Knowledge

Multigrid method

Source đź“ť

1877: 95:. The coarse problem, while cheaper to solve, is similar to the fine grid problem in that it also has short- and long-wavelength errors. It can also be solved by a combination of relaxation and appeal to still coarser grids. This recursive process is repeated until a grid is reached where the cost of direct solution there is negligible compared to the cost of one relaxation sweep on the fine grid. This multigrid cycle typically reduces all error components by a fixed amount bounded well below one, independent of the fine grid mesh size. The typical application for multigrid is in the numerical solution of 136: 2394:
models in science and engineering described by partial differential equations. In view of the subspace correction framework, BPX preconditioner is a parallel subspace correction method where as the classic V-cycle is a successive subspace correction method. The BPX-preconditioner is known to be naturally more parallel and in some applications more robust than the classic V-cycle multigrid method. The method has been widely used by researchers and practitioners since 1990.
1547: 2459:
as well as quasi-optimal spaces was derived. Also, they proved that, under appropriate assumptions, the abstract two-level AMG method converges uniformly with respect to the size of the linear system, the coefficient variation, and the anisotropy. Their abstract framework covers most existing AMG methods, such as classical AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG, and spectral AMGe.
2451:(AMG) construct their hierarchy of operators directly from the system matrix. In classical AMG, the levels of the hierarchy are simply subsets of unknowns without any geometric interpretation. (More generally, coarse grid unknowns can be particular linear combinations of fine grid unknowns.) Thus, AMG methods become black-box solvers for certain classes of 2605:
that appear in the nearly singular operator) independent convergence rate of the multigrid method applied to such nearly singular systems, i.e., in each grid, a space decomposition based on which the smoothing is applied, has to be constructed so that the null space of the singular part of the nearly
2455:. AMG is regarded as advantageous mainly where geometric multigrid is too difficult to apply, but is often used simply because it avoids the coding necessary for a true multigrid implementation. While classical AMG was developed first, a related algebraic method is known as smoothed aggregation (SA). 204:
There are many choices of multigrid methods with varying trade-offs between speed of solving a single iteration and the rate of convergence with said iteration. The 3 main types are V-Cycle, F-Cycle, and W-Cycle. These differ in which and how many coarse-grain cycles are performed per fine iteration.
2458:
In an overview paper by Jinchao Xu and Ludmil Zikatanov, the "algebraic multigrid" methods are understood from an abstract point of view. They developed a unified framework and existing algebraic multigrid methods can be derived coherently. Abstract theory about how to construct optimal coarse space
2393:
Originally described in Xu's Ph.D. thesis and later published in Bramble-Pasciak-Xu, the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of
209:, F-Cycle takes 83% more time to compute than a V-Cycle iteration while a W-Cycle iteration takes 125% more. If the problem is set up in a 3D domain, then a F-Cycle iteration and a W-Cycle iteration take about 64% and 75% more time respectively than a V-Cycle iteration ignoring 232:
Any geometric multigrid cycle iteration is performed on a hierarchy of grids and hence it can be coded using recursion. Since the function calls itself with smaller sized (coarser) parameters, the coarsest grid is where the recursion stops. In cases where the system has a high
1554:
This approach has the advantage over other methods that it often scales linearly with the number of discrete nodes used. In other words, it can solve these problems to a given accuracy in a number of operations that is proportional to the number of unknowns.
2600:
operator. There were many works to attempt to design a robust and fast multigrid method for such nearly singular problems. A general guide has been provided as a design principle to achieve parameters (e.g., mesh size and physical parameters such as
106:
may be recast as a multigrid method. In these cases, multigrid methods are among the fastest solution techniques known today. In contrast to other methods, multigrid methods are general in that they can treat arbitrary regions and
2912: 2439:, that is, it adjusts the grid as the computation proceeds, in a manner dependent upon the computation itself. The idea is to increase resolution of the grid only in regions of the solution where it is needed. 3238:
Young-Ju Lee, Jinbiao Wu, Jinchao Xu and Ludmil Zikatanov, Robust Subspace Correction Methods for Nearly Singular Systems, Mathematical Models and Methods in Applied Sciences, Vol. 17, No 11, pp. 1937-1963
205:
The V-Cycle algorithm executes one coarse-grain V-Cycle. F-Cycle does a coarse-grain V-Cycle followed by a coarse-grain F-Cycle, while each W-Cycle performs two coarse-grain W-Cycles per iteration. For a
2495:
Nearly singular problems arise in a number of important physical and engineering applications. Simple, but important example of nearly singular problems can be found at the displacement formulation of
2447:
Practically important extensions of multigrid methods include techniques where no partial differential equation nor geometrical problem background is used to construct the multilevel hierarchy. Such
2351:
time as well as in the case where the multigrid method is used as a solver. Multigrid preconditioning is used in practice even for linear systems, typically with one cycle per iteration, e.g., in
2109: 2200: 2362:
If the matrix of the original equation or an eigenvalue problem is symmetric positive definite (SPD), the preconditioner is commonly constructed to be SPD as well, so that the standard
1873: 1762: 1973: 2032: 2429:. These wavelet methods can be combined with multigrid methods. For example, one use of wavelets is to reformulate the finite element approach in terms of a multilevel method. 1676: 2526: 2606:
singular operator has to be included in the sum of the local null spaces, the intersection of the null space and the local spaces resulting from the space decompositions.
2546: 2308: 2370:
can still be used. Such imposed SPD constraints may complicate the construction of the preconditioner, e.g., requiring coordinated pre- and post-smoothing. However,
1911: 1630: 1603: 2349: 2261: 2232: 87:
The main idea of multigrid is to accelerate the convergence of a basic iterative method (known as relaxation, which generally reduces short-wavelength error) by a
2499:
for nearly incompressible materials. Typically, the major problem to solve such nearly singular systems boils down to treat the nearly singular operator given by
1702: 2594: 2566: 2136: 1805: 1782: 1576: 221:, W-Cycle can show superiority in its rate of convergence per iteration over F-Cycle. The choice of smoothing operators are extremely diverse as they include 115:
or other special properties of the equation. They have also been widely used for more-complicated non-symmetric and nonlinear systems of equations, like the
3399: 2378: 76:
exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a
2862:
Bramble, James H., Joseph E. Pasciak, and Jinchao Xu. "Parallel multilevel preconditioners." Mathematics of Computation 55, no. 191 (1990): 1–22.
