Knowledge

Nuclear magnetic resonance spectroscopy

Source 📝

434:
relaxation is complete, the average magnetization vector has not decayed to ground state, which affects the strength of the signal in an unpredictable manner. In practice, the peak areas are then not proportional to the stoichiometry; only the presence, but not the amount of functional groups is possible to discern. An inversion recovery experiment can be done to determine the relaxation time and thus the required delay between pulses. A 180° pulse, an adjustable delay, and a 90° pulse is transmitted. When the 90° pulse exactly cancels out the signal, the delay corresponds to the time needed for 90° of relaxation. Inversion recovery is worthwhile for quantitative C, D and other time-consuming experiments.
806:
termed magnetically inequivalent. For example, the 4 H sites of 1,2-dichlorobenzene divide into two chemically equivalent pairs by symmetry, but an individual member of one of the pairs has different couplings to the spins making up the other pair. Magnetic inequivalence can lead to highly complex spectra which can only be analyzed by computational modeling. Such effects are more common in NMR spectra of aromatic and other non-flexible systems, while conformational averaging about C−C bonds in flexible molecules tends to equalize the couplings between protons on adjacent carbons, reducing problems with magnetic inequivalence.
629:) between NMR active nuclei. This coupling arises from the interaction of different spin states through the chemical bonds of a molecule and results in the splitting of NMR signals. For a proton, the local magnetic field is slightly different depending on whether an adjacent nucleus points towards or against the spectrometer magnetic field, which gives rise to two signals per proton instead of one. These splitting patterns can be complex or simple and, likewise, can be straightforwardly interpretable or deceptive. This coupling provides detailed insight into the connectivity of atoms in a molecule. 1579: 1081:. The analysis of carbohydrates by 1H NMR is challenging due to the limited variation in functional groups, which leads to 1H resonances concentrated in narrow bands of the NMR spectrum. In other words, there is poor spectral dispersion. The anomeric proton resonances are segregated from the others due to fact that the anomeric carbons bear two oxygen atoms. For smaller carbohydrates, the dispersion of the anomeric proton resonances facilitates the use of 1D TOCSY experiments to investigate the entire spin systems of individual carbohydrate residues. 460:). ΔE is also sensitive to electronic environment of the nucleus giving rise to what is known as the chemical shift, δ. The simplest types of NMR graphs are plots of the different chemical shifts of the nuclei being studied in the molecule. The value of δ is often expressed in terms of "shielding": shielded nuclei have higher ΔE. The range of δ values is called the dispersion. For H signals, the dispersion is rather small, but for other nuclei, the dispersion is much larger. NMR signals are reported relative to a reference signal, usually that of TMS ( 402:) in a volume of a few cubic centimeters. In order to detect and compensate for inhomogeneity and drift in the magnetic field, the spectrometer maintains a "lock" on the solvent deuterium frequency with a separate lock unit, which is essentially an additional transmitter and RF processor tuned to the lock nucleus (deuterium) rather than the nuclei of the sample of interest. In modern NMR spectrometers shimming is adjusted automatically, though in some cases the operator has to optimize the shim parameters manually to obtain the best possible resolution. 586: 484: 181: 4116: 3546: 851:. In correlation spectroscopy, emission is centered on the peak of an individual nucleus; if its magnetic field is correlated with another nucleus by through-bond (COSY, HSQC, etc.) or through-space (NOE) coupling, a response can also be detected on the frequency of the correlated nucleus. Two-dimensional NMR spectra provide more information about a molecule than one-dimensional NMR spectra and are especially useful in determining the structure of a 3570: 868: 464:). Additionally, since the distribution of NMR signals is field dependent, these frequencies are divided by the spectrometer frequency. However, since we are dividing Hz by MHz, the resulting number would be too small, and thus it is multiplied by a million. This operation therefore gives a locator number called the "chemical shift" with units of parts per million. The chemical shift provides structural information. 3582: 4128: 3558: 882:
dipolar coupling and chemical shift anisotropy that become dominant to the behaviour of the nuclear spin systems. In conventional solution-state NMR spectroscopy, these additional interactions would lead to a significant broadening of spectral lines. A variety of techniques allows establishing high-resolution conditions, that can, at least for C spectra, be comparable to solution-state NMR spectra.
768:
complex and less easily analyzed (especially if more than two spins are involved). Intensification of some peaks in a multiplet is achieved at the expense of the remainder, which sometimes almost disappear in the background noise, although the integrated area under the peaks remains constant. In most high-field NMR, however, the distortions are usually modest and the characteristic distortions (
289: 1040:), and sugar pucker conformations. For large-scale structure, these local parameters must be supplemented with other structural assumptions or models, because errors add up as the double helix is traversed, and unlike with proteins, the double helix does not have a compact interior and does not fold back upon itself. NMR is also useful for investigating nonstandard geometries such as 169:, the emission is centered around a single frequency, and correlated resonances are observed. This allows identifying the neighboring substituents of the observed functional group, allowing unambiguous identification of the resonances. There are also more complex 3D and 4D methods and a variety of methods designed to suppress or amplify particular types of resonances. In 422:, but it improves readily with averaging of repeated acquisitions. Good H NMR spectra can be acquired with 16 repeats, which takes only minutes. However, for elements heavier than hydrogen, the relaxation time is rather long, e.g. around 8 seconds for C. Thus, acquisition of quantitative heavy-element spectra can be time-consuming, taking tens of minutes to hours. 649:(abbreviation: dd). Note that coupling between nuclei that are chemically equivalent (that is, have the same chemical shift) has no effect on the NMR spectra and couplings between nuclei that are distant (usually more than 3 bonds apart for protons in flexible molecules) are usually too small to cause observable splittings. 1089:
Knowledge of energy minima and rotational energy barriers of small molecules in solution can be found using NMR, e.g. looking at free ligand conformational preferences and conformational dynamics, respectively. This can be used to guide drug design hypotheses, since experimental and calculated values
951:
because the predominant naturally occurring isotope C is not NMR-active and the nuclear quadrupole moment of the predominant naturally occurring N isotope prevents high resolution information from being obtained from this nitrogen isotope. The most important method used for structure determination of
805:
More subtle effects can occur if chemically equivalent spins (i.e., nuclei related by symmetry and so having the same NMR frequency) have different coupling relationships to external spins. Spins that are chemically equivalent but are not indistinguishable (based on their coupling relationships) are
1102:
Of course, attempts have been made to solve scientific problems using high-pressure NMR spectroscopy. However, most of them were difficult to reproduce due to the problem of equipment for creating and maintaining high pressure. In the most common types of NMR cells for realization of High-pressure
855:, particularly for molecules that are too complicated to work with using one-dimensional NMR. The first two-dimensional experiment, COSY, was proposed by Jean Jeener, a professor at Université Libre de Bruxelles, in 1971. This experiment was later implemented by Walter P. Aue, Enrico Bartholdi and 433:
Decay times of the excitation, typically measured in seconds, depend on the effectiveness of relaxation, which is faster for lighter nuclei and in solids, and slower for heavier nuclei and in solutions, and they can be very long in gases. If the second excitation pulse is sent prematurely before the
81:
nature of the nucleus and increased proportionally to the strength of the external magnetic field . Notably, the resonance frequency of each NMR-active nucleus depends on its chemical environment. As a result, NMR spectra provide information about individual functional groups present in the sample,
425:
Following the pulse, the nuclei are, on average, excited to a certain angle vs. the spectrometer magnetic field. The extent of excitation can be controlled with the pulse width, typically ca. 3-8 μs for the optimal 90° pulse. The pulse width can be determined by plotting the (signed) intensity as a
161:
The timescale of NMR is relatively long, and thus it is not suitable for observing fast phenomena, producing only an averaged spectrum. Although large amounts of impurities do show on an NMR spectrum, better methods exist for detecting impurities, as NMR is inherently not very sensitive - though at
767:
The above description assumes that the coupling constant is small in comparison with the difference in NMR frequencies between the inequivalent spins. If the shift separation decreases (or the coupling strength increases), the multiplet intensity patterns are first distorted, and then become more
894:
Applications in which solid-state NMR effects occur are often related to structure investigations on membrane proteins, protein fibrils or all kinds of polymers, and chemical analysis in inorganic chemistry, but also include "exotic" applications like the plant leaves and fuel cells. For example,
881:
A variety of physical circumstances do not allow molecules to be studied in solution, and at the same time not by other spectroscopic techniques to an atomic level, either. In solid-phase media, such as crystals, microcrystalline powders, gels, anisotropic solutions, etc., it is in particular the
786:
Second-order effects decrease as the frequency difference between multiplets increases, so that high-field (i.e. high-frequency) NMR spectra display less distortion than lower frequency spectra. Early spectra at 60 MHz were more prone to distortion than spectra from later machines typically
337:
An NMR spectrometer typically consists of a spinning sample-holder inside a very strong magnet, a radio-frequency emitter, and a receiver with a probe (an antenna assembly) that goes inside the magnet to surround the sample, optionally gradient coils for diffusion measurements, and electronics to
1106:
High-pressure NMR spectroscopy has been widely used for a variety of applications, mainly related to the characterization of the structure of protein molecules. However, in recent years, software and design solutions have been proposed to characterize the chemical and spatial structures of small
1098:
One of the first scientific works devoted to the use of pressure as a variable parameter in NMR experiments was the work of J. Jonas published in the journal Annual Review of Biophysics in 1994. The use of high pressures in NMR spectroscopy was primarily driven by the desire to study biochemical
942:
larger than the small organic molecules discussed earlier in this article, but the basic NMR techniques and some NMR theory also applies. Because of the much higher number of atoms present in a protein molecule in comparison with a small organic compound, the basic 1D spectra become crowded with
471:
the spectrum. For diamagnetic organic compounds, assignments of 1H and 13C NMR spectra are extremely sophisticated because of the large databases and easy computational tools. In general, chemical shifts for protons are highly predictable since the shifts are primarily determined by shielding
272:≠ 0). It is this non-zero spin that enables nuclei to interact with external magnetic fields and show signals in NMR. Atoms with both an odd number of protons and an odd number of neutrons, or an odd sum of protons and neutrons, exhibit half-integer values for the nuclear spin quantum number ( 890:
is a very prominent method, when the system comprises spin 1/2 nuclei. Spinning rates of ca. 20 kHz are used, which demands special equipment. A number of intermediate techniques, with samples of partial alignment or reduced mobility, is currently being used in NMR spectroscopy.
