Knowledge

Admissible representation

Source 📝

186:-modules are isomorphic. Though for general admissible representations, this notion is different than the usual equivalence, it is an important result that the two notions of equivalence agree for unitary (admissible) representations. Additionally, there is a notion of unitarity of 226:
to the study of infinitesimal equivalence classes of admissible representations and the determination of which of these classes are infinitesimally unitary. The problem of parameterizing the infinitesimal equivalence classes of admissible representations was fully solved by
220: 184: 142: 304: 342:
and classified the admissible dual (i.e. the set of equivalence classes of irreducible admissible representations) in many cases.
434: 482: 460: 100:
occurs in it with finite multiplicity. The prototypical example is that of an irreducible unitary representation of
501: 319: 189: 153: 146:
which is easier to deal with as it is an algebraic object. Two admissible representations are said to be
111: 93: 42: 222:-modules. This reduces the study of the equivalence classes of irreducible unitary representations of 232: 375: 248: 89: 39: 28: 444: 24: 8: 478: 456: 430: 410: 327: 422: 417:, Grundlehren der Mathematischen Wissenschaften , vol. 335, Berlin, New York: 331: 323: 228: 472: 440: 418: 32: 46: 495: 292: 74: 335: 260: 108: 426: 474:
Representation Theory of Semisimple Groups: An Overview Based on Examples
252: 303:-adic groups admit more algebraic description through the action of the 382:
whose inverse is also bounded and linear) such that the associated map
256: 35: 65:
be a maximal compact subgroup. A continuous representation (π, 
288: 455:. Annals of Mathematics Studies 129. Princeton University Press. 251:(such as a reductive algebraic group over a nonarchimedean 61:
be a connected reductive (real or complex) Lie group. Let
450: 453:
The admissible dual of GL(N) via compact open subgroups
52: 295:
open subgroup is finite dimensional then π is called
291:. If, in addition, the space of vectors fixed by any 192: 156: 114: 214: 178: 136: 330:in the 1970s. Progress was made more recently by 493: 409: 314:Deep studies of admissible representations of 238: 451:Bushnell, Colin J.; Philip C. Kutzko (1993). 318:-adic reductive groups were undertaken by 249:locally compact totally disconnected group 338:and Bushnell and Kutzko, who developed a 107:An admissible representation π induces a 415:The local Langlands conjecture for GL(2) 494: 470: 53:Real or complex reductive Lie groups 215:{\displaystyle ({\mathfrak {g}},K)} 198: 179:{\displaystyle ({\mathfrak {g}},K)} 162: 137:{\displaystyle ({\mathfrak {g}},K)} 120: 13: 14: 513: 307:of locally constant functions on 299:. Admissible representations of 477:. Princeton University Press. 352: 209: 193: 173: 157: 131: 115: 1: 403: 263:). A representation (π,  23:are a well-behaved class of 7: 239:Totally disconnected groups 43:totally disconnected groups 10: 518: 471:Knapp, Anthony W. (2001). 271:on a complex vector space 148:infinitesimally equivalent 96:unitary representation of 45:. They were introduced by 21:admissible representations 413:; Henniart, Guy (2006), 376:bounded linear operators 345: 233:Langlands classification 16:Class of representations 216: 180: 138: 502:Representation theory 427:10.1007/3-540-31511-X 283:fixing any vector of 217: 181: 139: 29:representation theory 358:I.e. a homomorphism 190: 154: 150:if their associated 112: 279:if the subgroup of 255:or over the finite 84:if π restricted to 411:Bushnell, Colin J. 374:) is the group of 231:and is called the 212: 176: 134: 436:978-3-540-31486-8 509: 488: 469:Chapter VIII of 466: 447: 397: 395: 369: 356: 229:Robert Langlands 221: 219: 218: 213: 202: 201: 185: 183: 182: 177: 166: 165: 143: 141: 140: 135: 124: 123: 19:In mathematics, 517: 516: 512: 511: 510: 508: 507: 506: 492: 491: 485: 463: 437: 419:Springer-Verlag 406: 401: 400: 383: 359: 357: 353: 348: 340:theory of types 241: 197: 196: 191: 188: 187: 161: 160: 155: 152: 151: 119: 118: 113: 110: 109: 55: 40:locally compact 25:representations 17: 12: 11: 5: 515: 505: 504: 490: 489: 483: 467: 461: 448: 435: 405: 402: 399: 398: 396:is continuous. 350: 349: 347: 344: 240: 237: 211: 208: 205: 200: 195: 175: 172: 169: 164: 159: 133: 130: 127: 122: 117: 54: 51: 47:Harish-Chandra 15: 9: 6: 4: 3: 2: 514: 503: 500: 499: 497: 486: 484:0-691-09089-0 480: 476: 475: 468: 464: 462:0-691-02114-7 458: 454: 449: 446: 442: 438: 432: 428: 424: 420: 416: 412: 408: 407: 394: 390: 386: 381: 377: 373: 367: 363: 355: 351: 343: 341: 337: 333: 329: 325: 321: 317: 312: 310: 306: 305:Hecke algebra 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 236: 234: 230: 225: 206: 203: 170: 167: 149: 145: 128: 125: 105: 103: 99: 95: 91: 87: 83: 79: 76: 75:Hilbert space 73:on a complex 72: 68: 64: 60: 50: 48: 44: 41: 37: 34: 30: 26: 22: 473: 452: 414: 392: 388: 384: 379: 371: 365: 361: 354: 339: 336:Gopal Prasad 315: 313: 308: 300: 296: 284: 280: 276: 272: 268: 264: 261:global field 244: 242: 223: 147: 106: 101: 97: 85: 81: 77: 70: 66: 62: 58: 56: 27:used in the 20: 18: 253:local field 94:irreducible 404:References 370:(where GL( 328:Zelevinsky 297:admissible 275:is called 82:admissible 80:is called 36:Lie groups 360:π : 324:Bernstein 320:Casselman 92:and each 33:reductive 496:Category 334:, Moy, 445:2234120 322:and by 293:compact 144:-module 90:unitary 481:  459:  443:  433:  277:smooth 257:adeles 364:→ GL( 346:Notes 267:) of 259:of a 247:be a 69:) of 479:ISBN 457:ISBN 431:ISBN 332:Howe 326:and 289:open 243:Let 57:Let 38:and 423:doi 378:on 287:is 88:is 31:of 498:: 441:MR 439:, 429:, 421:, 391:→ 387:× 311:. 235:. 104:. 49:. 487:. 465:. 425:: 393:V 389:V 385:G 380:V 372:V 368:) 366:V 362:G 316:p 309:G 301:p 285:V 281:G 273:V 269:G 265:V 245:G 224:G 210:) 207:K 204:, 199:g 194:( 174:) 171:K 168:, 163:g 158:( 132:) 129:K 126:, 121:g 116:( 102:G 98:K 86:K 78:V 71:G 67:V 63:K 59:G

Index

representations
representation theory
reductive
Lie groups
locally compact
totally disconnected groups
Harish-Chandra
Hilbert space
unitary
irreducible
( g , K ) {\displaystyle ({\mathfrak {g}},K)} -module
Robert Langlands
Langlands classification
locally compact totally disconnected group
local field
adeles
global field
open
compact
Hecke algebra
Casselman
Bernstein
Zelevinsky
Howe
Gopal Prasad
bounded linear operators
Bushnell, Colin J.
Springer-Verlag
doi
10.1007/3-540-31511-X

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.