3294: 3363: 206: 2791:
Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method
237:, the correction procedure is modified such that only a fraction of the prolongated coarser grid solution is added onto the finer grid. 3289: 3490: 2941:
Hyperbolic problems: theory, numerics, applications: proceedings of the Ninth International Conference on Hyperbolic Problems of 2002
3440: 2411: 3869: 3416: 3390: 2403: 112: 96: 3714: 3484: 3332: 3149: 3122: 3093: 3064: 3037: 3010: 2977: 2948: 2922: 2894: 2774: 2747: 2691: 2660: 2633: 1550:
Assuming a 2-dimensional problem setup, the computation moves across grid hierarchy differently for various multigrid cycles.
3784: 3641: 3496: 2402:
Multigrid methods can be generalized in many different ways. They can be applied naturally in a time-stepping solution of
2040: 3315:
R. P. Fedorenko (1964), The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 4, p. 227.
2144: 2871:
Xu, Jinchao. "Iterative methods by space decomposition and subspace correction." SIAM review 34, no. 4 (1992): 581-613.
2790: 3302: 3189: 214: 1764:
is the ratio of grid points on "neighboring" grids and is assumed to be constant throughout the grid hierarchy, and
3692: 3358: 102:
Multigrid methods can be applied in combination with any of the common discretization techniques. For example, the
3709: 3349:
Repository for multigrid, multilevel, multiscale, aggregation, defect correction, and domain decomposition methods
3843: 3629: 1558:
Assume that one has a differential equation which can be solved approximately (with a given accuracy) on a grid
1059:% Recursive W-cycle multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h 564:% Recursive F-cycle multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h 270:% Recursive V-Cycle Multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h 3610: 3599: 3576: 1813: 1707: 3582: 2407: 1919: 179: 169: 1981: 3699: 3664: 2569: 2355:. Its main advantage versus a purely multigrid solver is particularly clear for nonlinear problems, e.g., 3864: 3704: 3383: 3821: 3806: 3682: 3368: 1635: 3468: 3448: 3430: 3263: 3252: 2502: 1787:
The following recurrence relation is then obtained for the effort of obtaining the solution on grid
3791: 3677: 3407: 2597: 2436: 542:. This multigrid cycle is slower than V-Cycle per iteration but does result in faster convergence. 143:
There are many variations of multigrid algorithms, but the common features are that a hierarchy of
65: 2531: 1033:
Similarly the procedures can modified as shown in the MATLAB style pseudo code for 1 iteration of
3833: 3811: 3796: 3779: 3687: 3672: 3588: 3453: 2573: 2476: 2472: 159: 124: 3027: 3001:. Vol. 20 of Lecture Notes in Computational Science and Engineering. Springer. p. 140 2650: 2266: 91:
correction of the fine grid solution approximation from time to time, accomplished by solving a
3753: 3524: 3376: 2487:
parallel-in-time integration method can also be reformulated as a two-level multigrid in time.
2471:. Of particular interest here are parallel-in-time multigrid methods: in contrast to classical 2385:
for symmetric eigenvalue problems are all shown to be robust if the preconditioner is not SPD.
3139: 3081: 2994: 2932: 2882: 2853:
Xu, Jinchao. Theory of multilevel methods. Vol. 8924558. Ithaca, NY: Cornell University, 1989.
2677: 3801: 3647: 3563: 3110: 3054: 2965: 2623: 2468: 103: 53: 28: 3164:
Xu, J. and Zikatanov, L., 2017. Algebraic multigrid methods. Acta Numerica, 26, pp.591-721.
1880:
Example of Convergence Rates of Multigrid Cycles in comparison to other smoothing operators.
3838: 3511: 3264:
On the convergence of a relaxation method with natural constraints on the elliptic operator
2712: 1889: 1608: 1581: 210: 120: 2325: 2237: 2208: 8: 3605: 3519: 2419: 1681: 69: 2716: 3828: 3769: 2836: 2816: 2602: 2579: 2551: 2480: 2363: 2318:
A multigrid method with an intentionally reduced tolerance can be used as an efficient
2121: 1876: 1790: 1767: 1561: 108: 37: 3874: 3458: 3328: 3298: 3185: 3145: 3118: 3089: 3060: 3033: 3006: 2973: 2944: 2918: 2890: 2770: 2743: 2687: 2656: 2629: 2496: 2415: 2367: 116: 73: 3353: 3320: 2840: 2805:"Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods 1" 244:
These steps can be used as shown in the MATLAB style pseudo code for 1 iteration of
3774: 3653: 3621: 3221: 2826: 2374: 2115: 234: 213:. Typically, W-Cycle produces similar convergence to F-Cycle. However, in cases of 155: 77: 218: 3816: 3759: 3748: 2764: 2731: 2452: 2371: 2319: 1784:
is some constant modeling the effort of computing the result for one grid point.
222: 2831: 2804: 3594: 3541: 226: 144: 92: 81: 61: 3177: 2322:
for an external iterative solver, e.g., The solution may still be obtained in
3858: 3463: 186: 3635: 3552: 3529: 3319:
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007).
3225: 2936: 2887:
Numerical solution of partial differential equations on parallel computers
194:– interpolating a correction computed on a coarser grid into a finer grid. 135: 3546: 3424: 3269: 139:
Visualization of iterative Multigrid algorithm for fast O(n) convergence.
3398: 3137: 3079: 3025: 2648: 3309: 3273: 3165: 2880: 2356: 3259: 2803:
Bouwmeester, Henricus; Dougherty, Andrew; Knyazev, Andrew V. (2015).
57: 49: 3287:
William L. Briggs, Van Emden Henson, and Steve F. McCormick (2000),
1374:% stop recursion at smallest grid size, otherwise continue recursion 1173:% stop recursion at smallest grid size, otherwise continue recursion 879:% stop recursion at smallest grid size, otherwise continue recursion 678:% stop recursion at smallest grid size, otherwise continue recursion 384:% stop recursion at smallest grid size, otherwise continue recursion 80:
approach to multigrid. MG methods can be used as solvers as well as
2679:
Multigrid finite element methods for electromagnetic field modeling
2484: 2426: 2821: 3732: 2793:. Electronic Transactions on Numerical Analysis, 15, 38–55, 2003. 3318: 2263:
i.e. W-cycle multigrid used on a 1D problem; it would result in
2234:
time. It should be mentioned that there is one exception to the
1546: 3571: 2970:
Multiscale and multiresolution methods: theory and applications
2382: 200:– Adding prolongated coarser grid solution onto the finer grid. 2621: 3321:"Section 20.6. Multigrid Methods for Boundary Value Problems" 3310:
A relaxation method for solving elliptic difference equations
3212:
Horton, Graham (1992). "The time-parallel multigrid method".