220:. Low-resolution NMR produces broader peaks which can easily overlap one another causing issues in resolving complex structures. The use of higher strength magnetic fields result in a better sensitivity and higher resolution of the peaks, and it is preferred for research purposes. 885:
Two important concepts for high-resolution solid-state NMR spectroscopy are the limitation of possible molecular orientation by sample orientation, and the reduction of anisotropic nuclear magnetic interactions by sample spinning. Of the latter approach, fast spinning around the
154:). Typically 2–50 mg, of a substance is required to record a decent quality NMR spectrum. The NMR method is non-destructive, thus the substance may be recovered. To obtain high-resolution NMR spectra, solid substances are usually dissolved to make liquid solutions, although 703:
Coupling to any spin-1/2 nuclei such as phosphorus-31 or fluorine-19 works in this fashion (although the magnitudes of the coupling constants may be very different). But the splitting patterns differ from those described above for nuclei with spin greater than ½ because the
790:
Furthermore, as in the figure to the right, J-coupling can be used to identify ortho-meta-para substitution of a ring. Ortho coupling is the strongest at 15 Hz, Meta follows with an average of 2 Hz, and finally para coupling is usually insignificant for studies.
480:) not only disrupts trends in chemical shifts, which complicates assignments, but it also gives rise to very large chemical shift ranges. For example, most H NMR signals for most organic compounds are within 15 ppm. For P NMR, the range is hundreds of ppm. 2616:- VeSPA (Versatile Simulation, Pulses and Analysis) is a free software suite composed of three Python applications. These GUI based tools are for magnetic resonance (MR) spectral simulation, RF pulse design, and spectral processing and analysis of MR data. 943:
overlapping signals to an extent where direct spectral analysis becomes untenable. Therefore, multidimensional (2, 3 or 4D) experiments have been devised to deal with this problem. To facilitate these experiments, it is desirable to
280:= 0). These nuclei do not exhibit active spin and are therefore not NMR-active. NMR-active nuclei, particularly those with a spin quantum number of 1/2, are of great significance in NMR spectroscopy. Examples include H, C, N, and P. 644:
as described on the right. Coupling to additional spins will lead to further splittings of each component of the multiplet e.g. coupling to two different spin ½ nuclei with significantly different coupling constants will lead to a
338:
control the system. Spinning the sample is usually necessary to average out diffusional motion, however some experiments call for a stationary sample when solution movement is an important variable. For instance, measurements of
211:
Less expensive machines using permanent magnets and lower resolution are also available, which still give sufficient performance for certain applications such as reaction monitoring and quick checking of samples. There are even
1508: 731:) is an effect of how strongly the nuclei are coupled to each other. For simple cases, this is an effect of the bonding distance between the nuclei, the magnetic moment of the nuclei,and the dihedral angle between them. 723:
NMR active nuclei within the molecule. In more complex spectra with multiple peaks at similar chemical shifts or in spectra of nuclei other than hydrogen, coupling is often the only way to distinguish different nuclei.
115:
and other complex molecules. Besides identification, NMR spectroscopy provides detailed information about the structure, dynamics, reaction state, and chemical environment of molecules. The most common types of NMR are
503:, the samples are paramagnetic, i.e. they contain unpaired electrons. The paramagnetism gives rise to very diverse chemical shifts. In H NMR spectroscopy, the chemical shift range can span up to thousands of ppm. 276:= 1/2, 3/2, 5/2, and so on). These atoms are NMR-active because they possess non-zero nuclear spin. Conversely, atoms with an even number of both protons and neutrons have a nuclear spin quantum number of zero ( 992:
Nucleic acid and protein NMR spectroscopy are similar but differences exist. Nucleic acids have a smaller percentage of hydrogen atoms, which are the atoms usually observed in NMR spectroscopy, and because
1380: 394:
To detect the very small frequency shifts due to nuclear magnetic resonance, the applied magnetic field must be extremely uniform throughout the sample volume. High resolution NMR spectrometers use
192:
NMR spectrometers are relatively expensive; universities usually have them, but they are less common in private companies. Between 2000 and 2015, an NMR spectrometer cost around 500,000 - 5 million
4268: 4258: 31: 4233: 4223: 1993:
A. Rahmani, C. Knight, and M. R. Morrow. Response to hydrostatic pressure of bicellar dispersions containing anionic lipid: Pressure-induced interdigitation. 2013, 29 (44), pp 13481–13490,
4273: 4208: 1823:
Ott, J. C.; Wadepohl, H.; Enders, M.; Gade, L. H. (2018). "Taking Solution Proton NMR to Its Extreme: Prediction and Detection of a Hydride Resonance in an Intermediate-Spin Iron Complex".
735: 378:, or melting or boiling points. The chemical shifts of a molecule will change slightly between solvents, and therefore the solvent used will almost always be reported with chemical shifts. 746:
in ppm on the horizontal axis. Each magnetically inequivalent proton has a characteristic shift, and couplings to other protons appear as splitting of the peaks into multiplets: e.g. peak
4248: 358:
and so contain NMR-active hydrogen-1 nuclei. In order to avoid having the signals from solvent hydrogen atoms overwhelm the experiment and interfere in analysis of the dissolved analyte,
177:
of the resonances is observed. As NOE depends on the proximity of the nuclei, quantifying the NOE for each nucleus allows for construction of a three-dimensional model of the molecule.
2254:"Self-contained high-pressure cell, apparatus, and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for nuclear magnetic resonance spectroscopy" 1189: 2368:
Gagné, Donald; Azad, Roksana; Aramini, James M.; Xu, Xingjian; Isiorho, Eta A.; Edupuganti, Uthama R.; Williams, Justin; Marcelino, Leandro Pimentel; Akasaka, Kazuyuki (2020-08-26).
139:
are obviously distinguishable, and identical functional groups with differing neighboring substituents still give distinguishable signals. NMR has largely replaced traditional
325:
magnet since hydrogen is the most common nucleus detected. However, different nuclei will resonate at different frequencies at this field strength in proportion to their
313:. The resonant frequency, energy of the radiation absorbed, and the intensity of the signal are proportional to the strength of the magnetic field. For example, in a 21 204:
magnet, because resolution directly depends on magnetic field strength. Higher magnetic field also improves the sensitivity of the NMR spectroscopy, which depends on the
1017:
methods are almost always used, such as correlation spectroscopy (COSY) and total coherence transfer spectroscopy (TOCSY) to detect through-bond nuclear couplings, and
1172: 1069: 969: 719:
Coupling combined with the chemical shift (and the integration for protons) tells us not only about the chemical environment of the nuclei, but also the number of
626: 2604:- GAMMA is an open source C++ library written for the simulation of Nuclear Magnetic Resonance Spectroscopy experiments. PyGAMMA is a Python wrapper around GAMMA. 3947: 1127: 205: 166: 632:
The multiplicity of the splitting is an effect of the spins of the nuclei that are coupled and the number of such nuclei involved in the coupling. Coupling to
956:
to measure distances between atoms within the molecule. Subsequently, the distances obtained are used to generate a 3D structure of the molecule by solving a
625:
Some of the most useful information for structure determination in a one-dimensional NMR spectrum comes from J-coupling or scalar coupling (a special case of
82:
as well as about connections between nearby nuclei in the same molecule. As the NMR spectra are unique or highly characteristic to individual compounds and
997:
are stiff and roughly linear, they do not fold back on themselves to give "long-range" correlations. The types of NMR usually done with nucleic acids are
1260: 4228: 4218: 909: 3620: 1537:"Accurate Molecular Weight Determination of Small Molecules via DOSY-NMR by Using External Calibration Curves with Normalized Diffusion Coefficients" 4485: 930:, although larger structures have been solved. NMR spectroscopy is often the only way to obtain high resolution information on partially or wholly 213: 104:
The perturbation of this alignment of the nuclear spins by a weak oscillating magnetic field, usually referred to as a radio-frequency (RF) pulse.
2641: 938:
where the structure before and after interaction with, for example, a drug candidate is compared to its known biochemical activity. Proteins are
922:. A common goal of these investigations is to obtain high resolution 3-dimensional structures of the protein, similar to what can be achieved by 184:
Cutaway of an NMR magnet that shows its structure: radiation shield, vacuum chamber, liquid nitrogen vessel, liquid helium vessel, and cryogenic
4306: 1167: 1048:. It has been especially useful in probing the structure of natural RNA oligonucleotides, which tend to adopt complex conformations such as 3838: 3771: 3716: 3685: 2742: 1592:
Hanson, John E. (2013). "5. NMR Spectroscopy in Nondeuterated Solvents (No-D NMR): Applications in the Undergraduate Organic Laboratory".
895:
Rahmani et al. studied the effect of pressure and temperature on the bicellar structures' self-assembly using deuterium NMR spectroscopy.
2747: 2081:
Wemmer, David (2000). "Chapter 5: Structure and Dynamics by NMR". In Bloomfield, Victor A.; Crothers, Donald M.; Tinoco, Ignacio (eds.).
2311:"Combining High-Pressure Perturbation with NMR Spectroscopy for a Structural and Dynamical Characterization of Protein Folding Pathways" 3680: 2253: 2183: 960:
problem. NMR can also be used to obtain information on the dynamics and conformational flexibility of different regions of a protein.
4053: 3871: 3733: 1099:
systems, where the use of high pressure allows controlled changes in intermolecular interactions without significant perturbations.
4238: 4166: 4002: 3821: 700:
by the hydroxyl proton, but intermolecular exchange of the acidic hydroxyl proton often results in a loss of coupling information.
1354: 4263: 3744: 3665: 3645: 1122: 472:
effects (electron density). The chemical shifts for many heavier nuclei are more strongly influenced by other factors including
346:
or DOSY) are done using a stationary sample with spinning off, and flow cells can be used for online analysis of process flows.
4243: 3888: 3866: 3613: 2769: 3954: 3876: 2090: 2062: 1273: 1182: 418:
is carried out to extract the frequency-domain spectrum from the raw time-domain FID. A spectrum from a single FID has a low
4253: 4213: 3811: 3756: 3706: 2781: 2720: 1447: 1060:
to other molecules, such as proteins or drugs, by seeing which resonances are shifted upon binding of the other molecule.
