Knowledge

Reductive group

Source 📝

4273: 52: 4280:
Chevalley showed in 1958 that the reductive groups over any algebraically closed field are classified up to isomorphism by root data. In particular, the semisimple groups over an algebraically closed field are classified up to central isogenies by their Dynkin diagram, and the simple groups
4055: 2752:, that is, they are direct sums of irreducible representations. That is the source of the name "reductive". Note, however, that complete reducibility fails for reductive groups in positive characteristic (apart from tori). In more detail: an affine group scheme 3560: 3758:(with some edges directed or multiple). The set of vertices of the Dynkin diagram is the set of simple roots. In short, the Dynkin diagram describes the angles between the simple roots and their relative lengths, with respect to a Weyl group-invariant 3198: 4727: 7483: 5314:
and unitary representations have been developed for real reductive groups in this generality. The main differences between this definition and the definition of a reductive algebraic group have to do with the fact that an algebraic group
2316: 5044: 4930: 5862:
As discussed above, the classification of split reductive groups is the same over any field. By contrast, the classification of arbitrary reductive groups can be hard, depending on the base field. Some examples among the
4227: 2678:, which is a complex reductive algebraic group. In fact, this construction gives a one-to-one correspondence between compact connected Lie groups and complex reductive groups, up to isomorphism. For a compact Lie group 2664: 4337:. It is remarkable that the classification of reductive groups is independent of the characteristic. For comparison, there are many more simple Lie algebras in positive characteristic than in characteristic zero. 3935: 7231:, the Galois action on its Dynkin diagram, and a Galois-invariant subset of the vertices of the Dynkin diagram. Traditionally, the Tits index is drawn by circling the Galois orbits in the given subset. 1580: 2182: 8209: 8015: 5794:) of the Schur module ∇(λ), but it need not be equal to the Schur module. The dimension and character of the Schur module are given by the Weyl character formula (as in characteristic zero), by 5708:
has a unique highest weight vector up to scalars; the corresponding "highest weight" λ is dominant; and every dominant weight λ is the highest weight of a unique irreducible representation
3488: 3637: 3309: 3251: 3133: 6030: 7128:
reduces the classification of central simple algebras over a field to the case of division algebras. Generalizing these results, Tits showed that a reductive group over a field
7641: 7609: 7577: 6131: 5929: 5134: 1702: 1277: 2449: 2358: 2105: 7211: 6599:-point of a maximal torus), a graph automorphism (corresponding to an automorphism of the Dynkin diagram), and a field automorphism (coming from an automorphism of the field 6597: 6166: 5964: 5173: 3599: 3125: 3093: 3065: 3041: 3017: 2977: 2420: 2211: 2138: 2068: 1774: 1670: 1304: 5802:(λ) are in general unknown, although a large body of theory has been developed to analyze these representations. One important result is that the dimension and character of 497: 472: 435: 4551: 1436:. (Some authors call this property "almost simple".) This differs slightly from the terminology for abstract groups, in that a simple algebraic group may have nontrivial 2558: 2514: 1218: 7395: 1394: 2391: 2219: 3858:
are in one-to-one correspondence with the subsets of the set Δ of simple roots (or equivalently, the subsets of the set of vertices of the Dynkin diagram). Let
2469: 1364: 1238: 1178: 1150: 1130: 1099: 7246:
with the given action. (For a quasi-split group, every Galois orbit in the Dynkin diagram is circled.) Moreover, any other simply connected semisimple group
7124:
says that a nondegenerate quadratic form over a field is determined up to isomorphism by its Witt index together with its anisotropic kernel. Likewise, the
4967: 4787: 8233:
Building on the Hasse principle, the classification of semisimple groups over number fields is well understood. For example, there are exactly three
7392:
is nontrivial, then it is encoded in the Galois action on the Dynkin diagram: the index-2 subgroup of the Galois group that acts as the identity is
1488:
scheme. Every reductive group over a field admits a central isogeny from the product of a torus and some simple groups. For example, over any field
6264:
algebraically closed, and they are understood for some other fields such as number fields, but for arbitrary fields there are many open questions.
4157: 2015:
is algebraically closed, any two (nondegenerate) quadratic forms of the same dimension are isomorphic, and so it is reasonable to call this group
8227: 2566: 7120:, which reduces the problem to the case of anisotropic groups. This reduction generalizes several fundamental theorems in algebra. For example, 4050:{\displaystyle \left\{{\begin{bmatrix}*&*&*&*\\*&*&*&*\\0&0&*&*\\0&0&0&*\end{bmatrix}}\right\}} 799: 5299:*. The problem of classifying the real reductive groups largely reduces to classifying the simple Lie groups. These are classified by their 1585:
It is slightly awkward that the definition of a reductive group over a field involves passage to the algebraic closure. For a perfect field
9349: 4333:
in the 1880s and 1890s. In particular, the dimensions, centers, and other properties of the simple algebraic groups can be read from the
4449:
with a given Dynkin diagram, with simple groups corresponding to the connected diagrams. At the other extreme, a semisimple group is of
7234:
There is a full classification of quasi-split groups in these terms. Namely, for each action of the absolute Galois group of a field
2953: 17: 8295: 5283:
In particular, every connected semisimple Lie group (meaning that its Lie algebra is semisimple) is reductive. Also, the Lie group
4232:
For the orthogonal group or the symplectic group, the projective homogeneous varieties have a similar description as varieties of
2832:, as in the theories of complex semisimple Lie algebras or compact Lie groups. Here is the way roots appear for reductive groups. 6365: 8317: 1720:. These kinds of groups are useful because their classification can be described through combinatorical data called root data. 934: 357: 9227: 9059: 9020: 8933: 8861: 3384:; this is a combinatorial structure which can be completely classified. More generally, the roots of a reductive group form a 1498: 9409: 9323: 9253: 9102: 9028: 8941: 8869: 7132:
is determined up to isomorphism by its Tits index together with its anisotropic kernel, an associated anisotropic semisimple
2143: 8127: 7933: 3875: 3467: 9067: 4325:. This result is essentially identical to the classifications of compact Lie groups or complex semisimple Lie algebras, by 2757: 307: 1461: 3929:
above are the groups of invertible matrices with zero entries below a given set of squares along the diagonal, such as:
9143: 8988: 8902: 7880: 7858: 5455:
of non-compact type. In fact, every symmetric space of non-compact type arises this way. These are central examples in
792: 302: 9286: 9178: 8829: 8739: 3676:
means a positive root that is not a sum of two other positive roots. Write Δ for the set of simple roots. The number
9501: 8972: 7370: 7091: 3311:
as the direct sum of the diagonal matrices and the 1-dimensional subspaces indexed by the off-diagonal positions (
7121: 7010: 3555:{\displaystyle {\mathfrak {b}}={\mathfrak {t}}\oplus \bigoplus _{\alpha \in \Phi ^{+}}{\mathfrak {g}}_{\alpha }.} 9217: 9164: 1157: 8813: 7900: 5839: 1949: 718: 9393: 9278: 9209: 9094: 8339: 5255:) (in the classical topology). It is also standard to assume that the image of the adjoint representation Ad( 5187:
are classified by root data. This statement includes the existence of Chevalley groups as group schemes over
3193:{\displaystyle {\mathfrak {g}}={\mathfrak {t}}\oplus \bigoplus _{\alpha \in \Phi }{\mathfrak {g}}_{\alpha }.} 785: 8086:
of positive characteristic was proved earlier by Harder (1975): for every simply connected semisimple group
9484:
Schémas en groupes (SGA 3), II: Groupes de type multiplicatif, et structure des schémas en groupes généraux
8969:
Schémas en groupes (SGA 3), II: Groupes de type multiplicatif, et structure des schémas en groupes généraux
7125: 3755: 3604: 3276: 3218: 2675: 1346:
Over fields of characteristic zero another equivalent definition of a reductive group is a connected group
3762:
on the weight lattice. The connected Dynkin diagrams (corresponding to simple groups) are pictured below.
9204: 9119: 8312: 7066: 6400: 6001: 3773:, an important point is that a root α determines not just a 1-dimensional subspace of the Lie algebra of 402: 216: 1327: 9127: 8326: 8285: 7614: 7582: 7550: 7540: 6104: 5902: 5786:
are typically not direct sums of irreducibles. For a dominant weight λ, the irreducible representation
5107: 1675: 1250: 1004: 904: 849: 134: 5719:
There remains the problem of describing the irreducible representation with given highest weight. For
2425: 2334: 2081: 9199: 7189: 6575: 6144: 5942: 5311: 5304: 5151: 4334: 3580: 3106: 3074: 3046: 3022: 2998: 2958: 2749: 2741: 2396: 2187: 2140:
through the diagonal, and from this representation, their unipotent radical is trivial. For example,
2114: 2046: 1750: 1648: 1282: 5723:
of characteristic zero, there are essentially complete answers. For a dominant weight λ, define the
4722:{\displaystyle q(x_{1},\ldots ,x_{2n+1})=x_{1}x_{2}+x_{3}x_{4}+\cdots +x_{2n-1}x_{2n}+x_{2n+1}^{2};} 1638: 1319: 8765: 8300: 8264: 5445: 4938: 4104: 1366:
admitting a faithful semisimple representation which remains semisimple over its algebraic closure
1245: 922:. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the 868: 600: 334: 211: 99: 8230:, saying that a central simple algebra over a number field is determined by its local invariants. 3474:Φ ⊂ Φ, with the property that Φ is the disjoint union of Φ and −Φ. Explicitly, the Lie algebra of 480: 455: 418: 8330: 7826: 6846: 6526: 5563:, the analog of a metric with nonpositive curvature. The dimension of the affine building is the 5335: 3427:. The Weyl group is in fact a finite group generated by reflections. For example, for the group 2519: 9478: 9048: 9010: 8964: 8923: 8290: 7478:{\displaystyle \operatorname {Gal} (k_{s}/k({\sqrt {d}}))\subset \operatorname {Gal} (k_{s}/k)} 6036: 5823: 5764: 5756: 5520: 4364: 2945: 1606: 1026: 1020: 1008: 1000: 919: 821: 750: 540: 2483: 1187: 9431: 7148: 5422: 1437: 968: 624: 2311:{\displaystyle (a_{1},a_{2})\mapsto {\begin{bmatrix}a_{1}&0\\0&a_{2}\end{bmatrix}}.} 1369: 9460: 9419: 9370: 9333: 9296: 9241: 9188: 9153: 9112: 9084: 9077: 9038: 8998: 8951: 8912: 8879: 8839: 8794: 8774: 8749: 8334: 8304: 8268: 7877:.) It follows, for example, that every reductive group over a finite field is quasi-split. 6929: 5827: 2699: 2369: 1834: 853: 837: 564: 552: 170: 104: 8: 9506: 8850: 8321: 8261:
are the finite simple groups constructed from simple algebraic groups over finite fields.
8025: 6953: 6837:
simply connected and quasi-split, the Whitehead group is trivial, and so the whole group
5791: 5782:
of positive characteristic, the situation is far more subtle, because representations of
5585: 5460: 5456: 4236:
flags with respect to a given quadratic form or symplectic form. For any reductive group
3681: 3463: 2805: 2331:
is not reductive since its unipotent radical is itself. This includes the additive group
916: 864: 852:. Reductive groups include some of the most important groups in mathematics, such as the 825: 139: 34: 9245: 8778: 5854:-Kazhdan-Lusztig polynomials, which are even more complex, but at least are computable. 9448: 9374: 9231: 8798: 7726:. Namely, such forms (up to isomorphism) are in one-to-one correspondence with the set 7644: 6569: 6279:-rank greater than 0 (that is, if it contains a nontrivial split torus), and otherwise 5847: 5536: 5503: 4958: 4375: 4233: 4096: 2454: 1953: 1481: 1349: 1223: 1163: 1135: 1115: 1084: 124: 96: 9310:, Progress in Mathematics, vol. 9 (2nd ed.), Boston, MA: Birkhäuser Boston, 9405: 9319: 9282: 9249: 9195: 9174: 9160: 9139: 9098: 9063: 9024: 8984: 8937: 8898: 8865: 8825: 8802: 8763:(1971), "Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I.", 8735: 8377: 8308: 8276: 8258: 7874: 7850: 7267: 7238:
on a Dynkin diagram, there is a unique simply connected semisimple quasi-split group
7173: 5406: 5378: 5365:)) is a real reductive group that cannot be viewed as an algebraic group. Similarly, 5039:{\displaystyle \operatorname {Aut} (G)\cong \operatorname {Out} (G)\ltimes (G/Z)(k),} 4925:{\displaystyle q(x_{1},\ldots ,x_{2n})=x_{1}x_{2}+x_{3}x_{4}+\cdots +x_{2n-1}x_{2n}.} 4341: 1314:. (This is equivalent to the definition of reductive groups in the introduction when 1307: 912: 529: 372: 266: 9378: 7660: 5341:(2) is connected as an algebraic group over any field, but its group of real points 5183:
and Grothendieck showed that split reductive group schemes over any nonempty scheme
4103:. Thus the classification of parabolic subgroups amounts to a classification of the 2471:
on the diagonal. This is an example of a non-reductive group which is not unipotent.
695: 9440: 9397: 9385: 9358: 9344: 9340: 9311: 9131: 8976: 8895:
Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs
8809: 8782: 8727: 8272: 8238: 6997: 6522: 6198: 5768: 5736: 5476: 5232: 4438: 4379: 2793: 1919: 1885: 1485: 971:
in various contexts. First, one can study the representations of a reductive group
900: 879: 841: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 9482: 9014: 8927: 7912: 4441:
in the classical topology.) Chevalley's classification gives that, over any field
9474: 9456: 9415: 9366: 9329: 9292: 9184: 9149: 9108: 9073: 9034: 9006: 8994: 8960: 8947: 8919: 8908: 8886: 8875: 8835: 8821: 8790: 8745: 8723: 7916: 7116:
In seeking to classify reductive groups which need not be split, one step is the
6969: 6941: 5864: 5609: 5452: 5410: 5180: 5101: 5065:
has a simpler description: it is the automorphism group of the Dynkin diagram of
4326: 3444: 2328: 2108: 1424:) if it is semisimple, nontrivial, and every smooth connected normal subgroup of 1109: 1078: 987:-vector spaces. But also, one can study the complex representations of the group 764: 743: 700: 588: 511: 341: 255: 195: 75: 8515:
SGA 3 (2011), v. 3, Théorème XXV.1.1; Conrad (2014), Theorems 6.1.16 and 6.1.17.