2467:
Multigrid methods have also been adopted for the solution of
2352: 2930: 2675: 3726: 3720: 3535: 2802: 2528:
robustly with respect to the positive, but small parameter
1037:
for an even superior rate of convergence in certain cases:
2995:"Wavelet-based numerical homogenization with applications" 2992: 154:– reducing high frequency errors, for example using a few 3274:
Multi-Level Adaptive Solutions to Boundary-Value Problems
3182:
Computing Methods in Applied Sciences and Engineering, VI
2914:
Computational fluid dynamics: principles and applications
2490: 3348: 2997:. In Timothy J. Barth; Tony Chan; Robert Haimes (eds.). 2968:. In Timothy J. Barth; Tony Chan; Robert Haimes (eds.). 2933:"Multigrid for Atmospheric Data Assimilation: Analysis" 3327:(3rd ed.). New York: Cambridge University Press. 2881:
F. HĂĽlsemann; M. Kowarschik; M. Mohr; U. RĂĽde (2006).
2414:
is underway. Multigrid methods can also be applied to
64:. They are an example of a class of techniques called 3138:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
3080:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
3026:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
2649:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
2582: 2554: 2534: 2505: 2425:
Another set of multiresolution methods is based upon
2328: 2269: 2240: 2211: 2147: 2124: 2043: 1984: 1922: 1892: 1816: 1793: 1770: 1710: 1684: 1638: 1611: 1584: 1564: 3400:
Numerical methods for partial differential equations
3253:
An iterative method of solving elliptic net problems
2406:, or they can be applied directly to time-dependent 2388: 2104:{\displaystyle W_{1}=KN_{1}\sum _{p=0}^{n}\rho ^{p}} 2195:{\displaystyle W_{1}<KN_{1}{\frac {1}{1-\rho }}} 3325:Numerical Recipes: The Art of Scientific Computing 2588: 2560: 2540: 2520: 2343: 2302: 2255: 2226: 2194: 2130: 2103: 2026: 1967: 1905: 1867: 1799: 1776: 1756: 1696: 1670: 1624: 1597: 1570: 3312:. USSR Comput. Math. Math. Phys. 1, p. 1092. 1605:. Assume furthermore that a solution on any grid 3856: 2625:Practical Fourier analysis for multigrid methods 2397: 147:(grids) is considered. The important steps are: 3115:Matrix-based multigrid: theory and applications 1886:And in particular, we find for the finest grid 3295:Society for Industrial and Applied Mathematics 2885:. In Are Magnus Bruaset; Aslak Tveito (eds.). 3384: 3108: 3052: 2762: 2738:. McGraw-Hill Higher Education. p. 478 2736:Scientific Computing: An Introductory Survey 2462: 2442: 2313: 3255:. USSR Comp. Math. Math. Phys. 11, 171–182. 3214:Communications in Applied Numerical Methods 2966:"Multiscale scientific computation: review" 2963: 2729: 1978:Combining these two expressions (and using 3391: 3377: 2910: 3266:. USSR Comp. Math. Math. Phys. 6, 101–13. 3175: 2830: 2820: 2622:Roman Wienands; Wolfgang Joppich (2005). 2412:hyperbolic partial differential equations 2410:. Research on multilevel techniques for 1868:{\displaystyle W_{k}=W_{k+1}+\rho KN_{k}} 2404:parabolic partial differential equations 1875: 1757:{\displaystyle \rho =N_{i+1}/N_{i}<1} 1545: 134: 16:Method of solving differential equations 2676:Yu Zhu; Andreas C. Cangellaris (2006). 2205:that is, a solution may be obtained in 1968:{\displaystyle W_{1}=W_{2}+\rho KN_{1}} 97:elliptic partial differential equations 3857: 3211: 2999:Multiscale and Multiresolution Methods 2491:Multigrid for nearly singular problems 2483:in temporal direction. The well known 2027:{\displaystyle N_{k}=\rho ^{k-1}N_{1}} 1530: 3372: 3056:Numerical Analysis of Wavelet Methods 2993:Björn Engquist; Olof Runborg (2002). 2931:Achi Brandt and Rima Gandlin (2003). 1632:may be obtained with a given effort 72:of behavior. For example, many basic 68:, very useful in problems exhibiting 3642:Moving particle semi-implicit method 3553:Weighted essentially non-oscillatory 2766:An Introduction to Multigrid Methods 2706: 13: 3491:Finite-difference frequency-domain 2732:"Section 11.5.7 Multigrid Methods" 1678:from a solution on a coarser grid 14: 3886: 3342: 2789:Andrew V Knyazev, Klaus Neymeyr. 2389:Bramble–Pasciak–Xu preconditioner 1671:{\displaystyle W_{i}=\rho KN_{i}} 1578:with a given grid point density 172:after the smoothing operation(s). 2709:Analysis of the multigrid method 3844:Method of fundamental solutions 3630:Smoothed-particle hydrodynamics 3232: 3205: 3169: 3158: 3131: 3102: 3082:"Chapter 9: Adaptive Multigrid" 3073: 3046: 3019: 2986: 2957: 2903: 2874: 2865: 2856: 2707:Shah, Tasneem Mohammad (1989). 