495:
showing peaks shifted in frequency, which give clues as to the molecular structure. (click to read interpretation details)
4203: 2634: 931: 410:
Upon excitation of the sample with a radio frequency (60–1000 MHz) pulse, a nuclear magnetic resonance response - a
150:
The most significant drawback of NMR spectroscopy is its poor sensitivity (compared to other analytical methods, such as
107:
Detection and analysis of the electromagnetic waves emitted by the nuclei of the sample as a result of this perturbation.
39: 4299: 2598:- A non-technical overview of NMR theory, equipment, and techniques by Dr. Joseph Hornak, Professor of Chemistry at RIT 1945: 1472: 935: 442:
NMR signals are ordinarily characterized by three variables: chemical shift, spin-spin coupling, and relaxation time.
4193: 4038: 3790: 3606: 2553: 2531: 2509: 2471: 1609: 1506:
Johnson Jr., C. S. (1999). "Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications".
1426: 1244: 1152: 268:," characterizes the angular momentum of the nucleus. To be NMR-active, a nucleus must have a non-zero nuclear spin ( 708:
has more than two possible values. For instance, coupling to deuterium (a spin 1 nucleus) splits the signal into a
4043: 3861: 2582: 1788: 4058: 4028: 3959: 3893: 3586: 2053:
Addess, Kenneth J.; Feigon, Juli (1996). "Introduction to H NMR Spectroscopy of DNA". In Hecht, Sidney M. (ed.).
839:
spectroscopy (NOESY), total correlation spectroscopy (TOCSY), and heteronuclear correlation experiments, such as
3987: 3778: 3675: 3465: 2627: 1866:
Pople, J. A.; Bernstein, H. J.; Schneider, W. G. (1957). "The Analysis of Nuclear Magnetic Resonance Spectra".
386:
instead of adding tetramethylsilane (TMS), which is conventionally defined as having a chemical shift of zero.
871:
Solid-state 900 MHz (21.1 T) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids
374:), although other solvents may be used for various reasons, such as solubility of a sample, desire to control 73:
in an external magnetic field. This re-orientation occurs with absorption of electromagnetic radiation in the
4292: 4132: 3785: 3690: 2908: 2662: 1212: 1041: 500: 1297: 1107:
molecules in a supercritical fluid environment, using state parameters as a driving force for such changes.
321:(commonly referred to as protons) resonate at 900 MHz. It is common to refer to a 21 T magnet as a 900 4159: 3919: 3766: 3655: 2391:
Khodov, I.A.; Belov, K.V.; Krestyaninov, M.A.; Sobornova, V.V.; Dyshin, A.A.; Kiselev, M.G. (August 2023).
1157: 712:
because the spin 1 has three spin states. Similarly, a spin 3/2 nucleus such as Cl splits a signal into a
17: 2223:"High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins" 1357:. Mark Wainwright Analytical Centre - University of Southern Wales Sydney. 9 December 2011. Archived from 1311: 86:, NMR spectroscopy is one of the most important methods to identify molecular structures, particularly of 4075: 3914: 3883: 3816: 3185: 2672: 476:("paramagnetic" contribution to shielding tensor). This paramagnetic contribution, which is unrelated to 2144: 926:. In contrast to X-ray crystallography, NMR spectroscopy is usually limited to proteins smaller than 35 4362: 4065: 4007: 3856: 3728: 3562: 3111: 3082: 3062: 3015: 2607: 1137: 948: 2010:
Fürtig, Boris; Richter, Christian; Wöhnert, Jens; Schwalbe, Harald (2003). "NMR Spectroscopy of RNA".
1666:"Reliable Proton Nuclear Resonance Shielding Values by "Internal Referencing" with Tetramethyl-silane" 4464: 4091: 4070: 3711: 2700: 2370:
Use of High Pressure NMR Spectroscopy to Rapidly Identify Proteins with Internal Ligand-Binding Voids
1018: 994: 953: 836: 306: 170: 3833: 1578: 414:(FID) - is obtained. It is a very weak signal, and requires sensitive radio receivers to pick up. A 3455: 3371: 3010: 832: 820: 97:
The alignment (polarization) of the magnetic nuclear spins in an applied, constant magnetic field B
1735: 354:
The vast majority of molecules in a solution are solvent molecules, and most regular solvents are
4152: 3964: 3660: 3393: 3304: 3267: 3151: 3077: 2898: 2881: 2824: 2576: 2423: 2392: 2222: 1778: 326: 2106:
Balazs, Amber; Davies, Nichola; Longmire, David; Packer, Martin; Chiarparin, Elisabetta (2021).
989:. As of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy. 208:
between the two nuclear levels, which increases exponentially with the magnetic field strength.
3751: 3311: 3299: 3190: 3055: 2829: 2695: 2519: 1232: 1207: 1090:
are comparable. For example, AstraZeneca uses NMR for its oncology research & development.
1021:
spectroscopy (NOESY) to detect couplings between nuclei that are close to each other in space.
800: 249: 131:
NMR spectra are unique, well-resolved, analytically tractable and often highly predictable for
1893:
Aue, W. P. (1976). "Two-dimensional spectroscopy. Application to nuclear magnetic resonance".
1773: 456:
The energy difference, ΔE, between nuclear spin states is proportional to the magnetic field (
4353: 4120: 3992: 3723: 3637: 3460: 3357: 3342: 3272: 3195: 3027: 2977: 2886: 2811: 2710: 977:
is the use of NMR spectroscopy to obtain information about the structure and dynamics of poly
923: 419: 2422:
Khodov, I.A.; Belov, K.V.; Dyshin, A.A.; Krestyaninov, M.A.; Kiselev, M.G. (December 2022).
823:
is one of several types of two-dimensional nuclear magnetic resonance (NMR) spectroscopy or
3450: 3405: 3180: 3000: 2930: 2687: 2667: 2485: 2393:"Does DMSO affect the conformational changes of drug molecules in supercritical CO2 Media?" 1902: 1754: 1473:"Magnetic resonance spectroscopy as an imaging tool for cancer: a review of the literature" 1195: 1147: 1117: 835:. Other types of two-dimensional NMR include J-spectroscopy, exchange spectroscopy (EXSY), 641: 411: 241: 217: 2369: 8: 4417: 4048: 3761: 3670: 3473: 3427: 3352: 3325: 3223: 3205: 3158: 3096: 2992: 2972: 2841: 2836: 2737: 1162: 1142: 1014: 705: 359: 260:
The key determinant of NMR activity in atomic nuclei is the nuclear spin quantum number (
237: 124:
spectroscopy, but it is applicable to any kind of sample that contains nuclei possessing
2309:
Dubois, Cécile; Herrada, Isaline; Barthe, Philippe; Roumestand, Christian (2020-11-26).
2160: 1906: 1202: 621:
hydrogens are coupling with each other, resulting in a triplet and quartet respectively.
4403: 4340: 4326: 4315: 4096: 4033: 4012: 3828: 3806: 3739: 3650: 3550: 3516: 3378: 3347: 3228: 3170: 2868: 2851: 2846: 2801: 2764: 2754: 2715: 2345: 2310: 2286: 2125: 2035: 1848: 1562: 1536: 1358: 939: 919: 430:, and accordingly, changes sign at pulse widths corresponding to 180° and 360° pulses. 339: 233: 2424:"Pressure effect on lidocaine conformational equilibria in scCO2: A study by 2D NOESY" 1521: 1406: 3997: 3924: 3898: 3569: 3531: 3496: 3479: 3417: 3335: 3330: 3258: 3243: 3213: 3134: 3101: 3072: 3067: 3042: 3032: 2952: 2940: 2819: 2732: 2549: 2527: 2505: 2467: 2350: 2332: 2291: 2273: 2203: 2164: 2129: 2086: 2058: 2027: 1941: 1852: 1840: 1685: 1646: 1605: 1567: 1484: 1422: 1418: 1269: 1240: 1010: 957: 461: 415: 399: 383: 367: 229: 151: 83: 2039: 1937: 3574: 3491: 3146: 3005: 2982: 2935: 2876: 2461: 2435: 2404: 2373: 2340: 2322: 2281: 2265: 2234: 2195: 2156: 2115: 2019: 1994: 1933: 1928:
Jeener, Jean (2007). "Jeener, Jean: Reminiscences about the Early Days of 2D NMR".
1910: 1875: 1832: 1704:"Nuclear Magnetic Resonance Spectroscopy Center | Washington State University" 1677: 1665: 1638: 1597: 1596:. ACS Symposium Series. Vol. 1128. American Chemical Society. pp. 69–81. 1557: 1549: 1517: 1414: 1074: 1045: 1037: 974: 856: 395: 375: 185: 174: 136: 87: 2571: 1340: 382:
spectra are often calibrated against the known solvent residual proton peak as an
4389: 3432: 3388: 3383: 3277: 3253: 3087: 3050: 2903: 2893: 2776: 2497: 2457: 2439: 2408: 1717: 1703: 1029: 1006: 876: 654: 614: 201: 155: 74: 2613: 2238: 585: 483: 30: 4427: 4375: 3316: 3294: 3289: 3284: 3239: 3235: 3218: 3175: 3106: 2967: 2962: 2947: 2759: 2677: 1601: 1177: 1033: 776: 743: 602: 594: 451: 265: 144: 132: 125: 66: 4144: 2540: 2377: 2327: 4479: 4198: 3521: 3410: 3366: 3091: 2925: 2920: 2913: 2791: 2336: 2277: 2207: 2168: 1689: 1650: 1626: 1132: 1002: 477: 473: 457: 197: 140: 121: 1492: 914:
Much of the innovation within NMR spectroscopy has been within the field of
240:
independently developed NMR spectroscopy in the late 1940s and early 1950s.
3629: 3398: 3248: 3163: 3139: 3129: 3121: 3022: 2957: 2856: 2705: 2354: 2295: 2031: 2023: 1844: 1571: 1488: 1078: 978: 606: 314: 305:
When placed in a magnetic field, NMR active nuclei (such as H or C) absorb
70: 62: 35: 4284: 2601: 734: 4441: 2796: 2541: 1836: 915: 887: 605:
is not coupling with the other H atoms and appears as a singlet, but the
355: 245: 2619: 2524:
Principles of magnetic resonance: with examples from solid state physics
1681: 1471:
Shah, N; Sattar, A; Benanti, M; Hollander, S; Cheuck, L (January 2006).
