Knowledge

Multiplicity-one theorem

Source 📝

335: 206: 509:) states that two cuspidal automorphic representations of the general linear group are isomorphic if their local components are isomorphic for all but a finite number of places. 854: 839: 749:
Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1
761: 598: 330:{\displaystyle L_{0}^{2}(G(K)\backslash G(\mathbf {A} ),\omega )={\widehat {\bigoplus }}_{(\pi ,V_{\pi })}m_{\pi }V_{\pi }} 518: 849: 692: 633: 753: 590: 537: 198: 844: 341: 43: 20: 384: 50: 35: 134: 684: 625: 186: 137: 747: 32: 786: 380: 28: 823: 771: 729: 670: 608: 566: 467: 427: 54: 39: 8: 58: 811: 717: 658: 803: 757: 709: 650: 594: 554: 344: 120: 795: 701: 642: 546: 819: 767: 725: 666: 604: 584: 562: 463: 451: 833: 807: 713: 654: 558: 626:"On Euler products and the classification of automorphic representations. I" 743: 97: 81: 815: 721: 662: 550: 108: 38:. The multiplicity in question is the number of times a given abstract 575:"Lectures on L-functions, converse theorems, and functoriality for GL 396: 799: 705: 646: 574: 685:"On Euler products and the classification of automorphic forms. II" 65: 742:
Piatetski-Shapiro, I. I. (1979), "Multiplicity one theorems", in
583:, in Cogdell, James W.; Kim, Henry H.; Murty, Maruti Ram (eds.), 357: 49:
A multiplicity one theorem may also refer to a result about the
619:, Lecture Notes in Mathematics, vol. 114, Springer-Verlag 778:
Shalika, J. A. (1974), "The multiplicity one theorem for GL
589:, Fields Inst. Monogr., vol. 20, Providence, R.I.: 395:) occurs with multiplicity at most one in the space of 752:, Proc. Sympos. Pure Math., XXXIII, Providence, R.I.: 240: 209: 438:), has the multiplicity-one property was proved by 492: 329: 741: 498: 447: 187:space of cusp forms with central character ω 831: 614: 439: 682: 623: 531:Blasius, Don (1994), "On multiplicities for SL( 506: 502: 462: > 2 using the uniqueness of the 615:Jacquet, Hervé; Langlands, Robert (1970), 777: 572: 530: 497:The strong multiplicity one theorem of 486: 455: 832: 501:and Jacquet and Shalika ( 96:be a reductive algebraic group over a 683:Jacquet, H.; Shalika, J. A. (1981b), 624:Jacquet, H.; Shalika, J. A. (1981a), 446: = 2 and independently by 586:Lectures on automorphic L-functions 273: 42:is realised in a certain space, of 13: 466:. Multiplicity-one also holds for 14: 866: 855:Theorems in representation theory 250: 197:). This space decomposes into a 840:Representation theory of groups 693:American Journal of Mathematics 634:American Journal of Mathematics 493:Strong multiplicity one theorem 440:Jacquet & Langlands (1970) 363:The group of adelic points of 302: 283: 263: 254: 246: 237: 231: 225: 19:In the mathematical theory of 1: 754:American Mathematical Society 591:American Mathematical Society 538:Israel Journal of Mathematics 524: 87: 72:. In that context, the pair ( 414:is 0 or 1 for all such  199:direct sum of Hilbert spaces 7: 519:Gan-Gross-Prasad conjecture 512: 46:, given in a concrete way. 44:square-integrable functions 21:automorphic representations 10: 871: 617:Automorphic forms on GL(2) 573:Cogdell, James W. (2004), 421: 399:of central character  375:), is said to satisfy the 850:Theorems in number theory 746:; Casselman., W. (eds.), 385:admissible representation 377:multiplicity-one property 36:reductive algebraic group 499:Piatetski-Shapiro (1979) 448:Piatetski-Shapiro (1979) 25:multiplicity-one theorem 340:where the sum is over 331: 27:is a result about the 787:Annals of Mathematics 332: 80:) is called a strong 29:representation theory 756:, pp. 209–212, 428:general linear group 207: 40:group representation 16:Mathematical theorem 485: > 2 ( 224: 551:10.1007/BF02937513 426:The fact that the 345:subrepresentations 327: 210: 845:Automorphic forms 790:, Second Series, 763:978-0-8218-1435-2 600:978-0-8218-3516-6 593:, pp. 1–96, 356:are non-negative 279: 138:unitary character 862: 826: 774: 738: 737: 736: 689: 679: 678: 677: 630: 620: 611: 569: 417: 412: 404: 354: 336: 334: 333: 328: 326: 325: 316: 315: 306: 305: 301: 300: 281: 280: 272: 253: 223: 218: 184: 132: 870: 869: 865: 864: 863: 861: 860: 859: 830: 829: 800:10.2307/1971071 783: 764: 734: 732: 706:10.2307/2374050 687: 675: 673: 647:10.2307/2374103 628: 601: 580: 527: 515: 495: 464:Whittaker