2521:{\displaystyle A+\varepsilon M} 3870:Partial differential equations 3485:Alternating direction-implicit 3178:"Parabolic multi-grid methods" 2883:"Parallel geometric multigrid" 2847: 2796: 2783: 2756: 2723: 2700: 2669: 2642: 2615: 2408:partial differential equations 2338: 2332: 2297: 2294: 2288: 2273: 2250: 2244: 2221: 2215: 1380:smallest_grid_size_is_achieved 1179:smallest_grid_size_is_achieved 885:smallest_grid_size_is_achieved 684:smallest_grid_size_is_achieved 390:smallest_grid_size_is_achieved 1: 3497:Finite-difference time-domain 3245: 2711:(Thesis). Oxford University. 2398:Generalized multigrid methods 1461:% Prolongation and correction 1260:% Prolongation and correction 966:% Prolongation and Correction 765:% Prolongation and Correction 471:% Prolongation and Correction 113:separability of the equations 3536:Advection upstream-splitting 3359:Algebraic multigrid tutorial 3176:Hackbusch, Wolfgang (1985). 2541:{\displaystyle \varepsilon } 130: 111:. They do not depend on the 7: 3547:Essentially non-oscillatory 3530:Monotonic upstream-centered 3251:G. P. Astrachancev (1971), 2889:. Birkhäuser. p. 165. 2832:10.1016/j.procs.2015.05.241 2449:algebraic multigrid methods 2381:for SPD linear systems and 2118:, we then find (for finite 99:in two or more dimensions. 10: 3891: 3807:Infinite difference method 3425:Forward-time central-space 3364:Links to AMG presentations 3278:Mathematics of Computation 2303:{\displaystyle O(Nlog(N))} 241: 3741: 3710:Poincaré–Steklov operator 3663: 3620: 3562: 3510: 3477: 3469:Method of characteristics 3439: 3415: 3406: 3293:(2nd ed.), Philadelphia: 2943:. Springer. p. 369. 2917:. Elsevier. p. 305. 2809:Procedia Computer Science 2628:. CRC Press. p. 17. 2463:Multigrid in time methods 2443:Algebraic multigrid (AMG) 2314:Multigrid preconditioning 1320:% Compute residual errors 1095:% Compute Residual Errors 825:% Compute residual errors 600:% Compute Residual Errors 538:The following represents 306:% Compute Residual Errors 24: 3727:Tearing and interconnect 3721:Balancing by constraints 3308:R. P. Fedorenko (1961), 3117:. Springer. p. 66. 3059:. Elsevier. p. 44. 2972:. Springer. p. 53. 2609: 2479:methods, they can offer 2437:adaptive mesh refinement 1039: 544: 250: 182:error to a coarser grid. 3834:Computer-assisted proof 3812:Infinite element method 3600:Gradient discretisation 125:Navier-Stokes equations 66:multiresolution methods 3822:Petrov–Galerkin method 3583:Discontinuous Galerkin 3226:10.1002/cnm.1630080906 2590: 2562: 2542: 2522: 2469:initial value problems 2345: 2304: 2257: 2228: 2196: 2132: 2105: 2090: 2028: 1969: 1907: 1881: 1869: 1801: 1778: 1758: 1698: 1672: 1626: 1599: 1572: 1551: 140: 54:differential equations 3802:Isogeometric analysis 3648:Material point method 3111:"Algebraic multigrid" 3109:Yair Shapira (2003). 3053:Albert Cohen (2003). 2763:P. Wesseling (1992). 2682:. Wiley. p. 132 2591: 2563: 2543: 2523: 2418:, or for problems in 2346: 2305: 2258: 2229: 2197: 2133: 2106: 2070: 2029: 1970: 1908: 1906:{\displaystyle N_{1}} 1879: 1870: 1802: 1779: 1759: 1699: 1673: 1627: 1625:{\displaystyle N_{i}} 1600: 1598:{\displaystyle N_{i}} 1573: 1549: 138: 104:finite element method 29:Differential equation 3839:Integrable algorithm 3665:Domain decomposition 3290:A Multigrid Tutorial 2964:Achi Brandt (2002). 2935:. In Thomas Y. Hou; 2730:M. T. Heath (2002). 2580: 2572:operator with large 2552: 2532: 2503: 2344:{\displaystyle O(N)} 2326: 2267: 2256:{\displaystyle O(N)} 2238: 2227:{\displaystyle O(N)} 2209: 2145: 2122: 2041: 1982: 1920: 1890: 1814: 1791: 1768: 1708: 1682: 1636: 1609: 1582: 1562: 215:convection-diffusion 166:Residual Computation 3683:Schwarz alternating 3606:Loubignac iteration 2911:J. Blaz̆ek (2001). 2717:1989STIN...9123418S 2420:statistical physics 2379:flexible CG methods 1697:{\displaystyle i+1} 1531:Computational cost 225:methods and can be 217:problems with high 207:discrete 2D problem 178:– downsampling the 160:Gauss–Seidel method 109:boundary conditions 21: 3865:Numerical analysis 3829:Validated numerics 3354:Multigrid tutorial 2655:. Academic Press. 2586: 2558: 2538: 2518: 2433:Adaptive multigrid 2416:integral equations 2364:conjugate gradient 2341: 2300: 2253: 2224: 2192: 2128: 2101: 2024: 1965: 1903: 1882: 1865: 1797: 1774: 1754: 1694: 1668: 1622: 1595: 1568: 1552: 1389:coarse_level_solve 1188:coarse_level_solve 894:coarse_level_solve 693:coarse_level_solve 399:coarse_level_solve 141: 74:relaxation methods 38:numerical analysis 19: 3852: 3851: 3792:Immersed boundary 3785:Method of moments 3700:Neumann–Dirichlet 3693:abstract additive 3678:Fictitious domain 3622:Meshless/Meshfree 3506: 3505: 3408:Finite difference 3334:978-0-521-88068-8 3151:978-0-12-701070-0 3124:978-1-4020-7485-1 3095:978-0-12-701070-0 3066:978-0-444-51124-9 3039:978-0-12-701070-0 3012:978-3-540-42420-8 2979:978-3-540-42420-8 2950:978-3-540-44333-9 2924:978-0-08-043009-6 2896:978-3-540-29076-6 2776:978-0-471-93083-9 2749:978-0-07-112229-0 2693:978-0-471-74110-7 2662:978-0-12-701070-0 