Knowledge

Organic electronics

Source 📝

597: 288:. Moving from molecular to macromolecular materials solved the problems previously encountered with the long-term stability of the organic films and enabled high-quality films to be easily made. In the late 1990's, highly efficient electroluminescent dopants were shown to dramatically increase the light-emitting efficiency of OLEDs These results suggested that electroluminescent materials could displace traditional hot-filament lighting. Subsequent research developed multilayer polymers and the new field of plastic electronics and 33: 750: 301: 901: 589: 2460: 421: 413: 519: 817: 645:
One advantage of printed electronics is that different electrical and electronic components can be printed on top of each other, saving space and increasing reliability and sometimes they are all transparent. One ink must not damage another, and low temperature annealing is vital if low-cost flexible
829:
An organic field-effect transistor is a three terminal device (source, drain and gate). The charge carriers move between source and drain, and the gate serves to control the path's conductivity. There are mainly two types of organic field-effect transistor, based on the semiconducting layer's charge
740:
of molecules from a hot source. The molecules are then transported through vacuum onto a substrate. The process of condensing these molecules on the substrate surface results in thin film formation. Wet coating techniques can in some cases be applied to small molecules depending on their solubility.
833:
Such technology allows for the fabrication of large-area, flexible, low-cost electronics. One of the main advantages is that being mainly a low temperature process compared to CMOS, different type of materials can be utilized. This makes them in turn great candidates for sensing.
735:
production. It may result in a high degree of material loss. The doctor-blade technique results in a minimal material loss and was primarily developed for large area thin film production. Vacuum based thermal deposition of small molecules requires
90:
One of the promised benefits of organic electronics is their potential low cost compared to traditional electronics. Attractive properties of polymeric conductors include their electrical conductivity (which can be varied by the concentrations of
542:
are n-type and p-type semiconductor, classified according to the charge type carried. In the case of organic FETs (OFETs), p-type OFET compounds are generally more stable than n-type due to the susceptibility of the latter to oxidative damage.
147:, which was subsequently shown to be electrically conductive. Work on other polymeric organic materials began in earnest in the 1960s. For example in 1963, a derivative of tetraiodopyrrole was shown to exhibit conductivity of 1 S/cm (S = 1124: 408:
An OLED (organic light-emitting diode) consists of a thin film of organic material that emits light under stimulation by an electric current. A typical OLED consists of an anode, a cathode, OLED organic material and a conductive layer.
830:
transport, namely p-type (such as dinaphthothienothiophene, DNTT), and n-type (such phenyl C61 butyric acid methyl ester, PCBM). Certain organic semiconductors can also present both p-type and n-type (i.e., ambipolar) characteristics.
650:
are to be used. There is much sophisticated engineering and chemistry involved here, with iTi, Pixdro, Asahi Kasei, Merck & Co.|Merck, BASF, HC Starck, Sunew, Hitachi Chemical, and Frontier Carbon Corporation among the leaders.
757:
Organic semiconductor diodes convert light into electricity. Figure to the right shows five commonly used organic photovoltaic materials. Electrons in these organic molecules can be delocalized in a delocalized π
855:, and less expensive than inorganic conductors. This makes them a desirable alternative in many applications. It also creates the possibility of new applications that would be impossible using copper or silicon. 190:
have been shown to act as semiconductors, and newly synthesized and characterized compounds are reported weekly in prominent research journals. Many review articles exist documenting the development of these
1638:
Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. (1998). "Highly efficient phosphorescent emission from organic electroluminescent devices".
642:
solar cells prove to be a promising concept for efficient and low-cost photovoltaics on cheap and flexible substrates for large-area production as well as small and mobile applications.
1795:
Holmes, Russell; Erickson, N.; Lüssem, Björn; Leo, Karl (27 August 2010). "Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer".
1830:
Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. (1990). "Light-emitting diodes based on conjugated polymers".
1760:
Piromreun, Pongpun; Oh, Hwansool; Shen, Yulong; Malliaras, George G.; Scott, J. Campbell; Brock, Phil J. (2000). "Role of CsF on electron injection into a conjugated polymer".
526:
An organic field-effect transistor (OFET) is a field-effect transistor utilizing organic molecules or polymers as the active semiconducting layer. A field-effect transistor (
334:
are often typically intrinsically conductive or at least semiconductors. They sometimes show mechanical properties comparable to those of conventional organic polymers. Both
484:; is hampered by high cost and limited scalability. Polymer light-emitting diodes (PLEDs) are generally more efficient than SM-OLEDs. Common polymers used in PLEDs include 2108:
Sugiyama, Masahiro; Jancke, Sophie; Uemura, Takafumi; Kondo, Masaya; Inoue, Yumi; Namba, Naoko; Araki, Teppei; Fukushima, Takanori; Sekitani, Tsuyoshi (September 2021).
809:
cells. However, all three of these types of solar cells share the approach of sandwiching the organic electronic layer between two metallic conductors, typically
1708:
D. Chasseau; G. Comberton; J. Gaultier; C. Hauw (1978). "Réexamen de la structure du complexe hexaméthylène-tétrathiafulvalène-tétracyanoquinodiméthane".
167:
jointly for their work on polyacetylene and related conductive polymers. Many families of electrically conducting polymers have been identified including
79:, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of 2339:
Baracus, B. A.; Weiss, D. E. (1963). "Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential".
1077:
McNeill, R.; Siudak, R.; Wardlaw, J. H.; Weiss, D. E. (1963). "Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole".
261:, reported fabrication of the first practical OLED device in 1987. The OLED device incorporated a double-layer structure motif composed of 2502: 308:
charge transfer salt, highlighting the segregated stacking. Such molecular semiconductors exhibit anisotropic electrical conductivity.
1909: 1895: 1591:
Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. (1990).
68: 2360:
Bolto, B. A.; McNeill, R.; Weiss, D. E. (1963). "Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole".