7359:, and so its automorphism group is of order 2, switching the two "legs" of the D 5369:(2) is simply connected as an algebraic group over any field, but the Lie group 5287:
is reductive in this sense, since it can be viewed as the identity component of
3890:). As a result, there are exactly 2 conjugacy classes of parabolic subgroups in 9303: 9262: 9170: 8890: 6063: 5831: 5815: 5507: 5425:, that is, the product of a semisimple Lie algebra and an abelian Lie algebra. 5394: 5300: 4426: 3751: 3459: 3399: 2918: 2828:
The classification of reductive algebraic groups is in terms of the associated
1930: 1106: 950: 908: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 9315: 8731: 5632:. In particular, this parametrization is independent of the characteristic of 4330: 9495: 8281: 7908: 7652: 6388: 4281:
correspond to the connected diagrams. Thus there are simple groups of types A
4088: 3759: 2711: 1929:) is the subgroup of the general linear group that preserves a nondegenerate 1908: 1062: 1034: 833: 690: 612: 446: 319: 185: 7903:(which has cohomological dimension 2). More generally, for any number field 5850:
conjectured the irreducible characters of a reductive group in terms of the
4222:{\displaystyle 0\subset S_{a_{1}}\subset \cdots \subset S_{a_{i}}\subset V.} 2884:(as an algebraic group) is a direct sum of 1-dimensional representations. A 9426: 9016:
Schémas en groupes (SGA 3), III: Structure des schémas en groupes réductifs
8846: 8760: 8756: 8715: 8080: 6708: 6059: 5795: 5625: 5078: 2659:{\displaystyle B_{n}/(R_{u}(B_{n}))\cong \prod _{i=1}^{n}\mathbb {G} _{m}.} 1912: 1038: 958: 930: 545: 244: 233: 180: 155: 150: 109: 80: 43: 9135: 8929:
Schémas en groupes (SGA 3), I: Propriétés générales des schémas en groupes
1220:. (Some authors do not require reductive groups to be connected.) A group 9124:
Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field
8722:, Graduate Texts in Mathematics, vol. 126 (2nd ed.), New York: 7672: 6626:) is close to being simple, under mild assumptions. Namely, suppose that 6560:, Steinberg also determined the automorphism group of the abstract group 6545:(the root subgroups), with relations determined by the Dynkin diagram of 6252:
essentially includes the problem of classifying all quadratic forms over
4355:
had been constructed earlier, at least in the form of the abstract group
4272: 2829: 2364: 1849: 923: 813: 9401: 7086:-invariant measure). For example, a discrete subgroup Γ is a lattice if 2768:
if its finite-dimensional representations are completely reducible. For
903:
showed that the classification of reductive groups is the same over any
9452: 9362: 9266: 9088: 8980: 8786: 7255: 7117: 7111: 4536: 4520: 3803: 3403: 3390: 3385: 2043:, although they all have the same base change to the algebraic closure 1011:. The structure theory of reductive groups is used in all these areas. 845: 712: 440: 6853:-simple groups the Whitehead group is trivial. In all known examples, 5212: 3898:. Explicitly, the parabolic subgroup corresponding to a given subset 3127:
together with 1-dimensional subspaces indexed by the set Φ of roots:
533: 9444: 6508: 1999:) can always be defined as the maximal smooth connected subgroup of 1597:
is reductive if and only if every smooth connected unipotent normal
9236: 6718:
The exceptions for fields of order 2 or 3 are well understood. For
5798:. The dimensions and characters of the irreducible representations 4484:
For example, the simply connected split simple groups over a field
3826:
and the positive root subgroups. In fact, a split semisimple group
1440:(although the center must be finite). For example, for any integer 70: 5636:. In more detail, fix a split maximal torus and a Borel subgroup, 4127:, parametrizing sequences of linear subspaces of given dimensions 1605:
is trivial. For an arbitrary field, the latter property defines a
8971:. Lecture Notes in Mathematics. Vol. 152. Berlin; New York: 6712: 6707:) by its center is simple (as an abstract group). The proof uses 4488:
corresponding to the "classical" Dynkin diagrams are as follows:
3043:
corresponding to each root is 1-dimensional, and the subspace of
2934: 412: 326: 7643:
on itself by left translation. A torsor can also be viewed as a
5421:) is not a real reductive group, even though its Lie algebra is 4405:
reductive groups is the same over any field. A semisimple group
3798:. The root subgroup is the unique copy of the additive group in 7829:, which are invariants taking values in Galois cohomology with 7519: 5556: 5331:) is not connected, and likewise for simply connected groups. 2892:
means an isomorphism class of 1-dimensional representations of
1132:
is trivial. More generally, a connected linear algebraic group
907:. In particular, the simple algebraic groups are classified by 51: 8121:, the Hasse principle holds in a weaker form: the natural map 7738:)). For example, (nondegenerate) quadratic forms of dimension 6248:
As a result, the problem of classifying reductive groups over
5612:, which are defined as the intersection of the weight lattice 2669: 6572:, a diagonal automorphism (meaning conjugation by a suitable 6379:
of characteristic zero (such as the real numbers), the group
5763:(λ) is isomorphic to the Schur module ∇(λ). Furthermore, the 5704:). Chevalley showed that every irreducible representation of 5191:, and it says that every split reductive group over a scheme 5144:, the corresponding geometric fiber means the base change of 4949:
is isomorphic to the automorphism group of the root datum of
4398:
over a field of positive characteristic were completely new.
6399:
is reductive and anisotropic. Example: the orthogonal group
4445:, there is a unique simply connected split semisimple group 2776:
is linearly reductive if and only if the identity component
2111:. They are examples of reductive groups since they embed in 828:. One definition is that a connected linear algebraic group 7369:
on the Dynkin diagram is trivial if and only if the signed
5323:
may be connected as an algebraic group while the Lie group
5195:
is isomorphic to the base change of a Chevalley group from
4453:
if its center is trivial. The split semisimple groups over
4267: 7853:'s "Conjecture I": for a connected linear algebraic group 7164:) acts (continuously) on the "absolute" Dynkin diagram of 7105: 5771:(and in particular the dimension) of this representation. 5349:) has two connected components. The identity component of 4111:(with smooth stabilizer group; that is no restriction for 3577:), then this is the obvious decomposition of the subspace 8542:
Jantzen (2003), Proposition II.4.5 and Corollary II.5.11.
7873:) = 1. (The case of a finite field was known earlier, as 6928:) is compact in the classical topology. Since it is also 5834:'s conjecture in that case). Their character formula for 4429:, being simply connected in this sense is equivalent to 3462:
containing a given maximal torus, and they are permuted
1575:{\displaystyle GL(n)\cong (G_{m}\times SL(n))/\mu _{n}.} 2177:{\displaystyle \mathbb {G} _{m}\times \mathbb {G} _{m}} 937:
says that most finite simple groups arise as the group
8639:
Tits (1964), Main Theorem; Gille (2009), Introduction.
8204:{\displaystyle H^{1}(k,G)\to \prod _{v}H^{1}(k_{v},G)} 8010:{\displaystyle H^{1}(k,G)\to \prod _{v}H^{1}(k_{v},G)} 7883:
predicts that for a simply connected semisimple group
6952:) contains infinitely many normal subgroups of finite 6729:, Tits's simplicity theorem remains valid except when 6537:). It is generated by copies of the additive group of 5591: 3948: 3569:
is the Borel subgroup of upper-triangular matrices in
2260: 8130: 7936: 7617: 7585: 7553: 7398: 7321:
be a nondegenerate quadratic form of even dimension 2
7192: 6578: 6147: 6107: 6004: 5982:(the maximum dimension of an isotropic subspace over 5945: 5905: 5154: 5110: 4970: 4790: 4554: 4160: 3938: 3810:
and which has the given Lie algebra. The whole group
3607: 3583: 3491: 3279: 3221: 3136: 3109: 3077: 3049: 3025: 3001: 2961: 2569: 2522: 2486: 2457: 2428: 2399: 2372: 2337: 2222: 2190: 2146: 2117: 2084: 2049: 1833:
under multiplication. Another reductive group is the
1753: 1678: 1651: 1501: 1372: 1352: 1285: 1253: 1226: 1190: 1166: 1138: 1118: 1087: 483: 458: 421: 9005: 8959: 8918: 8488:
Chevalley (2005); Springer (1998), 9.6.2 and 10.1.1.
7810:)). These problems motivate the systematic study of 7365:
diagram. The action of the absolute Galois group of
6391:
in the classical topology (based on the topology of
5409:) are real reductive groups. On the other hand, the 5247:) whose kernel is finite and whose image is open in 4417:
if every central isogeny from a semisimple group to
2987:
means a nonzero weight that occurs in the action of
9488:
Revised and annotated edition of the 1970 original.
9043:
Revised and annotated edition of the 1970 original.
8956:
Revised and annotated edition of the 1970 original.
8818:
Classification des groupes algébriques semi-simples
8113:In the slightly different case of an adjoint group 7887:over a field of cohomological dimension at most 2, 6845:) is simple modulo its center. More generally, the 5842:, which are combinatorially complex. For any prime 8203: 8066:) is trivial for every nonarchimidean local field 8009: 7635: 7603: 7571: 7512: 7477: 7205: 6591: 6160: 6125: 6024: 5958: 5923: 5167: 5128: 5038: 4924: 4721: 4221: 4049: 3704:is semisimple). For example, the simple roots for 3631: 3593: 3554: 3470:). A choice of Borel subgroup determines a set of 3303: 3245: 3192: 3119: 3087: 3059: 3035: 3011: 2971: 2658: 2552: 2508: 2463: 2443: 2414: 2385: 2352: 2310: 2205: 2176: 2132: 2099: 2062: 1768: 1744:A fundamental example of a reductive group is the 1696: 1664: 1574: 1388: 1358: 1298: 1271: 1232: 1212: 1172: 1144: 1124: 1093: 491: 466: 429: 9345:"Regular elements of semisimple algebraic groups" 9159: 8431:Demazure & Gabriel (1970), Théorème IV.3.3.6. 6959: 6509:Structure of semisimple groups as abstract groups 4527:+1) associated to a quadratic form of dimension 2 4457:with given Dynkin diagram are exactly the groups 3818:and the root subgroups, while the Borel subgroup 3750:Root systems are classified by the corresponding 2480:Note that the normality of the unipotent radical 9493: 9473: 9429:(1964), "Algebraic and abstract simple groups", 5608:(as an algebraic group) are parametrized by the 5057:. For a split semisimple simply connected group 2744:zero, all finite-dimensional representations of 1589:, that can be avoided: a linear algebraic group 9215: 8885: 5531:plays the role of the symmetric space. Namely, 4766:) associated to a quadratic form of dimension 2 1180:is trivial. This normal subgroup is called the 999:is a finite field, or the infinite-dimensional 7333:≥ 5. (These restrictions can be avoided.) Let 6552:For a simply connected split semisimple group 6513:For a simply connected split semisimple group 5061:over a field, the outer automorphism group of 3335:for the standard basis for the weight lattice 3273:. Then the root-space decomposition expresses 1057:. Equivalently, a linear algebraic group over 8702:Platonov & Rapinchuk (1994), Theorem 6.4. 8693:Platonov & Rapinchuk (1994), section 6.8. 8684:Platonov & Rapinchuk (1994), Theorem 6.6. 8666:Platonov & Rapinchuk (1994), section 9.1. 8603:Platonov & Rapinchuk (1994), Theorem 3.1. 7698:Torsors arise whenever one seeks to classify 7266:is the group associated to an element of the 6497:| ≤ 1, and it is quasi-split if and only if | 6453:. A split reductive group is quasi-split. If 5857: 5747:associated to λ; this is a representation of 5692:acts on that line through its quotient group 4386:. By contrast, the Chevalley groups of type F 2475: 1907:) that preserves a nondegenerate alternating 1341: 1152:over an algebraically closed field is called 1101:over an algebraically closed field is called 1072: 964:, or as minor variants of that construction. 