Knowledge

Open-channel flow

Source đź“ť

1620: 1341: 1615:{\displaystyle \overbrace {\underbrace {\partial {\bf {v}} \over {\partial t}} _{\begin{smallmatrix}{\text{Local}}\\{\text{Change}}\end{smallmatrix}}+\underbrace {{\bf {v}}\cdot \nabla {\bf {v}}} _{\text{Advection}}} ^{\text{Inertial Acceleration}}=-\underbrace {{1 \over {\rho }}\nabla p} _{\begin{smallmatrix}{\text{Pressure}}\\{\text{Gradient}}\end{smallmatrix}}+\underbrace {\nu \Delta {\bf {v}}} _{\text{Diffusion}}-\underbrace {\nabla \Phi } _{\text{Gravity}}+\underbrace {\bf {F}} _{\begin{smallmatrix}{\text{External}}\\{\text{Forces}}\end{smallmatrix}}} 55: 2267: 3321: 1906: 2071: 3189: 3105: 1730: 206:
has a minor contribution, but does not play a significant enough role in most circumstances to be a governing factor. Due to the presence of a free surface, gravity is generally the most significant driver of open-channel flow; therefore, the ratio of inertial to gravity forces is the most important
180:
The discharge of a steady flow is non-uniform along a channel. This happens when water enters and/or leaves the channel along the course of flow. An example of flow entering a channel would be a road side gutter. An example of flow leaving a channel would be an irrigation channel. This flow can be
2918: 1074: 2595: 2951: 3646: 2735: 1255: 2262:{\displaystyle {\partial u \over {\partial t}}+u{\partial u \over {\partial x}}+g{\partial \zeta \over {\partial x}}=F_{x}\implies {\partial u \over {\partial t}}+u{\partial u \over {\partial x}}+g{\partial \eta \over {\partial x}}-gS=F_{x}} 2794: 3316:{\displaystyle E=\underbrace {{1 \over {2}}\rho \|{\bf {v}}\|^{2}} _{\begin{smallmatrix}{\text{Kinetic}}\\{\text{Energy}}\end{smallmatrix}}+\underbrace {\rho \Phi } _{\begin{smallmatrix}{\text{Potential}}\\{\text{Energy}}\end{smallmatrix}}} 4048: 784: 933: 1901:{\displaystyle {\begin{aligned}{\partial u \over {\partial t}}+u{\partial u \over {\partial x}}&=-{1 \over {\rho }}{\partial p \over {\partial x}}+F_{x}\\-{1 \over {\rho }}{\partial p \over {\partial z}}-g&=0\end{aligned}}} 548: 1324: 938: 3415: 446: 70:
Open-channel flow can be classified and described in various ways based on the change in flow depth with respect to time and space. The fundamental types of flow dealt with in open-channel hydraulics are:
3160: 112:
The depth of flow is the same at every section of the channel. Uniform flow can be steady or unsteady, depending on whether or not the depth changes with time, (although unsteady uniform flow is rare).
47:. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not 2477: 2374: 2649: 3547: 1735: 122:
The depth of flow changes along the length of the channel. Varied flow technically may be either steady or unsteady. Varied flow can be further classified as either rapidly or gradually-varied:
251: 3542: 2644: 2019: 1164: 664: 3100:{\displaystyle {\partial \over {\partial t}}\left({1 \over {2}}\|{\bf {v}}\|^{2}\right)+{\bf {v}}\cdot \nabla \left({1 \over {2}}\|{\bf {v}}\|^{2}+{p \over {\rho }}+\Phi \right)=0} 2469: 692: 789: 1159: 601: 3678: 1941: 1113: 2317: 3511: 2785: 485: 2946: 383: 1721: 2755: 1688: 2039: 3713: 3447: 3341: 2394: 2066: 568: 3346: 1664: 3534: 3467: 3180: 2418: 1640: 687: 628: 315: 291: 271: 181:
described using the continuity equation for continuous unsteady flow requires the consideration of the time effect and includes a time element as a variable.
2913:{\displaystyle {\partial {\bf {v}} \over {\partial t}}+\omega \times {\bf {v}}=-\nabla \left({1 \over {2}}\|{\bf {v}}\|^{2}+{p \over {\rho }}+\Phi \right)} 166:
of the channel under consideration. This is often the case with a steady flow. This flow is considered continuous and therefore can be described using the
1263: 355:
for quantities that are useful in open-channel flow: mass, momentum, and energy. The governing equations result from considering the dynamics of the
2322: 388: 346: 3848: 337:. However, it is generally acceptable to assume that the Reynolds number is sufficiently large so that viscous forces may be neglected. 214: 3907: 1069:{\displaystyle {d \over {dt}}\int _{x}\left(\int _{A}dA\right)dx=-\int _{x}{\partial \over {\partial x}}\left(\int _{A}u\;dA\right)dx} 130:
The depth changes abruptly over a comparatively short distance. Rapidly varied flow is known as a local phenomenon. Examples are the
2590:{\displaystyle {\partial u \over {\partial t}}+u{\partial u \over {\partial x}}+g{\partial \eta \over {\partial x}}+g(S_{f}-S)=0} 85:
The depth of flow does not change over time, or if it can be assumed to be constant during the time interval under consideration.
3113: 3991: 1335: 4096: 3641:{\displaystyle {\begin{aligned}h&=e+{p \over {\rho g}}\\&={u^{2} \over {2g}}+z+{p \over {\gamma }}\end{aligned}}} 4030: 3890: 4282: 4017: 4000: 3970: 3917: 2612: 1946: 3789: 334: 3877: 689:
can change with both time and space in the channel. If we start from the integral form of the continuity equation:
3417:
Assuming that the energy density is time-independent and the flow is one-dimensional leads to the simplification:
4328: 4287: 633: 2730:{\displaystyle {\bf {v}}\cdot \nabla {\bf {v}}=\omega \times {\bf {v}}+{1 \over {2}}\nabla \|{\bf {v}}\|^{2}} 3752: 3420: 4165: 4155: 3833: 2427: 786:
it is possible to decompose the volume integral into a cross-section and length, which leads to the form:
449: 1250:{\displaystyle \int _{x}{\partial A \over {\partial t}}\;dx=-\int _{x}{\partial Q \over {\partial x}}dx} 4313: 4292: 318: 1121: 4170: 4160: 577: 3654: 1914: 4150: 4089: 3470: 1079: 667: 2272: 4318: 4241: 1724: 58: 4068: 3479: 2764: 4261: 4226: 2927: 364: 1697: 4206: 4185: 4134: 3108: 2791:. This leads to a form of the momentum equation, ignoring the external forces term, given by: 2740: 1673: 294: 2024: 779:{\displaystyle {d \over {dt}}\int _{V}\rho \;dV=-\int _{V}\nabla \cdot (\rho {\bf {v}})\;dV} 3853: 3691: 3326: 2379: 2044: 1909: 1116: 553: 455:
To simplify the final form of the equations, it is acceptable to make several assumptions:
3957: 2319:. To account for shear stress along the channel banks, we may define the force term to be: 1649: 928:{\displaystyle {d \over {dt}}\int _{x}\left(\int _{A}\rho \;dA\right)dx=-\int _{x}\leftdx} 8: 4323: 4201: 4082: 2471:, a way of quantifying friction losses, leads to the final form of the momentum equation: 1667: 479: 460: 452:, these components correspond to the flow velocity in the x, y, and z axes respectively. 167: 1257:
Finally, this leads to the continuity equation for incompressible, 1D open-channel flow:
4231: 4221: 3519: 3452: 3165: 2403: 1625: 672: 613: 300: 276: 256: 48: 4008: 1727:. By invoking the high Reynolds number and 1D flow assumptions, we have the equations: 466:
The Reynolds number is sufficiently large such that viscous diffusion can be neglected
4216: 4041: 4036: 4013: 3996: 3966: 3913: 3886: 163: 3727:
that was ignored by discounting the external forces term in the momentum equation.