619:'-deposition on flexible sheets is much easier to realize in terms of technological effort than deposition on fragile and heavy 2593: 1296: 2332: 1692: 1065: 2464: 424:
Schematic of a bilayer OLED: 1. Cathode (−), 2. Emissive layer, 3. Emission of radiation, 4. Conductive layer, 5. Anode (+)
2608: 433: 266: 17: 703:
can be prepared by solution processing methods. Both solution processing and vacuum based methods produce amorphous and
432:
can be divided into two major families: small-molecule-based and polymer-based. Small molecule OLEDs (SM-OLEDs) include
2002: 1744: 234:. In 1972, researchers found metallic conductivity (conductivity comparable to a metal) in the charge-transfer complex 2446: 2433: 1044: 1023: 2110:"Mobility enhancement of DNTT and BTBT derivative organic thin-film transistors by triptycene molecule modification" 2613: 2575: 2495: 2019: 222:
In the 1950s, organic molecules were shown to exhibit electrical conductivity. Specifically, the organic compound
1079: 955: 513: 317: 980: 696: 455: 2985: 716: 626:
Transport and installation of lightweight flexible solar cells also saves cost as compared to cells on glass.
1458:
Bernanose, A.; Comte, M.; Vouaux, P. (1953). "A new method of light emission by certain organic compounds".
2980: 1552:"Waiting for Act 2: What lies beyond organic light-emitting diode (OLED) displays for organic electronics?" 611:
on flexible substrates allow a significant cost reduction of large-area photovoltaics for several reasons:
289: 1945: 2944: 2488: 2141:
Anthony, John E.; Facchetti, Antonio; Heeney, Martin; Marder, Seth R.; Zhan, Xiaowei (8 September 2010).
631: 273: 2283: 2237:"Multi-Functional Integration of Organic Field-Effect Transistors (OFETs): Advances and Perspectives" 1933: 1119: 2284:"Polymer composite-based OFET sensor with improved sensitivity towards nitro based explosive vapors" 2190:"25th Anniversary Article: Recent Advances in n-Type and Ambipolar Organic Field-Effect Transistors" 1105: 1592: 1138:
Koezuka, H.; Tsumura, A.; Ando, T. (1987). "Field-effect transistor with polythiophene thin film".
182:
in 1930, but the first OFET was not reported until 1987, when Koezuka et al. constructed one using
1421:"Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents 1" 1122:, Lilienfeld, Julius Edgar, "Electric current control mechanism", published 1927-07-19 2851: 550:-based OFETs show high carrier mobility of 20–40 cm/(V·s). Another popular OFET material is 179: 2821: 2790: 2770: 2730: 2535: 915: 692: 607:
could cut the cost of solar power compared with conventional solar-cell manufacturing. Silicon
485: 375: 339: 2755: 2628: 2623: 2236: 2189: 2142: 960: 859: 262: 172: 663:
reported the first full-color, video-rate, flexible, plastic display made purely of organic
2930: 2886: 2856: 2618: 2525: 2390: 2066: 2031: 1967: 1839: 1804: 1769: 1647: 1604: 1563: 1524: 1391: 1235: 1178: 852: 608: 563: 497: 312:
Organic conductive materials can be grouped into two main classes: polymers and conductive
72: 382:
semiconducting polymers. Poly(3-alkythiophenes) have been incorporated into prototypes of
8: 2949: 2925: 2750: 2653: 2560: 2530: 1896:
Niedertemperaturabscheidung von Dünnschicht-Silicium für Solarzellen auf Kunststofffolien
975: 843: 766:. The difference in energy between the π orbital, or highest occupied molecular orbital ( 250: 2394: 2381:
Hush, Noel S. (2003). "An Overview of the First Half-Century of Molecular Electronics".
2070: 2035: 1971: 1843: 1808: 1773: 1651: 1608: 1567: 1528: 1395: 1247: 1239: 1190: 1182: 2903: 2876: 2795: 2414: 2264: 2217: 2170: 2090: 2057:
McGehee D.G. & Topinka M.A. (2006). "Solar cells: Pictures from the blended zone".
1855: 1663: 1620: 1256: 1223: 1199: 1166: 930: 906: 886: 882: 848: 700: 664: 604: 579: 429: 379: 355: 347: 331: 254: 192: 187: 160: 52: 1979: 1874: 1737:
OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes
1380:"Energy efficiency with organic electronics: Ching W. Tang revisits his days at Kodak" 1328: 1311: 246: 99:. Challenges to the implementation of organic electronic materials are their inferior 2570: 2555: 2442: 2429: 2406: 2328: 2303: 2282:
Dudhe, Ravishankar S.; Sinha, Jasmine; Kumar, Anil; Rao, V. Ramgopal (30 June 2010).
2256: 2209: 2174: 2162: 2082: 1998: 1740: 1688: 1440: 1360: 1280: 1261: 1204: 1151: 1061: 1040: 1019: 763: 759: 652: 335: 281: 100: 84: 80: 48: 2418: 2268: 2094: 1859: 1624: 2939: 2836: 2676: 2545: 2398: 2369: 2348: 2295: 2248: 2221: 2201: 2154: 2121: 2074: 2039: 1975: 1847: 1812: 1777: 1717: 1667: 1655: 1612: 1571: 1532: 1494: 1467: 1432: 1420: 1399: 1352: 1323: 1292: 1251: 1243: 1194: 1186: 1147: 1087: 1058:
Functional Supramolecular Architectures: for Organic Electronics and Nanotechnology
940: 878: 810: 656: 639: 570:
methods, but this obstacle can be overcome by using the derivative TIPS-pentacene.
535: 258: 211: 164: 56: 1485:
Bernanose, A.; Vouaux, P. (1953). "Organic electroluminescence type of emission".