933:, the classification is well understood. The 793: 8244:, corresponding to the three real forms of E 7094:says, in particular: for a simple Lie group 6302:contains a copy of the multiplicative group 6019: 6005: 5223:such that there is a linear algebraic group 3680:of simple roots is equal to the rank of the 2702:, with respect to the classical topology on 979:as an algebraic group, which are actions of 9392:, University Lecture Series, vol. 66, 8560:Riche & Williamson (2018), section 1.8. 8041:is the corresponding local field (possibly 6884:) can be far from simple. For example, let 6691:) is nontrivial, and even Zariski dense in 6568:). Every automorphism is the product of an 6426:), and so it is anisotropic if and only if 6356:perfect, it is also equivalent to say that 6291:, the following conditions are equivalent: 5656:with a smooth connected unipotent subgroup 2670:Other characterizations of reductive groups 1987:) is in fact connected but not smooth over 9216:Riche, Simon; Williamson, Geordie (2018), 9194: 7919:: for a simply connected semisimple group 7915:and Vladimir Chernousov (1989) proved the 7814:-torsors, especially for reductive groups 7762:)), and central simple algebras of degree 7098:of real rank at least 2, every lattice in 6979:can be extended to an affine group scheme 6754:, or non-split (that is, unitary) of type 6081:means the square root of the dimension of 5696:, by some element λ of the weight lattice 5072: 3917:. For example, the parabolic subgroups of 3862:be the order of Δ, the semisimple rank of 3830:is generated by the root subgroups alone. 1399: 800: 786: 9384: 9339: 9235: 8808: 8755: 8357:SGA 3 (2011), v. 3, Définition XIX.1.6.1. 7695:), in the language of Galois cohomology. 6794:, in order to understand the whole group 6699:is infinite.) Then the quotient group of 5759:says that the irreducible representation 5397:. By definition, all finite coverings of 4079:-subgroup such that the quotient variety 2643: 2431: 2340: 2164: 2149: 2087: 2027:, different quadratic forms of dimension 1867: 1612: 1244:is called semisimple or reductive if the 485: 460: 423: 9302: 9271:Automorphic Forms, Representations, and 9261: 8594:Borel & Tits (1971), Corollaire 3.8. 8448: 8446: 8395:Conrad (2014), after Proposition 5.1.17. 7082:/Γ has finite volume (with respect to a 6987:, and this determines an abstract group 6658:-points of copies of the additive group 6646:) be the subgroup of the abstract group 5790:(λ) is the unique simple submodule (the 5206: 4271: 4268:Classification of split reductive groups 3814:is generated (as an algebraic group) by 3777:, but also a copy of the additive group 3478:is the direct sum of the Lie algebra of 3269:be the subgroup of diagonal matrices in 2839:be a split reductive group over a field 2674:Every compact connected Lie group has a 9083: 8572: 8570: 8568: 8566: 8497:Milne (2017), Theorems 23.25 and 23.55. 7849:). In this direction, Steinberg proved 7106:The Galois action on the Dynkin diagram 6371:For a connected linear algebraic group 3380:The roots of a semisimple group form a 2710:). For example, the inclusion from the 2031:can yield non-isomorphic simple groups 14: 9494: 8845: 6335:contains a copy of the additive group 5806:(λ) are known when the characteristic 5104:and affine, and every geometric fiber 4953:. Moreover, the automorphism group of 4401:More generally, the classification of 3833: 935:classification of finite simple groups 358:Classification of finite simple groups 9118: 9046: 9013:(2011) . Gille, P.; Polo, P. (eds.). 8926:(2011) . Gille, P.; Polo, P. (eds.). 8714: 8443: 8296:Weil's conjecture on Tamagawa numbers 7899:) = 1. The conjecture is known for a 7821:When possible, one hopes to classify 7182:(which is also the Dynkin diagram of 6968:be a linear algebraic group over the 6449:if it contains a Borel subgroup over 5998:has the maximum possible Witt index, 5604:, the irreducible representations of 5428:For a connected real reductive group 3788:with the given Lie algebra, called a 3632:{\displaystyle {{\mathfrak {g}}l}(n)} 3304:{\displaystyle {{\mathfrak {g}}l}(n)} 3246:{\displaystyle {{\mathfrak {g}}l}(n)} 2800:is linearly reductive if and only if 1629:if it contains a split maximal torus 9425: 9350:Publications Mathématiques de l'IHÉS 8563: 7314:, as discussed in the next section. 6888:be a division algebra with center a 6256:or all central simple algebras over 6180:is isomorphic to the matrix algebra 3850:that contain a given Borel subgroup 3846:, the smooth connected subgroups of 2422:has a non-trivial unipotent radical 1480:of reductive groups is a surjective 9090:Representations of Algebraic Groups 8228:Albert–Brauer–Hasse–Noether theorem 8079:matter. The analogous result for a 7021:). (Arithmeticity of a subgroup of 6920:-simple group. As mentioned above, 6904:is finite and greater than 1. Then 6321:contains a parabolic subgroup over 6025:{\displaystyle \lfloor n/2\rfloor } 5871:Every nondegenerate quadratic form 5592:Representations of reductive groups 5502:that is complete with respect to a 5235:) is reductive, and a homomorphism 3611: 3586: 3538: 3504: 3494: 3283: 3225: 3176: 3149: 3139: 3112: 3080: 3052: 3028: 3004: 2964: 1963:) is reductive, in fact simple for 24: 9166:Algebraic Groups and Number Theory 9056:Séminaire Bourbaki. Vol. 2007/2008 7790:-forms of a given algebraic group 7029:) is independent of the choice of 6461:, then any two Borel subgroups of 4477:-subgroup scheme of the center of 4469:is the simply connected group and 4143:contained in a fixed vector space 3925:) that contain the Borel subgroup 3524: 3168: 2451:of upper-triangular matrices with 2107:and products of it are called the 1860:) is a simple algebraic group for 1609:, which is somewhat more general. 1279:is semisimple or reductive, where 1003:of a real reductive group, or the 25: 9518: 9467: 8375: 8075:, and so only the real places of 7636:{\displaystyle G_{\overline {k}}} 7604:{\displaystyle G_{\overline {k}}} 7572:{\displaystyle X_{\overline {k}}} 7349:. The absolute Dynkin diagram of 7168:, that is, the Dynkin diagram of 6473:). Example: the orthogonal group 6465:are conjugate by some element of 6126:{\displaystyle G_{\overline {k}}} 5924:{\displaystyle G_{\overline {k}}} 5879:determines a reductive group G = 5731:-vector space of sections of the 5231:whose identity component (in the 5129:{\displaystyle G_{\overline {k}}} 3906:together with the root subgroups 3406:of a maximal torus by the torus, 2896:, or equivalently a homomorphism 2690:into the complex reductive group 1884:An important simple group is the 1697:{\displaystyle G_{\overline {k}}} 1460:is simple, and its center is the 1272:{\displaystyle G_{\overline {k}}} 8551:Jantzen (2003), section II.8.22. 8479:Borel (1991), Proposition 21.12. 8470:Milne (2017), Proposition 17.53. 8366:Milne (2017), Proposition 21.60. 8237:-forms of the exceptional group 6896:. Suppose that the dimension of 5830:, and Wolfgang Soergel (proving 5215:rather than algebraic groups, a 4105:projective homogeneous varieties 3601:of upper-triangular matrices in 3099:. Therefore, the Lie algebra of 2516:implies that the quotient group 2444:{\displaystyle \mathbb {U} _{n}} 2353:{\displaystyle \mathbb {G} _{a}} 2100:{\displaystyle \mathbb {G} _{m}} 1848:, the subgroup of matrices with 1704:). It is equivalent to say that 1156:if the largest smooth connected 50: 8696: 8687: 8678: 8669: 8660: 8651: 8642: 8633: 8624: 8615: 8606: 8597: 8588: 8579: 8554: 8545: 8536: 8527: 8518: 8509: 8500: 8491: 8482: 8473: 8464: 8455: 7513:Torsors and the Hasse principle 7206:{\displaystyle {\overline {k}}} 7074:means a discrete subgroup Γ of 7045:) is an arithmetic subgroup of 6944:(but not finite). As a result, 6772:, the theorem holds except for 6592:{\displaystyle {\overline {k}}} 6267:A reductive group over a field 6161:{\displaystyle {\overline {k}}} 5959:{\displaystyle {\overline {k}}} 5571:. For example, the building of 5303:; or one can just refer to the 5179:.) Extending Chevalley's work, 5168:{\displaystyle {\overline {k}}} 3902:of Δ is the group generated by 3594:{\displaystyle {\mathfrak {b}}} 3120:{\displaystyle {\mathfrak {t}}} 3088:{\displaystyle {\mathfrak {t}}} 3060:{\displaystyle {\mathfrak {g}}} 3036:{\displaystyle {\mathfrak {g}}} 3012:{\displaystyle {\mathfrak {g}}} 2972:{\displaystyle {\mathfrak {g}}} 2929:) isomorphic to the product of 2415:{\displaystyle {\text{GL}}_{n}} 2321: 2206:{\displaystyle {\text{GL}}_{2}} 2133:{\displaystyle {\text{GL}}_{n}} 2063:{\displaystyle {\overline {k}}} 1936:on a vector space over a field 1769:{\displaystyle {\text{GL}}_{n}} 1665:{\displaystyle {\overline {k}}} 1299:{\displaystyle {\overline {k}}} 9481:, Gille, P.; Polo, P. (eds.), 9228:Société Mathématique de France 9060:Société Mathématique de France 9021:Société Mathématique de France 8934:Société Mathématique de France 8862:Société Mathématique de France 8675:Steinberg (1965), Theorem 1.9. 8612:Borel (1991), Theorem 20.9(i). 8506:Milne (2017), Corollary 23.47. 8461:Milne (2017), Corollary 21.12. 8434: 8425: 8422:Milne (2017), Corollary 22.43. 8416: 8407: 8398: 8389: 8369: 8360: 8351: 8198: 8179: 8156: 8153: 8141: 8004: 7985: 7962: 7959: 7947: 7901:totally imaginary number field 7794:(sometimes called "twists" of 7722:over the algebraic closure of 7501:is quasi-split if and only if 7472: 7451: 7439: 7436: 7426: 7405: 7329:of characteristic not 2, with 7217:consists of the root datum of 7092:Margulis arithmeticity theorem 6960:Lattices and arithmetic groups 6260:. These problems are easy for 6069:* (as an algebraic group over 5459:of manifolds with nonpositive 5030: 5024: 5021: 5007: 5001: 4995: 4983: 4977: 4829: 4794: 4599: 4558: 3626: 3620: 3482:and the positive root spaces: 3298: 3292: 3240: 3234: 2614: 2611: 2598: 2585: 2547: 2541: 2503: 2497: 2252: 2249: 2223: 1825:-rational points is the group 1728: 1551: 1548: 1542: 1520: 1514: 1508: 1207: 1201: 1014: 719:Infinite dimensional Lie group 13: 1: 9394:American Mathematical Society 9279:American Mathematical Society 9226:, Astérisque, vol. 397, 9095:American Mathematical Society 9058:, Astérisque, vol. 326, 8858:Autour des schémas en groupes 8708: 8630:Steinberg (2016), Theorem 30. 8524:Springer (1979), section 5.1. 8340:Radical of an algebraic group 8049:). Moreover, the pointed set 6638:has at least 4 elements. Let 6634:, and suppose that the field 6618:says that the abstract group 6046:determines a reductive group 5652:is the semidirect product of 4276:The connected Dynkin diagrams 4115:of characteristic zero). For 3696:(which is simply the rank of 3466:by the Weyl group (acting by 3347:, the roots are the elements 2733:) is a homotopy equivalence. 967:Reductive groups have a rich 9390:Lectures on Chevalley Groups 9163:; Rapinchuk, Andrei (1994), 9049:"Le problème de Kneser–Tits" 8621:Steinberg (2016), Theorem 8. 8452:Milne (2017), Theorem 21.11. 8440:Milne (2017), Theorem 12.12. 8413:Milne (2017), Theorem 22.42. 7702:of a given algebraic object 7627: 7595: 7563: 7497:, the maximum possible, and 7254:with the given action is an 7198: 7122:Witt's decomposition theorem 6584: 6153: 6117: 5951: 5939:) over an algebraic closure 5915: 5774:For a split reductive group 5755:of characteristic zero, the 5596:For a split reductive group 5160: 5120: 3838:For a split reductive group 3765:For a split reductive group 2847:be a split maximal torus in 2748:(as an algebraic group) are 2055: 1688: 1657: 1291: 1263: 1053:, for some positive integer 953:of a simple algebraic group 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 7: 9205:Encyclopedia of Mathematics 8820:, Collected Works, Vol. 3, 8657:Gille (2009), Théorème 6.1. 