model 424: 415: 413: 410: 400: 355: 352: 321: 317: 311: 307: 296: 292: 282: 271: 270: 269: 249: 219: 214: 208: 205: 204: 180: 162: 128: 90: 17: 12: 11: 5: 868: 858: 857: 852: 847: 842: 828: 827: 779: 775: 762: 739: 700:(4): 777–815, 680: 641:(3): 499–558, 621: 612: 599: 576: 570: 545:(1): 237–251, 526: 523: 522: 521: 514: 511: 494: 491: 473:, but not for 423: 420: 409: 351: 338: 337: 324: 320: 314: 310: 304: 299: 295: 291: 288: 285: 278: 275: 268: 265: 262: 259: 256: 252: 248: 245: 242: 239: 236: 233: 230: 227: 222: 217: 213: 160: 89: 86: 55:representation 15: 9: 6: 4: 3: 2: 867: 856: 853: 851: 848: 846: 843: 841: 838: 837: 835: 825: 821: 817: 813: 809: 805: 801: 797: 793: 789: 788: 782: 776: 773: 769: 765: 759: 755: 751: 750: 745: 744:Borel, Armand 740: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 694: 686: 681: 672: 668: 664: 660: 656: 652: 648: 644: 640: 636: 635: 627: 622: 618: 613: 610: 606: 602: 596: 592: 588: 587: 582: 579: 571: 568: 564: 560: 556: 552: 548: 544: 540: 539: 534: 529: 528: 520: 517: 516: 510: 508: 504: 500: 490: 488: 484: 480: 476: 472: 470: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 419: 408: 403: 398: 394: 390: 386: 382: 378: 374: 370: 366: 361: 359: 350: 346: 343: 322: 318: 312: 308: 297: 293: 289: 286: 276: 266: 260: 257: 243: 234: 228: 220: 215: 211: 203: 202: 201: 200: 196: 192: 188: 185:) denote the 183: 178: 174: 170: 166: 159: 155: 151: 147: 143: 139: 136: 131: 126: 122: 118: 114: 110: 106: 102: 99: 95: 85: 83: 79: 75: 71: 67: 63: 60: 56: 52: 47: 45: 41: 37: 34: 30: 26: 22: 791: 785: 780: 748: 733:, retrieved 697: 691: 674:, retrieved 638: 632: 616: 585: 577: 542: 536: 532: 496: 487:Blasius 1994 482: 478: 474: 468: 459: 443: 435: 431: 425: 406: 401: 392: 388: 383:irreducible 376: 372: 368: 364: 362: 348: 339: 194: 190: 181: 176: 172: 168: 164: 157: 153: 149: 145: 141: 129: 124: 116: 112: 104: 100: 98:number field 93: 91: 82:Gelfand pair 77: 73: 69: 61: 48: 24: 18: 794:: 171–193, 342:irreducible 119:denote the 107:denote the 51:restriction 834:Categories 735:2021-08-06 676:2021-08-06 525:References 397:cusp forms 135:continuous 88:Definition 808:0003-486X 714:0002-9327 655:0002-9327 559:0021-2172 323:π 313:π 298:π 287:π 277:^ 274:⨁ 261:ω 241:∖ 513:See also 358:integers 179:),  127:and let 103:and let 66:subgroup 824:0348047 816:1971071 772:0546599 730:0618323 722:2374050 671:0618323 663:2374103 609:2071506 567:1303497 454: ( 452:Shalika 422:Results 405:, i.e. 379:if any 76:,  822:  814:  806:  770:  760:  728:  720:  712:  669:  661:  653:  607:  597:  565:  557:  481:) for 458:) for 381:smooth 156:. Let 121:centre 115:. Let 109:adeles 68:  33:adelic 31:of an 812:JSTOR 718:JSTOR 688:(PDF) 659:JSTOR 629:(PDF) 507:1981b 503:1981a 152:) to 140:from 133:be a 64:to a 59:group 57:of a 53:of a 804:ISSN 758:ISBN 710:ISSN 651:ISSN 595:ISBN 555:ISSN 535:)", 456:1974 450:and 442:for 347:and 148:)\Z( 92:Let 23:, a 796:doi 792:100 784:", 702:doi 698:103 643:doi 639:103 547:doi 489:). 471:(2) 387:of 189:on 123:of 111:of 836:: 820:MR 818:, 810:, 802:, 768:MR 766:, 726:MR 724:, 716:, 708:, 696:, 690:, 667:MR 665:, 657:, 649:, 637:, 631:, 605:MR 603:, 563:MR 561:, 553:, 543:88 541:, 505:, 475:SL 469:SL 432:GL 430:, 418:. 367:, 360:. 171:)/ 84:. 798:: 781:n 704:: 645:: 581:" 578:n 549:: 533:n 483:n 479:n 477:( 460:n 444:n 436:n 434:( 416:π 411:π 407:m 402:ω 393:A 391:( 389:G 373:A 371:( 369:G 365:G 353:π 349:m 319:V 309:m 303:) 294:V 290:, 284:( 267:= 264:) 258:, 255:) 251:A 247:( 244:G 238:) 235:K 232:( 229:G 226:( 221:2 216:0 212:L 195:A 193:( 191:G 182:ω 177:A 175:( 173:G 169:K 167:( 165:G 163:( 161:0 158:L 154:C 150:A 146:K 144:( 142:Z 130:ω 125:G 117:Z 113:K 105:A 101:K 94:G 78:H 74:G 70:H 62:G

Index

automorphic representations
representation theory
adelic
reductive algebraic group
group representation
square-integrable functions
restriction
representation
group
subgroup
Gelfand pair
number field
adeles
centre
continuous
unitary character
space of cusp forms with central character ω
direct sum of Hilbert spaces
irreducible
subrepresentations
integers
smooth
admissible representation
cusp forms
general linear group
Jacquet & Langlands (1970)
Piatetski-Shapiro (1979)
Shalika
1974
Whittaker model

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.