990: 2896: 2891: 2871: 2861: 2816: 2800: 2775: 2725: 2681: 2633: 2550: 2540: 925: 728: 724: 704: 2126: 2109: 596: 496:
is determined by the structure of the polymer. Compared to thermal evaporation,
2881: 2866: 2831: 2760: 2740: 2715: 2700: 2603: 935: 531: 440: 285: 156: 148: 2299: 1721: 2974: 2735: 2686: 2565: 2307: 1576: 1551: 1498: 1471: 1444: 970: 874: 867: 672: 635: 583: 367: 359: 277: 207: 203: 183: 168: 152: 140: 76: 32: 2441:(3-Volume Set) by Hari Singh Nalwa, American Scientific Publishers. (2008), 2402: 719:. Common examples of solvent-based coating techniques include drop casting, 2765: 2745: 2648: 2410: 2260: 2252: 2213: 2205: 2166: 2158: 2086: 1993:
Halls J.J.M. & Friend R.H. (2001). Archer M.D. & Hill R.D. (eds.).
1364: 1265: 1208: 995: 945: 806: 802: 798: 790: 720: 647: 616: 489: 469:
are often used. Devices based on small molecules are usually fabricated by
2043: 1682: 1515:
Tang, C. W.; Vanslyke, S. A. (1987). "Organic electroluminescent diodes".
546:
As for OLEDs, some OFETs are molecular and some are polymer-based system.
151:). In 1977, it was discovered that oxidation enhanced the conductivity of 2720: 2658: 2598: 2511: 1707: 1404: 737: 620: 567: 480:. While this method enables the formation of well-controlled homogeneous 473: 448: 436: 371: 363: 144: 96: 64: 2428:
by Martin Pope and Charles E. Swenberg, Oxford University Press (1999),
1436: 1379: 2920: 2785: 2705: 920: 863: 794: 676: 668: 555: 458: 444: 387: 383: 343: 300: 2373: 2352: 1816: 1781: 1091: 793:
materials leads to different chemical structures and forms of organic
2908: 2780: 2643: 2078: 1851: 1616: 1356: 1297:
10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
985: 732: 688: 638:(PC) have the potential for further cost reduction in photovoltaics. 551: 351: 321: 117: 1734: 1536: 2958: 2914: 2826: 2691: 900: 786: 779: 775: 749: 588: 462: 313: 305: 235: 231: 129: 1659: 1310:
Reese, Colin; Roberts, Mark; Ling, Mang-Mang; Bao, Zhenan (2004).
885:
are expected to play an important role in the emerging science of
416:
Br6A, a next generation pure organic light emitting crystal family
40:
logic circuit. Total thickness is less than 3 μm. Scale bar: 25 mm
2846: 2710: 950: 712: 708: 559: 547: 538:
carrier, thereby changing its conductivity. Two major classes of
466: 325: 60: 1457: 217: 2695: 2459: 797:. Different forms of solar cells includes single-layer organic 659:
are now widely used, with many new products under development.
477: 420: 403: 223: 125: 121: 92: 2480: 2235:
Di, Chong-an; Zhang, Fengjiao; Zhu, Daoben (18 January 2013).
1016:
Organic Electronics: Materials, Manufacturing and Applications
412: 304:
Edge-on view of portion of crystal structure of hexamethylene
2935: 2841: 2426:
Electronic Processes in Organic Crystals and Polymers, 2 ed.
1637: 1224:"Organic semiconductors for organic field-effect transistors" 493: 328:
often form semiconducting materials when partially oxidized.
227: 199: 133: 2323:
Grasser, Tibor., Meller, Gregor. Baldo, Marc. (Eds.) (2010)
2140: 2954: 1829: 1794: 1590: 965: 771: 770:), and π* orbital, or lowest unoccupied molecular orbital ( 767: 675:
electronics based on organic compound and low-cost organic
660: 501: 481: 470: 399: 37: 2017: 1281:"Organic Thin Film Transistors for Large Area Electronics" 711:
techniques require polymers to be dissolved in a volatile
518: 2470: 2107: 1910:"Printed electronics, is it a niche? – 25 September 2008" 1680: 1076: 731:. Spin-coating is a widely used technique for small area 566:) from pentacene itself using conventional spin-cast or, 539: 527: 451: 226:
was shown to form semiconducting charge-transfer complex
2056: 1759: 1278: 1167:"Organic field-effect transistors using single crystals" 2188:
Zhao, Yan; Guo, Yunlong; Liu, Yunqi (11 October 2013).
1992: 1890: 1888: 1484: 2143:"n-Type Organic Semiconductors in Organic Electronics" 1823: 1343:
Klauk, Hagen (2010). "Organic thin-film transistors".
