Knowledge

Mutagenesis (molecular biology technique)

Source đź“ť

340:
immunocompromised patients I need of bone marrow. Gammaretroviruses carrying enhancers were then inserted into patients. The second mechanism is referred to as promoter insertion. Promoters provide our cells with the specific sequences needed to begin translation. Promoter insertion has helped researchers learn more about the HIV virus. The third mechanism is gene inactivation. An example of gene inactivation is using insertional mutagenesis to insert a retrovirus that disrupts the genome of the T cell in leukemia patients and giving them a specific antigen called CAR allowing the T cells to target cancer cells. The final mechanisms is referred to as mRNA 3' end substitution. Our genes occasionally undergo point mutations causing beta-thalassemia that interrupts red blood cell function. To fix this problem the correct gene sequence for the red blood cells are introduced and a substitution is made.
314:
mutations on protein function. Large numbers of mutants may be screened for a particular characteristic by combinatorial analysis. In this technique, multiple positions or short sequences along a DNA strand may be exhaustively modified to obtain a comprehensive library of mutant proteins. The rate of incidence of beneficial variants can be improved by different methods for constructing mutagenesis libraries. One approach to this technique is to extract and replace a portion of the DNA sequence with a library of sequences containing all possible combinations at the desired mutation site. The content of the inserted segment can include sequences of structural significance, immunogenic property, or enzymatic function. A segment may also be inserted randomly into the gene in order to assess structural or functional significance of a particular part of a protein.
336:. Engineered mutations such as these can provide important information in cancer research, such as mechanistic insights into the development of the disease. Retroviruses and transposons are the chief instrumental tools in insertional mutagenesis. Retroviruses, such as the mouse mammory tumor virus and murine leukemia virus, can be used to identify genes involved in carcinogenesis and understand the biological pathways of specific cancers. Transposons, chromosomal segments that can undergo transposition, can be designed and applied to insertional mutagenesis as an instrument for cancer gene discovery. These chromosomal segments allow insertional mutagenesis to be applied to virtually any tissue of choice while also allowing for more comprehensive, unbiased depth in DNA sequencing. 88: 238:, and N-hydroxycytidine may induce a GC to AT transition. These techniques allow specific mutations to be engineered into a protein; however, they are not flexible with respect to the kinds of mutants generated, nor are they as specific as later methods of site-directed mutagenesis and therefore have some degree of randomness. Other technologies such as cleavage of DNA at specific sites on the chromosome, addition of new nucleotides, and exchanging of base pairs it is now possible to decide where mutations can go. 277: 242: 55:. The various constituents of a gene, as well as its regulatory elements and its gene products, may be mutated so that the functioning of a genetic locus, process, or product can be examined in detail. The mutation may produce mutant proteins with interesting properties or enhanced or novel functions that may be of commercial use. Mutant strains may also be produced that have practical application or allow the molecular basis of a particular cell function to be investigated. 75:. Site-directed mutagenesis has proved useful in situations that random mutagenesis is not. Other techniques of mutagenesis include combinatorial and insertional mutagenesis. Mutagenesis that is not random can be used to clone DNA, investigate the effects of mutagens, and engineer proteins. It also has medical applications such as helping immunocompromised patients, research and treatment of diseases including HIV and cancers, and curing of diseases such as 24: 218:
random mutagenesis can produce a change in single nucleotides, it does not offer much control as to which nucleotide is being changed. Many researchers therefore seek to introduce selected changes to DNA in a precise, site-specific manner. Early attempts uses analogs of nucleotides and other chemicals were first used to generate localized
351:
can be used to produce specific mutation in an organism. Vector containing DNA sequence similar to the gene to be modified is introduced to the cell, and by a process of recombination replaces the target gene in the chromosome. This method can be used to introduce a mutation or knock out a gene, for
280:
Site saturation mutagenesis is a type of site-directed mutagenesis. This image shows the saturation mutagenesis of a single position in a theoretical 10-residue protein. The wild type version of the protein is shown at the top, with M representing the first amino acid methionine, and * representing
272:
Site directed mutagenesis allows the effect of specific mutation to be investigated. There are numerous uses; for example, it has been used to determine how susceptible certain species were to chemicals that are often used In labs. The experiment used site directed mutagenesis to mimic the expected
