Knowledge

Molecular machine

Source 📝

430: 579: 863: 927: 734: 760: 845: 827: 695: 885: 5757: 84: 5732: 5769: 96: 782: 961: 5744: 948:) attached to the four corners. In 2011, Feringa and co-workers synthesized the first motorized nanocar which had molecular motors attached to the chassis as rotating wheels. The authors were able to demonstrate directional motion of the nanocar on a copper surface by providing energy from a scanning tunneling microscope tip. Later, in 2017, the world's first-ever 642:) to switch molecules between different states. However, this comes with the issue of practically regulating the delivery of the chemical fuel and the removal of waste generated to maintain the efficiency of the machine as in biological systems. Though some AMMs have found ways to circumvent this, more recently waste-free reactions such based on 690:, and steric and dispersion interactions. The distinct conformers of a molecular balance can show different interactions with the same molecule, such that analyzing the ratio of the conformers and the energies for these interactions can enable quantification of different properties (such as CH-π or arene-arene interactions, see image). 289:
mimic functions that occur at the macroscopic level. A few prime requirements for a molecule to be considered a "molecular machine" are: the presence of moving parts, the ability to consume energy, and the ability to perform a task. Molecular machines differ from other stimuli-responsive compounds that can produce motion (such as
634:
desired. This led to the addition of stimuli-responsive moieties in AMM design, so that externally applied non-thermal sources of energy could drive molecular motion and hence allow control over the properties. Chemical energy (or "chemical fuels") was an attractive option at the beginning, given the broad array of
1180:
AMMs are gradually moving from the conventional solution-phase chemistry to surfaces and interfaces. For instance, AMM-immobilized surfaces (AMMISs) are a novel class of functional materials consisting of AMMs attached to inorganic surfaces forming features like self-assembled monolayers; this gives
754:
examination, metal ion detection, and pharmaceutical studies. The first example of a molecular logic gate was reported in 1993, featuring a receptor (see image) where the emission intensity could be treated as a tunable output if the concentrations of protons and sodium ions were to be considered as
601:
to produce molecular switches, featuring two distinct configurations for the molecule to convert between. This has been perceived as a step forward from the original molecular shuttle which consisted of two identical sites for the ring to move between without any preference, in a manner analogous to
288:
Several definitions describe a "molecular machine" as a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli. The expression is often more generally applied to molecules that simply
1137:
The construction of more complex molecular machines is an active area of theoretical and experimental research. Though a diverse variety of AMMs are known today, experimental studies of these molecules are inhibited by the lack of methods to construct these molecules. In this context, theoretical
857:
A molecule capable of shuttling molecules or ions from one location to another. This is schematically depicted in the image on the right, where a ring (in green) can bind to either one of the yellow sites on the blue macrocyclic backbone. A common molecular shuttle consists of a rotaxane where the
839:
A molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers (see schematic image on right). It has several molecular-scale blades attached at a certain pitch angle around the circumference of a nanoscale shaft. Propellers have been
562:
can also produce curved shapes. Another common mode of movement is the circumrotation of rings relative to one another as observed in mechanically interlocked molecules (primarily catenanes). While this type of rotation can not be accessed beyond the molecule itself (because the rings are confined
353:
What would be the utility of such machines? Who knows? I cannot see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a molecular scale we will get an enormously greater range of possible properties that substances can have, and of the
146:
are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are
633:
Various energy sources are employed to drive molecular machines today, but this was not the case during the early years of AMM development. Though the movements in AMMs were regulated relative to the random thermal motion generally seen in molecules, they could not be controlled or manipulated as
1184:
Most of these applications remain at the proof-of-concept level, and need major modifications to be adapted to the industrial scale. Challenges in streamlining macroscale applications include autonomous operation, the complexity of the machines, stability in the synthesis of the machines and the
875:
A molecule that can be reversibly shifted between two or more stable states in response to certain stimuli. This change of states influences the properties of the molecule according to the state it occupies at the moment. Unlike a molecular motor, any mechanical work done due to the motion in a
199: 377:
to analyze complex chemical structures, in the 1950s gave rise to the idea of understanding and controlling relative motion within molecular components for further applications. This led to the design of "proto-molecular machines" featuring conformational changes such as cog-wheeling of the
858:
macrocycle can move between two sites or stations along the dumbbell backbone; controlling the properties of either site and by regulating conditions like pH can enable control over which site is selected for binding. This has led to novel applications in catalysis and drug delivery.
