Knowledge

Plasma railgun

Source 📝

133:. Additionally, a complex triple joint seal may exist at the breech of the bore, which can often pose an extreme engineering challenge. Coaxial accelerators require insulators only at the breech, but the plasma armature in that case is subject to the "blow-by" instability. This is an instability in which the magnetic pressure front can out-run or "blow-by" the plasma armature due to the radial dependence of acceleration current density, drastically reducing device efficiency. Coaxial accelerators use various techniques to mitigate this instability. In either design, a plasma armature is formed at the breech. As plasma railguns are an open area of research, the method of armature formation varies. However, techniques including exploding foils, gas cell burst disk injection, neutral gas injection via fast gas valve, and plasma capillary injection have been employed. 65: 31:, or hot, ionized, gas-like particles, instead of a solid slug of material. Scientific plasma railguns are typically operated in vacuum and not at air pressure. They are of value because they produce muzzle velocities of up to several hundreds of kilometers per second. Because of this, these devices have applications in 125:
Plasma railguns appear in two principal topologies, linear and coaxial. Linear railguns consist of two flat plate electrodes separated by insulating spacers and accelerate sheet armatures. Coaxial railguns accelerate toroidal plasma armatures using a hollow outer conductor and a central, concentric,
136:
After armature formation, the plasmoid is then accelerated down the length of the railgun by a current pulse driven through one electrode, through the armature, and out the other electrode, creating a large magnetic field behind the armature. Since the driver current through the armature is also
166:
High velocity jets of controllable density and temperature allow astrophysical phenomena such as solar wind, galactic jets, solar events and astrophysical plasma to be partially simulated in the laboratory and measured directly, in addition to astronomic and satellite observations.
153:, depending on device design configuration and operating parameters, and the upper limits may be higher. Plasma rail guns are being evaluated for applications in magnetic confinement fusion for disruption mitigation and tokamak refueling. 159:
seeks to implode a magnetized D-T fusion target using a spherically symmetric, collapsing, conducting liner. Plasma railguns are being evaluated as a possible method of implosion linear formation for fusion.
129:
Linear plasma railguns place extreme demands on their insulators, as they must be an electrically insulating, plasma-facing vacuum component which can withstand both thermal and
447: 163:
Arrays of plasma railguns could be used to create pulsed implosions of ~1 Megabar peak pressure, allowing more access to chart this opening area of plasma physics.
27:, uses two long parallel electrodes to accelerate a "sliding short" armature. However, in a plasma railgun, the armature and ejected projectile consists of 581:
Liu, D; Xiao, C; Hirose, A. (January 2008). "Performance of the University of Saskatchewan compact torus injector with curved acceleration electrodes".
794: 567: 238: 451: 141:, accelerating them down the length of the gun. Accelerator electrode geometry and materials are also open areas of research. 149:
Controlled jets from plasma rail guns can have peak densities in the 10 to 10 particles/m range, and velocities from 5 to
366: 112: 94: 736:
Witherspoon, F. D.; Case, A.; Messer, S.; Bomgardner II, R.; Phillips, M. W.; Brockington, S.; Elton, R. (2009).
689:
Witherspoon, F. D.; Case, A.; Messer, S.; Bomgardner II, R.; Phillips, M. W.; Brockington, S.; Elton, R. (2009).
228: 218: 86: 259: 189: 90: 737: 690: 40: 32: 248: 651: 346: 270: 75: 48: 137:
moving through and normal to a self-generated magnetic field, the armature particles experience a