1237:
Principles of magnetic resonance: with examples from solid state physics
232:, who received the Nobel Prize in Physics in 1944. The Purcell group at 180: 3422: 2481: 2120: 2107: 1627:"NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities" 1553: 1541: 1053: 1025: 998: 780: 750:, because of the three magnetically equivalent protons in methyl group 664:
For example, in the proton spectrum for ethanol described above, the CH
512: 379: 117: 2595: 2269: 2199: 1998: 1642: 1077:
spectroscopy addresses questions on the structure and conformation of
398:
to adjust the homogeneity of the magnetic field to parts per billion (
3484: 2786: 2651: 1974: 1914: 1865: 1049: 427: 363: 322: 1879: 3506: 2480: 2463:
Nuclear Magnetic Resonance : applications to organic chemistry
1962:
Two-Dimensional NMR Methods for Establishing Molecular Connectivity
1625:
Gottlieb, Hugo E.; Kotlyar, Vadim; Nudelman, Abraham (1997-10-01).
1355:"Background and Theory Page of Nuclear Magnetic Resonance Facility" 852: 658: 598: 318: 293: 196:. Modern NMR spectrometers have a very strong, large and expensive 1190:
Quantum mechanics of nuclear magnetic resonance (NMR) spectroscopy
4179: 3526: 1057: 1024:
Parameters taken from the spectrum, mainly NOESY cross-peaks and
944: 867: 828: 739: 590: 467:
The conversion of chemical shifts (and J's, see below) is called
310: 112: 78: 2390: 3598: 824: 815: 93:
The principle of NMR usually involves three sequential steps:
2108:"NMR free ligand conformations and atomic resolution dynamics" 1448:"NMR active nuclei for biological and biomedical applications" 684:
with an intensity ratio of 1:3:3:1 by the three neighboring CH
653:
couplings over more than three bonds can often be observed in
165:
Correlation spectroscopy is a development of ordinary NMR. In
2421: 2308: 1028:, can be used to determine local structural features such as 288: 2009: 292:
The NMR sample is prepared in a thin-walled glass tube - an
216:. NMR spectra of protons (H nuclei) can be observed even in 3501: 2184:"Nuclear Magnetic Resonance in Liquids under High Pressure" 848: 844: 840: 487:
Example of the chemical shift: NMR spectrum of hexaborane B
2145:"High-Pressure NMR Spectroscopy of Proteins and Membranes" 2105: 1470: 1329:. Boston: Allyn and Bacon Chemistry Series. pp. 9–11. 672:
with an intensity ratio of 1:2:1 by the two neighboring CH
264:). This intrinsic quantum property, similar to an atom's " 3511: 986: 982: 927: 862: 601:
atoms in ethanol regarding NMR. The hydrogen (H) on the
366:(hydrogen-2). The most widely used deuterated solvent is 193: 1268:(2nd ed.). Springer. 6 September 2012. p. 67. 1173:
Triple-resonance nuclear magnetic resonance spectroscopy
1070:
Nuclear magnetic resonance spectroscopy of carbohydrates
970:
Nuclear magnetic resonance spectroscopy of nucleic acids
2546:
High Resolution Nuclear Magnetic Resonance Spectroscopy
1624: 1128:
Functional magnetic resonance spectroscopy of the brain
661:
compounds, leading to more complex splitting patterns.
77:
region from roughly 4 to 900 MHz, which depends on the
2149:
Annual Review of Biophysics and Biomolecular Structure
727:
The magnitude of the coupling (the coupling constant,
1822: 1534: 362:
are used where 99+% of the protons are replaced with
2083:
Nucleic acids: Structures, Properties, and Functions
1262:
Structural biology : practical NMR applications
762: 636:
equivalent (spin ½) nuclei splits the signal into a
2518: 2252:Peterson, Ronald W.; Wand, A. Joshua (2005-09-01). 2085:. Sausalito, California: University Science Books. 1509:
Progress in Nuclear Magnetic Resonance Spectroscopy
1477:
The Journal of the American Osteopathic Association
1231: 934:. It is now a common tool for the determination of 910:
Nuclear magnetic resonance spectroscopy of proteins
827:. This type of NMR experiment is best known by its 787:operating at frequencies at 200 MHz or above. 2367: 2052: 1975:"National Ultrahigh-Field NMR Facility for Solids" 1505: 1093: 1056:. NMR is also useful for probing the binding of 283: 214:benchtop nuclear magnetic resonance spectrometers 4477: 2544:; James Feeney; Leslie Howard Sutcliffe (1965). 1594:NMR Spectroscopy in the Undergraduate Curriculum 898: 775:Some of these patterns can be analyzed with the 4174: 2456: 34:A 900 MHz NMR instrument with a 21.1  2181: 1295: 1168:Proton-enhanced nuclear induction spectroscopy 772:) can in fact help to identify related peaks. 147:or typical chromatography for identification. 4300: 4160: 3614: 2635: 2182:Benedek, G. B.; Purcell, E. M. (1954-12-01). 1964:; VCH Publishers, Inc: New York, 1988 (p.59) 640:+1 multiplet with intensity ratios following 3686:Vibrational spectroscopy of linear molecules 2251: 1807: 4314: 809: 162:higher frequencies, sensitivity is higher. 111:Similarly, biochemists use NMR to identify 4307: 4293: 4167: 4153: 3681:Nuclear resonance vibrational spectroscopy 3621: 3607: 2642: 2628: 2496: 2490:High-resolution Nuclear Magnetic Resonance 2142: 589:Example H NMR spectrum (1-dimensional) of 437: 4054:Inelastic electron tunneling spectroscopy 3734:Resonance-enhanced multiphoton ionization 2649: 2610:Software for the analysis of NMR dynamics 2344: 2326: 2285: 2119: 2076: 2074: 1664:Tiers, George Van Dyke (September 1958). 1561: 794: 692:protons would also be split again into a 405: 3822:Extended X-ray absorption fine structure 2569: 2220: 1771: 1765: 1298:"NMR Instrument Price Hikes Spook Users" 918:spectroscopy, an important technique in 866: 733: 584: 482: 287: 228:Credit for the discovery of NMR goes to 179: 29: 4486:Nuclear magnetic resonance spectroscopy 1718:"Center for NMR Spectroscopy: The Lock" 1324: 1123:In vivo magnetic resonance spectroscopy 47:Nuclear magnetic resonance spectroscopy 14: 4478: 2099: 2080: 2071: 2046: 2003: 1927: 1591: 863:Solid-state nuclear magnetic resonance 597:. There are three different types of 426:function of pulse width. It follows a 349: 255: 4288: 4148: 3602: 2623: 2057:. New York: Oxford University Press. 1663: 1404: 1183:Nuclear magnetic resonance decoupling 309:at a frequency characteristic of the 300: 65:technique based on re-orientation of 4127: 3557: 1044:, non-Watson–Crick basepairing, and 859:, who published their work in 1976. 3581: 2502:The Principles of Nuclear Magnetism 2161:10.1146/annurev.bb.23.060194.001443 2055:Bioorganic Chemistry: Nucleic Acids 1892: 1816: 1752: 936:Conformation Activity Relationships 932:intrinsically unstructured proteins 24: 2450: 1930:Encyclopedia of Magnetic Resonance 1774:"Chapter 2: NMR and energy levels" 1411:Basic 1H- and 13C-NMR Spectroscopy 688:protons. In principle, the two CH 332: 25: 4497: 4039:Deep-level transient spectroscopy 3791:Saturated absorption spectroscopy 2563: 1670:The Journal of Physical Chemistry 1153:NMR spectroscopy of stereoisomers 1084: 763:Second-order (or strong) coupling 754:, couple to one adjacent proton ( 445: 4126: 4115: 4114: 4044:Dual-polarization interferometry 3628: 3580: 3568: 3556: 3545: 3544: 2583:University of California, Irvine 2572:"Understanding NMR Spectroscopy" 2258:Review of Scientific Instruments 2143:Jonas, J; Jonas, A (June 1994). 1789:University of California, Irvine 1631:The Journal of Organic Chemistry 1577: 1535:Neufeld, R.; Stalke, D. (2015). 1419:10.1016/b978-044451811-8.50008-5 1296:Marc S. Reisch (June 29, 2015). 1063: 963: 758:) and thus appears as a doublet. 