268:
Newer and more efficient methods of site directed mutagenesis are being constantly developed. For example, a technique called "Seamless ligation cloning extract" (or SLiCE for short) allows for the cloning of certain sequences of DNA within the genome, and more than one DNA fragment can be inserted
99:
sample sequence space. The amino acid substituted into a given position is shown. Each dot or set of connected dots is one member of the library. Error-prone PCR randomly mutates some residues to other amino acids. Alanine scanning replaces each residue of the protein with alanine, one-by-one. Site
339:
Researchers have found four mechanisms of insertional mutagenesis that can be used on humans. the first mechanism is called enhancer insertion. Enhancers boost transcription of a particular gene by interacting with a promoter of that gene. This particular mechanism was first used to help severely
313:
Combinatorial mutagenesis is a site-directed protein engineering technique whereby multiple mutants of a protein can be simultaneously engineered based on analysis of the effects of additive individual mutations. It provides a useful method to assess the combinatorial effect of a large number of
217:
Prior to the development site-directed mutagenesis techniques, all mutations made were random, and scientists had to use selection for the desired phenotype to find the desired mutation. Random mutagenesis techniques has an advantage in terms of how many mutations can be produced; however, while
374:-Cas9 technology has allowed for the efficient introduction of different types of mutations into the genome of a wide variety of organisms. The method does not require a transposon insertion site, leaves no marker, and its efficiency and simplicity has made it the preferred method for 58:
Many methods of mutagenesis exist today. Initially, the kind of mutations artificially induced in the laboratory were entirely random using mechanisms such as UV irradiation. Random mutagenesis cannot target specific regions or sequences of the genome; however, with the development of
138:, another in a minimal medium, and mutants that have specific nutritional requirements can then be identified by their inability to grow in the minimal medium. Similar procedures may be repeated with other types of cells and with different media for selection. 157:
reaction in conditions that enhance misincorporation of nucleotides (error-prone PCR), for example by reducing the fidelity of replication or using nucleotide analogues. A variation of this method for integrating non-biased mutations in a gene is
1490:
Cerchione, Derek; Loveluck, Katherine; Tillotson, Eric L.; Harbinski, Fred; DaSilva, Jen; Kelley, Chase P.; Keston-Smith, Elise; Fernandez, Cecilia A.; Myer, Vic E.; Jayaram, Hariharan; Steinberg, Barrett E.; Xu, Shuang-yong (16 April 2020).
390:
is now a viable method for introducing mutations into a gene. This method allows for extensive mutation at multiple sites, including the complete redesign of the codon usage of a gene to optimise it for a particular organism.
1362:
MĂĽller W, Weber H, Meyer F, Weissmann C (September 1978). "Site-directed mutagenesis in DNA: generation of point mutations in cloned beta globin complementary dna at the positions corresponding to amino acids 121 to 123".
1614:
Choi GC, Zhou P, Yuen CT, Chan BK, Xu F, Bao S, Chu HY, Thean D, Tan K, Wong KH, Zheng Z, Wong AS (August 2019). "Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9".
249:
Current techniques for site-specific mutation originates from the primer extension technique developed in 1978. Such techniques commonly involve using pre-fabricated mutagenic oligonucleotides in a
544:"In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility Derived From the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Tool" 591:
Choi GC, Zhou P, Yuen CT, Chan BK, Xu F, Bao S, et al. (August 2019). "Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9".
488:"A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis" 245:
Simplified diagram of the site directed mutagenic technique using pre-fabricated oligonucleotides in a primer extension reaction with DNA polymerase
1705:
Vassiliou G, Rad R, Bradley A (2010-01-01). "The use of DNA transposons for cancer gene discovery in mice". In Wassarman PM, Soriano PM (eds.).
265:
of small stretches of DNA at specific sites. Advances in methodology have made such mutagenesis now a relatively simple and efficient process.
104:
Early approaches to mutagenesis relied on methods which produced entirely random mutations. In such methods, cells or organisms are exposed to
273:
mutations of the specific chemical. The mutation resulted in a change in specific amino acids and the effects of this mutation were analyzed.
1447:
Reetz, M. T.; Carballeira J. D. (2007). "Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes".
1935: 1940: 1246:"Local mutagenesis: a method for generating viral mutants with base substitutions in preselected regions of the viral genome" 1019: 130:, mutants may be selected first by exposure to UV radiation, then plated onto an agar medium. The colonies formed are then 1657:
Uren AG, Kool J, Berns A, van Lohuizen M (November 2005). "Retroviral insertional mutagenesis: past, present and future".