319:
This definition generally applies to synthetic molecular machines, which have historically gained inspiration from the naturally occurring biological molecular machines (also referred to as "nanomachines"). Biological machines are considered to be nanoscale devices (such as molecular
4345:
Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; Maciá, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (10 November 2011). "Electrically driven directional motion of a four-wheeled molecule on a metal surface".
939:
Single-molecule vehicles that resemble macroscopic automobiles and are important for understanding how to control molecular diffusion on surfaces. The image on the right shows an example with wheels made of fullerene molecules. The first nanocars were synthesized by
372:
Biological molecular machines have been known and studied for years given their vital role in sustaining life, and have served as inspiration for synthetically designed systems with similar useful functionality. The advent of conformational analysis, or the study of
2402:
Thomas, C. R.; Ferris, D. P.; Lee, J.-H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J.-S.; Cheon, J.; Zink, J. I. (2010). "Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles".
792:
A class of mechanically interlocked molecules derived from catenanes where a large macrocycle backbone connects at least three small rings in the shape of a necklace (see image for example). A molecular necklace consisting of a large macrocycle threaded by
3639: 4595:
Amrute-Nayak, M.; Diensthuber, R. P.; Steffen, W.; Kathmann, D.; Hartmann, F. K.; Fedorov, R.; Urbanke, C.; Manstein, D. J.; Brenner, B.; Tsiavaliaris, G. (2010). "Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices".
709:-like motion around a rigid axis, such as a double bond or aromatic ring, to switch between reversible configurations. Such configurations must have distinguishable geometries; for instance, azobenzene groups in a linear molecule may undergo 776:
have also been produced. Single bond rotary motors are generally activated by chemical reactions whereas double bond rotary motors are generally fueled by light. The rotation speed of the motor can also be tuned by careful molecular design.
171:. For the last several decades, scientists have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a 3904:
Simpson, Christopher D.; Mattersteig, Gunter; Martin, Kai; Gherghel, Lileta; Bauer, Roland E.; Räder, Hans Joachim; Müllen, Klaus (March 2004). "Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers".
2532:
Paliwal, S.; Geib, S.; Wilcox, C. S. (1994). "Molecular Torsion Balance for Weak Molecular Recognition Forces. Effects of "Tilted-T" Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure".
456:
Though these events served as inspiration for the field, the actual breakthrough in practical approaches to synthesize artificial molecular machines (AMMs) took place in 1991 with the invention of a "molecular shuttle" by
592:
isomerization. c) Translational motion of a ring (blue) between two possible binding sites (red) along the dumbbell-like rotaxane axis (purple). d) Rotation of interlocked rings (depicted as blue and red rectangles) in a
316:, and other materials that produce a movement due to external stimuli on a macro-scale are generally not included, since despite the molecular origin of the motion the effects are not useable on the molecular scale. 897:
Host molecules capable of holding items between their two arms. The open cavity of the molecular tweezers binds items using non-covalent bonding including hydrogen bonding, metal coordination, hydrophobic forces,
1472:
Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O. (1980). "Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers".
809:
chain backbone; the authors connected this to the idea of a "molecular abacus" proposed by Stoddart and coworkers around the same time. Several interesting applications have emerged for these molecules, such as
650:). Eventually, several different forms of energy (electric, magnetic, optical and so on) have become the primary energy sources used to power AMMs, even producing autonomous systems such as light-driven motors. 481:
units). This design realized the well-defined motion of a molecular unit across the length of the molecule for the first time. In 1994, an improved design allowed control over the motion of the ring by
3834:
Li, S.-L.; Lan, Y.-Q.; Sakurai, H.; Xu, Q. (2012). "Unusual Regenerable Porous Metal-Organic Framework Based on a New Triple Helical Molecular Necklace for Separating Organosulfur Compounds".