593:plotted as signal intensity vs. 389: 4059:Scanning tunneling spectroscopy 4034:Circular dichroism spectroscopy 4029:Acoustic resonance spectroscopy 2415: 2384: 2361: 2302: 2245: 2214: 2188:The Journal of Chemical Physics 2175: 2136: 1987: 1967: 1954: 1938:10.1002/9780470034590.emrhp0087 1921: 1895:The Journal of Chemical Physics 1886: 1859: 1801: 1755:"INVERSION-RECOVERY EXPERIMENT" 1746: 1728: 1710: 1696: 1657: 1618: 1585: 1528: 1499: 1464: 1440: 783:, though it has limited scope. 158:spectroscopy is also possible. 55:magnetic resonance spectroscopy 3988:Fourier-transform spectroscopy 3676:Vibrational circular dichroism 2221:Kamatari, Y (September 2004). 2112:Magnetic Resonance Discussions 1785:Understanding NMR Spectroscopy 1413:, Elsevier, pp. 213–231, 1398: 1373: 1347: 1333: 1318: 1314:. The Scientist. Oct 30, 2000. 1304: 1289: 1253: 1225: 1094:High-pressure NMR spectroscopy 516: 344:diffusion ordered spectroscopy 284:Main aspects of NMR techniques 13: 1: 3786:Cavity ring-down spectroscopy 3691:Thermal infrared spectroscopy 2909:Interface and colloid science 2663:Glossary of chemical formulae 1522:10.1016/S0079-6565(99)00003-5 1218: 1213:Perturbed angular correlation 947:label the protein with C and 899:Biomolecular NMR spectroscopy 506: 501:paramagnetic NMR spectroscopy 3920:Inelastic neutron scattering 2466:. McGraw-Hill Book Company. 2440:10.1016/j.molliq.2022.120525 2428:Journal of Molecular Liquids 2409:10.1016/j.molliq.2023.122230 2397:Journal of Molecular Liquids 1960:Martin, G.E; Zekter, A.S., 1158:Nuclear quadrupole resonance 7: 3981:Data collection, processing 3857:Photoelectron/photoemission 3186:Bioorganometallic chemistry 2673:List of inorganic compounds 2602:GAMMA and PyGAMMA Libraries 2492:. McGraw-Hill Book Company. 2239:10.1016/j.ymeth.2004.03.010 1110: 1103:NMR experiments are given. 995:nucleic acid double helices 903: 676:protons. Similarly, the CH 10: 4502: 4465:1H and 13C chemical shifts 4363:Deuterated dichloromethane 4066:Photoacoustic spectroscopy 4008:Time-resolved spectroscopy 3112:Dynamic covalent chemistry 3083:Enantioselective synthesis 3063:Physical organic chemistry 3016:Organolanthanide chemistry 1602:10.1021/bk-2013-1128.ch005 1407:"Dynamic NMR Spectroscopy" 1327:Nuclear Magnetic Resonance 1138:Magnetic Resonance Imaging 1067: 967: 907: 874: 813: 798: 510: 449: 223: 4455: 4322: 4186: 4110: 4092:Astronomical spectroscopy 4084: 4071:Photothermal spectroscopy 4021: 3980: 3973: 3935: 3907: 3849: 3799: 3699: 3636: 3540: 3443: 3204: 3120: 3041: 2991: 2867: 2810: 2701:Electroanalytical methods 2686: 2658: 2378:10.1101/2020.08.25.267195 2328:10.3390/molecules25235551 1325:Paudler, William (1974). 1019:nuclear Overhauser effect 837:Nuclear Overhauser effect 307:electromagnetic radiation 171:nuclear Overhauser effect 49:, most commonly known as 3456:Nobel Prize in Chemistry 3372:Supramolecular chemistry 3011:Organometallic chemistry 2488:; H.J.Bernstein (1959). 821:Correlation spectroscopy 810:Correlation spectroscopy 327:nuclear magnetic moments 173:(NOE) spectroscopy, the 4316:Deuterated NMR solvents 4076:Pump–probe spectroscopy 3965:Ferromagnetic resonance 3757:Laser-induced breakdown 3394:Combinatorial chemistry 3305:Food physical chemistry 3268:Environmental chemistry 3152:Bioorthogonal chemistry 3078:Retrosynthetic analysis 2899:Chemical thermodynamics 2882:Spectroelectrochemistry 2825:Computational chemistry 2577:University of Cambridge 1779:University of Cambridge 1381:"4.7: NMR Spectroscopy" 438:Spectral interpretation 236:and the Bloch group at 3772:Glow-discharge optical 3752:Raman optical activity 3666:Rotational–vibrational 3466:of element discoveries 3312:Agricultural chemistry 3300:Carbohydrate chemistry 3191:Bioinorganic chemistry 3056:Alkane stereochemistry 3001:Coordination chemistry 2830:Mathematical chemistry 2696:Instrumental chemistry 2372:(Report). Biophysics. 2024:10.1002/cbic.200300700 1812:(5 ed.). Freeman. 1808:Peter Atkins (1994) . 1740:www2.chemistry.msu.edu 1208:Muon spin spectroscopy 1058:nucleic acid molecules 872: 801:Magnetic inequivalence 795:Magnetic inequivalence 759: 668:group is split into a 622: 496: 406:Acquisition of spectra 297: 252:for their inventions. 250:Nobel Prize in Physics 189: 43: 4354:Deuterated chloroform 3993:Hyperspectral imaging 3461:Timeline of chemistry 3358:Post-mortem chemistry 3343:Clandestine chemistry 3273:Atmospheric chemistry 3196:Biophysical chemistry 3028:Solid-state chemistry 2978:Equilibrium chemistry 2887:Photoelectrochemistry 1405:Balci, Metin (2005), 924:X-ray crystallography 875:Further information: 870: 814:Further information: 799:Further information: 737: 588: 486: 420:signal-to-noise ratio 291: 206:population difference 183: 33: 3745:Coherent anti-Stokes 3700:UV–Vis–NIR "Optical" 3451:History of chemistry 3406:Chemical engineering 3181:Bioorganic chemistry 2931:Structural chemistry 2668:List of biomolecules 2526:. Harper & Row. 1837:10.1021/jacs.8b11330 1385:Chemistry LibreTexts 1239:. Harper & Row. 1196:nuclear spectroscopy 1148:NMR spectra database 412:free induction decay 242:Edward Mills Purcell 218:Earth magnetic field 27:Laboratory technique 4418:Deuterated methanol 4049:Hadron spectroscopy 3839:Conversion electron 3800:X-ray and Gamma ray 3707:Ultraviolet–visible 3474:The central science 3428:Ceramic engineering 3353:Forensic toxicology 3326:Chemistry education 3224:Radiation chemistry 3206:Interdisciplinarity 3159:Medicinal chemistry 3097:Fullerene chemistry 2973:Microwave chemistry 2842:Molecular mechanics 2837:Molecular modelling 2520:Charles P. Slichter 2504:. Clarendon Press. 1907:1976JChPh..64.2229A 1831:(50): 17413–17417. 1759:triton.iqfr.csic.es 1682:10.1021/j150567a041 1233:Charles P. Slichter 1194:Related methods of 1163:Pulsed field magnet 1143:NMR crystallography 1015:Two-dimensional NMR 940:orders of magnitude 706:spin quantum number 698:doublet of quartets 647:doublet of doublets 360:deuterated solvents 350:Deuterated solvents 340:diffusion constants 256:NMR-active criteria 238:Stanford University 167:two-dimensional NMR 4404:Deuterated ethanol 4341:Deuterated benzene 4327:Deuterated acetone 4097:Force spectroscopy 4022:Measured phenomena 4013:Video spectroscopy 3717:Cold vapour atomic 3517:Chemical substance 3379:Chemical synthesis 3348:Forensic chemistry 3229:Actinide chemistry 3171:Clinical chemistry 2852:Molecular geometry 2847:Molecular dynamics 2802:Elemental analysis 2755:Separation process 2121:10.5194/mr-2021-27 1810:Physical Chemistry 1554:10.1039/C5SC00670H 1361:on 27 January 2014 1341:"Discovery of NMR" 1312:"Taking It Higher" 1026:coupling constants 952:proteins utilizes 920:structural biology 873: 760: 738:H NMR spectrum of 627:spin–spin coupling 623: 497: 301:Resonant frequency 298: 234:Harvard University 190: 44: 4473: 4472: 4282: 4281: 4142: 4141: 4106: 4105: 3998:Spectrophotometry 3925:Neutron spin echo 3899:Beta spectroscopy 3812:Energy-dispersive 3596: 3595: 3532:Quantum mechanics 3497:Chemical compound 3480:Chemical reaction 3418:Materials science 3336:General chemistry 3331:Amateur chemistry 3259:Photogeochemistry 3244:Stellar chemistry 3214:Nuclear chemistry 3135:Molecular biology 3102:Polymer chemistry 3073:Organic synthesis 3068:Organic reactions 3033:Ceramic chemistry 3023:Cluster chemistry 2953:Chemical kinetics 2941:Molecular physics 2820:Quantum chemistry 2733:Mass spectrometry 2596:The Basics of NMR 2270:10.1063/1.2038087 2200:10.1063/1.1739982 2194:(12): 2003–2012. 2092:978-0-935702-49-1 2064:978-0-19-508467-2 1999:10.1021/la4035694 1753:Parella, Teodor. 1643:10.1021/jo971176v 1637:(21): 7512–7515. 