816: 562:, it's difficult to fabricate thin film transistors ( 1997:. London: Imperial College Press. pp. 377–445. 1960:
Current Opinion in Solid State and Materials Science
1885: 1593:"Light-emitting diodes based on conjugated polymers" 1037:
Organic electronics. More materials and applications
896: 292:(OLED) research and device production grew rapidly. 241: 1907: 1309: 824: 155:. The 2000 Nobel Prize in Chemistry was awarded to 111: 2281: 1735:Daniel J. Gaspar, Evgueni Polikarpov, ed. (2015). 1137: 778:of organic photovoltaic materials. Typically, the 507: 454:can be selected according to the desired range of 2359: 1279:Dimitrakopoulos, C.D.; Malenfant, P.R.L. (2002). 600:Five structures of organic photovoltaic materials 534:to control the shape of a channel of one type of 2972: 1958:Nelson J. (2002). "Organic photovoltaic films". 1687:. The National Academies Press. pp. 105–6. 393: 295: 186:which shows extremely high conductivity. Other 1164: 707:films with variable degree of disorder. "Wet" 530:) is any semiconductor material that utilizes 2496: 2439:Handbook of Organic Electronics and Photonics 1872: 573: 522:Rubrene-OFET with the highest charge mobility 218:Electrically conductive charge transfer salts 103:, high cost, and diverse fabrication issues. 2338: 2022:(2004). "Organic solar cells: An overview". 1934:プラスチックフィルム上の有機TFT駆動有機ELディスプレイで世界初のフルカラー表示を実現 1514: 1510: 1508: 1986: 820:Illustration of thin film transistor device 500:-based methods are more suited to creating 2503: 2489: 2234: 2187: 1131: 1118: 276:light emitting diodes was demonstrated by 2125: 1957: 1908:Raghu Das, IDTechEx (25 September 2008). 1575: 1505: 1403: 1327: 1255: 1221: 1198: 1875:"Mass Production of Plastic Solar Cells" 1425:Journal of the American Chemical Society 1418: 815: 748: 687:Small molecule semiconductors are often 595: 587: 517: 419: 411: 299: 31: 2050: 1898:, Doctoral Thesis, ipe.uni-stuttgart.de 1549: 1377: 55:, characterization, and application of 14: 2973: 1951: 1165:Hasegawa, Tatsuo; Takeya, Jun (2009). 956:Organic field-effect transistor (OFET) 858:Organic electronics not only includes 744: 682: 630:Inexpensive polymeric substrates like 2484: 2011: 1342: 1112: 374:. Poly(p-phenylene vinylene) and its 116:Traditional conductive materials are 2380: 1995:Clean electricity from photovoltaics 1684:The Flexible Electronics Opportunity 1419:Mulliken, Robert S. (January 1950). 762:with a corresponding π* antibonding 95:) and comparatively high mechanical 1106:"The Nobel Prize in Chemistry 2000" 434:tris(8-hydroxyquinolinato)aluminium 342:techniques can be used to tune the 267:perylenetetracarboxylic dianhydride 178:J.E. Lilienfeld first proposed the 24: 2335:(Print) 978-3-642-04538-7 (Online) 2317: 1948:. pinktentacle.com (24 June 2007). 1681:National Research Council (2015). 1336: 488:of poly(p-phenylene vinylene) and 354:conductors. Well-studied class of 25: 2997: 2452: 2288:Sensors and Actuators B: Chemical 1946:Flexible, full-color OLED display 1873:Bullis, Kevin (17 October 2008). 1215: 1158: 1018:2006, Wiley-VCH, Weinheim. Print 753:Bilayer organic photovoltaic cell 242:Light and electrical conductivity 2614:Failure of electronic components 2458: 1710:Acta Crystallographica Section B 899: 825:Organic field-effect transistors 715:, filtered and deposited onto a 671:screen based on OLED materials; 249:was the first person to observe 112:Electrically conductive polymers 71:. Unlike conventional inorganic 2510: 2275: 2228: 2181: 2134: 2101: 1939: 1927: 1901: 1866: 1788: 1753: 1728: 1701: 1674: 1631: 1584: 1543: 1478: 1451: 1412: 1371: 1312:"Organic thin film transistors" 1303: 1272: 1056:Paolo Samori, Franco Cacialli 592:Organics-based flexible display 514:Organic field-effect transistor 508:Organic field-effect transistor 1108:. Nobelprize.org. Nobel Media. 1098: 1070: 1050: 1029: 1008: 981:Radio frequency identification 13: 1: 1980:10.1016/S1359-0286(02)00006-2 1329:10.1016/S1369-7021(04)00398-0 1248:10.1088/1468-6996/10/2/024313 1191:10.1088/1468-6996/10/2/024314 1002: 290:organic light-emitting diodes 2609:List of emerging electronics 1550:Forrest, Stephen R. (2020). 1152:10.1016/0379-6779(87)90964-7 966:Organic light-emitting diode 782:lies in the range of 1-4eV. 646:materials such as paper and 394:Organic light-emitting diode 296:Conductive organic materials 7: 2475:Organic Semiconductor World 2127:10.1016/j.orgel.2021.106219 1222:Yamashita, Yoshiro (2009). 1039:2010, Wiley-VCH, Weinheim. 892: 837: 198:In 1987, the first organic 10: 3002: 1936:. sony.co.jp (in Japanese) 841: 632:polyethylene terephthalate 577: 574:Organic electronic devices 511: 397: 106: 27:Field of materials science 2809: 2667: 2584: 2518: 2300:10.1016/j.snb.2010.04.022 1739:(1 ed.). CRC Press. 1722:10.1107/S0567740878003830 1228:Sci. Technol. Adv. Mater. 