4873:
Tabacchi, G.; Silvi, S.; Venturi, M.; Credi, A.; Fois, E. (2016). "Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation".
1643:
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kintzinger, J. P. (1983). "Une nouvelle famille de molecules : les metallo-catenanes" [A new family of molecules: metallo-catenanes].
2024:
Jiang, X.; Rodríguez-Molina, B.; Nazarian, N.; Garcia-Garibay, M. A. (2014). "Rotation of a Bulky Triptycene in the Solid State: Toward Engineered Nanoscale Artificial Molecular Machines".
498:
unit; the cationic ring typically prefers staying over the benzidine ring, but moves over to the biphenol group when the benzidine gets protonated at low pH or if it gets electrochemically
975: 3088:
Dumy, P.; Keller, M.; Ryan, D. E.; Rohwedder, B.; Wöhr, T.; Mutter, M. (1997). "Pseudo-Prolines as a Molecular Hinge: Reversible Induction of cis Amide Bonds into Peptide Backbones".
678:
A molecule that can interconvert between two or more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces, such as
563:
within one another), rotaxanes can overcome this as the rings can undergo translational movements along a dumbbell-like axis. Another line of AMMs consists of biomolecules such as
4173:
Klärner, Frank-Gerrit; Kahlert, Björn (December 2003). "Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes".
386:. By 1980, scientists could achieve desired conformations using external stimuli and utilize this for different applications. A major example is the design of a photoresponsive 3869:
Seo, J.; Kim, B.; Kim, M.-S.; Seo, J.-H. (2021). "Optimization of Anisotropic Crystalline Structure of Molecular Necklace-like Polyrotaxane for Tough Piezoelectric Elastomer".
2059:
Kai, H.; Nara, S.; Kinbara, K.; Aida, T. (2008). "Toward Long-Distance Mechanical Communication: Studies on a Ternary Complex Interconnected by a Bridging Rotary Module".
5117:
Terao, F.; Morimoto, M.; Irie, M. (2012). "Light-Driven Molecular-Crystal Actuators: Rapid and Reversible Bending of Rodlike Mixed Crystals of Diarylethene Derivatives".
2677:
L., Ping; Z., Chen; Smith, M. D.; Shimizu, K. D. (2013). "Comprehensive Experimental Study of N-Heterocyclic π-Stacking Interactions of Neutral and Cationic Pyridines".
4302:
Shirai, Yasuhiro; Osgood, Andrew J.; Zhao, Yuming; Kelly, Kevin F.; Tour, James M. (November 2005). "Directional Control in Thermally Driven Single-Molecule Nanocars".
622:. This switching behavior has been further optimized to acquire useful work that gets lost when a typical switch returns to its original state. Inspired by the use of 3174:
Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A. C.; Gunnlaugsson, T.; James, T. D.; Yoon, J.; Akkaya, E. U. (2018). "Molecular logic gates: the past, present and future".
4108: 4251:
Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P.; Simmel, Friedrich C.; Neumann, Jennifer L. (10 August 2000). "A DNA-fuelled molecular machine made of DNA".
1042:. "n effect, the is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines ... 4924:
Ikejiri, S.; Takashima, Y.; Osaki, M.; Yamaguchi, H.; Harada, A. (2018). "Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines".
1740:
Gimzewski, J. K.; Joachim, C.; Schlittler, R. R.; Langlais, V.; Tang, H.; Johannsen, I. (1998). "Rotation of a Single Molecule Within a Supramolecular Bearing".
229:
methods have been outlined better. A major starting point for the design of AMMs is to exploit the existing modes of motion in molecules, such as rotation about
4773:
Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand (2005-06-10). "Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products".