2635:978-1-58488-492-7 2598:positive definite 2589:{\displaystyle M} 2561:{\displaystyle A} 2497:linear elasticity 2368:iterative methods 2190: 2131:{\displaystyle n} 1800:{\displaystyle k} 1777:{\displaystyle K} 1571:{\displaystyle i} 1528: 1527: 1035:W-cycle multigrid 540:F-cycle multigrid 246:V-Cycle Multigrid 34: 33: 3882: 3797:Analytic element 3780:Boundary element 3673:Schur complement 3654:Particle-in-cell 3589:Spectral element 3413: 3412: 3393: 3386: 3379: 3370: 3369: 3338: 3240: 3236: 3230: 3229: 3209: 3203: 3202: 3200: 3198: 3173: 3167: 3162: 3156: 3155: 3135: 3129: 3128: 3106: 3100: 3099: 3077: 3071: 3070: 3050: 3044: 3043: 3023: 3017: 3016: 2990: 2984: 2983: 2961: 2955: 2954: 2928: 2907: 2901: 2900: 2878: 2872: 2869: 2863: 2860: 2854: 2851: 2845: 2844: 2834: 2824: 2800: 2794: 2787: 2781: 2780: 2760: 2754: 2753: 2727: 2721: 2720: 2704: 2698: 2697: 2673: 2667: 2666: 2646: 2640: 2639: 2619: 2595: 2593: 2592: 2587: 2567: 2565: 2564: 2559: 2547: 2545: 2544: 2539: 2527: 2525: 2524: 2519: 2477:linear multistep 2375:steepest descent 2350: 2348: 2347: 2342: 2309: 2307: 2306: 2301: 2262: 2260: 2259: 2254: 2233: 2231: 2230: 2225: 2201: 2199: 2198: 2193: 2191: 2189: 2175: 2173: 2172: 2157: 2156: 2137: 2135: 2134: 2129: 2116:geometric series 2110: 2108: 2107: 2102: 2100: 2099: 2089: 2084: 2069: 2068: 2053: 2052: 2033: 2031: 2030: 2025: 2023: 2022: 2013: 2012: 1994: 1993: 1974: 1972: 1971: 1966: 1964: 1963: 1945: 1944: 1932: 1931: 1912: 1910: 1909: 1904: 1902: 1901: 1874: 1872: 1871: 1866: 1864: 1863: 1845: 1844: 1826: 1825: 1806: 1804: 1803: 1798: 1783: 1781: 1780: 1775: 1763: 1761: 1760: 1755: 1747: 1746: 1737: 1732: 1731: 1703: 1701: 1700: 1695: 1677: 1675: 1674: 1669: 1667: 1666: 1648: 1647: 1631: 1629: 1628: 1623: 1621: 1620: 1604: 1602: 1601: 1596: 1594: 1593: 1577: 1575: 1574: 1569: 1543: 1542: 1538: 1522: 1519: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1489: 1488:% Post-smoothing 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1246: 1243: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1053: 1050: 1047: 1043: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 994: 993:% Post-smoothing 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 835: 832: 829: 826: 823: 820: 817: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 706: 703: 700: 697: 694: 691: 688: 685: 682: 679: 676: 673: 670: 667: 664: 661: 658: 655: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 598: 595: 592: 589: 586: 583: 580: 577: 574: 571: 568: 565: 562: 558: 555: 552: 548: 532: 529: 526: 523: 520: 517: 514: 511: 508: 505: 502: 499: 498:% Post-Smoothing 496: 493: 490: 487: 484: 481: 478: 475: 472: 469: 466: 463: 460: 457: 454: 451: 448: 445: 442: 439: 436: 433: 430: 427: 424: 421: 418: 415: 412: 409: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 325: 322: 319: 316: 313: 310: 307: 304: 301: 298: 295: 292: 289: 286: 283: 280: 277: 274: 271: 268: 264: 261: 258: 254: 240: 239: 235:condition number 78:Fourier analysis 42:multigrid method 22: 20:Multigrid method 18: 3890: 3889: 3885: 3884: 3883: 3881: 3880: 3879: 3855: 3854: 3853: 3848: 3817:Galerkin method 3760:Method of lines 3737: 3705:Neumann–Neumann 3659: 3616: 3558: 3525:High-resolution 3502: 3473: 3435: 3402: 3397: 3345: 3335: 3272:(April 1977), " 3248: 3243: 3237: 3233: 3210: 3206: 3196: 3194: 3192: 3174: 3170: 3163: 3159: 3152: 3144:. p. 417. 3136: 3132: 3125: 3107: 3103: 3096: 3088:. p. 356. 3078: 3074: 3067: 3051: 3047: 3040: 3024: 3020: 3013: 2991: 2987: 2980: 2962: 2958: 2951: 2925: 2908: 2904: 2897: 2879: 2875: 2870: 2866: 2861: 2857: 2852: 2848: 2801: 2797: 2788: 2784: 2777: 2761: 2757: 2750: 2728: 2724: 2705: 2701: 2694: 2674: 2670: 2663: 2647: 2643: 2636: 2620: 2616: 2612: 2603:Poisson's ratio 2596:is a symmetric 2581: 2578: 2577: 2553: 2550: 2549: 2533: 2530: 2529: 2504: 2501: 2500: 2493: 2465: 2453:sparse matrices 2445: 2400: 2391: 2327: 2324: 2323: 2316: 2268: 2265: 2264: 2239: 2236: 2235: 2210: 2207: 2206: 2179: 2174: 2168: 2164: 2152: 2148: 2146: 2143: 2142: 2123: 2120: 2119: 2095: 2091: 2085: 2074: 2064: 2060: 2048: 2044: 2042: 2039: 2038: 2018: 2014: 2002: 1998: 1989: 1985: 1983: 1980: 1979: 1959: 1955: 1940: 1936: 1927: 1923: 1921: 1918: 1917: 1897: 1893: 1891: 1888: 1887: 1859: 1855: 1834: 1830: 1821: 1817: 1815: 1812: 1811: 1792: 1789: 1788: 1769: 1766: 1765: 1742: 1738: 1733: 1721: 1717: 1709: 1706: 1705: 1683: 1680: 1679: 1662: 1658: 1643: 1639: 1637: 1634: 1633: 1616: 1612: 1610: 1607: 1606: 1589: 1585: 1583: 1580: 1579: 1563: 1560: 1559: 1544: 1540: 1536: 1534: 1533: 1524: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1481: 1478: 1475: 1472: 1469: 1466: 1463: 1460: 1457: 1454: 1451: 1448: 1445: 1442: 1439: 1436: 1433: 1430: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1062:% Pre-smoothing 