293:
in order to identify residues important to the structure or function of a protein. Another comprehensive approach is site
1305:"Site-directed mutagenesis: effect of an extracistronic mutation on the in vitro propagation of bacteriophage Qbeta RNA" 801: 641:"Retroviral Insertional Mutagenesis in Humans: Evidence for Four Genetic Mechanisms Promoting Expansion of Cell Clones" 1875: 1722: 100:
saturation substitutes each of the 20 possible amino acids (or some subset of them) at a single position, one-by-one.
1893: 159: 149:
for mutants with interesting or improved properties. These methods may involve the use of doped nucleotides in
27:
Types of mutations that can be introduced by random, site-directed, combinatorial, or insertional mutagenesis.
689: 200: 52: 910:
Hrabé de Angelis M, Balling R (May 1998). "Large scale ENU screens in the mouse: genetics meets genomics".
323: 231: 108:
such as UV radiation or mutagenic chemicals, and mutants with desired characteristics are then selected.
1746: 250: 16:
This article is about mutagenesis as a laboratory technique. For mutagenesis as a general process, see
1493:"SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity" 1912: 387: 212: 154: 60: 348: 1400:"Analysis of Large-Scale Mutagenesis Data To Assess the Impact of Single Amino Acid Substitutions" 333: 117: 87: 327: 294: 281:
the termination of translation. All 19 mutants of the isoleucine at position 5 are shown below.
189: 791: 1865: 1766:"Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9" 542:
Doering JA, Lee S, Kristiansen K, Evenseth L, Barron MG, Sylte I, LaLone CA (November 2018).
410: 227: 109: 1930: 1570: 1504: 1316: 1257: 919: 704: 262: 8: 953:
Flibotte S, Edgley ML, Chaudhry I, Taylor J, Neil SE, Rogula A, et al. (June 2010).
400: 365: 258: 44: 1709:. Methods in Enzymology. Vol. 477 (2nd ed.). Academic Press. pp. 91–106. 1574: 1508: 1320: 1261: 1124: 923: 708: 1841: 1816: 1792: 1765: 1707:
Guide to Techniques in Mouse Development, Part B: Mouse Molecular Genetics, 2nd Edition
1682: 1639: 1591: 1558: 1527: 1492: 1472: 1424: 1399: 1197:"Isolation and characterization of proline peptidase mutants of Salmonella typhimurium" 1069: 1044: 979: 954: 764: 739: 665: 640: 616: 568: 543: 514: 487: 460: 435: 415: 1714: 1339: 1304: 1280: 1245: 1221: 1196: 1172: 1147: 931: 843: 818: 332:
The insertion of one or more base pairs, resulting in DNA mutations, is also known as
1871: 1846: 1797: 1728: 1718: 1674: 1643: 1631: 1596: 1532: 1464: 1429: 1380: 1376: 1344: 1285: 1226: 1177: 1128: 1074: 1025: 1015: 984: 935: 889: 848: 797: 769: 720: 670: 620: 608: 573: 519: 465: 167: 163: 92: 48: 32: 1686: 1476: 1836: 1828: 1787: 1777: 1710: 1666: 1623: 1586: 1578: 1522: 1512: 1456: 1419: 1411: 1372: 1334: 1324: 1275: 1265: 1216: 1208: 1167: 1159: 1120: 1064: 1056: 1007: 974: 966: 927: 879: 838: 830: 759: 751: 712: 660: 652: 600: 563: 555: 509: 499: 455: 447: 286: 174: 126: 76: 67:/Cas9 technology, based on a prokaryotic viral defense system, has allowed for the 1212: 755: 1517: 150: 131: 1907: 1415: 1045:"Optimizing bacteriophage engineering through an accelerated evolution platform" 1011: 970: 819:"Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution" 656: 1397: 1309:
Proceedings of the National Academy of Sciences of the United States of America
1250:
Proceedings of the National Academy of Sciences of the United States of America
1060: 716: 451: 375: 254: 219: 196: 146: 68: 1832: 1782: 1627: 604: 504: 276: 1924: 353: 135: 884: 867: 559: 285:
The site-directed approach may be done systematically in such techniques as
241: 199:
law (as 2001/18 directive), this kind of mutagenesis may be used to produce
1850: 1801: 1732: 1678: 1670: 1635: 1600: 1536: 1468: 1433: 1270: 1078: 1029: 988: 893: 852: 724: 674: 612: 577: 523: 469: 203:
but the products are exempted from regulation: no labeling, no evaluation.
1582: 1460: 1329: 1230: 1181: 1146:
Caras IW, MacInnes MA, Persing DH, Coffino P, Martin DW (September 1982).
