Knowledge

Nonradiation condition

Source đź“ť

150:
is implied by classical electromagnetic theory augmented by the conditions of no radiation. Such a hypothesis would be essentially equivalent to suggesting a 'theory of nature' in which all stable particles (or aggregates) are merely nonradiating charge–current distributions whose mechanical
43:
will emit electromagnetic radiation. In some classical electron models a distribution of charges can however be accelerated so that no radiation is emitted. The modern derivation of these nonradiation conditions by
122:
orbiting the nucleus) may have radiationless orbits. Admitting that such speculation was out of fashion, he suggests that his solution may apply to the structure of the
134:
derived, for the first time, the general condition of nonradiation for an extended charge-current distribution, and produced many examples, some of which contained
209: 131: 48:
is based on the Fourier components of the current produced by a moving point charge. It states that a distribution of accelerated charges will radiate
126:. In 1948, Bohm and Weinstein also found that charge distributions may oscillate without radiation; they suggest that a solution which may apply to 156: 114:. In the meantime, our understanding of classical nonradiation has been considerably advanced since 1925. Beginning as early as 1933, 553: 487: 377: 356:(1933). "The Electromagnetic Field of a Moving Uniformly and Rigidly Electrified Sphere and its Radiationless Orbits". 96:
published a short paper on "Irregular electrical movements without magnetic and radiation fields" demonstrating that
184: 222: 573: 435:
Goedecke, G. H. (1964). "Classically Radiationless Motions and Possible Implications for Quantum Theory".
111: 20: 568: 28: 100:
allow for the existence of accelerating charge distributions which emit no radiation. In 1913, the
179:
of the charge/current distribution that are lightlike (i.e. components that are synchronous with
353: 227: 176: 115: 97: 53: 139: 110:
that they did not radiate. This was later subsumed by a postulate of quantum theory called
516: 444: 409: 305: 256: 89: 118:
published a surprising discovery that a charged sphere in accelerated motion (such as the
8: 192: 520: 448: 413: 309: 260: 504: 272: 104:
of the atom abandoned the efforts to explain why its bound electrons do not radiate by
247:
Pearle, Philip (1978). "When can a classical electron accelerate without radiating?".
175:
derived Goedecke's condition in a new way. Haus finds that all radiation is caused by
532: 483: 276: 191:
in uniform motion, then there is no radiation. Haus uses his formulation to explain
524: 475: 452: 417: 365: 334:(1910). "Ungleichförmige Elektrizitätsbewegungen ohne Magnet- und Strahlungsfeld". 313: 264: 77: 293: 147: 80:
of the atom, the orbiting point electron would constantly accelerate towards the
45: 24: 479: 331: 180: 164: 135: 93: 85: 81: 57: 49: 32: 369: 146:
Naturally, it is very tempting to hypothesize from this that the existence of
562: 470:
Pearle, Philip (1982). "Classical Electron Models". In Teplitz, Doris (ed.).
456: 421: 188: 172: 40: 36: 400:; Weinstein, M. (1948). "The Self-Oscillations of a Charged Particle". 397: 268: 101: 536: 528: 317: 195:
in which the speed of light of the surrounding medium is less than
168: 119: 69: 123: 155:
The nonradiation condition went largely ignored for many years.
171:
appears in 1984. An important advance occurred in 1986, when
127: 105: 554:
Invisibility Physics: Acceleration without radiation, part I
73: 163:. A Reed College undergraduate thesis on nonradiation in 208:
The nonradiation condition is important to the study of
396: 378:"Invisibility Physics: Schott's radiationless orbits" 142:. Goedecke was led by his discovery to speculate: 560: 502: 434: 330: 296:(1986). "On the radiation from point charges". 187:has no lightlike Fourier components, such as a 469: 246: 352: 292: 23:under which a distribution of accelerating 507:(1985). "Acceleration without radiation". 240: 138:and could conceivably be used to describe 151:properties are electromagnetic in origin. 159:reviews the subject in his 1982 article 56:synchronous with waves traveling at the 35:in classical electromagnetism, a single 72:on an atom dominated the early work on 561: 474:. New York: Plenum. pp. 211–295. 