1061: 1058: 1055: 1051: 1048: 1045: 1041: 1029: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 941: 938: 935: 932: 929: 926: 923: 920: 917: 914: 911: 908: 905: 902: 899: 896: 893: 890: 887: 884: 881: 878: 875: 872: 869: 866: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 833: 830: 827: 824: 821: 818: 815: 812: 809: 806: 803: 800: 797: 794: 791: 788: 785: 782: 779: 776: 773: 770: 767: 764: 761: 758: 755: 752: 749: 746: 743: 740: 737: 734: 731: 728: 725: 722: 719: 716: 713: 710: 707: 704: 701: 698: 695: 692: 689: 686: 683: 680: 677: 674: 671: 668: 665: 662: 659: 656: 653: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 605: 602: 599: 596: 593: 590: 587: 584: 581: 578: 575: 572: 569: 567:% Pre-smoothing 566: 563: 560: 556: 553: 550: 546: 534: 533: 530: 527: 524: 521: 518: 515: 512: 509: 506: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 425: 422: 419: 416: 413: 410: 407: 404: 401: 398: 395: 392: 389: 386: 383: 380: 377: 374: 371: 368: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 329: 326: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 284: 281: 278: 275: 273:% Pre-Smoothing 272: 269: 266: 262: 259: 256: 252: 223:Krylov subspace 145:discretizations 133: 82:preconditioners 70:multiple scales 62:discretizations 17: 12: 11: 5: 3888: 3878: 3877: 3872: 3867: 3850: 3849: 3847: 3846: 3841: 3836: 3831: 3826: 3825: 3824: 3814: 3809: 3804: 3799: 3794: 3789: 3788: 3787: 3777: 3772: 3767: 3762: 3757: 3754:Pseudospectral 3751: 3745: 3743: 3739: 3738: 3736: 3735: 3730: 3724: 3718: 3712: 3707: 3702: 3697: 3696: 3695: 3690: 3680: 3675: 3669: 3667: 3661: 3660: 3658: 3657: 3651: 3645: 3639: 3633: 3626: 3624: 3618: 3617: 3615: 3614: 3608: 3603: 3597: 3592: 3586: 3580: 3574: 3568: 3566: 3564:Finite element 3560: 3559: 3557: 3556: 3550: 3544: 3542:Riemann solver 3539: 3533: 3527: 3522: 3516: 3514: 3508: 3507: 3504: 3503: 3501: 3500: 3494: 3488: 3481: 3479: 3475: 3474: 3472: 3471: 3466: 3461: 3456: 3451: 3449:Lax–Friedrichs 3445: 3443: 3437: 3436: 3434: 3433: 3431:Crank–Nicolson 3428: 3421: 3419: 3410: 3404: 3403: 3396: 3395: 3388: 3381: 3373: 3367: 3366: 3361: 3356: 3351: 3344: 3343:External links 3341: 3340: 3339: 3333: 3316: 3313: 3306: 3285: 3267: 3256: 3247: 3244: 3242: 3241: 3231: 3220:(9): 585–595. 3204: 3190: 3168: 3157: 3150: 3130: 3123: 3101: 3094: 3072: 3065: 3045: 3038: 3018: 3011: 2985: 2978: 2956: 2949: 2923: 2902: 2895: 2873: 2864: 2855: 2846: 2795: 2782: 2775: 2755: 2748: 2722: 2699: 2692: 2668: 2661: 2641: 2634: 2613: 2611: 2608: 2585: 2557: 2537: 2517: 2514: 2511: 2508: 2492: 2489: 2464: 2461: 2444: 2441: 2399: 2396: 2390: 2387: 2372:preconditioned 2340: 2337: 2334: 2331: 2320:preconditioner 2315: 2312: 2299: 2296: 2293: 2290: 2287: 2284: 2281: 2278: 2275: 2272: 2252: 2249: 2246: 2243: 2223: 2220: 2217: 2214: 2203: 2202: 2188: 2185: 2182: 2178: 2171: 2167: 2163: 2160: 2155: 2151: 2127: 2112: 2111: 2098: 2094: 2088: 2083: 2080: 2077: 2073: 2067: 2063: 2059: 2056: 2051: 2047: 2021: 2017: 2011: 2008: 2005: 2001: 1997: 1992: 1988: 1976: 1975: 1962: 1958: 1954: 1951: 1948: 1943: 1939: 1935: 1930: 1926: 1900: 1896: 1884: 1883: 1862: 1858: 1854: 1851: 1848: 1843: 1840: 1837: 1833: 1829: 1824: 1820: 1796: 1773: 1753: 1750: 1745: 1741: 1736: 1730: 1727: 1724: 1720: 1716: 1713: 1693: 1690: 1687: 1665: 1661: 1657: 1654: 1651: 1646: 1642: 1619: 1615: 1592: 1588: 1567: 1532: 1529: 1526: 1525: 1287:% Re-smoothing 1040: 1030: 792:% Re-smoothing 545: 535: 251: 227:preconditioned 219:PĂ©clet numbers 202: 201: 195: 183: 173: 170:residual error 163: 132: 129: 117:LamĂ© equations 93:coarse problem 32: 31: 26: 15: 9: 6: 4: 3: 2: 3887: 3876: 3873: 3871: 3868: 3866: 3863: 3862: 3860: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3827: 3823: 3820: 3819: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3786: 3783: 3782: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3761: 3758: 3755: 3752: 3750: 3747: 3746: 3744: 3740: 3734: 3731: 3728: 3725: 3722: 3719: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3694: 3691: 3689: 3686: 3685: 3684: 3681: 3679: 3676: 3674: 3671: 3670: 3668: 3666: 3662: 3655: 3652: 3649: 3646: 3643: 3640: 3637: 3634: 3631: 3628: 3627: 3625: 3623: 3619: 3612: 3609: 3607: 3604: 3601: 3598: 3596: 3593: 3590: 3587: 3584: 3581: 3578: 3575: 3573: 3570: 3569: 3567: 3565: 3561: 3554: 3551: 3548: 3545: 3543: 3540: 3537: 3534: 3531: 3528: 3526: 3523: 3521: 3518: 3517: 3515: 3513: 3512:Finite volume 3509: 3498: 3495: 3492: 3489: 3486: 3483: 3482: 3480: 3476: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3446: 3444: 3442: 3438: 3432: 3429: 3426: 3423: 3422: 3420: 3418: 3414: 3411: 3409: 3405: 3401: 3394: 3389: 3387: 3382: 3380: 3375: 3374: 3371: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3346: 