Knowledge

Nyctinasty

Source 📝

20: 786: 120:. Pulvinus cells are located at the base or apex of the petiole and the flux of water from the dorsal to ventral motor cells regulates leaf closure. This flux is in response to movement of potassium ions between pulvinus and surrounding tissue. Movement of potassium ions is connected to the concentration of Pfr or Pr. In 159:
Fluorescence studies have shown that the binding sites of leaf opening and closing factors are located on the surface of the motor cell. Shrinking and expansion of the motor cell in response to this chemical signal allows for leaf opening and closure. The binding of leaf opening and closing factors
139:
Leaf movement is also controlled by bioactive substances known as leaf opening or leaf closing factors. Several leaf-opening and leaf-closing factors have been characterized biochemically. These factors differ among plants. Leaf closure and opening is mediated by the relative concentrations of leaf
212:
in which he considers the predators of herbivores in addition to the plants and herbivores themselves. By moving leaves up or down, herbivores become more visible to nocturnal predators in both a spatial and olfactory sense, increasing herbivore predation and subsequently decreasing damage to a
115:
to detect red and far red light. Depending on which kind of light is absorbed, the protein can switch between a Pr state that absorbs red light and a Pfr state that absorbs far red light. Red light converts Pr to Pfr and far red light converts Pfr to Pr. Many plants use phytochrome to establish
136:-like structures, rendering the plant incapable of closing its leaflets at night. Non-pulvinar mediated movement is also possible and happens through differential cell division and growth on either side of the petiole, resulting in a bending motion within the leaves to the desired position. 213:
plant's leaves. Studies using mutant plants with a loss of function gene that results in petiole growth instead of pulvini found that these plants have less biomass and smaller leaf area than the wild type. This indicates nyctinastic movement may be beneficial toward plant growth.
537:
Ueda, Minoru; Asano, Miho; Sawai, Yoshiyuki; Yamamura, Shosuke (April 1999). "Leaf-movement factors of nyctinastic plant, Phyllanthus urinaria L.; the universal mechanism for the regulation of nyctinastic leaf-movement".
565:
Sugimoto, Takanori; Wada, Yoko; Yamamura, Shosuke; Ueda, Minoru (December 2001). "Fluorescence study on the nyctinasty of Cassia mimosoides L. using novel fluorescence-labeled probe compounds".
208:
due to the plant being able to reduce its surface area during night time, which can lead to better temperature retention and also reduces night-time herbivory. Minorsky specifically suggests a
140:
opening and closing factors in a plant. Either the leaf opening or closing factor is a glycoside, which is inactivated by hydrolysis of the glycosidic bond via beta glucosidase. In
79:
nyctinasty, it is a crucial mechanism for survival; however, most plants do not exhibit any nyctinastic movements. Nyctinasty is found in a range of plant species and across
204:
The functions of nyctinastic movement have yet to be conclusively identified, although several have been proposed. Minorsky hypothesized that nyctinastic behaviors are
162: 475:
Ohnuki, Takashi; Ueda, Minoru; Yamamura, Shosuke (October 1998). "Molecular mechanism of the control of nyctinastic leaf-movement in Lespedeza cuneata G. Don".
678:"Identification and characterization of petiolule- like pulvinus mutants with abolished nyctinastic leaf movement in the model legume Medicago truncatula" 156:, leaf closing factor Phyllanthurinolactone is hydrolyzed to its aglycon during the day. Beta glucosidase activity is regulated via circadian rhythms. 116:
circadian cycles which influence the opening and closing of leaves associated with nyctastic movements. Anatomically, the movements are mediated by
515: 743: 676:
Zhou, Chuanen; Han, Lu; Fu, Chunxiang; Chai, Maofeng; Zhang, Wenzheng; Li, Guifen; Tang, Yuhong; Wang, Zeng-Yu (October 2012).