1275:978-1-4614-3964-6 1118:Earth's field NMR 958:distance geometry 642:Pascal's triangle 583: 582: 579:1:6:15:20:15:6:1 462:tetramethylsilane 416:Fourier transform 384:internal standard 368:deuterochloroform 230:Isidor Isaac Rabi 152:mass spectrometry 137:functional groups 88:organic compounds 84:functional groups 16:(Redirected from 4493: 4442:Deuterated water 4309: 4302: 4295: 4286: 4285: 4176:NMR spectroscopy 4169: 4162: 4155: 4146: 4145: 4130: 4129: 4118: 4117: 3978: 3977: 3889:phenomenological 3638:Vibrational (IR) 3623: 3616: 3609: 3600: 3599: 3584: 3583: 3572: 3560: 3559: 3548: 3547: 3492:Chemical element 3147:Chemical biology 3006:Magnetochemistry 2983:Mechanochemistry 2936:Chemical physics 2877:Electrochemistry 2782:Characterization 2644: 2637: 2630: 2621: 2620: 2592: 2590: 2589: 2580: 2559: 2537: 2515: 2493: 2477: 2444: 2443: 2419: 2413: 2412: 2388: 2382: 2381: 2365: 2359: 2358: 2348: 2330: 2306: 2300: 2299: 2289: 2249: 2243: 2242: 2218: 2212: 2211: 2179: 2173: 2172: 2140: 2134: 2133: 2123: 2103: 2097: 2096: 2078: 2069: 2068: 2050: 2044: 2043: 2007: 2001: 1991: 1985: 1984: 1982: 1981: 1971: 1965: 1958: 1952: 1951: 1925: 1919: 1918: 1915:10.1063/1.432450 1890: 1884: 1883: 1863: 1857: 1856: 1825:J. Am. Chem. Soc 1820: 1814: 1813: 1805: 1799: 1798: 1796: 1795: 1782: 1769: 1763: 1762: 1750: 1744: 1743: 1732: 1726: 1725: 1722:nmr.chem.wsu.edu 1714: 1708: 1707: 1700: 1694: 1693: 1676:(9): 1151–1152. 1661: 1655: 1654: 1622: 1616: 1615: 1589: 1583: 1582: 1581: 1575: 1565: 1548:(6): 3354–3364. 1532: 1526: 1525: 1516:(3–4): 203–256. 1503: 1497: 1496: 1491:. Archived from 1468: 1462: 1461: 1459: 1458: 1444: 1438: 1437: 1436: 1435: 1402: 1396: 1395: 1393: 1392: 1377: 1371: 1370: 1368: 1366: 1351: 1345: 1344: 1337: 1331: 1330: 1322: 1316: 1315: 1308: 1302: 1301: 1293: 1287: 1286: 1284: 1282: 1267: 1257: 1251: 1250: 1229: 1203:Mössbauer effect 1075:Carbohydrate NMR 1046:coaxial stacking 1038:Karplus equation 975:Nucleic acid NMR 857:Richard R. Ernst 680:is split into a 523:Intensity ratio 517: 376:hydrogen bonding 317:magnetic field, 248:shared the 1952 51:NMR spectroscopy 42:, Birmingham, UK 21: 4501: 4500: 4496: 4495: 4494: 4492: 4491: 4490: 4476: 4475: 4474: 4469: 4451: 4447: 4437: 4433: 4423: 4413: 4409: 4399: 4395: 4390:Deuterated DMSO 4385: 4381: 4372: 4368: 4359: 4350: 4346: 4336: 4332: 4318: 4313: 4283: 4278: 4182: 4173: 4143: 4138: 4102: 4080: 4017: 3969: 3931: 3903: 3845: 3795: 3695: 3656:Resonance Raman 3632: 3627: 3597: 3592: 3536: 3439: 3433:Polymer science 3389:Click chemistry 3384:Green chemistry 3278:Ocean chemistry 3254:Biogeochemistry 3200: 3116: 3088:Total synthesis 3051:Stereochemistry 3037: 2987: 2904:Surface science 2894:Thermochemistry 2863: 2806: 2777:Crystallography 2682: 2654: 2648: 2587: 2585: 2574: 2566: 2556: 2534: 2512: 2474: 2458:John D. Roberts 2453: 2451:Further reading 2448: 2447: 2420: 2416: 2389: 2385: 2366: 2362: 2307: 2303: 2250: 2246: 2219: 2215: 2180: 2176: 2141: 2137: 2104: 2100: 2093: 2079: 2072: 2065: 2051: 2047: 2008: 2004: 1992: 1988: 1979: 1977: 1973: 1972: 1968: 1959: 1955: 1948: 1926: 1922: 1891: 1887: 1880:10.1139/v57-143 1864: 1860: 1821: 1817: 1806: 1802: 1793: 1791: 1776: 1770: 1766: 1751: 1747: 1736:"NMR Artifacts" 1734: 1733: 1729: 1716: 1715: 1711: 1702: 1701: 1697: 1662: 1658: 1623: 1619: 1612: 1590: 1586: 1576: 1533: 1529: 1504: 1500: 1469: 1465: 1456: 1454: 1452:Open Medscience 1446: 1445: 1441: 1433: 1431: 1429: 1403: 1399: 1390: 1388: 1379: 1378: 1374: 1364: 1362: 1353: 1352: 1348: 1339: 1338: 1334: 1323: 1319: 1310: 1309: 1305: 1294: 1290: 1280: 1278: 1276: 1265: 1259: 1258: 1254: 1247: 1230: 1226: 1221: 1187: 1113: 1096: 1087: 1072: 1066: 1034:dihedral angles 1030:glycosidic bond 999:H or proton NMR 972: 966: 954:NOE experiments 912: 906: 901: 879: 877:Solid-state NMR 865: 818: 812: 803: 797: 765: 714:1:1:1:1 quartet 691: 687: 679: 675: 667: 618: 610: 515: 509: 494: 490: 454: 448: 440: 408: 392: 373: 352: 335: 333:Sample handling 319:hydrogen nuclei 303: 286: 258: 226: 202:superconducting 156:solid-state NMR 133:small molecules 100: 75:radio frequency 28: 23: 22: 15: 12: 11: 5: 4499: 4489: 4488: 4471: 4470: 4468: 4467: 4462: 4460: 4456: 4453: 4452: 4450: 4449: 4445: 4439: 4435: 4431: 4428:Deuterated THF 4425: 4421: 4415: 4411: 4407: 4401: 4397: 4393: 4387: 4383: 4379: 4376:Deuterated DMF 4373: 4370: 4366: 4360: 4357: 4351: 4348: 4344: 4338: 4334: 4330: 4323: 4320: 4319: 4312: 4311: 4304: 4297: 4289: 4280: 4279: 4277: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4211: 4206: 4201: 4196: 4190: 4188: 4184: 4183: 4172: 4171: 4164: 4157: 4149: 4140: 4139: 4137: 4136: 4124: 4111: 4108: 4107: 4104: 4103: 4101: 4100: 4094: 4088: 4086: 4082: 4081: 4079: 4078: 4073: 4068: 4063: 4062: 4061: 4051: 4046: 4041: 4036: 4031: 4025: 4023: 4019: 4018: 4016: 4015: 4010: 4005: 4000: 3995: 3990: 3984: 3982: 3975: 3971: 3970: 3968: 3967: 3962: 3957: 3952: 3951: 3950: 3939: 3937: 3933: 3932: 3930: 3929: 3928: 3927: 3917: 3911: 3909: 3905: 3904: 3902: 3901: 3896: 3891: 3886: 3881: 3880: 3879: 3874: 3872:Angle-resolved 3869: 3864: 3853: 3851: 3847: 3846: 3844: 3843: 3842: 3841: 3831: 3826: 3825: 3824: 3819: 3814: 3803: 3801: 3797: 3796: 3794: 3793: 3788: 3783: 3782: 3781: 3776: 3775: 3774: 3759: 3754: 3749: 3748: 3747: 3737: 3731: 3726: 3721: 3720: 3719: 3709: 3703: 3701: 3697: 3696: 3694: 3693: 3688: 3683: 3678: 3673: 3668: 3663: 3658: 3653: 3648: 3642: 3640: 3634: 3633: 3626: 3625: 3618: 3611: 3603: 3594: 3593: 3591: 3590: 3578: 3566: 3554: 3541: 3538: 3537: 3535: 3534: 3529: 3524: 3519: 3514: 3509: 3504: 3499: 3494: 3489: 3488: 3487: 3477: 3470: 3469: 3468: 3458: 3453: 3447: 3445: 3441: 3440: 3438: 3437: 3436: 3435: 3430: 3425: 3415: 3414: 3413: 3403: 3402: 3401: 3396: 3391: 3386: 3376: 3375: 3374: 3363: 3362: 3361: 3360: 3355: 3345: 3340: 3339: 3338: 3333: 3322: 3321: 3320: 3319: 3317:Soil chemistry 3309: 3308: 3307: 3302: 3295:Food chemistry 3292: 3290:Carbochemistry 3287: 3285:Clay chemistry 3282: 3281: 3280: 3275: 3264: 3263: 3262: 3261: 3256: 3246: 3240:Astrochemistry 3236:Cosmochemistry 3233: 3232: 3231: 3226: 3221: 3219:Radiochemistry 3210: 3208: 3202: 3201: 3199: 3198: 3193: 3188: 3183: 3178: 3176:Neurochemistry 3173: 3168: 3167: 3166: 3156: 3155: 3154: 3144: 3143: 3142: 3137: 3126: 3124: 3118: 3117: 3115: 3114: 3109: 3107:Petrochemistry 3104: 3099: 3094: 3085: 3080: 3075: 3070: 3065: 3060: 3059: 3058: 3047: 3045: 3039: 3038: 3036: 3035: 3030: 3025: 3020: 3019: 3018: 3008: 3003: 2997: 2995: 2989: 2988: 2986: 2985: 2980: 2975: 2970: 2968:Spin chemistry 2965: 2963:Photochemistry 2960: 2955: 2950: 2948:Femtochemistry 2945: 2944: 2943: 2933: 2928: 2923: 2918: 2917: 2916: 2906: 2901: 2896: 2891: 2890: 2889: 2884: 2873: 2871: 2865: 2864: 2862: 2861: 2860: 2859: 2849: 2844: 2839: 2834: 2833: 2832: 2822: 2816: 2814: 2808: 2807: 2805: 2804: 2799: 2794: 2789: 2784: 2779: 2774: 2773: 2772: 2767: 2760:Chromatography 2757: 2752: 2751: 2750: 2745: 2740: 2730: 2729: 2728: 2723: 2718: 2713: 2703: 2698: 2692: 2690: 2684: 2683: 2681: 2680: 2678:Periodic table 2675: 2670: 2665: 2659: 2656: 2655: 2647: 2646: 2639: 2632: 2624: 2618: 2617: 2611: 2605: 2599: 2593: 2575:(reprinted at 2570:James Keeler. 2565: 2564:External links 2562: 2561: 2560: 2554: 2538: 2532: 2516: 2510: 2494: 2478: 2472: 2452: 2449: 2446: 2445: 2414: 2383: 2360: 2301: 2244: 2233:(1): 133–143. 2213: 2174: 2155:(1): 287–318. 2135: 2098: 2091: 2070: 2063: 2045: 2018:(10): 936–62. 2002: 1986: 1966: 1953: 1947:978-0470034590 1946: 1920: 1885: 1858: 1815: 1800: 1777:(reprinted at 1772:James Keeler. 1764: 1745: 1727: 1709: 1695: 1656: 1617: 1610: 1584: 1527: 1498: 1495:on 2013-04-07. 