288: 286: 68:Finding a nonradiating model for the 472:Electromagnetism: paths to research 283: 19:define the conditions according to 13: 14: 585: 547: 17:Classical nonradiation conditions 202: 496: 463: 428: 390: 346: 324: 223:Sommerfeld radiation condition 1: 84:, and thus according to the 7: 509:American Journal of Physics 480:10.1007/978-1-4757-0650-5_7 298:American Journal of Physics 216: 10: 590: 63: 21:classical electromagnetism 370:10.1080/14786443309462219 336:Physikalische Zeitschrift 161:Classical Electron Models 29:electromagnetic radiation 457:10.1103/PhysRev.135.B281 233: 422:10.1103/PhysRev.74.1789 358:Philosophical Magazine 249:Foundations of Physics 153: 116:George Adolphus Schott 112:Schrödinger's equation 144: 140:fundamental particles 90:electromagnetic waves 210:invisibility physics 574:Boundary conditions 521:1985AmJPh..53.1203A 449:1964PhRv..135..281G 414:1948PhRv...74.1789B 382:Skulls in the Stars 310:1986AmJPh..54.1126H 261:1978FoPh....8..879P 193:Cherenkov radiation 98:Maxwell's equations 31:. According to the 505:Griffiths, David J 269:10.1007/BF00715060 255:(11–12): 879–891. 228:Frank–Tamm formula 177:Fourier components 54:Fourier components 503:Abbott, Tyler A; 489:978-1-4757-0652-9 443:(1B): B281–B288. 408:(12): 1789–1798. 304:(12): 1126–1129. 148:Planck's constant 581: 569:Electromagnetism 541: 540: 500: 494: 493: 467: 461: 460: 432: 426: 425: 394: 388: 385: 384:. June 19, 2008. 373: 350: 344: 343: 328: 322: 321: 290: 281: 280: 244: 130:. Then in 1964, 589: 588: 584: 583: 582: 580: 579: 578: 559: 558: 550: 545: 544: 529:10.1119/1.14084 501: 497: 490: 468: 464: 437:Physical Review 433: 429: 402:Physical Review 395: 391: 376: 351: 347: 332:Ehrenfest, Paul 329: 325: 318:10.1119/1.14729 291: 284: 245: 241: 236: 219: 205: 165:infinite planes 78:planetary model 66: 46:Hermann A. Haus 12: 11: 5: 587: 577: 576: 571: 557: 556: 549: 548:External links 546: 543: 542: 495: 488: 462: 427: 389: 387: 386: 345: 323: 282: 238: 237: 235: 232: 231: 230: 225: 218: 215: 214: 213: 204: 201: 94:Paul Ehrenfest 86:Larmor formula 65: 62: 58:speed of light 50:if and only if 33:Larmor formula 27:will not emit 9: 6: 4: 3: 2: 586: 575: 572: 570: 567: 566: 564: 555: 552: 551: 538: 534: 530: 526: 522: 518: 514: 510: 506: 499: 491: 485: 481: 477: 473: 466: 458: 454: 450: 446: 442: 438: 431: 423: 419: 415: 411: 407: 403: 399: 393: 383: 379: 375: 374: 371: 367: 363: 359: 355: 354:Schott, G. A. 349: 341: 337: 333: 327: 319: 315: 311: 307: 303: 299: 295: 289: 287: 278: 274: 270: 266: 262: 258: 254: 250: 243: 239: 229: 226: 224: 221: 220: 211: 207: 206: 200: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 157:Philip Pearle 152: 149: 143: 141: 137: 133: 129: 125: 121: 117: 113: 109: 108: 103: 99: 95: 91: 87: 83: 79: 76:models. In a 75: 71: 61: 59: 55: 51: 47: 42: 38: 34: 30: 26: 22: 18: 515:(12): 1203. 512: 508: 498: 471: 465: 440: 436: 430: 405: 401: 392: 381: 361: 357: 348: 339: 335: 326: 301: 297: 252: 248: 242: 203:Applications 196: 189:point charge 185:distribution 173:Hermann Haus 160: 154: 145: 106: 67: 41:acceleration 37:point charge 16: 15: 364:: 752–761. 294:Haus, H. A. 181:light speed 107:postulating 563:Categories 342:: 708–709. 183:). When a 102:Bohr model 92:. In 1910 277:121169154 169:solenoids 398:Bohm, D. 217:See also 132:Goedecke 120:electron 70:electron 537:1447538 517:Bibcode 445:Bibcode 410:Bibcode 306:Bibcode 257:Bibcode 124:neutron 82:nucleus 64:History 52:it has 25:charges 535:  486:  275:  128:mesons 74:atomic 39:under 360:. 7. 273:S2CID 234:Notes 88:emit 533:OSTI 484:ISBN 167:and 136:spin 525:doi 476:doi 453:doi 441:135 418:doi 366:doi 314:doi 265:doi 565:: 531:. 523:. 513:53 511:. 482:. 451:. 439:. 416:. 406:74 404:. 380:. 362:15 340:11 338:. 312:. 302:54 300:. 285:^ 271:. 263:. 251:. 199:. 60:. 539:. 527:: 519:: 492:. 478:: 459:. 455:: 447:: 424:. 420:: 412:: 372:. 368:: 320:. 316:: 308:: 279:. 267:: 259:: 253:8 212:. 197:c

Index

classical electromagnetism
charges
electromagnetic radiation
Larmor formula
point charge
acceleration
Hermann A. Haus
if and only if
Fourier components
speed of light
electron
atomic
planetary model
nucleus
Larmor formula
electromagnetic waves
Paul Ehrenfest
Maxwell's equations
Bohr model
postulating
Schrödinger's equation
George Adolphus Schott
electron
neutron
mesons
Goedecke
spin
fundamental particles
Planck's constant
Philip Pearle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