758:
Chronomics and Continuous Ambulatory Blood Pressure Monitoring: Vascular Chronomics: From 7-Day/24-Hour to Lifelong Monitoring
765: 601: 818: 68: 827: 35: 724: 335:"Phytochrome-controlled Nyctinasty in Albizzia julibrissin: V. Evidence against Acetylcholine Participation" 126:, longer darker periods, leading to low Pfr, result in a faster leaf opening. In the SLEEPLESS mutation of 80: 790: 147: 63:
in response to the onset of darkness, or a plant "sleeping". Nyctinastic movements are associated with
947: 892: 502:
Ueda, Minoru; Yamamura, Shosuke (17 April 2000). "Chemistry and Biology of Plant Leaf Movements".
842: 247: 811: 262:(1729) proposed that this was the plants sleeping, but this idea has been widely contested. 152: 8: 251: 172: 122: 702: 677: 653: 618: 407: 310: 283: 246:
The earliest recorded observation of this behavior in plants dates back to 324 BC when
592:
Lattanzio, Vincenzo; Escribano-Bailon, Maria Teresa; Santos-Buelga, Celestino (2010).
578: 551: 488: 359: 334: 761: 707: 693: 658: 640: 597: 519: 457: 399: 364: 315: 142: 411: 912: 804: 697: 689: 648: 630: 574: 547: 511: 484: 449: 391: 382:
Kawaguchi M (2003). "SLEEPLESS, a gene conferring nyctinastic movement in legume".
354: 346: 305: 295: 133: 52: 848: 192: 128: 92: 72: 56: 516:
10.1002/(SICI)1521-3773(20000417)39:8<1400::AID-ANIE1400>3.0.CO;2-Z
216: 30: 395: 941: 902: 897: 644: 259: 186: 88: 84: 64: 44: 91:
environments, suggesting that this singular behavior may serve a variety of
887: 882: 877: 872: 867: 711: 662: 523: 461: 403: 368: 319: 60: 19: 926: 453: 227: 112: 350: 219:
believed that nyctinasty exists to reduce the risk of plants freezing.
205: 635: 591: 300: 230:
insects are inactive. Conversely, some flowers that are pollinated by
425:
Wetherell, D. F. (1990). "Leaf movements in plants without pulvini".
440:
Ueda M, Nakamura Y (2007). "Chemical basis of plant leaf movement".
333:
Satter, R. L.; Applewhite, P. B.; Galston, A. W. (1 October 1972).
255: 117: 25: 796: 99:
of a flower at dusk and the sleep movements of the leaves of many
858: 146:
the leaf opening factor, potassium lespedezate, is hydrolyzed to
785: 226:, keeping pollen dry and intact during the nighttime when most 223: 100: 76: 16:
Movements of higher plants in response to the onset of darkness
619:"The functions of foliar nyctinasty: a review and hypothesis" 284:"The functions of foliar nyctinasty: a review and hypothesis" 96: 744:
Why do poppy flowers open in the morning and close at night?
231: 160:
is specific to related plants. The leaf movement factor of
623:
Biological Reviews of the Cambridge Philosophical Society
288:
Biological Reviews of the Cambridge Philosophical Society
235: 564: 332: 536: 75:. It has been argued that for plants that display 474: 939: 739: 737: 238:exhibit nyctinastic flower opening at night. 812: 734: 675: 170:) was found to not bind to the motor cell of 501: 439: 381: 180:similarly didn't bind to the motor cell of 819: 805: 95:benefits. Examples are the closing of the 701: 652: 634: 424: 358: 309: 299: 616: 375: 281: 18: 504:Angewandte Chemie International Edition 940: 755: 594:Recent advances in polyphenol research 800: 277: 275: 222:Nyctinasty may occur to protect the 826: 433: 254:, noted the opening and closing of 23:Illustration of sleep movements in 13: 14: 959: 778: 756:Otsuka, Kuniaki (18 March 2016). 