2421: 1691: 543:{\displaystyle {\partial \rho \over {\partial t}}+\nabla \cdot (\rho {\bf {v}})=0} 352: 3828: 321:. Depending on the effect of viscosity relative to inertia, as represented by the 4246: 4236: 4211: 4179: 4124: 3843: 3811: 3681: 3474: 1319:{\displaystyle {\partial A \over {\partial t}}+{\partial Q \over {\partial x}}=0} 322: 203: 20: 3934: 3290: 3246: 1589: 1491: 1381: 4266: 4251: 3838: 3757: 3514: 3183: 2788: 608: 330: 135: 131: 40: 4063: 4058: 4053: 1334:
The momentum equation for open-channel flow may be found by starting from the
4307: 4256: 3806: 3410:{\displaystyle {\partial E \over {\partial t}}+{\bf {v}}\cdot \nabla (E+p)=0} 356: 208: 3779: 2397: 359: 326: 36: 4129: 3716: 2921: 441:{\displaystyle {\bf {v}}={\begin{pmatrix}u&v&w\end{pmatrix}}^{T}} 4119: 4105: 3794: 3762: 3742: 3724: 935:
Under the assumption of incompressible, 1D flow, this equation becomes:
607:
operator. Under the assumption of incompressible flow, with a constant
604: 24: 3816: 3784: 3767: 3685: 2758: 195: 44: 54: 3720: 1643: 3737: 571: 199: 4012:. Water Science and Technology Library. New York, NY: Springer. 194:
The behavior of open-channel flow is governed by the effects of
2606: 32: 4074: 3155:{\displaystyle {\bf {v}}\cdot (\omega \times {\bf {v}})=0} 2369:{\displaystyle F_{x}=-{1 \over {\rho }}{\tau \over {R}}} 3684:. However, realistic systems require the addition of a 463:(this is not a good assumption for rapidly-varied flow) 351:
It is possible to formulate equations describing three
207:
dimensionless parameter. The parameter is known as the
482:, describing the conservation of mass, takes the form: 408: 3694: 3657: 3545: 3522: 3482: 3473:. Of particular interest in open-channel flow is the 3455: 3423: 3349: 3329: 3192: 3168: 3116: 2954: 2930: 2797: 2767: 2743: 2652: 2615: 2480: 2430: 2406: 2382: 2325: 2275: 2074: 2047: 2027: 2021:
is the difference between the free surface elevation
1949: 1917: 1733: 1700: 1676: 1652: 1628: 1344: 1266: 1167: 1124: 1082: 941: 792: 695: 675: 636: 616: 580: 556: 488: 391: 367: 303: 279: 259: 217: 2609:
equation, note that the advective acceleration term
3707: 3672: 3640: 3528: 3505: 3461: 3441: 3409: 3335: 3315: 3174: 3154: 3099: 2940: 2912: 2779: 2749: 2729: 2638: 2589: 2463: 2412: 2388: 2368: 2311: 2261: 2060: 2033: 2013: 1935: 1900: 1715: 1682: 1658: 1634: 1614: 1318: 1249: 1153: 1107: 1068: 927: 778: 681: 658: 622: 595: 562: 542: 440: 377: 309: 285: 265: 246:{\displaystyle {\text{Fr}}={U \over {\sqrt {gD}}}} 245: 4305: 4037:Derivation of the Equations of Open Channel Flow 3995:. IAHR Monograph. Rotterdam, NL: A.A. Balkema. 3936:Basic Hydraulic Principles of Open-Channel Flow 3933:Jobson, Harvey E.; Froehlich, David C. (1988). 3932: 3906:Battjes, Jurjen A.; Labeur, Robert Jan (2017). 3343:is time-independent, we arrive at the equation: 2639:{\displaystyle {\bf {v}}\cdot \nabla {\bf {v}}} 2014:{\displaystyle \eta (t,x)=\zeta (t,x)-z_{b}(x)} 4090: 4009:Numerical Modeling in Open Channel Hydraulics 3912:. Cambridge, UK: Cambridge University Press. 3905: 2068:. Substitution into the first equation gives: 469:The flow is one-dimensional across the x-axis 43:. The other type of flow within a conduit is 3229: 3218: 3056: 3045: 2998: 2987: 2875: 2864: 2774: 2768: 2718: 2707: 347:Computational methods for free surface flow 4097: 4083: 2164: 2160: 1198: 1144: 1048: 907: 836: 769: 724: 630:, this equation has the simple expression 65: 162:The discharge is constant throughout the 4042:Surface Profiles for Steady Channel Flow 3965:. New York, NY: McGraw-Hill. p. 2. 3469:being a constant; this is equivalent to 659:{\displaystyle \nabla \cdot {\bf {v}}=0} 95:The depth of flow does change with time. 53: 3989:Nezu, Iehisa; Nakagawa, Hiroji (1993). 3107:This equation was arrived at using the 148:The depth changes over a long distance. 4306: 1336:incompressible Navier-Stokes equations 473: 4078: 3955: 3942:. Reston, VA: U.S. Geological Survey. 3885:. Caldwell, NJ: The Blackburn Press. 