8585:Borel (1991), section 23.2. 8576:Borel (1991), section 23.4. 8533:Milne (2017), Theorem 22.2. 8313:geometric Langlands program 8251: 7718:which become isomorphic to 7523:for an affine group scheme 6228:) − 1. So the simple group 5840:Kazhdan–Lusztig polynomials 5491:(2) is hyperbolic 3-space. 5381:isomorphic to the integers 5276:)) (which is automatic for 5136:is reductive. (For a point 4941:of a split reductive group 3253:is the vector space of all 3071:is exactly the Lie algebra 2909:. The weights form a group 1723: 1005:automorphic representations 895:semisimple algebraic groups 850:irreducible representations 217:List of group theory topics 10: 9523: 9128:Cambridge University Press 8327:Geometric invariant theory 7675:of isomorphism classes of 7186:over an algebraic closure 7109: 7033:-structure.) For example, 6675:. (By the assumption that 5858:Non-split reductive groups 5312:admissible representations 5307:(up to finite coverings). 4778:, which can be written as: 3443:)), the Weyl group is the 3388:, a slight variation. The 2880:. Every representation of 2560:is reductive. For example, 2553:{\displaystyle G/R_{u}(G)} 2476:Associated reductive group 1712:that is maximal among all 1342:With representation theory 1105:if every smooth connected 1073:With the unipotent radical 1018: 905:algebraically closed field 9316:10.1007/978-0-8176-4840-4 8851:"Reductive group schemes" 8732:10.1007/978-1-4612-0941-6 8648:Tits (1964), section 1.2. 7258:of the quasi-split group 6849:asks for which isotropic 6616:Tits's simplicity theorem 6489:is split if and only if | 6283:. For a semisimple group 6240:is a matrix algebra over 5684:maps the line spanned by 5305:list of simple Lie groups 4367:. For example, the group 4335:list of simple Lie groups 3878:to a subgroup containing 3639:. The positive roots are 2921:of representations, with 1829:* of nonzero elements of 1444:at least 2 and any field 1404:A linear algebraic group 836:is reductive if it has a 18:Reductive algebraic group 9219:Tilting Modules and the 9047:Gille, Philippe (2009), 8766:Inventiones Mathematicae 8345: 8301:Langlands classification 8265:Generalized flag variety 7857:over a perfect field of 7827:cohomological invariants 7505:has Witt index at least 7489:is split if and only if 7126:Artin–Wedderburn theorem 7102:is an arithmetic group. 6802:), one can consider the 6610:-simple algebraic group 6541:indexed by the roots of 5814:is much bigger than the 5446:maximal compact subgroup 5432:, the quotient manifold 5175:of the residue field of 5148:to an algebraic closure 4939:outer automorphism group 4421:is an isomorphism. (For 3458:There are finitely many 2823: 2772:of characteristic zero, 2509:{\displaystyle R_{u}(G)} 1975:of characteristic 2 and 1240:over an arbitrary field 1213:{\displaystyle R_{u}(G)} 869:special orthogonal group 335:Elementary abelian group 212:Glossary of group theory 9502:Linear algebraic groups 9308:Linear Algebraic Groups 8720:Linear Algebraic Groups 8379:Linear Algebraic Groups 8226:), this amounts to the 7859:cohomological dimension 7531:means an affine scheme 7078:such that the manifold 6298:is isotropic (that is, 5986:). So the simple group 5676:to be a nonzero vector 5336:projective linear group 5073:Reductive group schemes 4762:: the spin group Spin(2 4741:: the symplectic group 2073: 2023:). For a general field 1788:, for a natural number 1432:is trivial or equal to 1400:Simple reductive groups 1081:linear algebraic group 1001:unitary representations 920:semisimple Lie algebras 891:Simple algebraic groups 8860:, vol. 1, Paris: 8404:Borel (1991), 18.2(i). 8291:Real form (Lie theory) 8286:Deligne–Lusztig theory 8205: 8011: 7637: 7605: 7573: 7479: 7207: 7139:For a reductive group 7001:means any subgroup of 6593: 6529:of the abstract group 6368:element other than 1. 6162: 6127: 6037:central simple algebra 6026: 5960: 5925: 5838:large is based on the 5765:Weyl character formula 5624:with a convex cone (a 5494:For a reductive group 5259:) is contained in Int( 5169: 5130: 5040: 4926: 4723: 4542:, for example the form 4277: 4240:with a Borel subgroup 4223: 4051: 3633: 3595: 3556: 3305: 3247: 3194: 3121: 3089: 3061: 3037: 3013: 2973: 2952:by conjugation on its 2946:adjoint representation 2736:For a reductive group 2682:with complexification 2667: 2660: 2640: 2554: 2510: 2465: 2445: 2416: 2387: 2354: 2319: 2312: 2207: 2178: 2134: 2101: 2064: 1979:odd, the group scheme 1940:. The algebraic group 1808:(1), and so its group 1784:matrices over a field 1770: 1698: 1672:is a maximal torus in 1666: 1613:Split-reductive groups 1607:pseudo-reductive group 1576: 1390: 1389:{\displaystyle k^{al}} 1360: 1300: 1273: 1234: 1214: 1174: 1146: 1126: 1095: 1027:linear algebraic group 1021:Linear algebraic group 1009:adelic algebraic group 911:, as in the theory of 822:linear algebraic group 751:Linear algebraic group 493: 468: 431: 27:Concept in mathematics 9432:Annals of Mathematics 9136:10.1017/9781316711736 9085:Jantzen, Jens Carsten 8206: 8110:has no real places). 8012: 7881:Serre's Conjecture II 7638: 7606: 7574: 7480: 7213:). The Tits index of 7208: 7149:absolute Galois group 6876:, the abstract group 6594: 6556:over a perfect field 6163: 6128: 6058:), the kernel of the 6027: 5961: 5926: 5739:on the flag manifold 5716:, up to isomorphism. 5662:highest weight vector 5207:Real reductive groups 5170: 5131: 5041: 4927: 4724: 4275: 4224: 4067:of a reductive group 4052: 3634: 3596: 3557: 3394:of a reductive group 3306: 3248: 3195: 3122: 3090: 3062: 3038: 3014: 2974: 2686:, the inclusion from 2661: 2620: 2562: 2555: 2511: 2466: 2446: 2417: 2388: 2386:{\displaystyle B_{n}} 2355: 2313: 2215: 2208: 2179: 2135: 2102: 2065: 1792:. In particular, the 1771: 1699: 1667: 1645:whose base change to 1577: 1484:with kernel a finite 1391: 1361: 1301: 1274: 1235: 1215: 1175: 1147: 1127: 1096: 969:representation theory 893:and (more generally) 494: 469: 432: 8331:Luna's slice theorem 8305:Langlands dual group 8269:Bruhat decomposition 8128: 8117:over a number field 8106:) is trivial (since 7934: 7798:) are classified by 7651:with respect to the 7615: 7583: 7551: 7396: 7337:be the simple group 7190: 6930:totally disconnected 6916:) is an anisotropic 6576: 6457:is quasi-split over 6145: 6105: 6089:-vector space. Here 6002: 5943: 5903: 5664:in a representation 5357:) (sometimes called 5217:real reductive group 5152: 5108: 4968: 4788: 4552: 4425:semisimple over the 4158: 3936: 3754:, which is a finite 3605: 3581: 3489: 3277: 3219: 3134: 3107: 3075: 3047: 3023: 2999: 2959: 2750:completely reducible 2700:homotopy equivalence 2567: 2520: 2484: 2455: 2426: 2397: 2370: 2335: 2220: 2188: 2144: 2115: 2082: 2047: 1950:connected components 1835:special linear group 1794:multiplicative group 1751: 1746:general linear group 1708:is a split torus in 1676: 1649: 1499: 1370: 1350: 1328:multiplicative group 1283: 1251: 1224: 1188: 1164: 1136: 1116: 1085: 854:general linear group 481: 456: 419: 9246:2015arXiv151208296R 8864:, pp. 93–444, 8779:1971InMat..12...95B 8385:. pp. 381–394. 8322:essential dimension 8214:is injective. For 8020:is bijective. Here 7833:coefficient groups 7611:with the action of 7302:associated to some 7090:/Γ is compact. The 6868:For an anisotropic 6847:Kneser–Tits problem 6375:over a local field 5461:sectional curvature 5457:Riemannian geometry 5310:Useful theories of 4715: 3882:by some element of 3834:Parabolic subgroups 3682:commutator subgroup 3464:simply transitively 3215:), its Lie algebra 2816:has order prime to 2806:multiplicative type 1991:. The simple group 1473:th roots of unity. 1160:normal subgroup of 865:invertible matrices 125:Group homomorphisms 35:Algebraic structure 9363:10.1007/bf02684397 9304:Springer, Tonny A. 9267:"Reductive groups" 9263:Springer, Tonny A. 9161:Platonov, Vladimir 9062:, pp. 39–81, 8981:10.1007/BFb0059005 8787:10.1007/BF01404653 8259:groups of Lie type 8201: 8168: 8007: 7974: 7770:are classified by 7746:are classified by 7710:, meaning objects 7645:principal G-bundle 7633: 7601: 7569: 7475: 7388:*) is trivial. If 7294:. In other words, 7203: 6679:is isotropic over 6630:is isotropic over 6589: 6570:inner automorphism 6437:A reductive group 6418:has real rank min( 6158: 6123: 6101:at least 2, since 6022: 5956: 5921: 5899:at least 3, since 5848:Geordie Williamson 5846:, Simon Riche and 5757:Borel–Weil theorem 5688:into itself. Then 5539:with an action of 5537:simplicial complex 5504:discrete valuation 5211:In the context of 5165: 5126: 5036: 4959:semidirect product 4922: 4719: 4692: 4376:automorphism group 4342:exceptional groups 4278: 4219: 4095:, or equivalently 4062:parabolic subgroup 4047: 4037: 3868:parabolic subgroup 3629: 3591: 3552: 3534: 3301: 3243: 3203:For example, when 3190: 3172: 3117: 3085: 3057: 3033: 3019:. The subspace of 3009: 2969: 2855:is isomorphic to ( 2788:of characteristic 2784:is reductive. For 2766:linearly reductive 2656: 2550: 2506: 2461: 2441: 2412: 2383: 2350: 2308: 2299: 2203: 2174: 2130: 2097: 2060: 1954:identity component 1899:, the subgroup of 1766: 1694: 1662: 1617:A reductive group 1572: 1386: 1356: 1296: 1269: 1230: 1210: 1170: 1142: 1122: 1091: 1065:group scheme over 913:compact Lie groups 840:that has a finite 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 9411:978-1-4704-3105-1 9402:10.1090/ulect/066 9386:Steinberg, Robert 9341:Steinberg, Robert 9325:978-0-8176-4021-7 9281:, pp. 3–27, 9255:978-2-85629-880-0 9200:"Reductive group" 9104:978-0-8218-3527-2 9030:978-2-85629-324-9 8943:978-2-85629-323-2 8897:, Paris: Masson, 8871:978-2-85629-794-0 8810:Chevalley, Claude 8335:Haboush's theorem 8309:Langlands program 8277:Schubert calculus 8159: 7965: 7630: 7598: 7579:is isomorphic to 7566: 7434: 7290:is the center of 7268:Galois cohomology 7201: 7174:separable closure 6733:is split of type 6587: 6525:gave an explicit 6395:) if and only if 6156: 6133:is isomorphic to 6120: 5954: 5931:is isomorphic to 5918: 5407:metaplectic group 5393:) has nontrivial 5379:fundamental group 5334:For example, the 5163: 5123: 5053:is the center of 4123:), these are the 4060:By definition, a 3512: 3157: 2948:is the action of 2464:{\displaystyle 1} 2404: 2195: 2122: 2058: 1971:at least 3. (For 1758: 1691: 1660: 1359:{\displaystyle G} 1318:is perfect.) Any 1308:algebraic closure 1294: 1266: 1233:{\displaystyle G} 1182:unipotent radical 1173:{\displaystyle G} 1145:{\displaystyle G} 1125:{\displaystyle G} 1094:{\displaystyle G} 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 9514: 9487: 9479:Grothendieck, A. 9463: 9422: 9381: 9336: 9299: 9258: 9239: 9223:-Canonical Basis 9212: 9191: 9156: 9115: 9093:(2nd ed.), 9080: 9069:978-285629-269-3 9053: 9042: 9011:Grothendieck, A. 9002: 8965:Grothendieck, A. 8955: 8924:Grothendieck, A. 8915: 8887:Demazure, Michel 8882: 8855: 8842: 8805: 8752: 8703: 8700: 8694: 8691: 8685: 8682: 8676: 8673: 8667: 8664: 8658: 8655: 8649: 8646: 8640: 8637: 8631: 8628: 8622: 8619: 8613: 8610: 8604: 8601: 8595: 8592: 8586: 8583: 8577: 8574: 8561: 8558: 8552: 8549: 8543: 8540: 8534: 8531: 8525: 8522: 8516: 8513: 8507: 8504: 8498: 8495: 8489: 8486: 8480: 8477: 8471: 8468: 8462: 8459: 8453: 8450: 8441: 8438: 8432: 8429: 8423: 8420: 8414: 8411: 8405: 8402: 8396: 8393: 8387: 8386: 8384: 8373: 8367: 8364: 8358: 8355: 8273:Schubert variety 8210: 8208: 8207: 8202: 8191: 8190: 8178: 8177: 8167: 8140: 8139: 8016: 8014: 8013: 8008: 7997: 7996: 7984: 7983: 7973: 7946: 7945: 7642: 7640: 7639: 7634: 7632: 7631: 7623: 7610: 7608: 7607: 7602: 7600: 7599: 7591: 7578: 7576: 7575: 7570: 7568: 7567: 7559: 7484: 7482: 7481: 7476: 7468: 7463: 7462: 7435: 7430: 7422: 7417: 7416: 7298:is the twist of 7212: 7210: 7209: 7204: 7202: 7194: 7060:For a Lie group 6998:arithmetic group 6970:rational numbers 6711:'s machinery of 6598: 6596: 6595: 