3026:
Garcia-Amorós, J.; Reig, M.; Cuadrado, A.; Ortega, M.; Nonell, S.; Velasco, D. (2014). "A photoswitchable bis-azo derivative with a high temporal resolution".
423: 4507:
Kinbara, Kazushi; Aida, Takuzo (2005-04-01). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies".
4072:
Chatterjee, M. N.; Kay, E. R.; Leigh, D. A. (2006). "Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine".
526:
methods have been outlined more clearly. A major starting point for the design of AMMs is to exploit the existing modes of motion in molecules. For instance,
414:
alluded to the idea and applications of molecular devices designed artificially by manipulating matter at the atomic level. This was further substantiated by
4029:
Bissell, Richard A; Córdova, Emilio; Kaifer, Angel E.; Stoddart, J. Fraser (12 May 1994). "A chemically and electrochemically switchable molecular shuttle".
3468:
Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (24 July 2003). "Rotational actuators based on carbon nanotubes".
876:
switch is generally undone once the molecule returns to its original state unless it is part of a larger motor-like system. The image on the right shows a
658:
Various AMMs have been designed with a broad range of functions and applications, several of which have been tabulated below along with indicative images:
433:
The first example of an artificial molecular machine (a switchable molecular shuttle). The positively charged ring (blue) is initially positioned over the
4397: 750:, these molecules have slowly replaced the conventional silicon-based machinery. Several applications have come forth, such as water quality examination, 772:
A molecule that is capable of directional rotary motion around a single or double bond and produce useful work as a result (as depicted in the image).
126: 4682:
Balasubramanian, S.; Kagan, D.; Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. (2011).
2753:
Carroll, W. R.; Zhao, C.; Smith, M. D.; Pellechia, P. J.; Shimizu, K. D. (2011). "A Molecular Balance for Measuring Aliphatic CH−π Interactions".
582:
Some common types of motion seen in some simple components of artificial molecular machines. a) Rotation around single bonds and in sandwich-like
5228:"Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis" 721:, triggering a reversible transition to a bent or V-shaped conformation (see image). Molecular hinges have been adapted for applications such as 2561: 1353:
Kinbara, K.; Aida, T. (2005). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies".
2902:"Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer" 1169:
catalysis. AMMs have been pivotal in the design of several stimuli-responsive smart materials, such as 2D and 3D self-assembled materials and
623: 1670:
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kern, J. M. (May 1984). "Templated synthesis of interlocked macrocyclic ligands: the catenands".
5152:
Vogelsberg, C. S.; Garcia-Garibay, M. A. (2012). "Crystalline molecular machines: function, phase order, dimensionality, and composition".
5267:
Corra, S.; Curcio, M.; Baroncini, M.; Silvi, S.; Credi, A. (2020). "Photoactivated Artificial Molecular Machines that Can Perform Tasks".
506:. Over the following decade, a broad variety of AMMs responding to various stimuli were invented for different applications. In 2016, the 2959:
Hada, M.; Yamaguchi, D.; Ishikawa, T.; Sawa, T.; Tsuruta, K.; Ishikawa, K.; Koshihara, S.-y.; Hayashi, Y.; Kato, T. (13 September 2019).
2961:"Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules" 1129:, introduced into the body, to repair or detect damages and infections, but these are considered to be far beyond current capabilities. 2788:
Carroll, W. R.; Pellechia, P.; Shimizu, K. D. (2008). "A Rigid Molecular Balance for Measuring Face-to-Face Arene−Arene Interactions".
1697:
Bissell, R. A; Córdova, E.; Kaifer, A. E.; Stoddart, J. F. (1994). "A chemically and electrochemically switchable molecular shuttle".
5488: 5386:
Zhang, Q.; Qu, D.-H. (2016). "Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials".
918:
molecule, termed "buckycatcher". Examples of molecular tweezers have been reported that are constructed from DNA and are considered
244:
to create switches. A broad range of AMMs has been designed, featuring different properties and applications; some of these include
1796: 1234: 406: 364: 3519:
Kelly, T. Ross; De Silva, Harshani; Silva, Richard A. (9 September 1999). "Unidirectional rotary motion in a molecular system".