3951: 3949: 3875: 1329: 16:Type of liquid flow within a conduit 2464:{\displaystyle S_{f}=\tau /\rho gR} 666:. However, it is possible that the 13: 3983: 3383: 3361: 3353: 3330: 3279: 3083: 3025: 2961: 2957: 2902: 2844: 2813: 2801: 2704: 2663: 2626: 2600: 2544: 2536: 2518: 2510: 2492: 2484: 2228: 2220: 2202: 2194: 2176: 2168: 2138: 2130: 2112: 2104: 2086: 2078: 1869: 1861: 1817: 1809: 1775: 1767: 1749: 1741: 1701: 1677: 1556: 1553: 1524: 1477: 1421: 1366: 1354: 1301: 1293: 1278: 1270: 1232: 1224: 1189: 1181: 1021: 1017: 885: 747: 637: 581: 512: 500: 492: 14: 4340: 4024: 3946: 3289: 3245: 1588: 1490: 1380: 297:scale for a channel's depth, and 189: 3992:Turbulence in Open-Channel Flows 3375: 3223: 3138: 3119: 3050: 3017: 2992: 2933: 2869: 2833: 2806: 2712: 2684: 2668: 2655: 2631: 2618: 1578: 1529: 1426: 1413: 1359: 1154:{\displaystyle Q=\int _{A}u\;dA} 899: 761: 645: 526: 394: 370: 3513:, which is used to compute the 596:{\displaystyle \nabla \cdot ()} 4104: 3926: 3909:Unsteady Flow in Open Channels 3899: 3869: 3673:{\displaystyle \gamma =\rho g} 3398: 3386: 3143: 3127: 2578: 2559: 2424:. Defining the friction slope 2161: 2008: 2002: 1986: 1974: 1965: 1953: 1936:{\displaystyle p=\rho g\zeta } 1908:The second equation implies a 904: 891: 766: 753: 590: 587: 531: 518: 340: 1: 4069:Simulation of Turbulent Flows 4006:Syzmkiewicz, Romuald (2010). 3862: 1161:, the equation is reduced to: 1108:{\displaystyle \int _{A}dA=A} 35:flow within a conduit with a 3753:Computational fluid dynamics 2948:with this equation leads to: 2312:{\displaystyle S=-dz_{b}/dx} 2269:where the channel bed slope 198:and gravity relative to the 7: 3730: 170:for continuous steady flow. 10: 4345: 4054:Open Channel Flow Concepts 3506:{\displaystyle e=E/\rho g} 2780:{\displaystyle \|\cdot \|} 1943:, where the channel depth 344: 319:gravitational acceleration 4275: 4194: 4171:Hydrological optimization 4161:Groundwater flow equation 4143: 4112: 4064:Open Channel Flow Example 4059:What is a Hydraulic Jump? 2941:{\displaystyle {\bf {v}}} 378:{\displaystyle {\bf {v}}} 325:, the flow can be either 3956:Sturm, Terry W. (2001). 1716:{\displaystyle \Phi =gz} 4166:Hazen–Williams equation 4156:Darcy–Weisbach equation 3959:Open Channel Hydraulics 3879:Open-Channel Hydraulics 3834:Darcy-Weisbach equation 2750:{\displaystyle \omega } 2041:and the channel bottom 1725:gravitational potential 1683:{\displaystyle \Delta } 66:Classifications of flow 59:Central Arizona Project 3849:Saint-Venant equations 3824:Other related articles 3715:to account for energy 3709: 3674: 3642: 3530: 3507: 3463: 3443: 3411: 3337: 3317: 3176: 3156: 3101: 2942: 2914: 2781: 2751: 2731: 2640: 2591: 2465: 2414: 2390: 2370: 2313: 2263: 2062: 2035: 2034:{\displaystyle \zeta } 2015: 1937: 1902: 1717: 1684: 1660: 1636: 1616: 1320: 1251: 1155: 1109: 1070: 929: 780: 683: 660: 624: 597: 564: 544: 442: 379: 311: 287: 273:is the mean velocity, 267: 247: 103:Space as the criterion 62: 4329:Hydraulic engineering 4186:Pipe network analysis 4151:Bernoulli's principle 4135:Hydraulic engineering 3876:Chow, Ven Te (2008). 3710: 3708:{\displaystyle h_{f}} 3675: 3643: 3531: 3508: 3471:Bernoulli's principle 3464: 3444: 3442:{\displaystyle E+p=C} 3412: 3338: 3336:{\displaystyle \Phi } 3318: 3177: 3157: 3109:scalar triple product 3102: 2943: 2915: 2782: 2752: 2732: 2646:may be decomposed as: 2641: 2592: 2466: 2415: 2391: 2389:{\displaystyle \tau } 2371: 2314: 2264: 2063: 2061:{\displaystyle z_{b}} 2036: 2016: 1938: 1903: 1718: 1685: 1661: 1637: 1617: 1451:Inertial Acceleration 1321: 1252: 1156: 1110: 1071: 930: 781: 684: 661: 625: 598: 565: 563:{\displaystyle \rho } 545: 450:Cartesian coordinates 443: 380: 345:Further information: 312: 295:characteristic length 288: 268: 248: 176:Spatially-varied flow 144:Gradually-varied flow 76:Time as the criterion 57: 3854:Standard step method 3692: 3655: 3543: 3520: 3480: 3453: 3421: 3347: 3327: 3190: 3166: 3114: 2952: 2928: 2795: 2765: 2741: 2650: 2613: 2478: 2428: 2404: 2380: 2323: 2273: 2072: 2045: 2025: 1947: 1915: 1910:hydrostatic pressure 1731: 1698: 1674: 1659:{\displaystyle \nu } 1650: 1626: 1342: 1264: 1165: 1122: 1117:volumetric flow rate 1080: 939: 790: 693: 673: 668:cross-sectional area 634: 614: 578: 554: 486: 389: 365: 301: 277: 257: 215: 211:, and is defined as: 202:forces of the flow. 3775:Types of fluid flow 3536:that is defined as: 1668:kinematic viscosity 480:continuity equation 474:Continuity equation 168:continuity equation 126:Rapidly-varied flow 3705: 3670: 3638: 3636: 3526: 3503: 3459: 3439: 3407: 3333: 3313: 3312: 3310: 3309: 3286: 3268: 3266: 3265: 3242: 3172: 3152: 3097: 2938: 2910: 2777: 2747: 2727: 2636: 2587: 2461: 2410: 2386: 2366: 2309: 2259: 2058: 2031: 2011: 1933: 1898: 1896: 1713: 1680: 1656: 1632: 1612: 1611: 1609: 1608: 1585: 1570: 1563: 1545: 1538: 1513: 1511: 1510: 1487: 1442: 1435: 1403: 1401: 1400: 1377: 1316: 1247: 1151: 1105: 1066: 925: 776: 679: 656: 620: 593: 560: 540: 438: 