725:Why Do Flowers Close Up at Night? 617:Minorsky, Peter V. (2018-07-11). 272: 784: 694:10.1111/j.1469-8137.2012.04268.x 282:Minorsky, Peter V. (July 2018). 749: 718: 669: 610: 585: 258:tree leaves from day to night. 132:, the pulvini are changed into 36:The Power of Movement in Plants 558: 530: 495: 468: 418: 326: 176:. The leaf movement factor of 1: 579:10.1016/S0040-4020(01)00999-1 552:10.1016/S0040-4020(99)00236-7 489:10.1016/S0040-4020(98)00747-9 265: 148:4 hydroxy phenyl pyruvic acid 106: 7: 596:. Oxford: Wiley-Blackwell. 199: 10: 966: 746:BBC Science, Luis Villazon 241: 911: 857: 834: 760:. Springer. pp. ix. 396:10.1007/s10265-003-0079-5 182:Chamaecrista mimosoides 163:Chamaecrista mimosoides 248:Androsthenes of Thasos 71:and controlled by the 40: 210:Tritrophic Hypothesis 22: 793:at Wikimedia Commons 153:Phyllanthus urinaria 727:Elizabeth Palermo, 483:(40): 12173–12184. 351:10.1104/pp.50.4.523 252:Alexander the Great 178:Albizia julibrissin 173:Albizia julibrissin 123:Albizia julibrissin 69:temperature changes 841:Differential cell 454:10.1093/pcp/pcm060 442:Plant Cell Physiol 427:The Pulvinus Motor 184:, but did bind to 41: 935: 934: 915:(non-directional) 789:Media related to 636:10.1111/brv.12444 573:(49): 9817–9825. 546:(18): 5781–5792. 301:10.1111/brv.12444 250:, a companion to 168:Cassia mimosoides 143:Lespedeza cuneata 955: 948:Plant physiology 913:Nastic movements 821: 814: 807: 798: 797: 788: 772: 771: 753: 747: 741: 732: 722: 716: 715: 705: 673: 667: 666: 656: 638: 614: 608: 607: 589: 583: 582: 562: 556: 555: 534: 528: 527: 510:(8): 1400–1414. 499: 493: 492: 472: 466: 465: 437: 431: 430: 422: 416: 415: 379: 373: 372: 362: 339:Plant Physiology 330: 324: 323: 313: 303: 279: 53:circadian rhythm 965: 964: 958: 957: 956: 954: 953: 952: 938: 937: 936: 931: 907: 853: 849:turgor pressure 830: 828:Plant movements 825: 781: 776: 775: 768: 754: 750: 742: 735: 723: 719: 682:New Phytologist 674: 670: 615: 611: 604: 590: 586: 563: 559: 535: 531: 500: 496: 473: 469: 438: 434: 423: 419: 380: 376: 331: 327: 280: 273: 268: 244: 202: 193:Albizia lebbeck 129:Lotus japonicus 109: 73:circadian clock 57:nastic movement 17: 12: 11: 5: 963: 962: 951: 950: 933: 932: 930: 929: 924: 918: 916: 909: 908: 906: 905: 900: 895: 890: 885: 880: 875: 870: 864: 862: 855: 854: 852: 851: 845: 838: 836: 832: 831: 824: 823: 816: 809: 801: 795: 794: 780: 779:External links 777: 774: 773: 767:978-4431546306 766: 748: 733: 731:, May 22, 2013 717: 668: 629:(1): 216–229. 609: 603:978-1405193993 602: 584: 557: 529: 494: 467: 448:(7): 900–907. 432: 417: 390:(2): 151–154. 374: 345:(4): 523–525. 325: 294:(1): 216–229. 270: 269: 267: 264: 243: 240: 217:Charles Darwin 201: 198: 108: 105: 31:Charles Darwin 15: 9: 6: 4: 3: 2: 961: 960: 949: 946: 945: 943: 928: 925: 923: 920: 919: 917: 914: 910: 904: 903:Thigmotropism 901: 899: 898:Thermotropism 896: 894: 893:Selenotropism 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 865: 863: 861:(directional) 860: 856: 850: 846: 844: 840: 839: 837: 833: 829: 822: 817: 815: 810: 808: 803: 802: 799: 792: 787: 783: 782: 769: 763: 759: 752: 745: 740: 738: 730: 726: 721: 713: 709: 704: 699: 695: 691: 688:(1): 92–100. 