1171:Sci. Technol. Adv. Mater. 873:New applications include 805:cells and heterojunction 1577:10.1515/nanoph-2020-0322 2852:Electromagnetic warfare 2403:10.1196/annals.1292.016 1894:Koch, Christian (2002) 1797:Applied Physics Letters 1762:Applied Physics Letters 1517:Applied Physics Letters 801:cells, bilayer organic 504:with large dimensions. 338:synthesis and advanced 180:field-effect transistor 51:concerning the design, 2822:Automotive electronics 2771:Robotic vacuum cleaner 2731:Information technology 2536:Electronic engineering 2327:Springer, Heidelberg. 2253:10.1002/adma.201201502 2206:10.1002/adma.201302315 2159:10.1002/adma.200903628 1499:10.1051/jcp/1953500261 1472:10.1051/jcp/1953500064 860:organic semiconductors 821: 785:The difference in the 754: 601: 593: 523: 425: 417: 309: 41: 2756:Portable media player 2629:Molecular electronics 2624:Low-power electronics 2044:10.1557/JMR.2004.0252 961:Organic semiconductor 819: 752: 609:thin-film solar cells 599: 591: 521: 443:dyes, and conjugated 423: 415: 303: 263:copper phthalocyanine 173:polyphenylene sulfide 35: 2986:Artificial materials 2950:Terahertz technology 2931:Open-source hardware 2887:Consumer electronics 2857:Electronics industry 2619:Flexible electronics 2526:Analogue electronics 2467:at Wikimedia Commons 1405:10.1557/mrs.2012.125 1378:Forrest, S. (2012). 679:are also available. 265:and a derivative of 257:. Ching W. Tang and 63:that show desirable 2981:Organic electronics 2926:Nuclear electronics 2751:Networking hardware 2654:Quantum electronics 2639:Organic electronics 2561:Printed electronics 2531:Digital electronics 2465:Organic electronics 2395:2003NYASA1006....1H 2383:Ann. N.Y. Acad. Sci 2325:Organic electronics 2114:Organic Electronics 2071:2006NatMa...5..675M 2036:2004JMatR..19.1924H 1972:2002COSSM...6...87N 1844:1990Natur.347..539B 1809:2010ApPhL..97a3308S 1774:2000ApPhL..77.2403P 1652:1998Natur.395..151B 1609:1990Natur.347..539B 1568:2020Nanop..10..322F 1529:1987ApPhL..51..913T 1437:10.1021/ja01157a151 1396:2012MRSBu..37..552F 1240:2009STAdM..10b4313Y 1183:2009STAdM..10b4314H 976:Printed electronics 887:molecular computers 883:Conductive polymers 862:, but also organic 849:Conductive polymers 844:Printed electronics 745:Organic solar cells 701:conductive polymers 699:. Devices based on 683:Fabrication methods 605:Organic solar cells 356:conductive polymers 348:conductive polymers 332:Conductive polymers 318:Polycyclic aromatic 316:solids and salts. 251:electroluminescence 188:conductive polymers 67:properties such as 45:Organic electronics 18:Plastic electronics 2904:Marine electronics 2877:Integrated circuit 2796:Video game console 2594:2020s in computing 2576:Thermal management 2241:Advanced Materials 2194:Advanced Materials 2147:Advanced Materials 1914:Electronics Weekly 1035:Hagen Klauk (Ed.) 1014:Hagen Klauk (Ed.) 931:Circuit deposition 907:Electronics portal 851:are lighter, more 822: 755: 723:, doctor-blading, 653:Electronic devices 602: 594: 580:Organic solar cell 524: 426: 418: 380:electroluminescent 320:compounds such as 310: 161:Alan G. MacDiarmid 42: 2968: 2967: 2945:Radio electronics 2571:Schematic capture 2556:Power electronics 2463:Media related to 2374:10.1071/CH9631090 2353:10.1071/CH9631076 2333:978-3-642-04537-0 2200:(38): 5372–5391. 2153:(34): 3876–3892. 2020:Sarıçiftçi, N. S. 1879:Technology Review 1817:10.1063/1.3460285 1782:10.1063/1.1317547 1694:978-0-309-30591-4 1646:(6698): 151–154. 1603:(6293): 539–541. 1230:(free download). 1173:(free download). 1092:10.1071/CH9631056 1066:978-3-527-32611-2 866:, conductors and 657:organic compounds 554:. Due to its low 461:; compounds like 350:, unlike typical 101:thermal stability 85:polymer chemistry 81:organic chemistry 49:materials science 16:(Redirected from 2993: 2940:Radio navigation 2837:Data acquisition 2546:Microelectronics 2505: 2498: 2491: 2482: 2481: 2462: 2422: 2377: 2368:(6): 1090–1103. 2356: 2347:(6): 1076–1089. 2312: 2311: 2279: 2273: 2272: 2232: 2226: 2225: 2185: 2179: 2178: 2138: 2132: 2131: 2129: 2105: 2099: 2098: 2079:10.1038/nmat1723 2059:Nature Materials 2054: 2048: 2047: 2030:(7): 1924–1945. 2015: 2009: 2008: 1990: 1984: 1983: 1955: 1949: 1943: 1937: 1931: 1925: 1924: 1922: 1920: 1905: 1899: 1892: 1883: 1882: 1870: 1864: 1863: 1852:10.1038/347539a0 1827: 1821: 1820: 1792: 1786: 1785: 1757: 1751: 1750: 1732: 1726: 1725: 1705: 1699: 1698: 1678: 1672: 1671: 1635: 1629: 1628: 1617:10.1038/347539a0 1588: 1582: 1581: 1579: 1547: 1541: 1540: 1512: 1503: 1502: 1482: 1476: 1475: 1455: 1449: 1448: 1416: 1410: 1409: 1407: 1375: 1369: 1368: 1357:10.1039/B909902F 1340: 1334: 1333: 1331: 1307: 1301: 1300: 1276: 1270: 1269: 1259: 1219: 1213: 1212: 1202: 1162: 1156: 1155: 1146:(1–3): 699–704. 