1132: 1002:
Bökel C (2008). "EMS Screens: From Mutagenesis to Screening and Mapping".
939: 773: 1817:"The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans" 1763: 1398:
Vanessa E. Gray; Ronald J. Hause; Douglas M. Fowler (September 1, 2017).
1384: 1289: 1163: 834: 223: 17: 1348: 1148:"Mechanism of 2-aminopurine mutagenesis in mouse T-lymphosarcoma cells" 302: 192:(EMS) is also often used to generate animal, plant, and virus mutants. 405: 235: 436:"Development and applications of CRISPR-Cas9 for genome engineering" 63:, more specific changes can be made. Since 2013, development of the 1489: 121: 955:"Whole-genome profiling of mutagenesis in Caenorhabditis elegans" 290: 142: 105: 1006:. Methods in Molecular Biology. Vol. 420. pp. 119–38. 141:
A number of methods for generating random mutations in specific
1111:
Shortle D, DiMaio D, Nathans D (1981). "Directed mutagenesis".
1094:"GMO directive : the origins of the mutagenesis exemption" 866:
Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A (1999).
371: 120:, and went on to use the mutants he created for his studies in 64: 23: 1093: 796:(3rd ed.). Royal Society of Chemistry. pp. 191–192. 541: 298: 113: 1556: 1303:
Flavell RA, Sabo DL, Bandle EF, Weissmann C (January 1975).
1042: 952: 289:
mutagenesis, whereby residues are systematically mutated to
170:
and the mutant proteins produced can then be characterised.
1145: 1557:
Parker AS, Griswold KE, Bailey-Kellogg C (November 2011).
1302: 865: 1656: 1361: 817:
Wong TS, Tee KL, Hauer B, Schwaneberg U (February 2004).
178: 51:
of mutant genes, proteins, strains of bacteria, or other
40: 905: 903: 301:
or a set of codons may be substituted with all possible
1043:
Favor AH, Llanos CD, Youngblut MD, Bardales JA (2020).
909: 816: 1747:"Homologous Recombination Method (and Knockout Mouse)" 1446: 900: 1764:
Damien Biot-Pelletier; Vincent J. J. Martin (2016).
1110: 386:
As the cost of DNA oligonucleotide synthesis falls,
1864:Khudyakov YE, Fields HA, eds. (25 September 2002). 1704: 740:"Seventy years ago: mutation becomes experimental" 162:. PCR products which contain mutation(s) are then 1700: 1698: 1696: 1922: 1613: 785: 783: 590: 481: 479: 1863: 1693: 1552: 1550: 1548: 1546: 1243: 737: 634: 632: 630: 537: 535: 533: 433: 188:(ENU) have been used to generate mutant mice. 946: 780: 476: 39:is an important laboratory technique whereby 1607: 1194: 859: 308: 257:. This methods allows for point mutation or 206: 1559:"Optimization of combinatorial mutagenesis" 1543: 1085: 627: 530: 343: 1036: 995: 317: 1840: 1791: 1781: 1590: 1526: 1516: 1423: 1338: 1328: 1279: 1269: 1220: 1171: 1068: 978: 883: 842: 789: 763: 664: 567: 513: 503: 485: 459: 1867:Artificial DNA: Methods and Applications 584: 434:Hsu PD, Lander ES, Zhang F (June 2014). 275: 240: 86: 22: 738:Crow JF, Abrahamson S (December 1997). 638: 388:artificial synthesis of a complete gene 96: 1923: 1091: 793:Nucleic Acids in Chemistry and Biology 690:"Artificial Transmutation of the Gene" 687: 1195:McHugh GL, Miller CG (October 1974). 1001: 352:example as used in the production of 82: 1814: 1125:10.1146/annurev.ge.15.120181.001405 13: 1440: 14: 1952: 1887: 1770:Journal of Biological Engineering 1244:Shortle D, Nathans D (May 1978). 