1463: 1439: 1427: 1397: 1372: 1346: 1332: 1317: 1303: 1288: 1274: 1252: 1245: 1223: 1222: 1220: 1217: 1216: 1215: 1210: 1205: 1192: 1186: 1185: 1180: 1178:Zero field NMR 1175: 1170: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1114: 1112: 1109: 1095: 1092: 1086: 1085:Drug discovery 1083: 1068:Main article: 1065: 1062: 968:Main article: 965: 962: 908:Main article: 905: 902: 900: 897: 864: 861: 811: 808: 796: 793: 764: 761: 744:chemical shift 689: 685: 677: 673: 665: 616: 608: 595:chemical shift 581: 580: 577: 573: 572: 571:1:5:10:10:5:1 569: 565: 564: 561: 557: 556: 553: 549: 548: 545: 541: 540: 537: 533: 532: 529: 525: 524: 521: 511:Main article: 508: 505: 492: 488: 474:excited states 452:Chemical shift 450:Main article: 447: 446:Chemical shift 444: 439: 436: 407: 404: 391: 388: 371: 351: 348: 334: 331: 302: 299: 285: 282: 257: 254: 225: 222: 145:color reagents 143:tests such as 109: 108: 105: 102: 98: 69:with non-zero 26: 9: 6: 4: 3: 2: 4498: 4487: 4484: 4483: 4481: 4466: 4463: 4461: 4458: 4457: 4454: 4443: 4440: 4429: 4426: 4419: 4416: 4405: 4402: 4391: 4388: 4377: 4374: 4364: 4361: 4355: 4352: 4342: 4339: 4328: 4325: 4324: 4321: 4317: 4310: 4305: 4303: 4298: 4296: 4291: 4290: 4287: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4191: 4189: 4185: 4181: 4177: 4170: 4165: 4163: 4158: 4156: 4151: 4150: 4147: 4135: 4134: 4125: 4123: 4122: 4113: 4112: 4109: 4098: 4095: 4093: 4090: 4089: 4087: 4083: 4077: 4074: 4072: 4069: 4067: 4064: 4060: 4057: 4056: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4026: 4024: 4020: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3985: 3983: 3979: 3976: 3972: 3966: 3963: 3961: 3958: 3956: 3953: 3949: 3946: 3945: 3944: 3941: 3940: 3938: 3934: 3926: 3923: 3922: 3921: 3918: 3916: 3913: 3912: 3910: 3906: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3859: 3858: 3855: 3854: 3852: 3848: 3840: 3837: 3836: 3835: 3832: 3830: 3827: 3823: 3820: 3818: 3815: 3813: 3810: 3809: 3808: 3805: 3804: 3802: 3798: 3792: 3789: 3787: 3784: 3780: 3777: 3773: 3770: 3769: 3768: 3765: 3764: 3763: 3760: 3758: 3755: 3753: 3750: 3746: 3743: 3742: 3741: 3738: 3735: 3732: 3730: 3729:Near-infrared 3727: 3725: 3722: 3718: 3715: 3714: 3713: 3710: 3708: 3705: 3704: 3702: 3698: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3672: 3669: 3667: 3664: 3662: 3659: 3657: 3654: 3652: 3649: 3647: 3644: 3643: 3641: 3639: 3635: 3631: 3624: 3619: 3617: 3612: 3610: 3605: 3604: 3601: 3589: 3588: 3579: 3577: 3576: 3571: 3567: 3565: 3564: 3555: 3553: 3552: 3543: 3542: 3539: 3533: 3530: 3528: 3525: 3523: 3522:Chemical bond 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3498: 3495: 3493: 3490: 3486: 3483: 3482: 3481: 3478: 3475: 3471: 3467: 3464: 3463: 3462: 3459: 3457: 3454: 3452: 3449: 3448: 3446: 3442: 3434: 3431: 3429: 3426: 3424: 3421: 3420: 3419: 3416: 3412: 3411:Stoichiometry 3409: 3408: 3407: 3404: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3381: 3380: 3377: 3373: 3370: 3369: 3368: 3367:Nanochemistry 3365: 3364: 3359: 3356: 3354: 3351: 3350: 3349: 3346: 3344: 3341: 3337: 3334: 3332: 3329: 3328: 3327: 3324: 3323: 3318: 3315: 3314: 3313: 3310: 3306: 3303: 3301: 3298: 3297: 3296: 3293: 3291: 3288: 3286: 3283: 3279: 3276: 3274: 3271: 3270: 3269: 3266: 3265: 3260: 3257: 3255: 3252: 3251: 3250: 3247: 3245: 3241: 3237: 3234: 3230: 3227: 3225: 3222: 3220: 3217: 3216: 3215: 3212: 3211: 3209: 3207: 3203: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3165: 3162: 3161: 3160: 3157: 3153: 3150: 3149: 3148: 3145: 3141: 3138: 3136: 3133: 3132: 3131: 3128: 3127: 3125: 3123: 3119: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3093: 3092:Semisynthesis 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3057: 3054: 3053: 3052: 3049: 3048: 3046: 3044: 3040: 3034: 3031: 3029: 3026: 3024: 3021: 3017: 3014: 3013: 3012: 3009: 3007: 3004: 3002: 2999: 2998: 2996: 2994: 2990: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2942: 2939: 2938: 2937: 2934: 2932: 2929: 2927: 2926:Sonochemistry 2924: 2922: 2921:Cryochemistry 2919: 2915: 2914:Micromeritics 2912: 2911: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2888: 2885: 2883: 2880: 2879: 2878: 2875: 2874: 2872: 2870: 2866: 2858: 2855: 2854: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2831: 2828: 2827: 2826: 2823: 2821: 2818: 2817: 2815: 2813: 2809: 2803: 2800: 2798: 2795: 2793: 2792:Wet chemistry 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2771: 2768: 2766: 2763: 2762: 2761: 2758: 2756: 2753: 2749: 2746: 2744: 2741: 2739: 2736: 2735: 2734: 2731: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2708: 2707: 2704: 2702: 2699: 2697: 2694: 2693: 2691: 2689: 2685: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2660: 2657: 2653: 2645: 2640: 2638: 2633: 2631: 2626: 2625: 2622: 2615: 2612: 2609: 2606: 2603: 2600: 2597: 2594: 2584: 2578: 2573: 2568: 2567: 2557: 2555:9781483184081 2551: 2547: 2543: 2539: 2535: 2533:9783540084761 2529: 2525: 2521: 2517: 2513: 2511:9780198520146 2507: 2503: 2499: 2495: 2491: 2487: 2486:W.G.Schneider 2483: 2479: 2475: 2473:9781258811662 2469: 2465: 2464: 2459: 2455: 2454: 2441: 2437: 2433: 2429: 2425: 2418: 2410: 2406: 2402: 2398: 2394: 2387: 2379: 2375: 2371: 2364: 2356: 2352: 2347: 2342: 2338: 2334: 2329: 2324: 2320: 2316: 2312: 2305: 2297: 2293: 2288: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2240: 2236: 2232: 2228: 2224: 2217: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2178: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2139: 2131: 2127: 2122: 2117: 2113: 2109: 2102: 2094: 2088: 2084: 2077: 2075: 2066: 2060: 2056: 2049: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2006: 2000: 1996: 1990: 1976: 1970: 1963: 1957: 1949: 1943: 1939: 1935: 1931: 1924: 1916: 1912: 1908: 1904: 1900: 1896: 1889: 1881: 1877: 1873: 1869: 1862: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1819: 1811: 1804: 1790: 1786: 1780: 1775: 1768: 1760: 1756: 1749: 1741: 1737: 1731: 1723: 1719: 1713: 1705: 1699: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1660: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1613: 1611:9780841227941 1607: 1603: 1599: 1595: 1588: 1580: 1573: 1569: 1564: 1559: 1555: 1551: 1547: 1544: 1543: 1538: 1531: 1523: 1519: 1515: 1511: 1510: 1502: 1494: 1490: 1486: 1482: 1478: 1474: 1467: 1453: 1449: 1443: 1430: 1428:9780444518118 1424: 1420: 1416: 1412: 1408: 1401: 1386: 1382: 1376: 1360: 1356: 1350: 1342: 1336: 1328: 1321: 1313: 1307: 1299: 1292: 1277: 1271: 1264: 1263: 1256: 1248: 1246:9783540084761 1242: 1238: 1234: 1228: 1224: 1214: 1211: 1209: 1206: 1204: 1201: 1200: 1199: 1197: 1191: 1188: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1133:Low field NMR 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1115: 1108: 1104: 1100: 1091: 1082: 1080: 1079:carbohydrates 1076: 1071: 1064:Carbohydrates 1061: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1022: 1020: 1016: 1012: 1008: 1004: 1000: 996: 990: 988: 984: 980: 979:nucleic acids 976: 971: 964:Nucleic acids 961: 959: 955: 950: 946: 941: 937: 933: 929: 925: 921: 917: 911: 896: 892: 889: 883: 878: 869: 860: 858: 854: 850: 846: 842: 838: 834: 830: 826: 822: 817: 807: 802: 792: 788: 784: 782: 779:published by 778: 773: 771: 757: 753: 749: 745: 741: 736: 732: 730: 725: 722: 717: 715: 711: 710:1:1:1 triplet 707: 701: 699: 695: 683: 671: 662: 660: 656: 652: 648: 643: 639: 635: 630: 628: 620: 612: 604: 600: 596: 592: 587: 578: 575: 574: 570: 567: 566: 562: 559: 558: 554: 551: 550: 546: 543: 542: 538: 535: 534: 530: 527: 526: 522: 519: 518: 514: 504: 502: 485: 481: 479: 478:paramagnetism 475: 470: 465: 463: 459: 458:Zeeman effect 453: 443: 435: 431: 429: 423: 421: 417: 413: 403: 401: 397: 390:Shim and lock 387: 385: 381: 377: 369: 365: 361: 357: 347: 345: 341: 330: 328: 324: 320: 316: 312: 308: 295: 290: 281: 279: 275: 271: 267: 263: 253: 251: 247: 243: 239: 235: 231: 221: 219: 215: 209: 207: 203: 199: 198:liquid helium 195: 187: 182: 178: 176: 172: 168: 163: 159: 157: 153: 148: 146: 142: 141:wet chemistry 138: 134: 129: 127: 123: 122:carbon-13 NMR 119: 114: 106: 103: 96: 95: 94: 91: 89: 85: 80: 76: 72: 71:nuclear spins 68: 67:atomic nuclei 64: 63:spectroscopic 60: 56: 52: 48: 41: 37: 32: 19: 4175: 4131: 4119: 4099:(a misnomer) 4085:Applications 4003:Time-stretch 3942: 3894:paramagnetic 3712:Fluorescence 3630:Spectroscopy 3585: 3573: 3561: 3549: 3399:Biosynthesis 3249:Geochemistry 3164:Pharmacology 3140:Cell biology 3130:Biochemistry 2958:Spectroscopy 2857:VSEPR theory 2725: 2706:Spectroscopy 2650:Branches of 2586:. Retrieved 2548:. Pergamon. 