6590: 6588: 6580: 6523:Robert Steinberg 6199:division algebra 6167: 6165: 6164: 6159: 6157: 6149: 6132: 6130: 6129: 6124: 6122: 6121: 6113: 6031: 6029: 6028: 6023: 6015: 5974:is equal to the 5965: 5963: 5962: 5957: 5955: 5947: 5930: 5928: 5927: 5922: 5920: 5919: 5911: 5865:classical groups 5824:Henning Andersen 5610:dominant weights 5477:hyperbolic plane 5233:Zariski topology 5174: 5172: 5171: 5166: 5164: 5156: 5135: 5133: 5132: 5127: 5125: 5124: 5116: 5092:if the morphism 5045: 5043: 5042: 5037: 5017: 4931: 4929: 4928: 4923: 4918: 4917: 4905: 4904: 4877: 4876: 4867: 4866: 4854: 4853: 4844: 4843: 4828: 4827: 4806: 4805: 4774:with Witt index 4728: 4726: 4725: 4720: 4714: 4709: 4688: 4687: 4675: 4674: 4647: 4646: 4637: 4636: 4624: 4623: 4614: 4613: 4598: 4597: 4570: 4569: 4439:simply connected 4415:simply connected 4380:octonion algebra 4228: 4226: 4225: 4220: 4209: 4208: 4207: 4206: 4183: 4182: 4181: 4180: 4056: 4054: 4053: 4048: 4046: 4042: 4041: 3822:is generated by 3638: 3636: 3635: 3630: 3619: 3615: 3614: 3600: 3598: 3597: 3592: 3590: 3589: 3565:For example, if 3561: 3559: 3558: 3553: 3548: 3547: 3542: 3541: 3533: 3532: 3531: 3508: 3507: 3498: 3497: 3310: 3308: 3307: 3302: 3291: 3287: 3286: 3252: 3250: 3249: 3244: 3233: 3229: 3228: 3199: 3197: 3196: 3191: 3186: 3185: 3180: 3179: 3171: 3153: 3152: 3143: 3142: 3126: 3124: 3123: 3118: 3116: 3115: 3103:decomposes into 3094: 3092: 3091: 3086: 3084: 3083: 3066: 3064: 3063: 3058: 3056: 3055: 3042: 3040: 3039: 3034: 3032: 3031: 3018: 3016: 3015: 3010: 3008: 3007: 2978: 2976: 2975: 2970: 2968: 2967: 2794:Masayoshi Nagata 2792:>0, however, 2740:over a field of 2676:complexification 2665: 2663: 2662: 2657: 2652: 2651: 2646: 2639: 2634: 2610: 2609: 2597: 2596: 2584: 2579: 2578: 2559: 2557: 2556: 2551: 2540: 2539: 2530: 2515: 2513: 2512: 2507: 2496: 2495: 2470: 2468: 2467: 2462: 2450: 2448: 2447: 2442: 2440: 2439: 2434: 2421: 2419: 2418: 2413: 2411: 2410: 2405: 2402: 2392: 2390: 2389: 2384: 2382: 2381: 2359: 2357: 2356: 2351: 2349: 2348: 2343: 2317: 2315: 2314: 2309: 2304: 2303: 2296: 2295: 2272: 2271: 2248: 2247: 2235: 2234: 2212: 2210: 2209: 2204: 2202: 2201: 2196: 2193: 2183: 2181: 2180: 2175: 2173: 2172: 2167: 2158: 2157: 2152: 2139: 2137: 2136: 2131: 2129: 2128: 2123: 2120: 2106: 2104: 2103: 2098: 2096: 2095: 2090: 2069: 2067: 2066: 2061: 2059: 2051: 1920:orthogonal group 1918:. Likewise, the 1886:symplectic group 1775: 1773: 1772: 1767: 1765: 1764: 1759: 1756: 1703: 1701: 1700: 1695: 1693: 1692: 1684: 1671: 1669: 1668: 1663: 1661: 1653: 1581: 1579: 1578: 1573: 1568: 1567: 1558: 1532: 1531: 1486:central subgroup 1395: 1393: 1392: 1387: 1385: 1384: 1365: 1363: 1362: 1357: 1338:, is reductive. 1305: 1303: 1302: 1297: 1295: 1287: 1278: 1276: 1275: 1270: 1268: 1267: 1259: 1239: 1237: 1236: 1231: 1219: 1217: 1216: 1211: 1200: 1199: 1179: 1177: 1176: 1171: 1151: 1149: 1148: 1143: 1131: 1129: 1128: 1123: 1100: 1098: 1097: 1092: 1033:is defined as a 901:Claude Chevalley 880:symplectic group 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 9522: 9521: 9517: 9516: 9515: 9513: 9512: 9511: 9492: 9491: 9470: 9445:10.2307/1970394 9412: 9326: 9289: 9277:, vol. 1, 9256: 9181: 9146: 9105: 9070: 9051: 9031: 8991: 8973:Springer-Verlag 8944: 8905: 8891:Gabriel, Pierre 8872: 8853: 8832: 8822:Springer Nature 8742: 8724:Springer Nature 8711: 8706: 8701: 8697: 8692: 8688: 8683: 8679: 8674: 8670: 8665: 8661: 8656: 8652: 8647: 8643: 8638: 8634: 8629: 8625: 8620: 8616: 8611: 8607: 8602: 8598: 8593: 8589: 8584: 8580: 8575: 8564: 8559: 8555: 8550: 8546: 8541: 8537: 8532: 8528: 8523: 8519: 8514: 8510: 8505: 8501: 8496: 8492: 8487: 8483: 8478: 8474: 8469: 8465: 8460: 8456: 8451: 8444: 8439: 8435: 8430: 8426: 8421: 8417: 8412: 8408: 8403: 8399: 8394: 8390: 8382: 8374: 8370: 8365: 8361: 8356: 8352: 8348: 8254: 8247: 8242: 8186: 8182: 8173: 8169: 8163: 8135: 8131: 8129: 8126: 8125: 8074: 8061: 8040: 7992: 7988: 7979: 7975: 7969: 7941: 7937: 7935: 7932: 7931: 7917:Hasse principle 7825:-torsors using 7667:is smooth over 7622: 7618: 7616: 7613: 7612: 7590: 7586: 7584: 7581: 7580: 7558: 7554: 7552: 7549: 7548: 7515: 7493:has Witt index 7464: 7458: 7454: 7429: 7418: 7412: 7408: 7397: 7394: 7393: 7364: 7358: 7262:, meaning that 7230: 7229: 7193: 7191: 7188: 7187: 7181: 7159: 7114: 7108: 6962: 6942:profinite group 6804:Whitehead group 6782: 6771: 6760: 6753: 6746: 6739: 6728: 6666: 6654:) generated by 6579: 6577: 6574: 6573: 6511: 6343: 6310: 6236:if and only if 6192: 6148: 6146: 6143: 6142: 6112: 6108: 6106: 6103: 6102: 6011: 6003: 6000: 5999: 5994:if and only if 5946: 5944: 5941: 5940: 5910: 5906: 5904: 5901: 5900: 5860: 5594: 5583: 5521:affine building 5517: 5463:. For example, 5453:symmetric space 5411:universal cover 5405:) (such as the 5395:covering spaces 5267: 5219:is a Lie group 5209: 5181:Michel Demazure 5155: 5153: 5150: 5149: 5115: 5111: 5109: 5106: 5105: 5075: 5013: 4969: 4966: 4965: 4910: 4906: 4891: 4887: 4872: 4868: 4862: 4858: 4849: 4845: 4839: 4835: 4820: 4816: 4801: 4797: 4789: 4786: 4785: 4761: 4740: 4710: 4696: 4680: 4676: 4661: 4657: 4642: 4638: 4632: 4628: 4619: 4615: 4609: 4605: 4584: 4580: 4565: 4561: 4553: 4550: 4549: 4518: 4497: 4427:complex numbers 4397: 4393: 4389: 4373: 4354: 4350: 4327:Wilhelm Killing 4324: 4320: 4316: 4312: 4308: 4304: 4298: 4292: 4286: 4270: 4202: 4198: 4197: 4193: 4176: 4172: 4171: 4167: 4159: 4156: 4155: 4142: 4133: 4036: 4035: 4030: 4025: 4020: 4014: 4013: 4008: 4003: 3998: 3992: 3991: 3986: 3981: 3976: 3970: 3969: 3964: 3959: 3954: 3944: 3943: 3939: 3937: 3934: 3933: 3912: 3836: 3797: 3783: 3738: 3728: 3690:semisimple rank 3656: 3647: 3610: 3609: 3608: 3606: 3603: 3602: 3585: 3584: 3582: 3579: 3578: 3543: 3537: 3536: 3535: 3527: 3523: 3516: 3503: 3502: 3493: 3492: 3490: 3487: 3486: 3460:Borel subgroups 3454: 3445:symmetric group 3418: 3364: 3355: 3334: 3325: 3282: 3281: 3280: 3278: 3275: 3274: 3224: 3223: 3222: 3220: 3217: 3216: 3181: 3175: 3174: 3173: 3161: 3148: 3147: 3138: 3137: 3135: 3132: 3131: 3111: 3110: 3108: 3105: 3104: 3079: 3078: 3076: 3073: 3072: 3051: 3050: 3048: 3045: 3044: 3027: 3026: 3024: 3021: 3020: 3003: 3002: 3000: 2997: 2996: 2963: 2962: 2960: 2957: 2956: 2908: 2863: 2826: 2672: 2647: 2642: 2641: 2635: 2624: 2605: 2601: 2592: 2588: 2580: 2574: 2570: 2568: 2565: 2564: 2535: 2531: 2526: 2521: 2518: 2517: 2491: 2487: 2485: 2482: 2481: 2478: 2456: 2453: 2452: 2435: 2430: 2429: 2427: 2424: 2423: 2406: 2401: 2400: 2398: 2395: 2394: 2377: 2373: 2371: 2368: 2367: 2344: 2339: 2338: 2336: 2333: 2332: 2329:unipotent group 2324: 2298: 2297: 2291: 2287: 2285: 2279: 2278: 2273: 2267: 2263: 2256: 2255: 2243: 2239: 2230: 2226: 2221: 2218: 2217: 2197: 2192: 2191: 2189: 2186: 2185: 2168: 2163: 2162: 2153: 2148: 2147: 2145: 2142: 2141: 2124: 2119: 2118: 2116: 2113: 2112: 2091: 2086: 2085: 2083: 2080: 2079: 2076: 2050: 2048: 2045: 2044: 1895:) over a field 1882: 1844:) over a field 1816: 1803: 1760: 1755: 1754: 1752: 1749: 1748: 1742: 1740: 1734: 1726: 1683: 1679: 1677: 1674: 1673: 1652: 1650: 1647: 1646: 1615: 1563: 1559: 1554: 1527: 1523: 1500: 1497: 1496: 1478:central isogeny 1467: 1402: 1377: 1373: 1371: 1368: 1367: 1351: 1348: 1347: 1344: 1337: 1286: 1284: 1281: 1280: 1258: 1254: 1252: 1249: 1248: 1225: 1222: 1221: 1195: 1191: 1189: 1186: 1185: 1184:and is denoted 1165: 1162: 1161: 1137: 1134: 1133: 1117: 1114: 1113: 1110:normal subgroup 1086: 1083: 1082: 1075: 1039:subgroup scheme 1023: 1017: 951:rational points 909:Dynkin diagrams 897:are reductive. 818:reductive group 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 9520: 9510: 9509: 9504: 9490: 9489: 9469: 9468:External links 9466: 9465: 9464: 9439:(2): 313–329, 9423: 9410: 9382: 9337: 9324: 9300: 9287: 9259: 9254: 9213: 9192: 9179: 9171:Academic Press 9157: 9145:978-1107167483 9144: 9116: 9103: 9081: 9068: 9044: 9029: 9003: 8990:978-3540051800 8989: 8957: 8942: 8916: 8904:978-2225616662 8903: 8883: 8870: 8843: 8830: 8806: 8753: 8740: 8710: 8707: 8705: 8704: 8695: 8686: 8677: 8668: 8659: 8650: 8641: 8632: 8623: 8614: 8605: 8596: 8587: 8578: 8562: 8553: 8544: 8535: 8526: 8517: 8508: 8499: 8490: 8481: 8472: 8463: 8454: 8442: 8433: 8424: 8415: 8406: 8397: 8388: 8368: 8359: 8349: 8347: 8344: 8343: 8342: 8337: 8324: 8315: 8298: 8293: 8288: 8279: 8262: 8253: 8250: 8245: 8240: 8212: 8211: 8200: 8197: 8194: 8189: 8185: 8181: 8176: 8172: 8166: 8162: 8158: 8155: 8152: 8149: 8146: 8143: 8138: 8134: 8070: 8057: 8036: 8024:runs over all 8018: 8017: 8006: 8003: 8000: 7995: 7991: 7987: 7982: 7978: 7972: 7968: 7964: 7961: 7958: 7955: 7952: 7949: 7944: 7940: 7875:Lang's theorem 7679:-torsors over 7661:étale topology 7629: 7626: 7621: 7597: 7594: 7589: 7565: 7562: 7557: 7514: 7511: 7474: 7471: 7467: 7461: 7457: 7453: 7450: 7447: 7444: 7441: 7438: 7433: 7428: 7425: 7421: 7415: 7411: 7407: 7404: 7401: 7360: 7354: 7225: 7221: 7200: 7197: 7179: 7155: 7110:Main article: 7107: 7104: 6961: 6958: 6872:-simple group 6865:) is abelian. 6790:-simple group 6780: 6769: 6758: 6751: 6744: 6737: 6726: 6662: 6586: 6583: 6510: 6507: 6350: 6349: 6339: 6330: 6316: 6306: 6246: 6245: 6232:is split over 6184: 6176:(meaning that 6155: 6152: 6119: 6116: 6111: 6064:group of units 6033: 6021: 6018: 6014: 6010: 6007: 5990:is split over 5953: 5950: 5917: 5914: 5909: 5895:has dimension 5859: 5856: 5816:Coxeter number 5593: 5590: 5579: 5555:) preserves a 5513: 5508:p-adic numbers 5301:Satake diagram 5263: 5208: 5205: 5162: 5159: 5122: 5119: 5114: 5084:over a scheme 5074: 5071: 5047: 5046: 5035: 5032: 5029: 5026: 5023: 5020: 5016: 5012: 5009: 5006: 5003: 5000: 4997: 4994: 4991: 4988: 4985: 4982: 4979: 4976: 4973: 4935: 4934: 4933: 4932: 4921: 4916: 4913: 4909: 4903: 4900: 4897: 4894: 4890: 4886: 4883: 4880: 4875: 4871: 4865: 4861: 4857: 4852: 4848: 4842: 4838: 4834: 4831: 4826: 4823: 4819: 4815: 4812: 4809: 4804: 4800: 4796: 4793: 4780: 4779: 4757: 4754: 4736: 4732: 4731: 4730: 4729: 4718: 4713: 4708: 4705: 4702: 4699: 4695: 4691: 4686: 4683: 4679: 4673: 4670: 4667: 4664: 4660: 4656: 4653: 4650: 4645: 4641: 4635: 4631: 4627: 4622: 4618: 4612: 4608: 4604: 4601: 4596: 4593: 4590: 4587: 4583: 4579: 4576: 4573: 4568: 4564: 4560: 4557: 4544: 4543: 4514: 4511: 4493: 4395: 4391: 4387: 4371: 4352: 4348: 4322: 4318: 4314: 4310: 4306: 4300: 4294: 4288: 4282: 4269: 4266: 4252:is called the 4230: 4229: 4218: 4215: 4212: 4205: 4201: 4196: 4192: 4189: 4186: 4179: 4175: 4170: 4166: 4163: 4138: 4131: 4125:flag varieties 4058: 4057: 4045: 4040: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4015: 4012: 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3993: 3990: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3971: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3949: 3947: 3942: 3910: 3835: 3832: 3795: 3781: 3752:Dynkin diagram 3733: 3724: 3652: 3643: 3628: 3625: 3622: 3618: 3613: 3588: 3563: 3562: 3551: 3546: 3540: 3530: 3526: 3522: 3519: 3515: 3511: 3506: 3501: 3496: 3472:positive roots 3450: 3414: 3400:quotient group 3360: 3351: 3330: 3323: 3300: 3297: 3294: 3290: 3285: 3261:matrices over 3242: 3239: 3236: 3232: 3227: 3201: 3200: 3189: 3184: 3178: 3170: 3167: 3164: 3160: 3156: 3151: 3146: 3141: 3114: 3082: 3054: 3030: 3006: 2966: 2933:copies of the 2919:tensor product 2904: 2859: 2825: 2822: 2742:characteristic 2671: 2668: 2655: 2650: 2645: 2638: 2633: 2630: 2627: 2623: 2619: 2616: 2613: 2608: 2604: 2600: 2595: 2591: 2587: 2583: 2577: 2573: 2549: 2546: 2543: 2538: 2534: 2529: 2525: 2505: 2502: 2499: 2494: 2490: 2477: 2474: 2473: 2472: 2460: 2438: 2433: 2409: 2380: 2376: 2361: 2347: 2342: 2323: 2320: 2307: 2302: 2294: 2290: 2286: 2284: 2281: 2280: 2277: 2274: 2270: 2266: 2262: 2261: 2259: 2254: 2251: 2246: 2242: 2238: 2233: 2229: 2225: 2200: 2171: 2166: 2161: 2156: 2151: 2127: 2109:algebraic tori 2094: 2089: 2075: 2072: 2057: 2054: 1931:quadratic form 1881: 1866: 