3336: 3330: 3326: 3322: 3317: 3314: 3311: 3307: 3304: 3303:0-89871-462-1 3300: 3296: 3292: 3291: 3286: 3283: 3279: 3275: 3271: 3268: 3265: 3261: 3257: 3254: 3250: 3249: 3235: 3227: 3223: 3219: 3215: 3208: 3193: 3191:9780444875976 3187: 3183: 3179: 3172: 3166: 3161: 3153: 3147: 3143: 3142: 3134: 3126: 3120: 3116: 3112: 3105: 3097: 3091: 3087: 3083: 3076: 3068: 3062: 3058: 3057: 3049: 3041: 3035: 3031: 3030: 3022: 3014: 3008: 3004: 3000: 2996: 2989: 2981: 2975: 2971: 2967: 2960: 2952: 2946: 2942: 2938: 2934: 2926: 2920: 2916: 2915: 2909:For example, 2906: 2898: 2892: 2888: 2884: 2877: 2868: 2859: 2850: 2842: 2838: 2833: 2828: 2823: 2818: 2814: 2810: 2806: 2799: 2792: 2786: 2778: 2772: 2768: 2767: 2759: 2751: 2745: 2741: 2737: 2733: 2726: 2718: 2714: 2710: 2703: 2695: 2689: 2685: 2681: 2680: 2672: 2664: 2658: 2654: 2653: 2645: 2637: 2631: 2627: 2626: 2618: 2614: 2607: 2604: 2599: 2583: 2575: 2571: 2568:is symmetric 2555: 2535: 2515: 2512: 2509: 2506: 2498: 2488: 2486: 2482: 2478: 2474: 2470: 2460: 2456: 2454: 2450: 2440: 2438: 2434: 2430: 2428: 2423: 2421: 2417: 2413: 2409: 2405: 2395: 2386: 2384: 2380: 2376: 2373: 2369: 2365: 2360: 2358: 2354: 2335: 2329: 2321: 2311: 2310:complexity. 2291: 2285: 2282: 2279: 2276: 2270: 2247: 2241: 2218: 2212: 2186: 2183: 2180: 2176: 2169: 2165: 2161: 2158: 2153: 2149: 2141: 2140: 2139: 2125: 2117: 2096: 2092: 2086: 2081: 2078: 2075: 2071: 2065: 2061: 2057: 2054: 2049: 2045: 2037: 2036: 2035: 2019: 2015: 2009: 2006: 2003: 1999: 1995: 1990: 1986: 1960: 1956: 1952: 1949: 1946: 1941: 1937: 1933: 1928: 1924: 1916: 1915: 1914: 1898: 1894: 1878: 1860: 1856: 1852: 1849: 1846: 1841: 1838: 1835: 1831: 1827: 1822: 1818: 1810: 1809: 1808: 1794: 1785: 1771: 1751: 1748: 1743: 1739: 1734: 1728: 1725: 1722: 1718: 1714: 1711: 1691: 1688: 1685: 1663: 1659: 1655: 1652: 1649: 1644: 1640: 1617: 1613: 1590: 1586: 1565: 1556: 1548: 1539: 1353:% Restriction 1128:% Restriction 1038: 1036: 1031: 858:% Restriction 633:% Restriction 543: 541: 536: 339:% Restriction 249: 247: 242: 238: 236: 230: 228: 224: 220: 216: 212: 208: 199: 196: 193: 189: 188: 187:Interpolation 184: 181: 177: 174: 171: 167: 164: 161: 157: 153: 150: 149: 148: 146: 137: 128: 126: 122: 118: 114: 110: 105: 100: 98: 94: 90: 85: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 30: 27: 23: 3764: 3636:Peridynamics 3454:Lax–Wendroff 3324: 3288: 3281: 3277: 3234: 3217: 3213: 3207: 3195:. Retrieved 3181: 3171: 3160: 3140: 3133: 3114: 3104: 3085: 3075: 3055: 3048: 3028: 3021: 3002: 2998: 2988: 2969: 2959: 2940: 2937:Eitan Tadmor 2913: 2905: 2886: 2876: 2867: 2858: 2849: 2812: 2808: 2798: 2785: 2765: 2758: 2739: 2735: 2725: 2708: 2702: 2683: 2678: 2671: 2651: 2644: 2624: 2617: 2570:semidefinite 2494: 2466: 2457: 2448: 2446: 2432: 2431: 2424: 2401: 2392: 2361: 2317: 2204: 2113: 1977: 1885: 1786: 1557: 1553: 1476:prolongation 1275:prolongation 1034: 1032: 981:prolongation 780:prolongation 539: 537: 486:prolongation 245: 243: 231: 203: 197: 192:prolongation 191: 185: 175: 168:– computing 165: 151: 142: 101: 88: 86: 52:for solving 45: 41: 35: 3770:Collocation 3270:Achi Brandt 3184:: 189–197. 2815:: 276–285. 2481:concurrency 2473:Runge–Kutta 1362:restriction 1137:restriction 867:restriction 642:restriction 348:restriction 176:Restriction 3859:Categories 3459:MacCormack 3441:Hyperbolic 3246:References 2574:null space 2359:problems. 2357:eigenvalue 2114:Using the 198:Correction 156:iterations 121:elasticity 3775:Level-set 3765:Multigrid 3715:Balancing 3417:Parabolic 3284:: 333–90. 3260:Bakhvalov 3141:Multigrid 3086:Multigrid 3029:Multigrid 2822:1212.6680 2769:. Wiley. 2652:Multigrid 2536:ε 2513:ε 2435:exhibits 2187:ρ 2184:− 2093:ρ 2072:∑ 2007:− 2000:ρ 1950:ρ 1850:ρ 1712:ρ 1653:ρ 1497:smoothing 1296:smoothing 1071:smoothing 1002:smoothing 801:smoothing 576:smoothing 507:smoothing 282:smoothing 211:overheads 152:Smoothing 131:Algorithm 58:hierarchy 50:algorithm 46:MG method 3875:Wavelets 3749:Spectral 3688:additive 3611:Smoothed 3577:Extended 3262:(1966), 3197:1 August 2939:(eds.). 2841:51978658 2576:, while 2485:Parareal 2427:wavelets 2034:) gives 1704:. Here, 1329:residual 1104:residual 1042:function 834:residual 609:residual 547:function 315:residual 253:function 180:residual 56:using a 48:) is an 3733:FETI-DP 3613:(S-FEM) 3532:(MUSCL) 3520:Godunov 2713:Bibcode 2548:. Here 1428:W_cycle 1227:W_cycle 1054:phi,f,h 1049:W_cycle 933:V_Cycle 732:F_Cycle 559:phi,f,h 554:F_Cycle 438:V_Cycle 265:phi,f,h 260:V_Cycle 158:of the 123:or the 3742:Others 3729:(FETI) 3723:(BDDC) 3595:Mortar 3579:(XFEM) 3572:hp-FEM 3555:(WENO) 3538:(AUSM) 3499:(FDTD) 3493:(FDFD) 3478:Others 3464:Upwind 3427:(FTCS) 3331:  3301:  3258:N. S. 3239:(2007) 3188:  3148:  3121:  3092:  3063:  3036:  3009:  2976:  2947:  