426: 375: 307: 283: 263: 243: 63: 49:hydraulic pressure 4314:Civil engineering 4301: 4300: 4176:Open-channel flow 4049:Open-Channel Flow 3790:Transitional flow 3632: 3611: 3579: 3529:{\displaystyle h} 3462:{\displaystyle C} 3368: 3305: 3296: 3274: 3272: 3261: 3252: 3213: 3201: 3199: 3175:{\displaystyle E} 3078: 3043: 2985: 2968: 2897: 2862: 2820: 2702: 2551: 2525: 2499: 2413:{\displaystyle R} 2364: 2352: 2235: 2209: 2183: 2145: 2119: 2093: 1876: 1856: 1824: 1804: 1782: 1756: 1635:{\displaystyle p} 1604: 1595: 1576: 1574: 1568: 1551: 1549: 1543: 1519: 1517: 1506: 1497: 1475: 1463: 1461: 1454: 1452: 1447: 1440: 1409: 1407: 1396: 1387: 1373: 1351: 1349: 1330:Momentum equation 1308: 1285: 1239: 1196: 1115:and defining the 1028: 955: 806: 709: 682:{\displaystyle A} 623:{\displaystyle V} 507: 353:conservation laws 310:{\displaystyle g} 286:{\displaystyle D} 266:{\displaystyle U} 241: 239: 221: 29:open-channel flow 4336: 4099: 4092: 4085: 4076: 4075: 3977: 3976: 3964: 3953: 3944: 3943: 3941: 3930: 3924: 3923: 3903: 3897: 3896: 3884: 3873: 3802:Fluid properties 3714: 3712: 3711: 3706: 3704: 3703: 3679: 3677: 3676: 3671: 3647: 3645: 3644: 3639: 3637: 3633: 3631: 3623: 3612: 3610: 3602: 3601: 3592: 3584: 3580: 3578: 3567: 3535: 3533: 3532: 3527: 3512: 3510: 3509: 3504: 3496: 3468: 3466: 3465: 3460: 3448: 3446: 3445: 3440: 3416: 3414: 3413: 3408: 3379: 3378: 3369: 3367: 3359: 3351: 3342: 3340: 3339: 3334: 3322: 3320: 3319: 3314: 3311: 3306: 3303: 3297: 3294: 3287: 3282: 3267: 3262: 3259: 3253: 3250: 3243: 3238: 3237: 3236: 3227: 3226: 3214: 3212: 3204: 3181: 3179: 3178: 3173: 3161: 3159: 3158: 3153: 3142: 3141: 3123: 3122: 3106: 3104: 3103: 3098: 3090: 3086: 3079: 3077: 3069: 3064: 3063: 3054: 3053: 3044: 3042: 3034: 3021: 3020: 3011: 3007: 3006: 3005: 2996: 2995: 2986: 2984: 2976: 2969: 2967: 2956: 2947: 2945: 2944: 2939: 2937: 2936: 2919: 2917: 2916: 2911: 2909: 2905: 2898: 2896: 2888: 2883: 2882: 2873: 2872: 2863: 2861: 2853: 2837: 2836: 2821: 2819: 2811: 2810: 2809: 2799: 2786: 2784: 2783: 2778: 2761:of the flow and 2756: 2754: 2753: 2748: 2736: 2734: 2733: 2728: 2726: 2725: 2716: 2715: 2703: 2701: 2693: 2688: 2687: 2672: 2671: 2659: 2658: 2645: 2643: 2642: 2637: 2635: 2634: 2622: 2621: 2596: 2594: 2593: 2588: 2571: 2570: 2552: 2550: 2542: 2534: 2526: 2524: 2516: 2508: 2500: 2498: 2490: 2482: 2470: 2468: 2467: 2462: 2451: 2440: 2439: 2422:hydraulic radius 2419: 2417: 2416: 2411: 2395: 2393: 2392: 2387: 2375: 2373: 2372: 2367: 2365: 2363: 2355: 2353: 2351: 2343: 2335: 2334: 2318: 2316: 2315: 2310: 2302: 2297: 2296: 2268: 2266: 2265: 2260: 2258: 2257: 2236: 2234: 2226: 2218: 2210: 2208: 2200: 2192: 2184: 2182: 2174: 2166: 2159: 2158: 2146: 2144: 2136: 2128: 2120: 2118: 2110: 2102: 2094: 2092: 2084: 2076: 2067: 2065: 2064: 2059: 2057: 2056: 2040: 2038: 2037: 2032: 2020: 2018: 2017: 2012: 2001: 2000: 1942: 1940: 1939: 1934: 1907: 1905: 1904: 1899: 1897: 1877: 1875: 1867: 1859: 1857: 1855: 1847: 1838: 1837: 1825: 1823: 1815: 1807: 1805: 1803: 1795: 1783: 1781: 1773: 1765: 1757: 1755: 1747: 1739: 1722: 1720: 1719: 1714: 1692:Laplace operator 1689: 1687: 1686: 1681: 1665: 1663: 1662: 1657: 1641: 1639: 1638: 1633: 1621: 1619: 1618: 1613: 1610: 1605: 1602: 1596: 1593: 1586: 1581: 1569: 1566: 1564: 1559: 1544: 1541: 1539: 1534: 1533: 1532: 1512: 1507: 1504: 1498: 1495: 1488: 1483: 1476: 1474: 1466: 1453: 1450: 1448: 1443: 1441: 1438: 1436: 1431: 1430: 1429: 1417: 1416: 1402: 1397: 1394: 1388: 1385: 1378: 1372: 1364: 1363: 1362: 1352: 1347: 1345: 1325: 1323: 1322: 1317: 1309: 1307: 1299: 1291: 1286: 1284: 1276: 1268: 1256: 1254: 1253: 1248: 1240: 1238: 1230: 1222: 1220: 1219: 1197: 1195: 1187: 1179: 1177: 1176: 1160: 1158: 1157: 1152: 1140: 1139: 1114: 1112: 1111: 1106: 1092: 1091: 1075: 1073: 1072: 1067: 1059: 1055: 1044: 1043: 1029: 1027: 1016: 1014: 1013: 992: 988: 981: 980: 966: 965: 956: 954: 943: 934: 932: 931: 926: 918: 914: 903: 902: 884: 883: 869: 868: 847: 843: 832: 831: 817: 816: 807: 805: 794: 785: 783: 782: 777: 765: 764: 746: 745: 720: 719: 710: 708: 697: 688: 686: 685: 680: 665: 663: 662: 657: 649: 648: 629: 627: 626: 621: 602: 600: 599: 594: 569: 567: 566: 561: 549: 547: 546: 541: 530: 529: 508: 506: 498: 490: 447: 445: 444: 439: 437: 436: 431: 430: 398: 397: 385:with components 384: 382: 381: 376: 374: 373: 316: 314: 313: 308: 292: 290: 289: 284: 272: 270: 269: 264: 252: 250: 249: 244: 242: 240: 232: 227: 222: 219: 4344: 4343: 4339: 4338: 4337: 4335: 4334: 4333: 4304: 4303: 4302: 