647: 208: 156: 79: 36: 465:
Molvik, A. W.; Eddleman, J. L.; Hammer, J. H.; Hartman, C. W.; McLean, H. S. (14 January 1991).
336: 749: 702: 629: 590: 525: 478: 388: 8: 666: 753: 706: 633: 594: 529: 482: 392: 541: 789: 765: 718: 606: 545: 537: 494: 404: 757: 710: 598: 533: 486: 423: 396: 28: 668:
Development of Merged Compact Toroids for Use as a Magnetized Target Fusion Plasma
626:
Compact Torus Injection Experiments on the H.I.T. teststand and the JFT-2M tokamak
326: 311: 675: 560: 466: 513: 490: 280: 130: 432: 783: 331: 138: 769: 722: 610: 498: 44: 379:
Marshall, J. (January 1960). "Performance of a Hydromagnetic Plama Gun".
321: 561:
Compact Torus Accelerator Driven Inertial Confinement Fusion Power Plant
761: 714: 602: 408: 400: 514:"Compact toroid dynamics in the Compact Toroid Injection Experiment" 64: 341: 203: 738:"A Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature" 735: 691:"A Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature" 688: 628:. American Physical Society, Division of Plasma Physics Meeting. 316: 24: 425:
Two stage plasma gun as the fuelling tool of Globus-M tokamak
464: 433:
35th European Physical Society Conference on Plasma Physics
367:
Conceptual Design Description of a CT Fueler for JT-60U
450:(Report). Albuquerque: Logicon RDA. Archived from 23:is a linear accelerator which, like a projectile 781: 676:Innovative Confinement Concepts Workshops (ICC) 448:Support to Survivability/Vulnerability Program 665:Howard, Stephen; et al. (25 June 2008). 580: 467:"Quasistatic compression of a compact torus" 267:Pulsed High Density Fusion Experiment (PHD) 624:Fukumoto, N.; et al. (November 1997). 225:Compact Toroid Injection Experiment (CTIX) 93:. Unsourced material may be challenged and 559:Logan, B.G.; et al. (1 April 2005). 512:Baker, K.L.; et al. (January 2002). 113:Learn how and when to remove this message 623: 422:Voronin, A.V.; et al. (June 2008). 378: 421: 782: 664: 568:Lawrence Livermore National Laboratory 445: 239:Lawrence Livermore National Laboratory 558: 511: 91:adding citations to reliable sources 58: 13: 795:Plasma technology and applications 14: 806: 256:Compact Torus Injector (HIT-CTI) 742:Review of Scientific Instruments 695:Review of Scientific Instruments 583:Review of Scientific Instruments 235:Compact torus accelerator (CTA) 196:Compact Toroid Accelerator (CTA) 63: 729: 682: 658: 640: 229:University of California, Davis 219:Lawrence Livermore National Lab 144: 617: 574: 552: 505: 458: 439: 415: 372: 359: 260:Himeji Institute of Technology 190:Los Alamos National Laboratory 1: 352: 296:Linear and coaxial railguns 288:Linear and coaxial railguns 43:research (HEDP), laboratory 7: 305: 291:HyperJet Fusion Corp., USA 170: 41:high energy density physics 33:magnetic confinement fusion 10: 811: 538:10.1088/0029-5515/42/1/313 491:10.1103/PhysRevLett.66.165 299:NearStar Fusion Inc., USA 249:University of Saskatchewan 648:"PHD Experiment Homepage" 446:Seiler, S. (April 1993). 54: 652:University of Washington 347:Combustion light-gas gun 271:University of Washington 49:plasma propulsion engine 748:(8): 083506–083506–15. 701:(8): 083506–083506–15. 471:Physical Review Letters 277:Fusion Plasma Injector 245:Compact Torus Injector 209:Kirtland Air Force Base 157:Magneto-inertial fusion 37:magneto-inertial fusion 589:(1): 013502–013502–6. 365:R. Raman and K. Itami 337:Pulsed plasma thruster 87:improve this section 754:2009RScI...80h3506W 707:2009RScI...80h3506W 634:1997APS..DPPkWP205F 595:2008RScI...79a3502L 530:2002NucFu..42...94B 483:1991PhRvL..66..165M 393:1960PhFl....3..134M 16:Linear accelerator 762:10.1063/1.3202136 715:10.1063/1.3202136 603:10.1063/1.2828056 570:. UCRL-TR-211025. 401:10.1063/1.1705989 381:Physics of Fluids 303: 302: 126:inner conductor. 123: 122: 115: 802: 774: 773: 733: 727: 726: 686: 680: 679: 673: 662: 656: 655: 644: 638: 637: 621: 615: 614: 578: 572: 571: 565: 556: 550: 549: 509: 503: 502: 462: 456: 455: 454:on July 1, 2015. 