1812: 1799: 1776:of invertible 1763: 1741: 1736: 1730: 1727: 1725: 1722: 1690: 1687: 1682: 1659: 1656: 1614: 1611: 1583: 1582: 1571: 1566: 1562: 1557: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1530: 1526: 1522: 1519: 1516: 1513: 1510: 1507: 1504: 1463: 1462:group scheme μ 1401: 1398: 1383: 1380: 1376: 1355: 1343: 1340: 1333: 1326:, such as the 1293: 1290: 1265: 1262: 1257: 1229: 1209: 1206: 1203: 1198: 1194: 1169: 1141: 1121: 1090: 1074: 1071: 1019:Main article: 1016: 1013: 838:representation 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 9: 6: 4: 3: 2: 9519: 9508: 9505: 9503: 9500: 9499: 9497: 9486: 9485: 9480: 9476: 9472: 9471: 9462: 9458: 9454: 9450: 9446: 9442: 9438: 9434: 9433: 9428: 9427:Tits, Jacques 9424: 9421: 9417: 9413: 9407: 9403: 9399: 9395: 9391: 9387: 9383: 9380: 9376: 9372: 9368: 9364: 9360: 9356: 9352: 9351: 9346: 9342: 9338: 9335: 9331: 9327: 9321: 9317: 9313: 9309: 9305: 9301: 9298: 9294: 9290: 9288:0-8218-3347-2 9284: 9280: 9276: 9272: 9268: 9264: 9260: 9257: 9251: 9247: 9243: 9238: 9233: 9229: 9225: 9224: 9220: 9214: 9211: 9207: 9206: 9201: 9197: 9193: 9190: 9186: 9182: 9180:0-12-558180-7 9176: 9172: 9168: 9167: 9162: 9158: 9155: 9151: 9147: 9141: 9137: 9133: 9129: 9125: 9121: 9117: 9114: 9110: 9106: 9100: 9096: 9092: 9091: 9086: 9082: 9079: 9075: 9071: 9065: 9061: 9057: 9050: 9045: 9040: 9036: 9032: 9026: 9022: 9018: 9017: 9012: 9008: 9004: 9000: 8996: 8992: 8986: 8982: 8978: 8974: 8970: 8966: 8962: 8958: 8953: 8949: 8945: 8939: 8935: 8931: 8930: 8925: 8921: 8917: 8914: 8910: 8906: 8900: 8896: 8892: 8888: 8884: 8881: 8877: 8873: 8867: 8863: 8859: 8852: 8848: 8847:Conrad, Brian 8844: 8841: 8837: 8833: 8831:3-540-23031-9 8827: 8823: 8819: 8815: 8811: 8807: 8804: 8800: 8796: 8792: 8788: 8784: 8780: 8776: 8773:(2): 95–104, 8772: 8768: 8767: 8762: 8761:Tits, Jacques 8758: 8757:Borel, Armand 8754: 8751: 8747: 8743: 8741:0-387-97370-2 8737: 8733: 8729: 8725: 8721: 8717: 8716:Borel, Armand 8713: 8712: 8699: 8690: 8681: 8672: 8663: 8654: 8645: 8636: 8627: 8618: 8609: 8600: 8591: 8582: 8573: 8571: 8569: 8567: 8557: 8548: 8539: 8530: 8521: 8512: 8503: 8494: 8485: 8476: 8467: 8458: 8449: 8447: 8437: 8428: 8419: 8410: 8401: 8392: 8381: 8380: 8372: 8363: 8354: 8350: 8341: 8338: 8336: 8332: 8328: 8325: 8323: 8319: 8318:Special group 8316: 8314: 8310: 8306: 8302: 8299: 8297: 8294: 8292: 8289: 8287: 8283: 8282:Schur algebra 8280: 8278: 8274: 8270: 8266: 8263: 8260: 8256: 8255: 8249: 8243: 8236: 8231: 8229: 8225: 8221: 8217: 8195: 8192: 8187: 8183: 8174: 8170: 8164: 8160: 8150: 8147: 8144: 8136: 8132: 8124: 8123: 8122: 8120: 8116: 8111: 8109: 8105: 8101: 8097: 8093: 8089: 8085: 8082: 8078: 8073: 8069: 8065: 8060: 8056: 8052: 8048: 8044: 8039: 8035: 8031: 8027: 8023: 8001: 7998: 7993: 7989: 7980: 7976: 7970: 7966: 7956: 7953: 7950: 7942: 7938: 7930: 7929: 7928: 7926: 7922: 7918: 7914: 7913:Günter Harder 7910: 7909:Martin Kneser 7906: 7902: 7898: 7894: 7890: 7886: 7882: 7878: 7876: 7872: 7868: 7864: 7860: 7856: 7852: 7848: 7844: 7840: 7836: 7832: 7828: 7824: 7819: 7817: 7813: 7809: 7805: 7801: 7797: 7793: 7789: 7785: 7781: 7777: 7773: 7769: 7765: 7761: 7757: 7753: 7749: 7745: 7741: 7737: 7733: 7729: 7725: 7721: 7717: 7713: 7709: 7706:over a field 7705: 7701: 7696: 7694: 7690: 7686: 7682: 7678: 7674: 7670: 7666: 7662: 7658: 7654: 7653:fppf topology 7650: 7646: 7624: 7619: 7592: 7587: 7560: 7555: 7546: 7542: 7538: 7534: 7530: 7527:over a field 7526: 7522: 7521: 7510: 7508: 7504: 7500: 7496: 7492: 7488: 7469: 7465: 7459: 7455: 7448: 7445: 7442: 7431: 7423: 7419: 7413: 7409: 7402: 7399: 7391: 7387: 7383: 7379: 7375: 7372: 7368: 7363: 7357: 7352: 7348: 7344: 7340: 7336: 7332: 7328: 7325:over a field 7324: 7320: 7317:Example: Let 7315: 7313: 7310:-torsor over 7309: 7305: 7301: 7297: 7293: 7289: 7285: 7281: 7277: 7273: 7269: 7265: 7261: 7257: 7253: 7249: 7245: 7241: 7237: 7232: 7228: 7224: 7220: 7216: 7195: 7185: 7178: 7175: 7171: 7167: 7163: 7158: 7154: 7150: 7146: 7143:over a field 7142: 7137: 7135: 7131: 7127: 7123: 7119: 7113: 7103: 7101: 7097: 7093: 7089: 7085: 7081: 7077: 7073: 7069: 7068: 7063: 7058: 7056: 7052: 7048: 7044: 7040: 7036: 7032: 7028: 7024: 7020: 7016: 7012: 7011:commensurable 7008: 7004: 7000: 6999: 6994: 6990: 6986: 6982: 6978: 6974: 6971: 6967: 6957: 6955: 6951: 6947: 6943: 6939: 6935: 6931: 6927: 6923: 6919: 6915: 6911: 6907: 6903: 6899: 6895: 6891: 6887: 6883: 6879: 6875: 6871: 6866: 6864: 6860: 6856: 6852: 6848: 6844: 6840: 6836: 6832: 6828: 6824: 6820: 6816: 6812: 6808: 6805: 6801: 6797: 6793: 6789: 6784: 6779: 6775: 6768: 6764: 6757: 6750: 6743: 6736: 6732: 6725: 6721: 6716: 6714: 6710: 6706: 6702: 6698: 6694: 6690: 6686: 6682: 6678: 6674: 6671:contained in 6670: 6665: 6661: 6657: 6653: 6649: 6645: 6641: 6637: 6633: 6629: 6625: 6621: 6617: 6613: 6609: 6604: 6602: 6581: 6571: 6567: 6563: 6559: 6555: 6550: 6548: 6544: 6540: 6536: 6532: 6528: 6524: 6520: 6517:over a field 6516: 6506: 6504: 6500: 6496: 6492: 6488: 6484: 6480: 6476: 6472: 6468: 6464: 6460: 6456: 6452: 6448: 6444: 6441:over a field 6440: 6435: 6433: 6429: 6425: 6421: 6417: 6413: 6411: 6407: 6403: 6398: 6394: 6390: 6386: 6382: 6378: 6374: 6369: 6367: 6364:) contains a 6363: 6359: 6355: 6347: 6342: 6338: 6334: 6331: 6328: 6325:not equal to 6324: 6320: 6317: 6314: 6309: 6305: 6301: 6297: 6294: 6293: 6292: 6290: 6287:over a field 6286: 6282: 6278: 6274: 6270: 6265: 6263: 6259: 6255: 6251: 6243: 6239: 6235: 6231: 6227: 6223: 6219: 6215: 6211: 6207: 6203: 6200: 6196: 6191: 6187: 6183: 6179: 6175: 6171: 6150: 6140: 6136: 6114: 6109: 6100: 6096: 6093:is simple if 6092: 6088: 6084: 6080: 6076: 6072: 6068: 6065: 6061: 6057: 6053: 6049: 6045: 6041: 6038: 6034: 6016: 6012: 6008: 5997: 5993: 5989: 5985: 5981: 5977: 5973: 5969: 5948: 5938: 5934: 5912: 5907: 5898: 5894: 5891:is simple if 5890: 5886: 5882: 5878: 5875:over a field 5874: 5870: 5869: 5868: 5866: 5855: 5853: 5849: 5845: 5841: 5837: 5833: 5829: 5825: 5821: 5817: 5813: 5809: 5805: 5801: 5797: 5793: 5789: 5785: 5781: 5778:over a field 5777: 5772: 5770: 5766: 5762: 5758: 5754: 5750: 5746: 5742: 5738: 5735:-equivariant 5734: 5730: 5726: 5722: 5717: 5715: 5711: 5707: 5703: 5699: 5695: 5691: 5687: 5683: 5679: 5675: 5671: 5667: 5663: 5659: 5655: 5651: 5647: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5600:over a field 5599: 5589: 5587: 5582: 5578: 5574: 5570: 5566: 5562: 5558: 5554: 5550: 5546: 5542: 5538: 5534: 5530: 5526: 5523: 5522: 5516: 5512: 5509: 5506:(such as the 5505: 5501: 5498:over a field 5497: 5492: 5490: 5486: 5482: 5478: 5474: 5470: 5466: 5462: 5458: 5454: 5450: 5447: 5443: 5439: 5435: 5431: 5426: 5424: 5420: 5416: 5412: 5408: 5404: 5400: 5396: 5392: 5388: 5384: 5380: 5376: 5372: 5368: 5364: 5360: 5356: 5352: 5348: 5344: 5340: 5337: 5332: 5330: 5326: 5322: 5318: 5313: 5308: 5306: 5302: 5298: 5294: 5290: 5286: 5281: 5279: 5275: 5271: 5266: 5262: 5258: 5254: 5250: 5246: 5242: 5238: 5234: 5230: 5226: 5222: 5218: 5214: 5204: 5202: 5198: 5194: 5190: 5186: 5182: 5178: 5157: 5147: 5143: 5139: 5117: 5112: 5103: 5099: 5095: 5091: 5087: 5083: 5080: 5070: 5068: 5064: 5060: 5056: 5052: 5033: 5027: 5018: 5014: 5010: 5004: 4998: 4992: 4989: 4986: 4980: 4974: 4971: 4964: 4963: 4962: 4960: 4956: 4952: 4948: 4945:over a field 4944: 4940: 4919: 4914: 4911: 4907: 4901: 4898: 4895: 4892: 4888: 4884: 4881: 4878: 4873: 4869: 4863: 4859: 4855: 4850: 4846: 4840: 4836: 4832: 4824: 4821: 4817: 4813: 4810: 4807: 4802: 4798: 4791: 4784: 4783: 4782: 4781: 4777: 4773: 4769: 4765: 4760: 4755: 4752: 4748: 4744: 4739: 4734: 4733: 4716: 4711: 4706: 4703: 4700: 4697: 4693: 4689: 4684: 4681: 4677: 4671: 4668: 4665: 4662: 4658: 4654: 4651: 4648: 4643: 4639: 4633: 4629: 4625: 4620: 4616: 4610: 4606: 4602: 4594: 4591: 4588: 4585: 4581: 4577: 4574: 4571: 4566: 4562: 4555: 4548: 4547: 4546: 4545: 4541: 4538: 4534: 4530: 4526: 4522: 4517: 4512: 4509: 4505: 4501: 4496: 4491: 4490: 4489: 4487: 4482: 4480: 4476: 4472: 4468: 4464: 4460: 4456: 4452: 4448: 4444: 4440: 4436: 4432: 4428: 4424: 4420: 4416: 4412: 4409:over a field 4408: 4404: 4399: 4385: 4381: 4377: 4370: 4366: 4365:L. E. Dickson 4362: 4358: 4346: 4343: 4338: 4336: 4332: 4328: 4303: 4297: 4291: 4285: 4274: 4265: 4263: 4259: 4258:flag manifold 4255: 4251: 4247: 4243: 4239: 4235: 4216: 4213: 4210: 4203: 4199: 4194: 4190: 4187: 4184: 4177: 4173: 4168: 4164: 4161: 4154: 4153: 4152: 4150: 4147:of dimension 4146: 4141: 4137: 4130: 4126: 4122: 4118: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4082: 4078: 4074: 4071:over a field 4070: 4066: 4063: 4043: 4038: 4032: 4027: 4022: 4017: 4010: 4005: 4000: 3995: 3988: 3983: 3978: 3973: 3966: 3961: 3956: 3951: 3945: 3940: 3932: 3931: 3930: 3928: 3924: 3920: 3916: 3909: 3905: 3901: 3897: 3893: 3889: 3885: 3881: 3877: 3873: 3869: 3865: 3861: 3857: 3853: 3849: 3845: 3842:over a field 3841: 3831: 3829: 3825: 3821: 3817: 3813: 3809: 3805: 3801: 3794: 3791: 3790:root subgroup 3787: 3780: 3776: 3772: 3769:over a field 3768: 3763: 3761: 3760:inner product 3757: 3753: 3748: 3746: 3742: 3736: 3732: 3727: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3688:, called the 3687: 3683: 3679: 3675: 3670: 3668: 3664: 3660: 3655: 3651: 3646: 3642: 3623: 3616: 3576: 3572: 3568: 3549: 3544: 3528: 3520: 3517: 3513: 3509: 3499: 3485: 3484: 3483: 3481: 3477: 3473: 3469: 3465: 3461: 3456: 3453: 3449: 3446: 3442: 3438: 3434: 3430: 3426: 3422: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3392: 3387: 3383: 3378: 3376: 3372: 3368: 3363: 3359: 3354: 3350: 3346: 3342: 3338: 3333: 3329: 3322: 3318: 3314: 3295: 3288: 3272: 3268: 3264: 3260: 3256: 3237: 3230: 3214: 3210: 3207:is the group 3206: 3187: 3182: 3165: 3162: 3158: 3154: 3144: 3130: 3129: 3128: 3102: 3098: 3070: 2994: 2990: 2986: 2982: 2955: 2951: 2947: 2942: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2875: 2871: 2867: 2862: 2858: 2854: 2850: 2846: 2842: 2838: 2833: 2831: 2821: 2819: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2760:over a field 2759: 2755: 2751: 2747: 2743: 2739: 2734: 2732: 2728: 2724: 2720: 2716: 2713: 2712:unitary group 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2666: 2653: 2648: 2636: 2631: 2628: 2625: 2621: 2617: 2606: 2602: 2593: 2589: 2581: 2575: 2571: 2561: 2544: 2536: 2532: 2527: 2523: 2500: 2492: 2488: 2458: 2436: 2407: 2378: 2374: 2366: 2362: 2345: 2330: 2326: 2325: 2318: 2305: 2300: 2292: 2288: 2282: 2275: 2268: 2264: 2257: 2244: 2240: 2236: 2231: 2227: 2214: 2198: 2169: 2159: 2154: 2125: 2110: 2092: 2071: 2052: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1967:of dimension 1966: 1962: 1958: 1955: 1951: 1947: 1943: 1939: 1935: 1932: 1928: 1924: 1921: 1917: 1914: 1910: 1909:bilinear form 1906: 1902: 1898: 1894: 1890: 1887: 1879: 1875: 1871: 1865: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1836: 1832: 1828: 1824: 1820: 1815: 1811: 1807: 1804:is the group 1802: 1798: 1795: 1791: 1787: 1783: 1779: 1761: 1747: 1739: 1733: 1721: 1719: 1715: 1711: 1707: 1685: 1680: 1654: 1644: 1640: 1636: 1632: 1628: 1624: 1621:over a field 1620: 1610: 1608: 1604: 1601:-subgroup of 1600: 1596: 1592: 1588: 1569: 1564: 1560: 1555: 1545: 1539: 1536: 1533: 1528: 1524: 1517: 1511: 1505: 1502: 1495: 1494: 1493: 1491: 1487: 1483: 1479: 1474: 1472: 1468: 1466: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1408:over a field 1407: 1397: 1381: 1378: 1374: 1353: 1339: 1336: 1332: 1329: 1325: 1321: 1317: 1313: 1309: 1288: 1260: 1255: 1247: 1243: 1227: 1204: 1196: 1192: 1183: 1167: 1159: 1155: 1139: 1119: 1111: 1108: 1104: 1088: 1080: 1070: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1029:over a field 1028: 1022: 1012: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 975:over a field 974: 970: 965: 963: 960: 956: 952: 948: 944: 940: 936: 932: 928: 925: 921: 918: 914: 910: 906: 902: 898: 896: 892: 888: 884: 881: 877: 873: 870: 866: 862: 