4297: 4276:Public networks 4271: 4190: 4180:Manning formula 4139: 4125:Hydraulic fluid 4108: 4103: 4071:(p. 26-38) 4033:lecture notes: 4027: 3986: 3984:Further reading 3981: 3980: 3973: 3962: 3954: 3947: 3939: 3931: 3927: 3920: 3904: 3900: 3893: 3882: 3874: 3870: 3865: 3860: 3844:Manning formula 3812:Reynolds number 3748:Fields of study 3733: 3699: 3695: 3693: 3690: 3689: 3682:specific weight 3656: 3653: 3652: 3649: 3635: 3634: 3627: 3622: 3603: 3597: 3593: 3591: 3582: 3581: 3571: 3566: 3553: 3546: 3544: 3541: 3540: 3521: 3518: 3517: 3492: 3481: 3478: 3477: 3475:specific energy 3454: 3451: 3450: 3422: 3419: 3418: 3374: 3373: 3360: 3352: 3350: 3348: 3345: 3344: 3328: 3325: 3324: 3308: 3307: 3302: 3299: 3298: 3293: 3288: 3275: 3273: 3264: 3263: 3258: 3255: 3254: 3249: 3244: 3232: 3228: 3222: 3221: 3208: 3203: 3202: 3200: 3191: 3188: 3187: 3167: 3164: 3163: 3137: 3136: 3118: 3117: 3115: 3112: 3111: 3073: 3068: 3059: 3055: 3049: 3048: 3038: 3033: 3032: 3028: 3016: 3015: 3001: 2997: 2991: 2990: 2980: 2975: 2974: 2970: 2960: 2955: 2953: 2950: 2949: 2932: 2931: 2929: 2926: 2925: 2892: 2887: 2878: 2874: 2868: 2867: 2857: 2852: 2851: 2847: 2832: 2831: 2812: 2805: 2804: 2800: 2798: 2796: 2793: 2792: 2766: 2763: 2762: 2742: 2739: 2738: 2721: 2717: 2711: 2710: 2697: 2692: 2683: 2682: 2667: 2666: 2654: 2653: 2651: 2648: 2647: 2630: 2629: 2617: 2616: 2614: 2611: 2610: 2603: 2601:Energy equation 2598: 2566: 2562: 2543: 2535: 2533: 2517: 2509: 2507: 2491: 2483: 2481: 2479: 2476: 2475: 2447: 2435: 2431: 2429: 2426: 2425: 2405: 2402: 2401: 2381: 2378: 2377: 2359: 2354: 2347: 2342: 2330: 2326: 2324: 2321: 2320: 2298: 2292: 2288: 2274: 2271: 2270: 2253: 2249: 2227: 2219: 2217: 2201: 2193: 2191: 2175: 2167: 2165: 2154: 2150: 2137: 2129: 2127: 2111: 2103: 2101: 2085: 2077: 2075: 2073: 2070: 2069: 2052: 2048: 2046: 2043: 2042: 2026: 2023: 2022: 1996: 1992: 1948: 1945: 1944: 1916: 1913: 1912: 1895: 1894: 1884: 1868: 1860: 1858: 1851: 1846: 1840: 1839: 1833: 1829: 1816: 1808: 1806: 1799: 1794: 1784: 1774: 1766: 1764: 1748: 1740: 1738: 1734: 1732: 1729: 1728: 1699: 1696: 1695: 1675: 1672: 1671: 1651: 1648: 1647: 1627: 1624: 1623: 1607: 1606: 1601: 1598: 1597: 1592: 1587: 1577: 1575: 1565: 1552: 1550: 1540: 1528: 1527: 1520: 1518: 1509: 1508: 1503: 1500: 1499: 1494: 1489: 1470: 1465: 1464: 1462: 1449: 1437: 1425: 1424: 1412: 1411: 1410: 1408: 1399: 1398: 1393: 1390: 1389: 1384: 1379: 1365: 1358: 1357: 1353: 1350: 1348: 1346: 1343: 1340: 1339: 1332: 1327: 1300: 1292: 1290: 1277: 1269: 1267: 1265: 1262: 1261: 1231: 1223: 1221: 1215: 1211: 1188: 1180: 1178: 1172: 1168: 1166: 1163: 1162: 1135: 1131: 1123: 1120: 1119: 1087: 1083: 1081: 1078: 1077: 1076:By noting that 1039: 1035: 1034: 1030: 1020: 1015: 1009: 1005: 976: 972: 971: 967: 961: 957: 947: 942: 940: 937: 936: 898: 897: 879: 875: 874: 870: 864: 860: 827: 823: 822: 818: 812: 808: 798: 793: 791: 788: 787: 760: 759: 741: 737: 715: 711: 701: 696: 694: 691: 690: 674: 671: 670: 644: 643: 635: 632: 631: 615: 612: 611: 579: 576: 575: 555: 552: 551: 525: 524: 499: 491: 489: 487: 484: 483: 476: 432: 425: 424: 419: 414: 404: 403: 402: 393: 392: 390: 387: 386: 369: 368: 366: 363: 362: 349: 343: 323:Reynolds number 302: 299: 298: 278: 275: 274: 258: 255: 254: 231: 226: 218: 216: 213: 212: 204:Surface tension 192: 158:Continuous flow 68: 21:fluid mechanics 17: 12: 11: 5: 4342: 4332: 4331: 4326: 4321: 4319:Fluid dynamics 4316: 4299: 4298: 4296: 4295: 4290: 4285: 4279: 4277: 4273: 4272: 4270: 4269: 4264: 4259: 4254: 4249: 4244: 4239: 4234: 4229: 4224: 4219: 4214: 4209: 4204: 4198: 4196: 4192: 4191: 4189: 4188: 4183: 4173: 4168: 4163: 4158: 4153: 4147: 4145: 4141: 4140: 4138: 4137: 4132: 4127: 4122: 4116: 4114: 4110: 4109: 4102: 4101: 4094: 4087: 4079: 4073: 4072: 4066: 4061: 4056: 4051: 4046: 4045: 4044: 4039: 4026: 4025:External links 4023: 4022: 4021: 4004: 3985: 3982: 3979: 3978: 3971: 3945: 3925: 3918: 3898: 3892:978-1932846188 3891: 3867: 3866: 3864: 3861: 3859: 3858: 3857: 3856: 3851: 3846: 3841: 3839:Hydraulic jump 3836: 3831: 3821: 3820: 3819: 3814: 3809: 3799: 3798: 3797: 3795:Turbulent flow 3792: 3787: 3782: 3772: 3771: 3770: 3765: 3760: 3758:Fluid dynamics 3755: 3745: 3740: 3734: 3732: 3729: 3702: 3698: 3669: 3666: 3663: 3660: 3630: 3626: 3621: 3618: 3615: 3609: 3606: 3600: 3596: 3590: 3587: 3585: 3583: 3577: 3574: 3570: 3565: 3562: 3559: 3556: 3554: 3552: 3549: 3548: 3538: 3525: 3515:hydraulic head 3502: 3499: 3495: 3491: 3488: 3485: 3458: 3438: 3435: 