443: 437: 436: 430: 419: 413: 412: 376: 370: 363: 175: 174: 152: 118: 111: 107: 104: 98: 67: 59: 51:for spacecraft. 810: 809: 805: 804: 803: 801: 800: 799: 780: 779: 778: 777: 734: 730: 687: 683: 671: 663: 659: 646: 645: 641: 622: 618: 579: 575: 563: 557: 553: 510: 506: 463: 459: 444: 440: 428: 420: 416: 377: 373: 364: 360: 355: 327:Ram accelerator 312:Helical railgun 308: 173: 150: 147: 131:acoustic shocks 119: 108: 102: 99: 84: 68: 57: 17: 12: 11: 5: 808: 798: 797: 792: 776: 775: 728: 681: 657: 639: 616: 573: 551: 518:Nuclear Fusion 504: 477:(2): 165–168. 457: 438: 414: 387:(1): 134–135. 371: 357: 356: 354: 351: 350: 349: 344: 339: 334: 329: 324: 319: 314: 307: 304: 301: 300: 297: 293: 292: 289: 285: 284: 281:General Fusion 278: 274: 273: 268: 264: 263: 257: 253: 252: 246: 242: 241: 236: 232: 231: 226: 222: 221: 216: 212: 211: 206: 200: 199: 197: 193: 192: 187: 183: 182: 179: 172: 169: 146: 143: 121: 120: 71: 69: 62: 56: 53: 21:plasma railgun 15: 9: 6: 4: 3: 2: 807: 796: 793: 791: 788: 787: 785: 771: 767: 763: 759: 755: 751: 747: 743: 739: 732: 724: 720: 716: 712: 708: 704: 700: 696: 692: 685: 677: 670: 669: 661: 653: 649: 643: 635: 631: 627: 620: 612: 608: 604: 600: 596: 592: 588: 584: 577: 569: 562: 555: 547: 543: 539: 535: 531: 527: 523: 519: 515: 508: 500: 496: 492: 488: 484: 480: 476: 472: 468: 461: 453: 449: 442: 434: 427: 426: 418: 410: 406: 402: 398: 394: 390: 386: 382: 375: 368: 362: 358: 348: 345: 343: 340: 338: 335: 333: 332:Light-gas gun 330: 328: 325: 323: 320: 318: 315: 313: 310: 309: 298: 295: 294: 290: 287: 286: 282: 279: 276: 275: 272: 269: 266: 265: 261: 258: 255: 254: 250: 247: 244: 243: 240: 237: 234: 233: 230: 227: 224: 223: 220: 217: 214: 213: 210: 207: 205: 202: 201: 198: 195: 194: 191: 188: 185: 184: 180: 177: 176: 168: 164: 161: 158: 154: 142: 140: 139:Lorentz force 134: 132: 127: 117: 114: 106: 96: 92: 88: 82: 81: 77: 72:This section 70: 66: 61: 60: 52: 50: 46: 42: 38: 34: 30: 26: 22: 745: 741: 731: 698: 694: 684: 667: 660: 642: 625: 619: 586: 582: 576: 554: 521: 517: 507: 474: 470: 460: 452:the original 441: 424: 417: 384: 380: 374: 361: 186:Marshal gun 181:Institution 165: 162: 155: 148: 145:Applications 135: 128: 124: 109: 100: 85:Please help 73: 45:astrophysics 20: 18: 322:Mass driver 47:, and as a 784:Categories 678:. Reno NV. 566:(Report). 353:References 103:April 2020 546:250808512 524:(1): 94. 283:, Canada 251:, Canada 74:does not 790:Railguns 770:19725654 723:19725654 611:18248029 499:10043527 342:MARAUDER 306:See also 262:, Japan 204:MARAUDER 171:Examples 151:200 km/s 750:Bibcode 703:Bibcode 630:Bibcode 591:Bibcode 526:Bibcode 479:Bibcode 409:4191479 389:Bibcode 317:Coilgun 178:Device 95:removed 80:sources 39:(MIF), 35:(MCF), 25:railgun 768:  721:  609:  544:  497:  407:  369:(2000) 55:Theory 29:plasma 672:(PDF) 564:(PDF) 542:S2CID 429:(PDF) 215:RACE 766:PMID 719:PMID 607:PMID 495:PMID 405:OSTI 78:any 76:cite 758:doi 711:doi 599:doi 534:doi 487:doi 397:doi 89:by 786:: 764:. 756:. 746:80 744:. 740:. 717:. 709:. 699:80 697:. 693:. 674:. 650:. 605:. 597:. 587:79 585:. 540:. 532:. 522:42 520:. 516:. 493:. 485:. 475:66 473:. 469:. 431:. 403:. 395:. 383:. 19:A 772:. 760:: 752:: 725:. 713:: 705:: 654:. 636:. 632:: 613:. 601:: 593:: 548:. 536:: 528:: 501:. 489:: 481:: 435:. 411:. 399:: 391:: 385:3 116:) 110:( 105:) 101:( 97:. 83:.

Index

railgun
plasma
magnetic confinement fusion
magneto-inertial fusion
high energy density physics
astrophysics
plasma propulsion engine

cite
sources
improve this section
adding citations to reliable sources
removed
Learn how and when to remove this message
acoustic shocks
Lorentz force
Magneto-inertial fusion
Los Alamos National Laboratory
MARAUDER
Kirtland Air Force Base
Lawrence Livermore National Lab
University of California, Davis
Lawrence Livermore National Laboratory
University of Saskatchewan
Himeji Institute of Technology
University of Washington
General Fusion
Helical railgun
Coilgun
Mass driver

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.