381: 1563:Journal of Computational Biology 1857: 1808: 1757: 1739: 1650: 1483: 1391: 1355: 1296: 1237: 1188: 1139: 1104: 370:Since 2013, the development of 160:sequence saturation mutagenesis 116:can cause genetic mutations in 1936:Genetically modified organisms 1152:Molecular and Cellular Biology 810: 731: 681: 427: 53:genetically modified organisms 1: 1715:10.1016/s0076-6879(10)77006-3 1213:10.1128/JB.120.1.364-371.1974 932:10.1016/s0027-5107(98)00061-x 421: 1941:Molecular biology techniques 1913:Resources in other libraries 1518:10.1371/journal.pone.0231716 1377:10.1016/0022-2836(78)90303-0 1365:Journal of Molecular Biology 639:Bushman FD (February 2020). 324:Signature tagged mutagenesis 226:, which induces an AT to GC 7: 1416:10.1534/genetics.117.300064 1012:10.1007/978-1-59745-583-1_7 971:10.1534/genetics.110.116616 756:10.1093/genetics/147.4.1491 657:10.1016/j.ymthe.2019.12.009 394: 305:at the specific positions. 153:synthesis, or conducting a 71:or mutagenesis of a genome 43:mutations are deliberately 10: 1957: 1061:10.1038/s41598-020-70841-1 790:Blackburn GM, ed. (2006). 717:10.1126/science.66.1699.84 452:10.1016/j.cell.2014.05.010 363: 321: 210: 15: 1908:Resources in your library 1870:. CRC Press. p. 13. 1833:10.1016/j.jgg.2015.06.005 1783:10.1186/s13036-016-0028-1 1628:10.1038/s41592-019-0473-0 1113:Annual Review of Genetics 605:10.1038/s41592-019-0473-0 505:10.1186/s12896-015-0162-8 486:Motohashi K (June 2015). 359: 309:Combinatorial mutagenesis 269:into the genome at once. 222:. Such chemicals include 213:Site-directed mutagenesis 207:Site-directed mutagenesis 61:site-directed mutagenesis 872:Human Molecular Genetics 349:Homologous recombination 344:Homologous recombination 253:extension reaction with 145:were later developed to 112:discovered in 1927 that 1815:Xu S (20 August 2015). 1201:Journal of Bacteriology 1092:Krinke C (March 2018). 868:"Mouse ENU mutagenesis" 688:Muller HJ (July 1927). 334:insertional mutagenesis 318:Insertional mutagenesis 1671:10.1038/sj.onc.1209043 1271:10.1073/pnas.75.5.2170 823:Nucleic Acids Research 548:Toxicological Sciences 328:Transposon mutagenesis 295:saturation mutagenesis 282: 246: 190:Ethyl methanesulfonate 101: 28: 1583:10.1089/cmb.2011.0152 1461:10.1038/nprot.2007.72 1330:10.1073/pnas.72.1.367 885:10.1093/hmg/8.10.1955 560:10.1093/toxsci/kfy186 411:Saturated mutagenesis 322:Further information: 279: 244: 90: 26: 1164:10.1128/mcb.2.9.1096 1575:2011LNCS.6577..321P 1509:2020PLoSO..1531716C 1321:1975PNAS...72..367F 1262:1978PNAS...75.2170S 924:1998MRFMM.400...25D 709:1927Sci....66...84M 401:Genetic engineering 366:CRISPR gene editing 173:In animal studies, 1049:Scientific Reports 835:10.1093/nar/gnh028 416:Directed evolution 283: 247: 102: 97:random mutagenesis 83:Random mutagenesis 29: 1894:Library resources 1021:978-1-58829-817-1 912:Mutation Research 645:Molecular Therapy 492:BMC Biotechnology 175:alkylating agents 168:expression vector 33:molecular biology 1948: 1882: 1881: 1861: 1855: 1854: 1844: 1821:J Genet Genomics 1812: 1806: 1805: 1795: 1785: 1761: 1755: 1754: 1751:Davidson College 1743: 1737: 1736: 1702: 1691: 1690: 1654: 1648: 1647: 1611: 1605: 1604: 1594: 1554: 1541: 1540: 