2545: 2523: 2501: 2489: 2462: 2431: 2427: 2417: 2400: 2396: 2386: 2363: 2321:(23): 5551. 2318: 2314: 2304: 2261: 2257: 2247: 2230: 2226: 2216: 2191: 2187: 2177: 2152: 2148: 2138: 2111: 2101: 2082: 2054: 2048: 2015: 2011: 2005: 1989: 1978:. Retrieved 1969: 1961: 1956: 1929: 1923: 1898: 1894: 1888: 1871: 1868:Can. J. Chem 1867: 1861: 1828: 1824: 1818: 1809: 1803: 1792:. Retrieved 1784: 1767: 1758: 1748: 1739: 1730: 1721: 1712: 1698: 1673: 1669: 1659: 1634: 1630: 1620: 1593: 1587: 1545: 1540: 1530: 1513: 1507: 1501: 1493:the original 1483:(1): 23–27. 1480: 1476: 1466: 1455:. Retrieved 1451: 1442: 1432:, retrieved 1410: 1400: 1389:. Retrieved 1387:. 2016-07-14 1384: 1375: 1363:. Retrieved 1359:the original 1349: 1335: 1326: 1320: 1306: 1291: 1279:. Retrieved 1261: 1255: 1236: 1227: 1193: 1105: 1101: 1097: 1088: 1073: 1042:bent helices 1023: 991: 973: 945:isotopically 913: 893: 884: 880: 819: 804: 789: 785: 774: 769: 766: 755: 751: 747: 728: 726: 720: 718: 713: 709: 702: 697: 693: 681: 669: 663: 650: 646: 637: 633: 631: 624: 520:Multiplicity 498: 468: 466: 455: 441: 432: 424: 409: 393: 356:hydrocarbons 353: 343: 336: 304: 277: 273: 269: 261: 259: 227: 210: 191: 164: 160: 149: 135:. Different 130: 110: 92: 58: 54: 50: 46: 45: 18:NMR spectrum 3671:Vibrational 3587:WikiProject 2812:Theoretical 2797:Calorimetry 2542:John Emsley 2012:ChemBioChem 1901:(5): 2229. 1054:pseudoknots 1036:(using the 916:protein NMR 888:magic angle 721:neighboring 716:and so on. 552:Quartet (q) 544:Triplet (t) 536:Doublet (d) 528:Singlet (s) 246:Felix Bloch 3877:Two-photon 3779:absorption 3661:Rotational 3423:Metallurgy 3122:Biological 2688:Analytical 2588:2007-05-11 2498:A. Abragam 2434:: 120525. 2403:: 122230. 2264:(9): 1–7. 1980:2014-09-22 1794:2007-05-11 1542:Chem. Sci. 1457:2023-11-25 1434:2023-11-25 1391:2023-11-25 1365:9 February 1281:7 December 1219:References 1050:stem-loops 981:, such as 781:John Pople 696:to form a 651:Long-range 563:1:4:6:4:1 513:J-coupling 507:J-coupling 428:sine curve 380:Proton NMR 175:relaxation 38:magnet at 4459:Reference 3955:Terahertz 3936:Radiowave 3834:Mössbauer 3485:Catalysis 2993:Inorganic 2787:Titration 2652:chemistry 2482:J.A.Pople 2337:1420-3049 2315:Molecules 2278:0034-6748 2208:0021-9606 2169:1056-8700 2130:233441183 1874:: 65–81. 1853:207195859 1690:0022-3654 1651:0022-3263 603:−OH group 469:assigning 364:deuterium 4480:Category 4121:Category 3850:Electron 3817:Emission 3767:emission 3724:Vibronic 3551:Category 3507:Molecule 3444:See also 2869:Physical 2522:(1963). 2500:(1961). 2460:(1959). 2355:33256081 2296:16508692 2114:: 1–16. 2040:33523981 2032:14523911 1845:30486649 1572:29142693 1489:16428685 1235:(1963). 1111:See also 1032:angles, 904:Proteins 853:molecule 659:aromatic 613:and the 555:1:3:3:1 294:NMR tube 200:-cooled 113:proteins 79:isotopic 61:), is a 4187:Isotope 4180:isotope 4133:Commons 3960:ESR/EPR 3908:Nucleon 3736:(REMPI) 3563:Commons 3527:Alchemy 3043:Organic 2346:7731413 2287:1343520 2227:Methods 1903:Bibcode 1563:5656982 829:acronym 770:roofing 740:menthol 694:doublet 682:quartet 670:triplet 591:ethanol 560:Quintet 311:isotope 224:History 40:HWB-NMR 4356:- CDCl 3974:Others 3762:Atomic 3575:Portal 2721:UV-Vis 2552:  2530:  2508:  2470:  2353:  2343:  2335:  2294:  2284:  2276:  2206:  2167:  2128:  2089:  2061:  2038:  2030:  1944:  1851:  1843:  1688:  1649:  1608:  1570:  1560:  1487:  1425:  1300:. CEN. 1272:  1243:  1009:, and 847:, and 825:2D-NMR 816:2D-NMR 777:method 655:cyclic 576:Septet 568:Sextet 547:1:2:1 118:proton 4430:- (C 4392:- (CD 4378:- (CD 4329:- (CD 3915:Alpha 3884:Auger 3862:X-ray 3829:Gamma 3807:X-ray 3740:Raman 3651:Raman 3646:FT-IR 2748:MALDI 2716:Raman 2614:Vespa 2608:relax 2126:S2CID 2036:S2CID 1849:S2CID 1266:(PDF) 1011:P NMR 1007:N NMR 1003:C NMR 742:with 396:shims 370:(CDCl 315:Tesla 186:shims 4420:- CD 4386:NCOD 4365:- CD 3502:Atom 2770:HPLC 2550:ISBN 2528:ISBN 2506:ISBN 2468:ISBN 2351:PMID 2333:ISSN 2292:PMID 2274:ISSN 2204:ISSN 2165:ISSN 2087:ISBN 2059:ISBN 2028:PMID 1942:ISBN 1841:PMID 1686:ISSN 1647:ISSN 1606:ISBN 1568:PMID 1485:PMID 1423:ISBN 1367:2014 1283:2018 1270:ISBN 1241:ISBN 1052:and 849:HMBC 845:HMQC 841:HSQC 833:COSY 657:and 539:1:1 266:spin 244:and 126:spin 120:and 4444:- D 4406:- C 4400:S=O 4343:- C 4337:C=O 4178:by 3943:NMR 3512:Ion 2743:ICP 2726:NMR 2436:doi 2432:367 2405:doi 2401:384 2374:doi 2341:PMC 2323:doi 2282:PMC 2266:doi 2235:doi 2196:doi 2157:doi 2116:doi 2020:doi 1995:doi 1934:doi 1911:doi 1876:doi 1833:doi 1829:140 1678:doi 1639:doi 1598:doi 1558:PMC 1550:doi 1518:doi 1481:106 1415:doi 987:RNA 985:or 983:DNA 928:kDa 615:−CH 499:In 400:ppb 323:MHz 194:USD 59:MRS 53:or 4482:: 4438:)O 4424:OD 4414:OD 4369:Cl 4274:Pb 4269:Hg 4264:Pt 4259:Se 4254:Co 4249:Fe 4234:Si 4204:He 3948:2D 3867:UV 3242:/ 3238:/ 3090:/ 2765:GC 2738:EI 2711:IR 2581:. 2484:; 2430:. 2426:. 2399:. 2395:. 2349:. 2339:. 2331:. 2319:25 2317:. 2313:. 2290:. 2280:. 2272:. 2262:76 2260:. 2256:. 2231:34 2229:. 2225:. 2202:. 2192:22 2190:. 2186:. 2163:. 2153:23 2151:. 2147:. 2124:. 2110:. 2073:^ 2034:. 2026:. 2014:. 1940:. 1932:. 1909:. 1899:64 1897:. 1872:35 1870:. 1847:. 1839:. 1827:. 1787:. 1783:. 1757:. 1738:. 1720:. 1684:. 1674:62 1672:. 1668:. 1645:. 1635:62 1633:. 1629:. 1604:. 1566:. 1556:. 1539:. 1514:34 1512:. 1479:. 1475:. 1450:. 1421:, 1409:, 1383:. 1198:: 1013:. 1005:, 1001:, 843:, 831:, 607:CH 531:1 493:10 329:. 128:. 90:. 4448:O 4446:2 4436:8 4434:D 4432:4 4422:3 4412:5 4410:D 4408:2 4398:2 4396:) 4394:3 4384:2 4382:) 4380:3 4371:2 4367:2 4358:3 4349:6 4347:D 4345:6 4335:2 4333:) 4331:3 4308:e 4301:t 4294:v 4244:V 4239:P 4229:F 4224:O 4219:N 4214:C 4209:B 4199:H 4194:H 4168:e 4161:t 4154:v 3622:e 3615:t 3608:v 3476:" 3472:" 2643:e 2636:t 2629:v 2591:. 2579:) 2558:. 2536:. 2514:. 2476:. 2442:. 2438:: 2411:. 2407:: 2380:. 2376:: 2357:. 2325:: 2298:. 2268:: 2241:. 2237:: 2210:. 2198:: 2171:. 2159:: 2132:. 2118:: 2095:. 2067:. 2042:. 2022:: 2016:4 1997:: 1983:. 1950:. 1936:: 1917:. 1913:: 1905:: 1882:. 1878:: 1855:. 1835:: 1797:. 1781:) 1761:. 1742:. 1724:. 1706:. 1692:. 1680:: 1653:. 1641:: 1614:. 1600:: 1574:. 1552:: 1546:6 1524:. 1520:: 1460:. 1417:: 1394:. 1369:. 1343:. 1285:. 1249:. 949:N 756:e 752:a 748:a 729:J 690:2 686:3 678:2 674:2 666:3 638:n 634:n 619:− 617:2 611:− 609:3 599:H 491:H 489:6 372:3 342:( 296:. 278:I 274:I 270:I 262:I 188:. 101:. 99:0 57:( 36:T 20:)

Index

NMR spectrum

T
HWB-NMR
spectroscopic
atomic nuclei
nuclear spins
radio frequency
isotopic
functional groups
organic compounds
proteins
proton
carbon-13 NMR
spin
small molecules
functional groups
wet chemistry
color reagents
mass spectrometry
solid-state NMR
two-dimensional NMR
nuclear Overhauser effect
relaxation

shims
USD
liquid helium
superconducting
population difference

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.