4208:
Sygula, A.; Fronczek, F. R.; Sygula, R.; Rabideau, P. W.; Olmstead, M. M. (2007). "A Double Concave Hydrocarbon Buckycatcher".
3061:
Hamilton, A. D.; Van Engen, D. (1987). "Induced fit in synthetic receptors: nucleotide base recognition by a molecular hinge".
119: 3640:"Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification" 3303:
de Silva, P. A.; Gunaratne, N. H. Q.; McCoy, C. P. (1993). "A molecular photoionic AND gate based on fluorescent signalling".
626:
to produce work in natural processes, molecular motors are designed to have a continuous energy influx to keep them away from
473:
in the early 1980s, this shuttle features a rotaxane with a ring that can move across an "axle" between two ends or possible
5518: 523: 226: 3570:
Koumura, Nagatoshi; Zijlstra, Robert W. J.; van Delden, Richard A.; Harada, Nobuyuki; Feringa, Ben L. (9 September 1999).
4639:
Patel, G. M.; Patel, G. C.; Patel, R. B.; Patel, J. K.; Patel, M. (2006). "Nanorobot: A versatile tool in nanomedicine".
746:
A molecule that performs a logical operation on one or more logic inputs and produces a single logic output. Modelled on
635: 614:, this can give rise to weak or strong recognition sites as in biological systems — such AMMs have found applications in 5070:"Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks" 1055: 214: 3734:
Harada, A.; Li, J.; Kamachi, M. (1992). "The molecular necklace: a rotaxane containing many threaded α-cyclodextrins".
1125:, biological machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these 502:. In 1998, a study could capture the rotary motion of a decacyclene molecule on a copper-base metallic surface using a 4967:
Iwaso, K.; Takashima, Y.; Harada, A. (2016). "Fast response dry-type artificial molecular muscles with daisy chains".
3777:
Wu, G.-Y.; Shi, X.; Phan, H.; Qu, H.; Hu, Y.-X.; Yin, G.-Q.; Zhao, X.-L.; Li, X.; Xu, L.; Yu, Q.; Yang, H.-B. (2020).
5799: 5608: 4571: 4434: 112: 2375:
Le Poul, N.; Colasson, B. (2015). "Electrochemically and Chemically Induced Redox Processes in Molecular Machines".
404:
isomers on exposure to light and hence tune the cation-binding properties of the ether. In his seminal 1959 lecture
597:
AMM designs have diversified significantly since the early days of the field. A major route is the introduction of
840:
shown to have interesting properties, such as variations in pumping rates for hydrophilic and hydrophobic fluids.
5748: 2823:
Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A. (2017).
2336:"Waste Management of Chemically Activated Switches: Using a Photoacid To Eliminate Accumulation of Side Products" 5011: 5542: 1047: 4146:
Chen, C. W.; Whitlock, H. W. (July 1978). "Molecular tweezers: a simple model of bifunctional intercalation".
1868: 5689: 5481: 2646: 2589: 503: 979: 5565: 5329: 4835: 3346:
Lancia, F.; Ryabchun, A.; Katsonis, N. (2019). "Life-like motion driven by artificial molecular machines".
2865:
Bandara, H. M. Dhammika; Burdette, S. C. (2012). "Photoisomerization in different classes of azobenzene".
2473:
Balzani, V.; Clemente-León, M.; Credi, A.; Ferrer, B.; Venturi, M.; Flood, A. H.; Stoddart, J. F. (2006).
1505:"Molecular engineering: An approach to the development of general capabilities for molecular manipulation" 5804: 5661: 5188: 4551: 994:
are dark blue, and the other proteins involved are light blue. The produced peptide is released into the
4558:. Advances in Protein Chemistry and Structural Biology. Vol. 83. Academic Press. pp. 163–221. 2094:
Kamiya, Y.; Asanuma, H. (2014). "Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine".