1530: 1520: 1487: 1481: 1480: 1449:Nature Protocols 1444: 1438: 1437: 1427: 1395: 1389: 1388: 1359: 1353: 1352: 1342: 1332: 1300: 1294: 1293: 1283: 1273: 1241: 1235: 1234: 1224: 1192: 1186: 1185: 1175: 1143: 1137: 1136: 1108: 1102: 1101: 1089: 1083: 1082: 1072: 1040: 1034: 1033: 999: 993: 992: 982: 950: 944: 943: 907: 898: 897: 887: 863: 857: 856: 846: 814: 808: 807: 787: 778: 777: 767: 735: 729: 728: 694: 685: 679: 678: 668: 636: 625: 624: 588: 582: 581: 571: 539: 528: 527: 517: 507: 483: 474: 473: 463: 431: 287:alanine scanning 232:nitrosoguanidine 127:Escherichia coli 77:beta thalassemia 1956: 1955: 1951: 1950: 1949: 1947: 1946: 1945: 1921: 1920: 1919: 1918: 1917: 1902: 1901: 1897: 1890: 1885: 1878: 1862: 1858: 1813: 1809: 1762: 1758: 1745: 1744: 1740: 1725: 1703: 1694: 1665:(52): 7656–72. 1655: 1651: 1612: 1608: 1569:(11): 1743–56. 1555: 1544: 1503:(4): e0231716. 1488: 1484: 1445: 1441: 1396: 1392: 1360: 1356: 1301: 1297: 1242: 1238: 1193: 1189: 1158:(9): 1096–103. 1144: 1140: 1109: 1105: 1090: 1086: 1041: 1037: 1022: 1000: 996: 951: 947: 908: 901: 878:(10): 1955–63. 864: 860: 815: 811: 804: 788: 781: 736: 732: 692: 686: 682: 637: 628: 589: 585: 540: 531: 484: 477: 432: 428: 424: 397: 384: 368: 362: 346: 330: 320: 311: 220:point mutations 215: 209: 151:oligonucleotide 85: 21: 12: 11: 5: 1954: 1944: 1943: 1938: 1933: 1916: 1915: 1910: 1904: 1903: 1892: 1891: 1889: 1888:External links 1886: 1884: 1883: 1876: 1856: 1807: 1756: 1738: 1723: 1692: 1649: 1622:(8): 722–730. 1616:Nature Methods 1606: 1542: 1482: 1455:(4): 891–903. 1439: 1390: 1354: 1295: 1236: 1187: 1138: 1103: 1084: 1035: 1020: 994: 945: 918:(1–2): 25–32. 899: 858: 809: 803:978-0854046546 802: 779: 730: 703:(1699): 84–7. 680: 651:(2): 352–356. 626: 599:(8): 722–730. 593:Nature Methods 583: 554:(1): 131–145. 529: 475: 446:(6): 1262–78. 425: 423: 420: 419: 418: 413: 408: 403: 396: 393: 383: 382:Gene synthesis 380: 376:genome editing 364:Main article: 361: 358: 345: 342: 319: 316: 310: 307: 255:DNA polymerase 211:Main article: 208: 205: 197:European Union 132:replica-plated 110:Hermann Muller 84: 81: 9: 6: 4: 3: 2: 1953: 1942: 1939: 1937: 1934: 1932: 1929: 1928: 1926: 1914: 1911: 1909: 1906: 1905: 1900: 1895: 1879: 1877:9781420040166 1873: 1869: 1868: 1860: 1852: 1848: 1843: 1838: 1834: 1830: 1827:(8): 413–21. 1826: 1822: 1818: 1811: 1803: 1799: 1794: 1789: 1784: 1779: 1775: 1771: 1767: 1760: 1752: 1748: 1742: 1734: 1730: 1726: 1724:9780123848802 1720: 1716: 1712: 1708: 1701: 1699: 1697: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1653: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1610: 1602: 1598: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1553: 1551: 1549: 1547: 1538: 1534: 1529: 1524: 1519: 1514: 1510: 1506: 1502: 1498: 1494: 1486: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1435: 1431: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1394: 1386: 1382: 1378: 1374: 1371:(2): 343–58. 1370: 1366: 1358: 1350: 1346: 1341: 1336: 1331: 1326: 1322: 1318: 1315:(1): 367–71. 1314: 1310: 1306: 1299: 1291: 1287: 1282: 1277: 1272: 1267: 1263: 1259: 1256:(5): 2170–4. 1255: 1251: 1247: 1240: 1232: 1228: 1223: 1218: 1214: 1210: 1207:(1): 364–71. 