858: 855: 851: 847: 843: 839: 835: 834:perfect field 831: 827: 823: 820:is a type of 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 9483: 9475:Demazure, M. 9436: 9430: 9389: 9354: 9348: 9307: 9274: 9270: 9222: 9218: 9203: 9165: 9123: 9120:Milne, J. S. 9089: 9055: 9015: 9007:Demazure, M. 8968: 8961:Demazure, M. 8928: 8920:Demazure, M. 8894: 8857: 8817: 8770: 8764: 8719: 8698: 8689: 8680: 8671: 8662: 8653: 8644: 8635: 8626: 8617: 8608: 8599: 8590: 8581: 8556: 8547: 8538: 8529: 8520: 8511: 8502: 8493: 8484: 8475: 8466: 8457: 8436: 8427: 8418: 8409: 8400: 8391: 8378: 8371: 8362: 8353: 8234: 8232: 8223: 8219: 8215: 8213: 8118: 8114: 8112: 8107: 8103: 8099: 8095: 8091: 8087: 8083: 8081:global field 8076: 8071: 8067: 8063: 8058: 8054: 8050: 8046: 8042: 8037: 8033: 8029: 8021: 8019: 7924: 7920: 7904: 7896: 7892: 7888: 7884: 7879: 7870: 7866: 7862: 7854: 7846: 7842: 7838: 7834: 7830: 7822: 7820: 7815: 7811: 7807: 7803: 7799: 7795: 7791: 7787: 7783: 7779: 7775: 7771: 7767: 7763: 7759: 7755: 7751: 7747: 7743: 7739: 7735: 7731: 7727: 7723: 7719: 7715: 7711: 7707: 7703: 7699: 7697: 7692: 7688: 7684: 7680: 7676: 7668: 7664: 7656: 7648: 7544: 7536: 7532: 7528: 7524: 7518: 7516: 7506: 7502: 7498: 7494: 7490: 7486: 7485:. The group 7389: 7385: 7381: 7377: 7373: 7371:discriminant 7366: 7361: 7355: 7353:is of type D 7350: 7346: 7342: 7338: 7334: 7330: 7326: 7322: 7318: 7316: 7311: 7307: 7303: 7299: 7295: 7291: 7287: 7283: 7279: 7275: 7271: 7263: 7259: 7251: 7247: 7243: 7239: 7235: 7233: 7226: 7222: 7218: 7214: 7183: 7176: 7169: 7165: 7161: 7156: 7152: 7144: 7140: 7138: 7133: 7129: 7115: 7099: 7095: 7087: 7083: 7079: 7075: 7071: 7065: 7061: 7059: 7054: 7050: 7046: 7042: 7038: 7034: 7030: 7026: 7022: 7018: 7014: 7006: 7002: 6996: 6992: 6988: 6984: 6980: 6976: 6972: 6965: 6963: 6949: 6945: 6937: 6933: 6925: 6921: 6917: 6913: 6909: 6905: 6901: 6897: 6893: 6892:-adic field 6889: 6885: 6881: 6877: 6873: 6869: 6867: 6862: 6858: 6854: 6850: 6842: 6838: 6834: 6830: 6826: 6822: 6818: 6814: 6810: 6806: 6803: 6799: 6795: 6791: 6787: 6785: 6777: 6773: 6766: 6762: 6755: 6748: 6741: 6734: 6730: 6723: 6719: 6717: 6709:Jacques Tits 6704: 6700: 6696: 6692: 6688: 6684: 6683:, the group 6680: 6676: 6672: 6668: 6663: 6659: 6655: 6651: 6647: 6643: 6639: 6635: 6631: 6627: 6623: 6619: 6615: 6611: 6607: 6605: 6600: 6565: 6561: 6557: 6553: 6551: 6546: 6542: 6538: 6534: 6530: 6527:presentation 6518: 6514: 6512: 6502: 6498: 6494: 6490: 6486: 6482: 6478: 6474: 6470: 6466: 6462: 6458: 6454: 6450: 6446: 6442: 6438: 6436: 6431: 6427: 6423: 6419: 6415: 6409: 6405: 6401: 6396: 6392: 6384: 6380: 6376: 6372: 6370: 6361: 6357: 6353: 6351: 6345: 6340: 6336: 6332: 6326: 6322: 6318: 6312: 6307: 6303: 6299: 6295: 6288: 6284: 6280: 6276: 6272: 6268: 6266: 6261: 6257: 6253: 6249: 6247: 6241: 6237: 6233: 6229: 6225: 6221: 6217: 6213: 6212:), then the 6209: 6205: 6201: 6194: 6189: 6185: 6181: 6177: 6173: 6169: 6138: 6134: 6098: 6094: 6090: 6086: 6082: 6078: 6074: 6070: 6066: 6060:reduced norm 6055: 6051: 6047: 6043: 6039: 5995: 5991: 5987: 5983: 5979: 5975: 5971: 5967: 5936: 5932: 5896: 5892: 5888: 5884: 5880: 5876: 5872: 5861: 5851: 5843: 5835: 5828:Jens Jantzen 5819: 5811: 5807: 5803: 5799: 5796:George Kempf 5787: 5783: 5779: 5775: 5773: 5760: 5752: 5748: 5744: 5740: 5732: 5728: 5727:∇(λ) as the 5725:Schur module 5724: 5720: 5718: 5713: 5709: 5705: 5701: 5697: 5693: 5689: 5685: 5681: 5677: 5673: 5669: 5665: 5661: 5657: 5653: 5649: 5645: 5641: 5637: 5633: 5629: 5626:Weyl chamber 5621: 5617: 5613: 5605: 5601: 5597: 5595: 5580: 5576: 5572: 5568: 5564: 5560: 5552: 5548: 5544: 5540: 5532: 5528: 5524: 5519: 5514: 5510: 5499: 5495: 5493: 5488: 5484: 5480: 5472: 5468: 5464: 5448: 5441: 5437: 5433: 5429: 5427: 5418: 5414: 5402: 5398: 5390: 5386: 5382: 5374: 5370: 5366: 5362: 5358: 5354: 5350: 5346: 5342: 5338: 5333: 5328: 5324: 5320: 5316: 5309: 5296: 5292: 5288: 5284: 5282: 5280:connected). 5277: 5273: 5269: 5264: 5260: 5256: 5252: 5248: 5244: 5240: 5236: 5228: 5224: 5220: 5216: 5210: 5200: 5196: 5192: 5188: 5184: 5176: 5145: 5141: 5137: 5097: 5093: 5089: 5085: 5081: 5079:group scheme 5076: 5066: 5062: 5058: 5054: 5050: 5048: 4957:splits as a 4954: 4950: 4946: 4942: 4936: 4775: 4771: 4767: 4763: 4758: 4750: 4746: 4742: 4737: 4539: 4532: 4528: 4524: 4515: 4507: 4503: 4499: 4494: 4485: 4483: 4478: 4474: 4470: 4466: 4462: 4458: 4454: 4451:adjoint type 4450: 4446: 4442: 4434: 4430: 4422: 4418: 4414: 4410: 4406: 4402: 4400: 4383: 4368: 4360: 4356: 4344: 4339: 4301: 4295: 4289: 4283: 4279: 4261: 4257: 4254:flag variety 4253: 4249: 4245: 4241: 4237: 4231: 4148: 4144: 4139: 4135: 4128: 4124: 4120: 4116: 4112: 4108: 4100: 4092: 4084: 4080: 4076: 4075:is a smooth 4072: 4068: 4064: 4061: 4059: 3926: 3922: 3918: 3914: 3907: 3903: 3899: 3895: 3891: 3887: 3883: 3879: 3871: 3867: 3863: 3859: 3855: 3851: 3847: 3843: 3839: 3837: 3827: 3823: 3819: 3815: 3811: 3807: 3799: 3792: 3789: 3785: 3778: 3774: 3770: 3766: 3764: 3749: 3744: 3740: 3734: 3730: 3725: 3721: 3717: 3713: 3709: 3705: 3701: 3697: 3693: 3689: 3685: 3677: 3673: 3671: 3666: 3662: 3658: 3653: 3649: 3644: 3640: 3574: 3570: 3566: 3564: 3479: 3475: 3471: 3457: 3451: 3447: 3440: 3436: 3432: 3428: 3424: 3420: 3415: 3411: 3407: 3395: 3389: 3381: 3379: 3374: 3370: 3366: 3361: 3357: 3352: 3348: 3344: 3340: 3336: 3331: 3327: 3320: 3316: 3312: 3270: 3266: 3262: 3258: 3254: 3212: 3208: 3204: 3202: 3100: 3096: 3068: 2992: 2988: 2984: 2980: 2949: 2943: 2938: 2930: 2926: 2922: 2914: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2873: 2869: 2865: 2860: 2856: 2852: 2848: 2844: 2840: 2836: 2834: 2827: 2817: 2813: 2809: 2801: 2797: 2796:showed that 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2753: 2745: 2737: 2735: 2730: 2726: 2722: 2718: 2714: 2707: 2703: 2695: 2691: 2687: 2683: 2679: 2673: 2563: 2479: 2322:Non-examples 2216: 2213:from the map 2077: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1945: 1941: 1937: 1933: 1926: 1922: 1915: 1913:vector space 1904: 1900: 1896: 1892: 1888: 1883: 1877: 1873: 1869: 1864:at least 2. 1861: 1857: 1853: 1852:1. In fact, 1845: 1841: 1837: 1830: 1826: 1822: 1818: 1813: 1809: 1805: 1800: 1796: 1793: 1789: 1785: 1781: 1777: 1745: 1743: 1737: 1731: 1717: 1713: 1709: 1705: 1642: 1637:(that is, a 1634: 1630: 1626: 1622: 1618: 1616: 1602: 1598: 1594: 1590: 1586: 1584: 1489: 1482:homomorphism 1477: 1475: 1470: 1464: 1457: 1453: 1449: 1448:, the group 1445: 1441: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1403: 1345: 1334: 1330: 1323: 1315: 1311: 1241: 1181: 1153: 1102: 1076: 1066: 1061:is a smooth 1058: 1054: 1050: 1046: 1042: 1030: 1024: 996: 992: 988: 984: 980: 976: 972: 966: 961: 959:finite field 954: 946: 942: 938: 931:number field 926: 924:real numbers 899: 894: 890: 886: 882: 875: 871: 860: 856: 829: 817: 811: 757: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 8814:Cartier, P. 7861:at most 1, 7673:pointed set 6447:quasi-split 6281:anisotropic 6097:has degree 5737:line bundle 5660:. Define a 5475:(2) is the 4331:Élie Cartan 3674:simple root 3468:conjugation 3382:root system 3319:). Writing 2954:Lie algebra 2872:called the 2864:) for some 2830:root system 2758:finite type 2365:Borel group 1850:determinant 1639:split torus 1246:base change 1015:Definitions 878:), and the 814:mathematics 530:Topological 369:alternating 9507:Lie groups 9496:Categories 9275:-functions 9237:1512.08296 9196:V.L. Popov 8709:References 7927:, the map 7786:)). Also, 7683:is called 7547:such that 7256:inner form 7118:Tits index 7112:Tits index 7009:) that is 6445:is called 6275:if it has 6271:is called 6204:of degree 6172:has index 5976:Witt index 5767:gives the 5680:such that 5559:metric on 5295:) ≅ 5213:Lie groups 5088:is called 4537:Witt index 4521:spin group 4413:is called 4097:projective 3804:normalized 3404:normalizer 3398:means the 3391:Weyl group 3386:root datum 3373:from 1 to 2843:, and let 2764:is called 2184:embeds in 2078:The group 1952:, and its 1948:) has two 1876:), and Sp( 1625:is called 1412:is called 1103:semisimple 846:direct sum 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 9388:(2016) , 9357:: 49–80, 9210:EMS Press 9198:(2001) , 9087:(2003) , 8812:(2005) , 8803:119837998 8718:(1991) , 8161:∏ 8157:→ 7967:∏ 7963:→ 7659:, or the 7628:¯ 7596:¯ 7564:¯ 7449:⁡ 7443:⊂ 7403:⁡ 7286:), where 7199:¯ 6585:¯ 6434:is zero. 6366:unipotent 6273:isotropic 6216:-rank of 6154:¯ 6118:¯ 6020:⌋ 6006:⌊ 5970:-rank of 5952:¯ 5916:¯ 5769:character 5567:-rank of 5423:reductive 5385:, and so 5161:¯ 5121:¯ 5090:reductive 5005:⋉ 4993:⁡ 4987:≅ 4975:⁡ 4899:− 4882:⋯ 4811:… 4669:− 4652:⋯ 4575:… 4506:+1) over 4347:of type G 4234:isotropic 4211:⊂ 4191:⊂ 4188:⋯ 4185:⊂ 4165:⊂ 4033:∗ 4011:∗ 4006:∗ 3989:∗ 3984:∗ 3979:∗ 3974:∗ 3967:∗ 3962:∗ 3957:∗ 3952:∗ 3913:for α in 3876:conjugate 3802:which is 3545:α 3525:Φ 3521:∈ 3518:α 3514:⨁ 3510:⊕ 3183:α 3169:Φ 3166:∈ 3163:α 3159:⨁ 3155:⊕ 3067:fixed by 2622:∏ 2618:≅ 2253:↦ 2160:× 2056:¯ 1716:-tori in 1689:¯ 1658:¯ 1561:μ 1534:× 1518:≅ 1292:¯ 1264:¯ 1158:unipotent 1154:reductive 1079:connected 844:and is a 701:Conformal 589:Euclidean 196:nilpotent 9379:55638217 9343:(1965), 9306:(1998), 9265:(1979), 9122:(2017), 8967:(1970). 8893:(1970), 8849:(2014), 8252:See also 7539:with an 7136:-group. 6776:of type 6713:BN-pairs 6197:) for a 5887:). Here 4531:+1 over 4465:, where 4437:) being 3866:. Every 3739:for 1 ≤ 3657:for 1 ≤ 3365:for all 2935:integers 2917:) under 2011:.) When 1724:Examples 1107:solvable 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 9461:0164968 9453:1970394 9420:3616493 9371:0180554 9334:1642713 9297:0546587 9242:Bibcode 9189:1278263 9154:3729270 9113:2015057 9078:2605318 9039:2867622 8999:0274459 8952:2867621 8913:0302656 8880:3309122 8840:2124841 8816:(ed.), 8795:0294349 8775:Bibcode 8750:1102012 8376:Milne. 7831:abelian 7345:) over 7172:over a 7067:lattice 6975:. Then 6940:) is a 6833:). For 6505:| ≤ 2. 6485:) over 6389:compact 6141:) over 6073:). The 6062:on the 5832:Lusztig 5712:(λ) of 5648:. Then 5584:) is a 5547:), and 5518:), the 5268:) = Ad( 4749:) over 4374:is the 3720:)) are 3402:of the 2868:, with 2698:) is a 2039:) over 2007:) over 1911:on the 1456:) over 1049:) over 1037:closed 995:) when 957:over a 917:complex 832:over a 824:over a 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 9459:  9451:  9418:  9408:  9377:  9369:  9332:  9322:  9295:  9285:  9252:  9187:  9177:  9152:  9142:  9111:  9101:  9076:  9066:  9037:  9027:  8997:  8987:  8950:  8940:  8911:  8901:  8878:  8868:  8838:  8828:  8801:  8793:  8748:  8738:  8032:, and 8026:places 7671:. The 7541:action 7520:torsor 7147:, the 6995:). An 6786:For a 6761:. For 6606:For a 6075:degree 6035:Every 5966:. The 5751:. For 5557:CAT(0) 5479:, and 5377:) has 5102:smooth 5049:where 4523:Spin(2 4519:: the 4378:of an 4363:), by 4089:proper 3712:) (or 3435:) (or 3265:. Let 2886:weight 2804:is of 1872:), SO( 1735:and SL 1438:center 1422:simple 1414:simple 1306:is an 1063:affine 1035:smooth 1007:of an 867:, the 842:kernel 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 9449:JSTOR 9375:S2CID 9232:arXiv 9052:(PDF) 8854:(PDF) 8799:S2CID 8383:(PDF) 8346:Notes 8090:over 7923:over 7851:Serre 7806:,Aut( 7766:over 7742:over 7734:,Aut( 7714:over 7700:forms 7647:over 7535:over 7509:− 1. 7250:over 7242:over 7013:with 6983:over 6954:index 6900:over 6747:, or 6667:over 6414:over 6387:) is 6344:over 6311:over 6208:over 6168:. If 6085:as a 6042:over 5867:are: 5822:, by 5792:socle 5672:over 5628:) in 5620:) ≅ 5535:is a 5451:is a 5444:by a 5319:over 5227:over 4770:over 4535:with 4473:is a 4403:split 4382:over 4351:and E 4134:,..., 4099:over 4091:over 3894:over 3756:graph 3747:− 1. 