1140:Synthetic Metals 1135: 1129: 1128: 1127: 1123: 1116: 1110: 1109: 1102: 1096: 1095: 1086:(6): 1056–1075. 1074: 1068: 1054: 1048: 1033: 1027: 1012: 941:Flexible display 909: 904: 903: 879:electronic paper 811:indium tin oxide 774:) is called the 691:, necessitating 558:in most organic 259:Steven Van Slyke 212:Steven Van Slyke 202:was produced at 165:Hideki Shirakawa 132:as well as many 21: 3001: 3000: 2996: 2995: 2994: 2992: 2991: 2990: 2971: 2970: 2969: 2964: 2897:Small appliance 2892:Major appliance 2872:Home automation 2862:Embedded system 2817:Audio equipment 2805: 2801:Washing machine 2726:Home theater PC 2682:Central heating 2677:Air conditioner 2669: 2663: 2634:Nanoelectronics 2586: 2580: 2551:Optoelectronics 2541:Instrumentation 2514: 2509: 2455: 2320: 2318:Further reading 2315: 2280: 2276: 2233: 2229: 2186: 2182: 2139: 2135: 2106: 2102: 2055: 2051: 2016: 2012: 2005: 1991: 1987: 1956: 1952: 1944: 1940: 1932: 1928: 1918: 1916: 1906: 1902: 1893: 1886: 1871: 1867: 1828: 1824: 1793: 1789: 1758: 1754: 1747: 1733: 1729: 1706: 1702: 1695: 1679: 1675: 1636: 1632: 1589: 1585: 1548: 1544: 1537:10.1063/1.98799 1513: 1506: 1483: 1479: 1456: 1452: 1417: 1413: 1376: 1372: 1341: 1337: 1308: 1304: 1277: 1273: 1220: 1216: 1163: 1159: 1136: 1132: 1125: 1117: 1113: 1104: 1103: 1099: 1075: 1071: 1055: 1051: 1034: 1030: 1013: 1009: 1005: 1000: 926:Carbon nanotube 905: 898: 895: 846: 840: 827: 747: 729:screen printing 725:inkjet printing 705:polycrystalline 685: 615:The so-called ' 586: 578:Main articles: 576: 516: 510: 406: 398:Main articles: 396: 298: 247:André Bernanose 244: 220: 114: 109: 28: 23: 22: 15: 12: 11: 5: 2999: 2989: 2988: 2983: 2966: 2965: 2963: 2962: 2961:Communications 2952: 2947: 2942: 2933: 2928: 2923: 2918: 2912: 2906: 2901: 2900: 2899: 2894: 2889: 2882:Home appliance 2879: 2874: 2869: 2867:Home appliance 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2832:Control system 2829: 2824: 2819: 2813: 2811: 2807: 2806: 2804: 2803: 2798: 2793: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2741:Microwave oven 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2698: 2689: 2684: 2679: 2673: 2671: 2665: 2664: 2662: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2604:Bioelectronics 2601: 2596: 2590: 2588: 2582: 2581: 2579: 2578: 2573: 2568: 2563: 2558: 2553: 2548: 2543: 2538: 2533: 2528: 2522: 2520: 2516: 2515: 2508: 2507: 2500: 2493: 2485: 2479: 2478: 2468: 2454: 2453:External links 2451: 2450: 2449: 2436: 2423: 2378: 2357: 2336: 2319: 2316: 2314: 2313: 2294:(1): 158–165. 2274: 2247:(3): 313–330. 2227: 2180: 2133: 2100: 2065:(9): 675–676. 2049: 2010: 2004:978-1860941610 2003: 1985: 1950: 1938: 1926: 1900: 1884: 1865: 1822: 1787: 1752: 1746:978-1466515185 1745: 1727: 1700: 1693: 1673: 1630: 1583: 1542: 1504: 1477: 1450: 1431:(1): 600–608. 1411: 1390:(6): 552–553. 1370: 1351:(7): 2643–66. 1345:Chem. Soc. Rev 1335: 1302: 1271: 1214: 1157: 1130: 1111: 1097: 1080:Aust. J. Chem. 1069: 1049: 1047:electronic bk. 1028: 1006: 1004: 1001: 999: 998: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 943: 938: 936:Conductive ink 933: 928: 923: 918: 912: 911: 910: 894: 891: 868:light emitters 842:Main article: 839: 836: 826: 823: 746: 743: 684: 681: 628: 627: 624: 575: 572: 532:electric field 512:Main article: 509: 506: 492:. The emitted 441:phosphorescent 395: 392: 368:polythiophenes 346:properties of 297: 294: 243: 240: 219: 216: 175:, and others. 157:Alan J. Heeger 113: 110: 108: 105: 77:semiconductors 47:is a field of 26: 9: 6: 4: 3: 2: 2998: 2987: 2984: 2982: 2979: 2978: 2976: 2960: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2937: 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2916: 2913: 2910: 2907: 2905: 2902: 2898: 2895: 2893: 2890: 2888: 2885: 2884: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2814: 2812: 2808: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2693: 2690: 2688: 2687:Clothes dryer 2685: 2683: 2680: 2678: 2675: 2674: 2672: 2666: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2591: 2589: 2583: 2577: 2574: 2572: 2569: 2567: 2566:Semiconductor 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2523: 2521: 2517: 2513: 2506: 2501: 2499: 2494: 2492: 2487: 2486: 2483: 2476: 2472: 2469: 2466: 2461: 2457: 2456: 2448: 2447:1-58883-095-0 2444: 2440: 2437: 2435: 2434:0-19-512963-6 2431: 2427: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2379: 2375: 2371: 2367: 2363: 2362:Aust. J. Chem 2358: 2354: 2350: 2346: 2342: 2341:Aust. J. Chem 2337: 2334: 2330: 2326: 2322: 2321: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2278: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2231: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2191: 2184: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2137: 2128: 2123: 2119: 2115: 2111: 2104: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2053: 2045: 2041: 2037: 2033: 2029: 2025: 2024:J. Mater. Res 2021: 2014: 2006: 2000: 1996: 1989: 1981: 1977: 1973: 1969: 1965: 1961: 1954: 1947: 1942: 1935: 1930: 1915: 1911: 1904: 1897: 1891: 1889: 1880: 1876: 1869: 1861: 1857: 1853: 1849: 1845: 1841: 1838:(6293): 539. 