3432: 3429: 3426: 3406: 3403: 3400: 3397: 3394: 3391: 3388: 3385: 3382: 3377: 3372: 3366: 3363: 3358: 3355: 3332: 3301: 3300: 3292: 3291: 3285: 3281: 3278: 3271: 3257: 3256: 3248: 3247: 3241: 3235: 3231: 3225: 3220: 3217: 3211: 3207: 3198: 3195: 3184:energy density 3171: 3151: 3148: 3145: 3140: 3135: 3132: 3129: 3126: 3121: 3096: 3093: 3089: 3085: 3082: 3076: 3072: 3067: 3062: 3058: 3052: 3047: 3041: 3037: 3031: 3027: 3024: 3019: 3014: 3010: 3004: 3000: 2994: 2989: 2983: 2979: 2973: 2966: 2963: 2959: 2935: 2908: 2904: 2901: 2895: 2891: 2886: 2881: 2877: 2871: 2866: 2860: 2856: 2850: 2846: 2843: 2840: 2835: 2830: 2827: 2824: 2818: 2815: 2808: 2803: 2789:Euclidean norm 2776: 2773: 2770: 2746: 2724: 2720: 2714: 2709: 2706: 2700: 2696: 2691: 2686: 2681: 2678: 2675: 2670: 2665: 2662: 2657: 2633: 2628: 2625: 2620: 2602: 2599: 2586: 2583: 2580: 2577: 2574: 2569: 2565: 2561: 2558: 2555: 2549: 2546: 2541: 2538: 2532: 2529: 2523: 2520: 2515: 2512: 2506: 2503: 2497: 2494: 2489: 2486: 2473: 2460: 2457: 2454: 2450: 2446: 2443: 2438: 2434: 2409: 2385: 2362: 2358: 2350: 2346: 2341: 2338: 2333: 2329: 2308: 2305: 2301: 2295: 2291: 2287: 2284: 2281: 2278: 2256: 2252: 2248: 2245: 2242: 2239: 2233: 2230: 2225: 2222: 2216: 2213: 2207: 2204: 2199: 2196: 2190: 2187: 2181: 2178: 2173: 2170: 2163: 2157: 2153: 2149: 2143: 2140: 2135: 2132: 2126: 2123: 2117: 2114: 2109: 2106: 2100: 2097: 2091: 2088: 2083: 2080: 2055: 2051: 2030: 2010: 2007: 2004: 1999: 1995: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1961: 1958: 1955: 1952: 1932: 1929: 1926: 1923: 1920: 1893: 1890: 1887: 1885: 1883: 1880: 1874: 1871: 1866: 1863: 1854: 1850: 1845: 1842: 1841: 1836: 1832: 1828: 1822: 1819: 1814: 1811: 1802: 1798: 1793: 1790: 1787: 1785: 1780: 1777: 1772: 1769: 1763: 1760: 1754: 1751: 1746: 1743: 1737: 1736: 1712: 1709: 1706: 1703: 1679: 1655: 1631: 1600: 1599: 1591: 1590: 1584: 1580: 1573: 1562: 1558: 1555: 1548: 1537: 1531: 1526: 1523: 1516: 1502: 1501: 1493: 1492: 1486: 1482: 1479: 1473: 1469: 1460: 1457: 1446: 1434: 1428: 1423: 1420: 1415: 1406: 1392: 1391: 1383: 1382: 1376: 1371: 1368: 1361: 1356: 1331: 1328: 1315: 1312: 1306: 1303: 1298: 1295: 1289: 1283: 1280: 1275: 1272: 1259: 1246: 1243: 1237: 1234: 1229: 1226: 1218: 1214: 1210: 1207: 1204: 1201: 1194: 1191: 1186: 1183: 1175: 1171: 1150: 1147: 1143: 1138: 1134: 1130: 1127: 1104: 1101: 1098: 1095: 1090: 1086: 1065: 1062: 1058: 1054: 1051: 1047: 1042: 1038: 1033: 1026: 1023: 1019: 1012: 1008: 1004: 1001: 998: 995: 991: 987: 984: 979: 975: 970: 964: 960: 953: 950: 946: 924: 921: 917: 913: 910: 906: 901: 896: 893: 890: 887: 882: 878: 873: 867: 863: 859: 856: 853: 850: 846: 842: 839: 835: 830: 826: 821: 815: 811: 804: 801: 797: 775: 772: 768: 763: 758: 755: 752: 749: 744: 740: 736: 733: 730: 727: 723: 718: 714: 707: 704: 700: 678: 655: 652: 647: 642: 639: 619: 609:control volume 592: 589: 586: 583: 559: 539: 536: 533: 528: 523: 520: 517: 514: 511: 505: 502: 497: 494: 475: 472: 471: 470: 467: 464: 461:incompressible 435: 429: 423: 420: 418: 415: 413: 410: 409: 407: 401: 396: 372: 342: 339: 306: 282: 262: 238: 235: 230: 225: 191: 190:States of flow 188: 187: 186: 185: 184: 183: 182: 173: 172: 171: 155: 154: 153: 152: 151: 150: 149: 141: 140: 139: 136:hydraulic drop 132:hydraulic jump 115: 114: 113: 100: 99: 98: 97: 96: 88: 87: 86: 67: 64: 15: 9: 6: 4: 3: 2: 4341: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4311: 4309: 4294: 4291: 4289: 4286: 4284: 4281: 4280: 4278: 4274: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4242:Power network 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4199: 4197: 4193: 4187: 4184: 4181: 4177: 4174: 4172: 4169: 4167: 4164: 4162: 4159: 4157: 4154: 4152: 4149: 4148: 4146: 4142: 4136: 4133: 4131: 4128: 4126: 4123: 4121: 4118: 4117: 4115: 4111: 4107: 4100: 4095: 4093: 4088: 4086: 4081: 4080: 4077: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4043: 4040: 4038: 4035: 4034: 4032: 4029: 4028: 4019: 4018:9789048136735 4015: 4011: 4010: 4005: 4002: 4001:9789054101185 3998: 3994: 3993: 3988: 3987: 3974: 3972:9780073397870 3968: 3961: 3960: 3952: 3950: 3938: 3937: 3929: 3921: 3919:9781316576878 3915: 3911: 3910: 3902: 3894: 3888: 3881: 3880: 3872: 3868: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3829:ChĂ©zy formula 3827: 3826: 3825: 3822: 3818: 3815: 3813: 3810: 3808: 3807:Froude number 3805: 3804: 3803: 3800: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3777: 3776: 3773: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3750: 