3661:< 3326:,..., 2851:; so 2824:Roots 2721:) to 1821:) of 1633:over 1627:split 1593:over 1428:over 1322:over 1320:torus 945:) of 929:or a 863:) of 826:field 730:Sp(∞) 727:SU(∞) 140:image 9406:ISBN 9320:ISBN 9283:ISBN 9250:ISBN 9175:ISBN 9140:ISBN 9099:ISBN 9064:ISBN 9025:ISBN 8985:ISBN 8938:ISBN 8899:ISBN 8866:ISBN 8826:ISBN 8736:ISBN 8257:The 7270:set 7151:Gal( 7064:, a 6964:Let 6352:For 6220:is ( 5586:tree 4937:The 4340:The 4329:and 4305:, E 4299:, D 4287:, B 4107:for 3343:) ≅ 2981:root 2979:. A 2944:The 2888:for 2874:rank 2835:Let 2808:and 2363:The 2327:Any 2074:Tori 1416:(or 816:, a 724:O(∞) 713:Loop 532:and 9441:doi 9398:doi 9359:doi 9312:doi 9132:doi 8977:doi 8783:doi 8728:doi 8220:PGL 8045:or 8028:of 7780:PGL 7663:if 7655:on 7543:of 7446:Gal 7400:Gal 7384:*/( 7380:in 7376:of 7070:in 7057:). 6912:(1, 6695:if 6603:). 6430:or 6077:of 6054:(1, 5978:of 5818:of 5810:of 5668:of 5575:(2, 5527:of 5483:(2, 5467:(2, 5440:of 5417:(2, 5413:of 5401:(2, 5389:(2, 5373:(2, 5361:(2, 5359:PSL 5353:(2, 5351:PGL 5345:(2, 5343:PGL 5339:PGL 5291:(1, 5199:to 5140:in 5100:is 4990:Out 4972:Aut 4394:, E 4390:, E 4321:, G 4317:, F 4313:, E 4309:, E 4293:, C 4260:of 4256:or 4087:is 3874:is 3870:of 3854:of 3806:by 3784:in 3700:if 3692:of 3684:of 3095:of 2995:on 2983:of 2876:of 2780:of 2756:of 2393:of 1641:in 1469:of 1310:of 1112:of 1041:of 983:on 915:or 889:). 848:of 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 9498:: 9477:; 9457:MR 9455:, 9447:, 9437:80 9435:, 9416:MR 9414:, 9404:, 9396:, 9373:, 9367:MR 9365:, 9355:25 9353:, 9347:, 9330:MR 9328:, 9318:, 9293:MR 9291:, 9269:, 9248:, 9240:, 9230:, 9208:, 9202:, 9185:MR 9183:, 9173:, 9169:, 9150:MR 9148:, 9138:, 9130:, 9126:, 9109:MR 9107:, 9097:, 9074:MR 9072:, 9054:, 9035:MR 9033:. 9023:. 9019:. 9009:; 8995:MR 8993:. 8983:. 8975:. 8963:; 8948:MR 8946:. 8936:. 8932:. 8922:; 8909:MR 8907:, 8889:; 8876:MR 8874:, 8856:, 8836:MR 8834:, 8824:, 8797:, 8791:MR 8789:, 8781:, 8771:12 8769:, 8759:; 8746:MR 8744:, 8734:, 8726:, 8565:^ 8445:^ 8333:, 8329:, 8320:, 8311:, 8307:, 8303:, 8284:, 8275:, 8271:, 8267:, 8248:. 8218:= 8094:, 7911:, 7907:, 7837:, 7818:. 7517:A 7339:SO 7047:SL 7035:SL 6956:. 6932:, 6910:SL 6908:= 6825:)/ 6817:)= 6783:. 6765:= 6740:, 6722:= 6715:. 6614:, 6549:. 6521:, 6475:SO 6402:SO 6315:); 6135:SL 6052:SL 6050:= 5933:SO 5881:SO 5826:, 5644:⊂ 5640:⊂ 5588:. 5573:SL 5489:SU 5487:)/ 5481:SL 5473:SO 5471:)/ 5465:SL 5415:SL 5399:SL 5387:SL 5371:SL 5367:SL 5289:GL 5239:→ 5203:. 5096:→ 5077:A 5069:. 4961:: 4745:(2 4743:Sp 4500:SL 4498:: 4481:. 4264:. 4244:, 4151:: 4117:GL 3919:GL 3911:−α 3743:≤ 3737:+1 3729:− 3714:SL 3706:GL 3672:A 3669:. 3665:≤ 3648:− 3571:GL 3455:. 3437:SL 3429:GL 3423:)/ 3410:= 3377:. 3369:≠ 3356:− 3315:, 3257:× 3209:GL 2991:⊂ 2941:. 2937:, 2900:→ 2820:. 2723:GL 2403:GL 2194:GL 2121:GL 2070:. 2033:SO 2017:SO 1993:SO 1957:SO 1903:(2 1901:GL 1891:(2 1889:Sp 1868:O( 1854:SL 1838:SL 1806:GL 1780:× 1757:GL 1729:GL 1492:, 1476:A 1450:SL 1396:. 1077:A 1069:. 1043:GL 1025:A 885:(2 883:Sp 872:SO 857:GL 615:U( 591:E( 579:O( 37:→ 9443:: 9400:: 9361:: 9314:: 9273:L 9244:: 9234:: 9221:p 9134:: 9041:. 9001:. 8979:: 8954:. 8785:: 8777:: 8730:: 8246:8 8241:8 8239:E 8235:Q 8224:n 8222:( 8216:G 8199:) 8196:G 8193:, 8188:v 8184:k 8180:( 8175:1 8171:H 8165:v 8154:) 8151:G 8148:, 8145:k 8142:( 8137:1 8133:H 8119:k 8115:G 8108:k 8104:G 8102:, 8100:k 8098:( 8096:H 8092:k 8088:G 8084:k 8077:k 8072:v 8068:k 8064:G 8062:, 8059:v 8055:k 8053:( 8051:H 8047:C 8043:R 8038:v 8034:k 8030:k 8022:v 8005:) 8002:G 7999:, 7994:v 7990:k 7986:( 7981:1 7977:H 7971:v 7960:) 7957:G 7954:, 7951:k 7948:( 7943:1 7939:H 7925:k 7921:G 7905:k 7897:G 7895:, 7893:k 7891:( 7889:H 7885:G 7871:G 7869:, 7867:k 7865:( 7863:H 7855:G 7847:M 7845:, 7843:k 7841:( 7839:H 7835:M 7823:G 7816:G 7812:G 7808:G 7804:k 7802:( 7800:H 7796:G 7792:G 7788:k 7784:n 7782:( 7778:, 7776:k 7774:( 7772:H 7768:k 7764:n 7760:n 7758:( 7756:O 7754:, 7752:k 7750:( 7748:H 7744:k 7740:n 7736:Y 7732:k 7730:( 7728:H 7724:k 7720:Y 7716:k 7712:X 7708:k 7704:Y 7693:G 7691:, 7689:k 7687:( 7685:H 7681:k 7677:G 7669:k 7665:G 7657:k 7649:k 7625:k 7620:G 7593:k 7588:G 7561:k 7556:X 7545:G 7537:k 7533:X 7529:k 7525:G 7507:n 7503:q 7499:G 7495:n 7491:q 7487:G 7473:) 7470:k 7466:/ 7460:s 7456:k 7452:( 7440:) 7437:) 7432:d 7427:( 7424:k 7420:/ 7414:s 7410:k 7406:( 7390:d 7386:k 7382:k 7378:q 7374:d 7367:k 7362:n 7356:n 7351:G 7347:k 7343:q 7341:( 7335:G 7331:n 7327:k 7323:n 7319:q 7312:k 7308:Z 7306:/ 7304:H 7300:H 7296:G 7292:H 7288:Z 7284:Z 7282:/ 7280:H 7278:, 7276:k 7274:( 7272:H 7264:G 7260:H 7252:k 7248:G 7244:k 7240:H 7236:k 7227:s 7223:k 7219:G 7215:G 7196:k 7184:G 7180:s 7177:k 7170:G 7166:G 7162:k 7160:/ 7157:s 7153:k 7145:k 7141:G 7134:k 7130:k 7100:G 7096:G 7088:G 7084:G 7080:G 7076:G 7072:G 7062:G 7055:Q 7053:, 7051:n 7049:( 7043:Z 7041:, 7039:n 7037:( 7031:Z 7027:Q 7025:( 7023:G 7019:Z 7017:( 7015:G 7007:Q 7005:( 7003:G 6993:Z 6991:( 6989:G 6985:Z 6981:G 6977:G 6973:Q 6966:G 6950:k 6948:( 6946:G 6938:k 6936:( 6934:G 6926:k 6924:( 6922:G 6918:k 6914:D 6906:G 6902:k 6898:D 6894:k 6890:p 6886:D 6882:k 6880:( 6878:G 6874:G 6870:k 6863:G 6861:, 6859:k 6857:( 6855:W 6851:k 6843:k 6841:( 6839:G 6835:G 6831:k 6829:( 6827:G 6823:k 6821:( 6819:G 6815:G 6813:, 6811:k 6809:( 6807:W 6800:k 6798:( 6796:G 6792:G 6788:k 6781:1 6778:A 6774:G 6770:3 6767:F 6763:k 6759:2 6756:A 6752:2 6749:G 6745:2 6742:B 6738:1 6735:A 6731:G 6727:2 6724:F 6720:k 6705:k 6703:( 6701:G 6697:k 6693:G 6689:k 6687:( 6685:G 6681:k 6677:G 6673:G 6669:k 6664:a 6660:G 6656:k 6652:k 6650:( 6648:G 6644:k 6642:( 6640:G 6636:k 6632:k 6628:G 6624:k 6622:( 6620:G 6612:G 6608:k 6601:k 6582:k 6566:k 6564:( 6562:G 6558:k 6554:G 6547:G 6543:G 6539:k 6535:k 6533:( 6531:G 6519:k 6515:G 6503:q 6501:− 6499:p 6495:q 6493:− 6491:p 6487:R 6483:q 6481:, 6479:p 6477:( 6471:k 6469:( 6467:G 6463:G 6459:k 6455:G 6451:k 6443:k 6439:G 6432:q 6428:p 6424:q 6422:, 6420:p 6416:R 6412:) 6410:q 6408:, 6406:p 6404:( 6397:G 6393:k 6385:k 6383:( 6381:G 6377:k 6373:G 6362:k 6360:( 6358:G 6354:k 6348:. 6346:k 6341:a 6337:G 6333:G 6329:; 6327:G 6323:k 6319:G 6313:k 6308:m 6304:G 6300:G 6296:G 6289:k 6285:G 6277:k 6269:k 6262:k 6258:k 6254:k 6250:k 6244:. 6242:k 6238:A 6234:k 6230:G 6226:r 6224:/ 6222:n 6218:G 6214:k 6210:k 6206:r 6202:D 6195:D 6193:( 6190:r 6188:/ 6186:n 6182:M 6178:A 6174:r 6170:A 6151:k 6139:n 6137:( 6115:k 6110:G 6099:n 6095:A 6091:G 6087:k 6083:A 6079:A 6071:k 6067:A 6056:A 6048:G 6044:k 6040:A 6032:. 6017:2 6013:/ 6009:n 5996:q 5992:k 5988:G 5984:k 5980:q 5972:G 5968:k 5949:k 5937:n 5935:( 5913:k 5908:G 5897:n 5893:q 5889:G 5885:q 5883:( 5877:k 5873:q 5852:p 5844:p 5836:p 5820:G 5812:k 5808:p 5804:L 5800:L 5788:L 5784:G 5780:k 5776:G 5761:L 5753:k 5749:G 5745:B 5743:/ 5741:G 5733:G 5729:k 5721:k 5714:G 5710:L 5706:G 5702:T 5700:( 5698:X 5694:T 5690:B 5686:v 5682:B 5678:v 5674:k 5670:G 5666:V 5658:U 5654:T 5650:B 5646:G 5642:B 5638:T 5634:k 5630:R 5622:Z 5618:T 5616:( 5614:X 5606:G 5602:k 5598:G 5581:p 5577:Q 5569:G 5565:k 5561:X 5553:k 5551:( 5549:G 5545:k 5543:( 5541:G 5533:X 5529:G 5525:X 5515:p 5511:Q 5500:k 5496:G 5485:C 5469:R 5449:K 5442:G 5438:K 5436:/ 5434:G 5430:G 5419:R 5403:R 5391:R 5383:Z 5375:R 5363:R 5355:R 5347:R 5329:R 5327:( 5325:G 5321:R 5317:G 5297:R 5293:R 5285:R 5278:G 5274:C 5272:( 5270:L 5265:C 5261:g 5257:G 5253:R 5251:( 5249:L 5245:R 5243:( 5241:L 5237:G 5229:R 5225:L 5221:G 5201:S 5197:Z 5193:S 5189:Z 5185:S 5177:p 5158:k 5146:G 5142:S 5138:p 5118:k 5113:G 5098:S 5094:G 5086:S 5082:G 5067:G 5063:G 5059:G 5055:G 5051:Z 5034:, 5031:) 5028:k 5025:( 5022:) 5019:Z 5015:/ 5011:G 5008:( 5002:) 4999:G 4996:( 4984:) 4981:G 4978:( 4955:G 4951:G 4947:k 4943:G 4920:. 4915:n 4912:2 4908:x 4902:1 4896:n 4893:2 4889:x 4885:+ 4879:+ 4874:4 4870:x 4864:3 4860:x 4856:+ 4851:2 4847:x 4841:1 4837:x 4833:= 4830:) 4825:n 4822:2 4818:x 4814:, 4808:, 4803:1 4799:x 4795:( 4792:q 4776:n 4772:k 4768:n 4764:n 4759:n 4756:D 4753:; 4751:k 4747:n 4738:n 4735:C 4717:; 4712:2 4707:1 4704:+ 4701:n 4698:2 4694:x 4690:+ 4685:n 4682:2 4678:x 4672:1 4666:n 4663:2 4659:x 4655:+ 4649:+ 4644:4 4640:x 4634:3 4630:x 4626:+ 4621:2 4617:x 4611:1 4607:x 4603:= 4600:) 4595:1 4592:+ 4589:n 4586:2 4582:x 4578:, 4572:, 4567:1 4563:x 4559:( 4556:q 4540:n 4533:k 4529:n 4525:n 4516:n 4513:B 4510:; 4508:k 4504:n 4502:( 4495:n 4492:A 4486:k 4479:G 4475:k 4471:A 4467:G 4463:A 4461:/ 4459:G 4455:k 4447:G 4443:k 4435:C 4433:( 4431:G 4423:G 4419:G 4411:k 4407:G 4396:8 4392:7 4388:4 4384:k 4372:2 4369:G 4361:k 4359:( 4357:G 4353:6 4349:2 4345:G 4323:2 4319:4 4315:8 4311:7 4307:6 4302:n 4296:n 4290:n 4284:n 4262:G 4250:B 4248:/ 4246:G 4242:B 4238:G 4217:. 4214:V 4204:i 4200:a 4195:S 4178:1 4174:a 4169:S 4162:0 4149:n 4145:V 4140:i 4136:a 4132:1 4129:a 4121:n 4119:( 4113:k 4109:G 4101:k 4093:k 4085:P 4083:/ 4081:G 4077:k 4073:k 4069:G 4065:P 4044:} 4039:] 4028:0 4023:0 4018:0 4001:0 3996:0 3946:[ 3941:{ 3927:B 3923:n 3921:( 3915:S 3908:U 3904:B 3900:S 3896:k 3892:G 3888:k 3886:( 3884:G 3880:B 3872:G 3864:G 3860:r 3856:G 3852:B 3848:G 3844:k 3840:G 3828:G 3824:T 3820:B 3816:T 3812:G 3808:T 3800:G 3796:α 3793:U 3786:G 3782:a 3779:G 3775:G 3771:k 3767:G 3745:n 3741:i 3735:i 3731:L 3726:i 3722:L 3718:n 3716:( 3710:n 3708:( 3702:G 3698:G 3694:G 3686:G 3678:r 3667:n 3663:j 3659:i 3654:j 3650:L 3645:i 3641:L 3627:) 3624:n 3621:( 3617:l 3612:g 3587:b 3575:n 3573:( 3567:B 3550:. 3539:g 3529:+ 3505:t 3500:= 3495:b 3480:T 3476:B 3452:n 3448:S 3441:n 3439:( 3433:n 3431:( 3425:T 3421:T 3419:( 3416:G 3412:N 3408:W 3396:G 3375:n 3371:j 3367:i 3362:j 3358:L 3353:i 3349:L 3345:Z 3341:T 3339:( 3337:X 3332:n 3328:L 3324:1 3321:L 3317:j 3313:i 3299:) 3296:n 3293:( 3289:l 3284:g 3271:G 3267:T 3263:k 3259:n 3255:n 3241:) 3238:n 3235:( 3231:l 3226:g 3213:n 3211:( 3205:G 3188:. 3177:g 3150:t 3145:= 3140:g 3113:t 3101:G 3097:T 3081:t 3069:T 3053:g 3029:g 3005:g 2993:G 2989:T 2985:G 2965:g 2950:G 2939:Z 2931:n 2927:T 2925:( 2923:X 2915:T 2913:( 2911:X 2906:m 2902:G 2898:T 2894:T 2890:G 2882:T 2878:G 2870:n 2866:n 2861:m 2857:G 2853:T 2849:G 2845:T 2841:k 2837:G 2818:p 2814:G 2812:/ 2810:G 2802:G 2798:G 2790:p 2786:k 2782:G 2778:G 2774:G 2770:k 2762:k 2754:G 2746:G 2738:G 2731:C 2729:, 2727:n 2725:( 2719:n 2717:( 2715:U 2708:C 2706:( 2704:G 2696:C 2694:( 2692:G 2688:K 2684:G 2680:K 2654:. 2649:m 2644:G 2637:n 2632:1 2629:= 2626:i 2615:) 2612:) 2607:n 2603:B 2599:( 2594:u 2590:R 2586:( 2582:/ 2576:n 2572:B 2548:) 2545:G 2542:( 2537:u 2533:R 2528:/ 2524:G 2504:) 2501:G 2498:( 2493:u 2489:R 2459:1 2437:n 2432:U 2408:n 2379:n 2375:B 2360:. 2346:a 2341:G 2306:. 2301:] 2293:2 2289:a 2283:0 2276:0 2269:1 2265:a 2258:[ 2250:) 2245:2 2241:a 2237:, 2232:1 2228:a 2224:( 2199:2 2170:m 2165:G 2155:m 2150:G 2126:n 2093:m 2088:G 2053:k 2041:k 2037:q 2035:( 2029:n 2025:k 2021:n 2019:( 2013:k 2009:k 2005:q 2003:( 2001:O 1997:q 1995:( 1989:k 1985:q 1983:( 1981:O 1977:n 1973:k 1969:n 1965:q 1961:q 1959:( 1946:q 1944:( 1942:O 1938:k 1934:q 1927:q 1925:( 1923:O 1916:k 1905:n 1897:k 1893:n 1880:) 1878:n 1874:n 1870:n 1862:n 1858:n 1856:( 1846:k 1842:n 1840:( 1831:k 1827:k 1823:k 1819:k 1817:( 1814:m 1810:G 1801:m 1797:G 1790:n 1786:k 1782:n 1778:n 1762:n 1738:n 1732:n 1718:G 1714:k 1710:G 1706:T 1686:k 1681:G 1655:k 1643:G 1635:k 1631:T 1623:k 1619:G 1603:G 1599:k 1595:k 1591:G 1587:k 1570:. 1565:n 1556:/ 1552:) 1549:) 1546:n 1543:( 1540:L 1537:S 1529:m 1525:G 1521:( 1515:) 1512:n 1509:( 1506:L 1503:G 1490:k 1471:n 1465:n 1458:k 1454:n 1452:( 1446:k 1442:n 1434:G 1430:k 1426:G 1420:- 1418:k 1410:k 1406:G 1382:l 1379:a 1375:k 1354:G 1335:m 1331:G 1324:k 1316:k 1312:k 1289:k 1261:k 1256:G 1242:k 1228:G 1208:) 1205:G 1202:( 1197:u 1193:R 1168:G 1140:G 1120:G 1089:G 1067:k 1059:k 1055:n 1051:k 1047:n 1045:( 1031:k 997:k 993:k 991:( 989:G 985:k 981:G 977:k 973:G 962:k 955:G 949:- 947:k 943:k 941:( 939:G 927:R 887:n 876:n 874:( 861:n 859:( 830:G 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Reductive algebraic group
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.