2921:  2893:  2839:  2773:  2746:  2690:  2659:  2632:  2383:LOBPCG 1535:": --> 89:global 3756:(DVR) 3717:(BDD) 3656:(PIC) 3650:(MPM) 3644:(MPS) 3632:(SPH) 3602:(GDM) 3591:(SEM) 3549:(ENO) 3487:(ADI) 2837:S2CID 2817:arXiv 2610:Notes 2366:(CG) 2353:Hypre 1913:that 1155:zeros 660:zeros 366:zeros 25:Class 3638:(PD) 3585:(DG) 3329:ISBN 3299:ISBN 3199:2015 3186:ISBN 3146:ISBN 3119:ISBN 3090:ISBN 3061:ISBN 3034:ISBN 3007:ISBN 2974:ISBN 2945:ISBN 2929:and 2919:ISBN 2891:ISBN 2771:ISBN 2744:ISBN 2688:ISBN 2657:ISBN 2630:ISBN 2377:and 2159:< 1749:< 1537:edit 1419:else 1218:else 1161:size 924:else 723:else 666:size 429:else 372:size 40:, a 3276:", 3222:doi 2827:doi 2475:or 1521:end 1503:phi 1491:phi 1482:eps 1470:phi 1464:phi 1458:end 1440:rhs 1434:eps 1422:eps 1401:rhs 1395:eps 1383:eps 1356:rhs 1335:phi 1302:phi 1290:phi 1281:eps 1269:phi 1263:phi 1257:end 1239:rhs 1233:eps 1221:eps 1200:rhs 1194:eps 1182:eps 1170:)); 1167:rhs 1149:eps 1131:rhs 1110:phi 1077:phi 1065:phi 1044:phi 1026:end 1008:phi 996:phi 987:eps 975:phi 969:phi 963:end 945:rhs 939:eps 927:eps 906:rhs 900:eps 888:eps 861:rhs 840:phi 807:phi 795:phi 786:eps 774:phi 768:phi 762:end 744:rhs 738:eps 726:eps 705:rhs 699:eps 687:eps 675:)); 672:rhs 654:eps 636:rhs 615:phi 582:phi 570:phi 549:phi 531:end 513:phi 501:phi 492:eps 480:phi 474:phi 468:end 450:rhs 444:eps 432:eps 411:rhs 405:eps 393:eps 381:)); 378:rhs 360:eps 342:rhs 321:phi 288:phi 276:phi 255:phi 190:or 119:of 60:of 36:In 3861:: 3323:. 3297:, 3282:31 3280:, 3216:. 3180:. 3113:. 3084:. 3032:. 3005:. 3003:ff 2835:. 2825:. 2813:51 2811:. 2807:. 2742:. 2740:ff 2734:. 2686:. 2684:ff 2422:. 2138:) 1807:: 1518:); 1485:); 1455:); 1416:); 1377:if 1371:); 1350:); 1317:); 1284:); 1254:); 1215:); 1176:if 1146:); 1125:); 1092:); 1023:); 990:); 960:); 921:); 882:if 876:); 855:); 822:); 789:); 759:); 720:); 681:if 651:); 630:); 597:); 528:); 495:); 465:); 426:); 387:if 357:); 336:); 303:); 248:: 229:. 127:. 84:. 3392:e 3385:t 3378:v 3337:. 3305:. 3228:. 3224:: 3218:8 3201:. 3154:. 3127:. 3098:. 3069:. 3042:. 3015:. 2982:. 2953:. 2927:. 2899:. 2843:. 2829:: 2819:: 2779:. 2752:. 2719:. 2715:: 2696:. 2665:. 2638:. 2584:M 2556:A 2516:M 2510:+ 2507:A 2339:) 2336:N 2333:( 2330:O 2298:) 2295:) 2292:N 2289:( 2286:g 2283:o 2280:l 2277:N 2274:( 2271:O 2251:) 2248:N 2245:( 2242:O 2222:) 2219:N 2216:( 2213:O 2181:1 2177:1 2170:1 2166:N 2162:K 2154:1 2150:W 2126:n 2097:p 2087:n 2082:0 2079:= 2076:p 2066:1 2062:N 2058:K 2055:= 2050:1 2046:W 2020:1 2016:N 2010:1 2004:k 1996:= 1991:k 1987:N 1961:1 1957:N 1953:K 1947:+ 1942:2 1938:W 1934:= 1929:1 1925:W 1899:1 1895:N 1861:k 1857:N 1853:K 1847:+ 1842:1 1839:+ 1836:k 1832:W 1828:= 1823:k 1819:W 1795:k 1772:K 1752:1 1744:i 1740:N 1735:/ 1729:1 1726:+ 1723:i 1719:N 1715:= 1692:1 1689:+ 1686:i 1664:i 1660:N 1656:K 1650:= 1645:i 1641:W 1618:i 1614:N 1591:i 1587:N 1566:i 1541:] 1515:h 1512:, 1509:f 1506:, 1500:( 1494:= 1479:( 1473:+ 1467:= 1452:h 1449:* 1446:2 1443:, 1437:, 1431:( 1425:= 1413:h 1410:* 1407:2 1404:, 1398:, 1392:( 1386:= 1368:r 1365:( 1359:= 1347:h 1344:, 1341:f 1338:, 1332:( 1326:= 1323:r 1314:h 1311:, 1308:f 1305:, 1299:( 1293:= 1278:( 1272:+ 1266:= 1251:h 1248:* 1245:2 1242:, 1236:, 1230:( 1224:= 1212:h 1209:* 1206:2 1203:, 1197:, 1191:( 1185:= 1164:( 1158:( 1152:= 1143:r 1140:( 1134:= 1122:h 1119:, 1116:f 1113:, 1107:( 1101:= 1098:r 1089:h 1086:, 1083:f 1080:, 1074:( 1068:= 1056:) 1052:( 1046:= 1020:h 1017:, 1014:f 1011:, 1005:( 999:= 984:( 978:+ 972:= 957:h 954:* 951:2 948:, 942:, 936:( 930:= 918:h 915:* 912:2 909:, 903:, 897:( 891:= 873:r 870:( 864:= 852:h 849:, 846:f 843:, 837:( 831:= 828:r 819:h 816:, 813:f 810:, 804:( 798:= 783:( 777:+ 771:= 756:h 753:* 750:2 747:, 741:, 735:( 729:= 717:h 714:* 711:2 708:, 702:, 696:( 690:= 669:( 663:( 657:= 648:r 645:( 639:= 627:h 624:, 621:f 618:, 612:( 606:= 603:r 594:h 591:, 588:f 585:, 579:( 573:= 561:) 557:( 551:= 525:h 522:, 519:f 516:, 510:( 504:= 489:( 483:+ 477:= 462:h 459:* 456:2 453:, 447:, 441:( 435:= 423:h 420:* 417:2 414:, 408:, 402:( 396:= 375:( 369:( 363:= 354:r 351:( 345:= 333:h 330:, 327:f 324:, 318:( 312:= 309:r 300:h 297:, 294:f 291:, 285:( 279:= 267:) 263:( 257:= 162:. 44:(

Index

Differential equation
numerical analysis
algorithm
differential equations
hierarchy
discretizations
multiresolution methods
multiple scales
relaxation methods
Fourier analysis
preconditioners
coarse problem
elliptic partial differential equations
finite element method
boundary conditions
separability of the equations
Lamé equations
elasticity
Navier-Stokes equations

discretizations
iterations
Gauss–Seidel method
residual error
residual
Interpolation
discrete 2D problem
overheads
convection-diffusion
PĂ©clet numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