3749: 3746: 3744: 3741: 3739: 3736: 3735: 3728: 3726: 3722: 3718: 3700: 3696: 3687: 3683: 3667: 3664: 3661: 3658: 3648: 3628: 3624: 3619: 3616: 3613: 3607: 3604: 3598: 3594: 3588: 3586: 3575: 3572: 3568: 3563: 3560: 3557: 3555: 3550: 3537: 3523: 3516: 3500: 3497: 3493: 3489: 3486: 3483: 3476: 3472: 3456: 3436: 3433: 3430: 3427: 3424: 3404: 3401: 3395: 3392: 3389: 3380: 3370: 3364: 3356: 3283: 3276: 3269: 3239: 3233: 3215: 3209: 3205: 3196: 3193: 3185: 3169: 3149: 3146: 3133: 3130: 3124: 3110: 3094: 3091: 3087: 3080: 3074: 3070: 3065: 3060: 3039: 3035: 3029: 3022: 3012: 3008: 3002: 2981: 2977: 2971: 2964: 2923: 2906: 2899: 2893: 2889: 2884: 2879: 2858: 2854: 2848: 2841: 2838: 2828: 2825: 2822: 2816: 2790: 2771: 2760: 2744: 2722: 2698: 2694: 2689: 2679: 2676: 2673: 2660: 2623: 2608: 2605:To derive an 2597: 2584: 2581: 2575: 2572: 2567: 2563: 2556: 2553: 2547: 2539: 2530: 2527: 2521: 2513: 2504: 2501: 2495: 2487: 2472: 2458: 2455: 2452: 2448: 2444: 2441: 2436: 2432: 2423: 2407: 2399: 2383: 2360: 2356: 2348: 2344: 2339: 2336: 2331: 2327: 2306: 2303: 2299: 2293: 2289: 2285: 2282: 2279: 2276: 2254: 2250: 2246: 2243: 2240: 2237: 2231: 2223: 2214: 2211: 2205: 2197: 2188: 2185: 2179: 2171: 2155: 2151: 2147: 2141: 2133: 2124: 2121: 2115: 2107: 2098: 2095: 2089: 2081: 2053: 2049: 2028: 2005: 1997: 1993: 1989: 1983: 1980: 1977: 1971: 1968: 1962: 1959: 1956: 1950: 1930: 1927: 1924: 1921: 1918: 1911: 1891: 1888: 1886: 1881: 1878: 1872: 1864: 1852: 1848: 1843: 1834: 1830: 1826: 1820: 1812: 1800: 1796: 1791: 1788: 1786: 1778: 1770: 1761: 1758: 1752: 1744: 1726: 1710: 1707: 1704: 1693: 1669: 1653: 1645: 1629: 1582: 1571: 1560: 1546: 1535: 1521: 1514: 1484: 1480: 1471: 1467: 1458: 1455: 1444: 1432: 1418: 1404: 1374: 1369: 1337: 1326: 1313: 1310: 1304: 1296: 1287: 1281: 1273: 1258: 1244: 1241: 1235: 1227: 1216: 1212: 1208: 1205: 1202: 1199: 1192: 1184: 1173: 1169: 1148: 1145: 1141: 1136: 1132: 1128: 1125: 1118: 1102: 1099: 1096: 1093: 1088: 1084: 1063: 1060: 1056: 1052: 1049: 1045: 1040: 1036: 1031: 1024: 1010: 1006: 1002: 999: 996: 993: 989: 985: 982: 977: 973: 968: 962: 958: 951: 948: 944: 922: 919: 915: 911: 908: 894: 888: 880: 876: 871: 865: 861: 857: 854: 851: 848: 844: 840: 837: 833: 828: 824: 819: 813: 809: 802: 799: 795: 773: 770: 756: 750: 742: 738: 734: 731: 728: 725: 721: 716: 712: 705: 702: 698: 676: 669: 653: 650: 640: 617: 610: 606: 584: 573: 570:is the fluid 557: 537: 534: 521: 515: 509: 503: 495: 481: 468: 465: 462: 458: 457: 456: 453: 451: 433: 427: 421: 416: 411: 405: 399: 361: 358: 357:flow velocity 354: 348: 338: 336: 332: 328: 324: 320: 304: 296: 280: 260: 236: 233: 228: 223: 210: 209:Froude number 205: 201: 197: 179: 178: 177: 174: 169: 165: 161: 160: 159: 156: 147: 146: 145: 142: 137: 133: 129: 128: 127: 124: 123: 121: 120: 119: 116: 111: 110: 109: 106: 105: 104: 101: 94: 93: 92: 91:Unsteady flow 89: 84: 83: 82: 79: 78: 77: 74: 73: 72: 60: 56: 52: 50: 46: 42: 39:, known as a 38: 34: 31:is a type of 30: 26: 22: 4262:Rescue tools 4227:Drive system 4195:Technologies 4175: 4007: 3990: 3958: 3935: 3928: 3908: 3901: 3878: 3871: 3823: 3801: 3780:Laminar flow 3774: 3747: 3650: 3539: 3323:Noting that 2604: 2474: 2398:shear stress 1333: 1260: 478:The general 477: 459:The flow is 454: 360:vector field 350: 335:transitional 193: 175: 157: 143: 125: 117: 108:Uniform flow 107: 102: 90: 80: 75: 69: 37:free surface 28: 18: 4207:Accumulator 4130:Fluid power 3717:dissipation 2922:dot product 2920:Taking the 341:Formulation 118:Varied flow 81:Steady flow 4324:Hydraulics 4308:Categories 4293:Manchester 4120:Hydraulics 4106:Hydraulics 3863:References 3763:Hydraulics 3743:Streamflow 3725:turbulence 3680:being the 3182:to be the 3162:. Define 605:divergence 25:hydraulics 4283:Liverpool 4202:Machinery 3817:Viscosity 3785:Pipe flow 3768:Hydrology 3686:head loss 3665:ρ 3659:γ 3629:γ 3573:ρ 3498:ρ 3384:∇ 3381:⋅ 3362:∂ 3354:∂ 3331:Φ 3295:Potential 3284:⏟ 3280:Φ 3277:ρ 3240:⏟ 3230:‖ 3219:‖ 3216:ρ 3134:× 3131:ω 3125:⋅ 3084:Φ 3075:ρ 3057:‖ 3046:‖ 3026:∇ 3023:⋅ 2999:‖ 2988:‖ 2962:∂ 2958:∂ 2903:Φ 2894:ρ 2876:‖ 2865:‖ 2845:∇ 2842:− 2829:× 2826:ω 2814:∂ 2802:∂ 2775:‖ 2772:⋅ 2769:‖ 2759:vorticity 2745:ω 2719:‖ 2708:‖ 2705:∇ 2680:× 2677:ω 2664:∇ 2661:⋅ 2627:∇ 2624:⋅ 2573:− 2545:∂ 2540:η 2537:∂ 2519:∂ 2511:∂ 2493:∂ 2485:∂ 2453:ρ 2445:τ 2384:τ 2357:τ 2349:ρ 2340:− 2283:− 2238:− 2229:∂ 2224:η 2221:∂ 2203:∂ 2195:∂ 2177:∂ 2169:∂ 2162:⟹ 2139:∂ 2134:ζ 2131:∂ 2113:∂ 2105:∂ 2087:∂ 2079:∂ 2029:ζ 