1837: 1833: 1826: 1818: 1814: 1810: 1806: 1803:(1): 083308. 1802: 1798: 1791: 1783: 1779: 1775: 1771: 1767: 1763: 1756: 1748: 1742: 1738: 1731: 1723: 1719: 1715: 1711: 1704: 1696: 1690: 1686: 1685: 1677: 1669: 1665: 1661: 1660:10.1038/25954 1657: 1653: 1649: 1645: 1641: 1634: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1587: 1578: 1573: 1569: 1565: 1561: 1557: 1556:Nanophotonics 1553: 1546: 1538: 1534: 1530: 1526: 1522: 1518: 1511: 1509: 1500: 1496: 1492: 1488: 1487:J. Chim. Phys 1481: 1473: 1469: 1465: 1461: 1460:J. Chim. Phys 1454: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1415: 1406: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1366: 1362: 1358: 1354: 1350: 1346: 1339: 1330: 1325: 1321: 1317: 1313: 1306: 1298: 1294: 1290: 1286: 1282: 1275: 1267: 1263: 1258: 1253: 1249: 1245: 1241: 1237: 1234:(2): 024313. 1233: 1229: 1225: 1218: 1210: 1206: 1201: 1196: 1192: 1188: 1184: 1180: 1177:(2): 024314. 1176: 1172: 1168: 1161: 1153: 1149: 1145: 1141: 1134: 1121: 1115: 1107: 1101: 1093: 1089: 1085: 1082: 1081: 1073: 1067: 1063: 1059: 1053: 1046: 1045:9783527640218 1042: 1038: 1032: 1025: 1024:9783527312641 1021: 1017: 1011: 1007: 997: 994: 992: 991:Schön scandal 989: 987: 984: 982: 979: 977: 974: 972: 971:Photodetector 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 913: 908: 902: 897: 890: 888: 884: 880: 876: 875:smart windows 871: 869: 865: 861: 856: 854: 850: 845: 835: 831: 818: 814: 812: 808: 804: 800: 796: 792: 788: 783: 781: 777: 773: 769: 765: 761: 751: 742: 739: 734: 730: 726: 722: 718: 714: 710: 706: 702: 698: 694: 690: 680: 678: 674: 673:biodegradable 670: 666: 662: 658: 654: 649: 643: 641: 640:Protomorphous 637: 636:polycarbonate 633: 625: 622: 618: 614: 613: 612: 610: 606: 598: 590: 585: 584:Photovoltaics 581: 571: 569: 565: 561: 557: 553: 549: 544: 541: 537: 533: 529: 520: 515: 505: 503: 499: 495: 491: 487: 483: 479: 475: 472: 468: 464: 460: 457: 453: 450: 446: 442: 438: 435: 431: 428:OLED organic 422: 414: 410: 405: 401: 391: 389: 385: 381: 377: 373: 369: 365: 361: 360:polyacetylene 357: 353: 349: 345: 341: 337: 333: 329: 327: 323: 319: 315: 307: 302: 293: 291: 287: 283: 279: 275: 270: 268: 264: 260: 256: 252: 248: 239: 237: 233: 229: 225: 215: 213: 209: 208:Ching W. Tang 205: 204:Eastman Kodak 201: 196: 194: 189: 185: 184:Polythiophene 181: 176: 174: 170: 169:polythiophene 166: 162: 158: 154: 153:polyacetylene 150: 146: 142: 141:Henry Letheby 137: 135: 131: 127: 123: 120:, especially 119: 104: 102: 98: 94: 88: 86: 82: 78: 74: 70: 66: 62: 59:molecules or 58: 54: 50: 46: 39: 34: 30: 19: 2810:Applications 2791:Water heater 2766:Refrigerator 2746:Mobile phone 2649:Piezotronics 2638: 2474: 2438: 2425: 2386: 2382: 2365: 2361: 2344: 2340: 2324: 2291: 2287: 2277: 2244: 2240: 2230: 2197: 2193: 2183: 2150: 2146: 2136: 2117: 2113: 2103: 2062: 2058: 2052: 2027: 2023: 2013: 1994: 1988: 1966:(1): 87–95. 1963: 1959: 1953: 1941: 1929: 1917:. Retrieved 1913: 1903: 1878: 1868: 1835: 1831: 1825: 1800: 1796: 1790: 1768:(15): 2403. 1765: 1761: 1755: 1736: 1730: 1713: 1709: 1703: 1683: 1676: 1643: 1639: 1633: 1600: 1596: 1586: 1562:(1): 31–40. 1559: 1555: 1545: 1520: 1516: 1490: 1486: 1480: 1463: 1459: 1453: 1428: 1424: 1414: 1387: 1384:MRS Bulletin 1383: 1373: 1348: 1344: 1338: 1319: 1316:Mater. Today 1315: 1305: 1288: 1284: 1274: 1231: 1227: 1217: 1174: 1170: 1160: 1143: 1139: 1133: 1114: 1100: 1083: 1078: 1072: 1057: 1052: 1036: 1031: 1015: 1010: 996:Spin coating 872: 857: 847: 832: 828: 807:photovoltaic 803:photovoltaic 799:photovoltaic 791:photovoltaic 784: 756: 721:spin-coating 686: 648:plastic film 644: 629: 621:glass sheets 617:roll-to-roll 603: 545: 525: 490:polyfluorene 427: 407: 330: 311: 271: 245: 221: 197: 177: 138: 115: 89: 69:conductivity 44: 43: 29: 2917:electronics 2721:Home cinema 2659:Spintronics 2599:Atomtronics 2512:Electronics 2389:(1): 1–20. 2018:Hoppe, H.; 1919:14 February 1523:(12): 913. 1493:: 261–263. 1060:2010 Wiley 864:dielectrics 795:solar cells 789:of organic 738:evaporation 697:sublimation 695:via vacuum 568:dip coating 486:derivatives 474:evaporation 459:wavelengths 449:Fluorescent 437:fluorescent 388:transistors 384:solar cells 376:derivatives 372:polyaniline 364:polypyrrole 272:In 1990, a 253:in organic 145:polyaniline 97:flexibility 2975:Categories 2921:Multimedia 2911:technology 2786:Television 2716:Home robot 2706:Dishwasher 2668:Electronic 2120:: 106219. 1716:(2): 689. 