687: 683: 679: 672: 664: 660: 655: 650: 646: 642: 637: 632: 628: 624: 620: 613: 605: 599: 595: 588: 580: 576: 572: 568: 561: 553: 549: 545: 541: 533: 525: 521: 517: 513: 509: 505: 498: 490: 486: 482: 478: 471: 463: 459: 455: 451: 447: 443: 436: 428: 421: 413: 409: 405: 401: 397: 393: 389: 385: 378: 370: 366: 361: 356: 352: 348: 344: 340: 336: 329: 321: 317: 312: 307: 302: 297: 293: 289: 285: 278: 276: 271: 263: 261: 260:Carl Linnaeus 257: 253: 249: 239: 237: 233: 229: 225: 220: 218: 214: 211: 207: 197: 195: 194: 189: 188: 187:Albizia saman 183: 179: 175: 174: 169: 165: 164: 157: 155: 154: 149: 145: 144: 137: 135: 131: 130: 125: 124: 119: 114: 104: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 61:higher plants 58: 54: 50: 46: 45:plant biology 38: 37: 32: 29:leaves, from 28: 27: 21: 921: 888:Phototropism 883:Heliotropism 878:Hydrotropism 873:Gravitropism 868:Chemotropism 757: 751: 729:Live Science 728: 720: 685: 681: 671: 626: 622: 612: 593: 587: 570: 566: 560: 543: 539: 532: 507: 503: 497: 480: 476: 470: 445: 441: 435: 426: 420: 387: 384:J. Plant Res 383: 377: 342: 338: 328: 291: 287: 245: 221: 215: 209: 203: 191: 185: 181: 177: 171: 167: 161: 158: 151: 141: 138: 127: 121: 110: 93:evolutionary 48: 42: 34: 24: 927:Thigmonasty 847:Changes in 567:Tetrahedron 540:Tetrahedron 477:Tetrahedron 228:pollinating 113:phytochrome 111:Plants use 922:Nyctinasty 791:Nyctinasty 266:References 166:(formerly 107:Physiology 67:light and 49:nyctinasty 645:1469-185X 942:Category 859:Tropisms 712:22891817 663:29998471 524:10777626 462:17566057 429:: 72–78. 412:21112729 404:12736786 369:16658209 320:29998471 256:tamarind 206:adaptive 200:Function 26:Medicago 703:3504090 654:7379275 311:7379275 242:History 134:petiole 118:pulvini 101:legumes 89:aquatic 65:diurnal 55:-based 51:is the 843:growth 764:  710:  700:  661:  651:  643:  600:  522:  460:  410:  402:  367:  360:366182 357:  318:  308:  224:pollen 97:petals 87:, and 77:foliar 39:(1880) 835:Means 408:S2CID 232:moths 150:. In 85:mesic 81:xeric 762:ISBN 708:PMID 659:PMID 641:ISSN 598:ISBN 520:PMID 458:PMID 400:PMID 365:PMID 316:PMID 236:bats 190:and 698:PMC 690:doi 686:196 649:PMC 631:doi 575:doi 548:doi 512:doi 485:doi 450:doi 392:doi 388:116 355:PMC 347:doi 306:PMC 296:doi 234:or 59:of 43:In 33:'s 944:: 736:^ 706:. 696:. 684:. 680:. 657:. 647:. 639:. 627:94 625:. 621:. 571:57 569:. 544:55 542:. 518:. 508:39 506:. 481:54 479:. 456:. 446:48 444:. 406:. 398:. 386:. 363:. 353:. 343:50 341:. 337:. 314:. 304:. 292:94 290:. 286:. 274:^ 196:. 103:. 83:, 47:, 820:e 813:t 806:v 770:. 714:. 692:: 665:. 633:: 606:. 581:. 577:: 554:. 550:: 526:. 514:: 491:. 487:: 464:. 452:: 414:. 394:: 371:. 349:: 322:. 298::

Index


Medicago
Charles Darwin
The Power of Movement in Plants
plant biology
circadian rhythm
nastic movement
higher plants
diurnal
temperature changes
circadian clock
foliar
xeric
mesic
aquatic
evolutionary
petals
legumes
phytochrome
pulvini
Albizia julibrissin
Lotus japonicus
petiole
Lespedeza cuneata
4 hydroxy phenyl pyruvic acid
Phyllanthus urinaria
Chamaecrista mimosoides
Albizia julibrissin
Albizia saman
Albizia lebbeck

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.