1206: 1202: 1198: 1191: 1183: 1179: 1174: 1169: 1165: 1161: 1157: 1153: 1149: 1142: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1099: 1095: 1088: 1080: 1076: 1071: 1066: 1062: 1058: 1054: 1050: 1046: 1039: 1031: 1027: 1023: 1017: 1013: 1009: 1005: 998: 990: 986: 981: 976: 972: 968: 965:(2): 431–41. 964: 960: 956: 949: 941: 937: 933: 929: 925: 921: 917: 913: 906: 904: 895: 891: 886: 881: 877: 873: 869: 862: 854: 850: 845: 840: 836: 832: 829:(3): 26e–26. 828: 824: 820: 813: 805: 799: 795: 794: 786: 784: 775: 771: 766: 761: 757: 753: 750:(4): 1491–6. 749: 745: 741: 734: 726: 722: 718: 714: 710: 706: 702: 698: 691: 684: 676: 672: 667: 662: 658: 654: 650: 646: 642: 635: 633: 631: 622: 618: 614: 610: 606: 602: 598: 594: 587: 579: 575: 570: 565: 561: 557: 553: 549: 545: 538: 536: 534: 525: 521: 516: 511: 506: 501: 497: 493: 489: 482: 480: 471: 467: 462: 457: 453: 449: 445: 441: 437: 430: 426: 417: 414: 412: 409: 407: 404: 402: 399: 398: 392: 389: 379: 377: 373: 367: 357: 355: 354:knockout mice 350: 341: 337: 335: 329: 325: 315: 306: 304: 300: 296: 292: 288: 278: 274: 270: 266: 264: 260: 256: 252: 243: 239: 237: 233: 229: 225: 221: 214: 204: 202: 198: 193: 191: 187: 185: 181: 176: 171: 169: 165: 161: 156: 152: 148: 144: 139: 137: 133: 129: 128: 123: 119: 115: 111: 107: 98: 95:generated by 94: 93:DNA libraries 89: 80: 78: 74: 70: 66: 62: 56: 54: 50: 46: 42: 38: 34: 25: 19: 1898: 1866: 1859: 1824: 1820: 1810: 1773: 1769: 1759: 1750: 1741: 1706: 1662: 1658: 1652: 1619: 1615: 1609: 1566: 1562: 1500: 1496: 1485: 1452: 1448: 1442: 1410:(1): 53–61. 1407: 1403: 1393: 1368: 1364: 1357: 1312: 1308: 1298: 1253: 1249: 1239: 1204: 1200: 1190: 1155: 1151: 1141: 1116: 1112: 1106: 1097: 1087: 1055:(1): 13981. 1052: 1048: 1038: 1003: 997: 962: 958: 948: 915: 911: 875: 871: 861: 826: 822: 812: 792: 747: 743: 733: 700: 696: 683: 648: 644: 596: 592: 586: 551: 547: 495: 491: 443: 439: 429: 385: 369: 347: 338: 331: 312: 284: 271: 267: 248: 216: 194: 186:-nitrosourea 183: 179: 172: 140: 125: 103: 72: 57: 36: 30: 1931:Mutagenesis 1899:Mutagenesis 303:amino acids 224:aminopurine 136:rich medium 134:, one in a 118:fruit flies 47:to produce 37:mutagenesis 18:mutagenesis 1925:Categories 1119:: 265–94. 1004:Drosophila 422:References 297:where one 228:transition 45:engineered 1644:196811756 621:196811756 406:Oncomouse 263:insertion 236:bisulfite 49:libraries 1851:26336798 1802:27134651 1733:20699138 1687:14441244 1679:16299527 1659:Oncogene 1636:31308554 1601:21923411 1537:32298334 1497:PLOS ONE 1477:37361631 1469:17446890 1434:28751422 1404:Genetics 1079:32814789 1030:18641944 989:20439774 959:Genetics 894:10469849 853:14872057 744:Genetics 725:17802387 675:31951833 613:31308554 578:30060110 524:26037246 470:24906146 395:See also 259:deletion 230:, while 177:such as 166:into an 143:proteins 122:genetics 106:mutagens 1842:4560834 1793:4850645 1592:5220575 1571:Bibcode 1528:7161989 1505:Bibcode 1425:5586385 1317:Bibcode 1258:Bibcode 1231:4607625 1182:6983647 1133:6279018 1098:Inf'OGM 1070:7438504 980:2881127 940:9685575 920:Bibcode 774:9409815 765:1208325 705:Bibcode 697:Science 666:7001082 569:6390969 515:4453199 461:4343198 291:alanine 182:-ethyl- 73:in vivo 69:editing 1896:about 1874:  1849:  1839:  1800:  1790:  1731:  1721:  1685:  1677:  1642:  1634:  1599:  1589:  1535:  1525:  1475:  1467:  1432:  1422:  1385:712841 1383:  1347:  1340:432306 1337:  1290:209457 1288:  1281:392513 1278:  1229:  1222:245771 1219:  1180:  1173:369902 1170:  1131:  1077:  1067:  1028:  1018:  987:  977:  938:  892:  851:  844:373423 841:  800:  772:  762:  723:  673:  663:  619:  611:  576:  566:  522:  512:  498:: 47. 