu 488:. 480:. 470:48 468:. 425:Cu 402:. 390:. 370:Cu 345:75 343:. 331:Cu 308:. 300:. 292:. 280:59 278:. 255:. 247:. 233:. 207:. 186:. 120:Sr 40:Cu 20:, 16:A 1367:. 1363:: 1355:: 1332:. 1310:: 1302:: 1296:8 1288:" 1286:2 1282:5 1280:) 1259:. 1245:: 1237:: 1210:. 1198:: 1190:: 1180:: 1174:6 1157:. 1137:: 1131:9 1123:2 1110:. 1090:: 1082:: 1072:: 1049:. 1027:: 1019:: 1013:5 992:. 978:: 970:: 960:: 954:2 933:. 913:: 905:: 895:: 872:. 852:: 844:: 834:: 811:. 791:: 783:: 773:: 747:. 721:. 715:: 707:: 701:2 691:3 673:. 653:: 645:: 619:. 615:: 607:: 584:. 562:: 556:5 535:. 531:: 515:O 513:3 509:2 496:. 484:: 476:: 453:. 449:: 435:2 429:O 427:3 423:2 410:. 406:: 398:: 384:4 380:2 374:O 372:3 368:2 355:. 351:: 335:O 333:3 329:2 316:. 296:: 286:: 263:. 251:: 241:: 235:4 218:. 149:2 141:2 130:3 126:3 114:3 105:c 103:3 101:R 89:3 81:3 77:3 73:3 65:3 61:3 44:O 42:3 38:2

Index

metal
electric dipole moment
nickelate
perovskites
lanthanum nickelate
lanthanum aluminate
Lithium osmate
ferrorelectric transition
point group
tungsten ditelluride
transition metal dichalcogenide
layered material
skyrmions
Rashba–Edelstein effect
P. W. Anderson
barium titanate
sodium tungsten bronze
InTl
ferroelectricity
"Researchers open path to finding rare, polarized metals"
arXiv
1511.06187
doi
10.1039/C5TC03856A
S2CID
59457320
arXiv
2007.11200
doi
10.35848/1347-4065/ab8bbf

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.