1285:Adv. Mater 1003:References 921:Bioplastic 693:deposition 677:solar cell 669:television 556:solubility 445:dendrimers 344:electrical 340:dispersion 282:Burroughes 143:described 73:conductors 65:electronic 2909:Microwave 2781:Telephone 2670:equipment 2644:Photonics 2477:homepage. 2308:0925-4005 2175:205235378 1466:: 64–68. 1445:0002-7863 1322:(9): 20. 1291:(2): 99. 1120:CA 272437 986:Radio tag 916:Annealing 733:thin film 717:substrate 689:insoluble 665:materials 655:based on 634:(PET) or 552:Pentacene 430:materials 352:inorganic 322:pentacene 314:molecular 255:materials 193:materials 118:inorganic 53:synthesis 2959:Wireless 2915:Military 2847:e-health 2827:Avionics 2696:Notebook 2692:Computer 2585:Advanced 2519:Branches 2471:orgworld 2419:24968273 2411:14976006 2269:26645918 2261:22865814 2214:24038388 2167:20715063 2095:43074502 2087:16946723 1860:43158308 1625:43158308 1365:20396828 1266:27877286 1209:27877287 893:See also 853:flexible 838:Features 787:band gap 780:band gap 776:band gap 560:solvents 498:solution 463:perylene 456:emission 358:include 306:TTF-TCNQ 236:TTF-TCNQ 232:halogens 139:In 1862 130:aluminum 124:such as 61:polymers 36:Organic 2711:Freezer 2391:Bibcode 2222:6042903 2067:Bibcode 2032:Bibcode 1968:Bibcode 1840:Bibcode 1805:Bibcode 1770:Bibcode 1668:4393960 1648:Bibcode 1605:Bibcode 1564:Bibcode 1525:Bibcode 1392:Bibcode 1257:5090443 1236:Bibcode 1200:5090444 1179:Bibcode 951:Melanin 946:Laminar 764:orbital 760:orbital 713:solvent 709:coating 548:Rubrene 471:thermal 467:rubrene 336:organic 326:rubrene 278:Bradley 274:polymer 149:Siemens 107:History 93:dopants 57:organic 2842:e-book 2776:Tablet 2736:Cooker 2701:Camera 2587:topics 2445:  2432:  2417:  2409:  2331:  2306:  2267:  2259:  2220:  2212:  2173:  2165:  2093:  2085:  2001:  1858:  1832:Nature 1743:  1691:  1666:  1640:Nature 1623:  1597:Nature 1443:  1363:  1264:  1254:  1207:  1197:  1126:  1064:  1043:  1022:  536:charge 478:vacuum 476:under 404:AMOLED 370:, and 286:Friend 224:pyrene 163:, and 134:alloys 126:copper 122:metals 2955:Wired 2936:Radar 2761:Radio 2415:S2CID 2265:S2CID 2218:S2CID 2171:S2CID 2091:S2CID 1856:S2CID 1664:S2CID 1621:S2CID 502:films 494:color 230:with 228:salts 200:diode 2957:and 2938:and 2443:ISBN 2430:ISBN 2407:PMID 2387:1006 2329:ISBN 2304:ISSN 2257:PMID 2210:PMID 2163:PMID 2083:PMID 1999:ISBN 1921:2010 1741:ISBN 1689:ISBN 1441:ISSN 1361:PMID 1262:PMID 1205:PMID 1062:ISBN 1041:ISBN 1020:ISBN 877:and 772:LUMO 768:HOMO 727:and 661:Sony 582:and 564:TFTs 482:film 465:and 452:dyes 439:and 402:and 400:OLED 386:and 378:are 324:and 210:and 128:and 83:and 75:and 38:CMOS 2399:doi 2370:doi 2349:doi 2296:doi 2292:148 2249:doi 2202:doi 2155:doi 2122:doi 2075:doi 2040:doi 1976:doi 1848:doi 1836:347 1813:doi 1778:doi 1718:doi 1656:doi 1644:395 1613:doi 1601:347 1572:doi 1533:doi 1495:doi 1468:doi 1433:doi 1400:doi 1353:doi 1324:doi 1293:doi 1252:PMC 1244:doi 1195:PMC 1187:doi 1148:doi 1088:doi 540:FET 528:FET 206:by 2977:: 2473:– 2413:. 2405:. 2397:. 2385:. 2366:16 2364:. 2345:16 2343:. 2302:. 2290:. 2286:. 2263:. 2255:. 2245:25 2243:. 2239:. 2216:. 2208:. 2198:25 2196:. 2192:. 2169:. 2161:. 2151:22 2149:. 2145:. 2118:96 2116:. 2112:. 2089:. 2081:. 2073:. 2061:. 2038:. 2028:19 2026:. 1974:. 1962:. 1912:. 1887:^ 1877:. 1854:. 1846:. 1834:. 1811:. 1801:97 1799:. 1776:. 1766:77 1764:. 1714:34 1712:. 1662:. 1654:. 1642:. 1619:. 1611:. 1599:. 1595:. 1570:. 1560:10 1558:. 1554:. 1531:. 1521:51 1519:. 1507:^ 1491:50 1489:. 1464:50 1462:. 1439:. 1429:72 1427:. 1423:. 1398:. 1388:37 1386:. 1382:. 1359:. 1349:39 1347:. 1318:. 1314:. 1289:14 1287:. 1283:. 1260:. 1250:. 1242:. 1232:10 1226:. 1203:. 1193:. 1185:. 1175:10 1169:. 1144:18 1142:. 1084:16 889:. 881:. 870:. 813:. 667:; 447:. 390:. 366:, 362:, 284:, 280:, 269:. 238:. 214:. 195:. 171:, 159:, 136:. 87:. 2694:/ 2504:e 2497:t 2490:v 2421:. 2401:: 2393:: 2376:. 2372:: 2355:. 2351:: 2310:. 2298:: 2271:. 2251:: 2224:. 2204:: 2177:. 2157:: 2130:. 2124:: 2097:. 2077:: 2069:: 2063:5 2046:. 2042:: 2034:: 2007:. 1982:. 1978:: 1970:: 1964:6 1923:. 1881:. 1862:. 1850:: 1842:: 1819:. 1815:: 1807:: 1784:. 1780:: 1772:: 1749:. 1724:. 1720:: 1697:. 1670:. 1658:: 1650:: 1627:. 1615:: 1607:: 1580:. 1574:: 1566:: 1539:. 1535:: 1527:: 1501:. 1497:: 1474:. 1470:: 1447:. 1435:: 1408:. 1402:: 1394:: 1367:. 1355:: 1332:. 1326:: 1320:7 1299:. 1295:: 1268:. 1246:: 1238:: 1211:. 1189:: 1181:: 1154:. 1150:: 1094:. 1090:: 1026:. 623:. 20:)

Index

Plastic electronics

CMOS
materials science
synthesis
organic
polymers
electronic
conductivity
conductors
semiconductors
organic chemistry
polymer chemistry
dopants
flexibility
thermal stability
inorganic
metals
copper
aluminum
alloys
Henry Letheby
polyaniline
Siemens
polyacetylene
Alan J. Heeger
Alan G. MacDiarmid
Hideki Shirakawa
polythiophene
polyphenylene sulfide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.