1990:− 1972:ζ 1951:η 1931:ζ 1925:ρ 1879:− 1870:∂ 1862:∂ 1853:ρ 1844:− 1818:∂ 1810:∂ 1801:ρ 1792:− 1776:∂ 1768:∂ 1750:∂ 1742:∂ 1702:Φ 1678:Δ 1654:ν 1583:⏟ 1561:⏟ 1557:Φ 1554:∇ 1547:− 1542:Diffusion 1536:⏟ 1525:Δ 1522:ν 1485:⏟ 1478:∇ 1472:ρ 1459:− 1445:⏞ 1439:Advection 1433:⏟ 1422:∇ 1419:⋅ 1375:⏟ 1367:∂ 1355:∂ 1302:∂ 1294:∂ 1279:∂ 1271:∂ 1233:∂ 1225:∂ 1213:∫ 1209:− 1190:∂ 1182:∂ 1170:∫ 1133:∫ 1085:∫ 1037:∫ 1022:∂ 1018:∂ 1007:∫ 1003:− 974:∫ 959:∫ 895:ρ 889:⋅ 886:∇ 877:∫ 862:∫ 858:− 834:ρ 825:∫ 810:∫ 757:ρ 751:⋅ 748:∇ 739:∫ 735:− 722:ρ 713:∫ 641:⋅ 638:∇ 585:⋅ 582:∇ 558:ρ 522:ρ 516:⋅ 513:∇ 501:∂ 496:ρ 493:∂ 331:turbulent 196:viscosity 45:pipe flow 4232:Manifold 4222:Cylinder 4144:Modeling 4113:Concepts 3731:See also 3721:friction 1644:pressure 1594:External 1505:Gradient 1496:Pressure 200:inertial 134:and the 61:channel. 4217:Circuit 4031:Caltech 3738:HEC-RAS 3719:due to 3251:Kinetic 2787:is the 2757:is the 2420:is the 2396:is the 1723:is the 1690:is the 1666:is the 1642:is the 1567:Gravity 1338: : 603:is the 572:density 327:laminar 317:is the 293:is the 41:channel 4288:London 4016:  3999:  3969:  3916:  3889:  3304:Energy 3260:Energy 2737:where 2607:energy 2376:where 1694:, and 1622:where 1603:Forces 1395:Change 550:where 253:where 33:liquid 4247:Press 4237:Motor 4212:Brake 3963:(PDF) 3940:(PDF) 3883:(PDF) 3688:term 3651:with 3449:with 1386:Local 448:. In 333:, or 164:reach 4267:Seal 4252:Pump 4014:ISBN 3997:ISBN 3967:ISBN 3914:ISBN 3887:ISBN 3723:and 2400:and 574:and 23:and 4257:Ram 2924:of 19:In 4310:: 3948:^ 1670:, 1646:, 329:, 220:Fr 51:. 27:, 4182:) 4178:( 4098:e 4091:t 4084:v 4020:. 4003:. 3975:. 3922:. 3895:. 3701:f 3697:h 3668:g 3662:= 3625:p 3620:+ 3617:z 3614:+ 3608:g 3605:2 3599:2 3595:u 3589:= 3576:g 3569:p 3564:+ 3561:e 3558:= 3551:h 3524:h 3501:g 3494:/ 3490:E 3487:= 3484:e 3457:C 3437:C 3434:= 3431:p 3428:+ 3425:E 3405:0 3402:= 3399:) 3396:p 3393:+ 3390:E 3387:( 3376:v 3371:+ 3365:t 3357:E 3270:+ 3234:2 3224:v 3210:2 3206:1 3197:= 3194:E 3186:: 3170:E 3150:0 3147:= 3144:) 3139:v 3128:( 3120:v 3095:0 3092:= 3088:) 3081:+ 3071:p 3066:+ 3061:2 3051:v 3040:2 3036:1 3030:( 3018:v 3013:+ 3009:) 3003:2 2993:v 2982:2 2978:1 2972:( 2965:t 2934:v 2907:) 2900:+ 2890:p 2885:+ 2880:2 2870:v 2859:2 2855:1 2849:( 2839:= 2834:v 2823:+ 2817:t 2807:v 2723:2 2713:v 2699:2 2695:1 2690:+ 2685:v 2674:= 2669:v 2656:v 2632:v 2619:v 2585:0 2582:= 2579:) 2576:S 2568:f 2564:S 2560:( 2557:g 2554:+ 2548:x 2531:g 2528:+ 2522:x 2514:u 2505:u 2502:+ 2496:t 2488:u 2459:R 2456:g 2449:/ 2442:= 2437:f 2433:S 2408:R 2361:R 2345:1 2337:= 2332:x 2328:F 2307:x 2304:d 2300:/ 2294:b 2290:z 2286:d 2280:= 2277:S 2255:x 2251:F 2247:= 2244:S 2241:g 2232:x 2215:g 2212:+ 2206:x 2198:u 2189:u 2186:+ 2180:t 2172:u 2156:x 2152:F 2148:= 2142:x 2125:g 2122:+ 2116:x 2108:u 2099:u 2096:+ 2090:t 2082:u 2054:b 2050:z 2009:) 2006:x 2003:( 1998:b 1994:z 1987:) 1984:x 1981:, 1978:t 1975:( 1969:= 1966:) 1963:x 1960:, 1957:t 1954:( 1928:g 1922:= 1919:p 1892:0 1889:= 1882:g 1873:z 1865:p 1849:1 1835:x 1831:F 1827:+ 1821:x 1813:p 1797:1 1789:= 1779:x 1771:u 1762:u 1759:+ 1753:t 1745:u 1711:z 1708:g 1705:= 1630:p 1579:F 1572:+ 1530:v 1515:+ 1481:p 1468:1 1456:= 1427:v 1414:v 1405:+ 1370:t 1360:v 1314:0 1311:= 1305:x 1297:Q 1288:+ 1282:t 1274:A 1245:x 1242:d 1236:x 1228:Q 1217:x 1206:= 1203:x 1200:d 1193:t 1185:A 1174:x 1149:A 1146:d 1142:u 1137:A 1129:= 1126:Q 1103:A 1100:= 1097:A 1094:d 1089:A 1064:x 1061:d 1057:) 1053:A 1050:d 1046:u 1041:A 1032:( 1025:x 1011:x 1000:= 997:x 994:d 990:) 986:A 983:d 978:A 969:( 963:x 952:t 949:d 945:d 923:x 920:d 916:] 912:A 909:d 905:) 900:v 892:( 881:A 872:[ 866:x 855:= 852:x 849:d 845:) 841:A 838:d 829:A 820:( 814:x 803:t 800:d 796:d 774:V 771:d 767:) 762:v 754:( 743:V 732:= 729:V 726:d 717:V 706:t 703:d 699:d 677:A 654:0 651:= 646:v 618:V 591:) 588:( 538:0 535:= 532:) 527:v 519:( 510:+ 504:t 434:T 428:) 422:w 417:v 412:u 406:( 400:= 395:v 371:v 305:g 281:D 261:U 237:D 234:g 229:U 224:= 138:.

Index

fluid mechanics
hydraulics
liquid
free surface
channel
pipe flow
hydraulic pressure

Central Arizona Project
hydraulic jump
hydraulic drop
reach
continuity equation
viscosity
inertial
Surface tension
Froude number
characteristic length
gravitational acceleration
Reynolds number
laminar
turbulent
transitional
Computational methods for free surface flow
conservation laws
flow velocity
vector field
Cartesian coordinates
incompressible
continuity equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