468:  458:  372:CRISPR 360:CRISPR 251:primer 164:cloned 147:screen 124:. For 114:X-rays 65:CRISPR 1776:: 6. 1683:S2CID 1640:S2CID 1473:S2CID 1349:47176 693:(PDF) 617:S2CID 299:codon 195:In a 1872:ISBN 1847:PMID 1798:PMID 1729:PMID 1719:ISBN 1675:PMID 1632:PMID 1597:PMID 1533:PMID 1465:PMID 1430:PMID 1381:PMID 1345:PMID 1286:PMID 1227:PMID 1178:PMID 1129:PMID 1075:PMID 1026:PMID 1016:ISBN 985:PMID 936:PMID 890:PMID 849:PMID 798:ISBN 770:PMID 721:PMID 671:PMID 609:PMID 574:PMID 520:PMID 466:PMID 440:Cell 326:and 201:GMOs 91:How 1837:PMC 1829:doi 1788:PMC 1778:doi 1711:doi 1667:doi 1624:doi 1587:PMC 1579:doi 1523:PMC 1513:doi 1457:doi 1420:PMC 1412:doi 1408:207 1373:doi 1369:124 1335:PMC 1325:doi 1276:PMC 1266:doi 1217:PMC 1209:doi 1205:120 1168:PMC 1160:doi 1121:doi 1065:PMC 1057:doi 1008:doi 975:PMC 967:doi 963:185 928:doi 916:400 880:doi 839:PMC 831:doi 760:PMC 752:doi 748:147 713:doi 661:PMC 653:doi 601:doi 564:PMC 556:doi 552:166 510:PMC 500:doi 456:PMC 448:doi 444:157 261:or 155:PCR 41:DNA 31:In 1927:: 1845:. 1835:. 1825:42 1823:. 1819:. 1796:. 1786:. 1774:10 1772:. 1768:. 1749:. 1727:. 1717:. 1695:^ 1681:. 1673:. 1663:24 1661:. 1638:. 1630:. 1620:16 1618:. 1595:. 1585:. 1577:. 1567:18 1565:. 1561:. 1545:^ 1531:. 1521:. 1511:. 1501:15 1499:. 1495:. 1471:. 1463:. 1451:. 1428:. 1418:. 1406:. 1402:. 1379:. 1367:. 1343:. 1333:. 1323:. 1313:72 1311:. 1307:. 1284:. 1274:. 1264:. 1254:75 1252:. 1248:. 1225:. 1215:. 1203:. 1199:. 1176:. 1166:. 1154:. 1150:. 1127:. 1117:15 1115:. 1096:. 1073:. 1063:. 1053:10 1051:. 1047:. 1024:. 1014:. 983:. 973:. 961:. 957:. 934:. 926:. 914:. 902:^ 888:. 874:. 870:. 847:. 837:. 827:32 825:. 821:. 782:^ 768:. 758:. 746:. 742:. 719:. 711:. 701:66 699:. 695:. 669:. 659:. 649:28 647:. 643:. 629:^ 615:. 607:. 597:16 595:. 572:. 562:. 550:. 546:. 532:^ 518:. 508:. 496:15 494:. 490:. 478:^ 464:. 454:. 442:. 438:. 378:. 356:. 234:, 79:. 35:, 1880:. 1853:. 1831:: 1804:. 1780:: 1753:. 1735:. 1713:: 1689:. 1669:: 1646:. 1626:: 1603:. 1581:: 1573:: 1539:. 1515:: 1507:: 1479:. 1459:: 1453:2 1436:. 1414:: 1387:. 1375:: 1351:. 1327:: 1319:: 1292:. 1268:: 1260:: 1233:. 1211:: 1184:. 1162:: 1156:2 1135:. 1123:: 1100:. 1081:. 1059:: 1032:. 1010:: 991:. 969:: 942:. 930:: 922:: 896:. 882:: 876:8 855:. 833:: 806:. 776:. 754:: 727:. 715:: 707:: 677:. 655:: 623:. 603:: 580:. 558:: 526:. 502:: 472:. 450:: 184:N 180:N 20:.

Index

mutagenesis

molecular biology
DNA
engineered
libraries
genetically modified organisms
site-directed mutagenesis
CRISPR
editing
beta thalassemia

DNA libraries
random mutagenesis
mutagens
Hermann Muller
X-rays
fruit flies
genetics
Escherichia coli
replica-plated
rich medium
proteins
screen
oligonucleotide
PCR
sequence saturation mutagenesis
cloned
expression vector
alkylating agents

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