1896: 1162: 324:) in a living system that convert various forms of energy to mechanical work in order to drive crucial 3607: 3445: 2291:
Biagini, C.; Di Stefano, S. (2020). "Abiotic Chemical Fuels for the Operation of Molecular Machines".
522:
Over the past few decades, AMMs have diversified rapidly and their design principles, properties, and
5676: 5528: 5523: 5513: 5505: 801:
rings) is represented as MN. The first molecular necklace was synthesized in 1992, featuring several
773: 627: 225:
AMMs have diversified rapidly over the past few decades and their design principles, properties, and
3381:
Mickler, M.; Schleiff, E.; Hugel, T. (2008). "From Biological towards Artificial Molecular Motors".
2129:
Morimoto, M.; Irie, M. (2010). "A Diarylethene Cocrystal that Converts Light into Mechanical Work".
1563: 5699: 5643: 5628: 5538: 5474: 1114: 507: 419: 374: 180: 27: 3779:"Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity" 240:. Different AMMs are produced by introducing various functionalities, such as the introduction of 5794: 5736: 5684: 5633: 5620: 4402: 588: 396: 329: 290: 234: 5012:"Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals" 1221:
Vincenzo, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. (2000). "Artificial Molecular Machines".
256:. A wide range of applications have been demonstrated for AMMs, including those integrated into 5187:
van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher, S. P. (2018).
5068:
Hou, J.; Long, G.; Zhao, W.; Zhou, G.; Liu, D.; Broer, D. J.; Feringa, B. L.; Chen, J. (2022).
4107:
Kassem, S.; van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A. (2017).
3417: 1783:
Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. (2000). "Artificial Molecular Machines".
1067: 983: 639: 58: 1395: 1145:
A wide range of applications have been demonstrated for AMMs, including those integrated into
1106:
are far more complex than any molecular machines that have yet been artificially constructed.
5809: 3571: 2621: 1166: 995: 5560: 5344: 5276: 5026: 4976: 4792: 4747: 4605: 4355: 4311: 4260: 4038: 3992: 3949: 3790: 3743: 3690: 3677:
Zhang, Z.; Zhao, J.; Guo, Z.; Zhang, H.; Pan, H.; Wu, Q.; You, W.; Yu, W.; Yan, X. (2022).
3586: 3528: 3477: 3312: 3128: 2972: 2913: 2486: 1749: 1706: 1516: 1158: 915: 741: 273: 253: 2824: 1926:
Erbas-Cakmak, Sundus; Leigh, David A.; McTernan, Charlie T.; Nussbaumer, Alina L. (2015).
1194: 1034:, which moves cargo inside cells towards the nucleus and produces the axonemal beating of 304:) and the presence of a clear external stimulus to regulate the movements (as compared to 8: 5707: 5596: 1122: 1063: 899: 862: 834: 806: 470: 184: 69: 43: 5348: 5280: 5030: 5010:
Orlova, T.; Lancia, F.; Loussert, C.; Iamsaard, S.; Katsonis, N.; Brasselet, E. (2018).
4980: 4796: 4751: 4609: 4359: 4315: 4264: 4042: 3996: 3953: 3794: 3747: 3694: 3590: 3532: 3481: 3316: 3132: 2976: 2917: 2490: 2248:
Saper, G.; Hess, H. (2020). "Synthetic Systems Powered by Biological Molecular Motors".
1753: 1710: 1520: 1181:
rise to tunable properties such as fluorescence, aggregation and drug-release activity.
5638: 5447: 5422: 5368: 5310: 5208: 5094: 5069: 5050: 4949: 4906: 4816: 4782: 4708: 4683: 4664: 4563: 4484: 4459: 4379: 4284: 4233: 4054: 3940:
Wang, Boyang; Král, Petr (2007). "Chemically Tunable Nanoscale Propellers of Liquids".
3811: 3778: 3759: 3711: 3678: 3620: 3552: 3501: 3450: 3418:"Controlled rotary motion of light-driven molecular motors assembled on a gold surface" 3363: 3328: 3280: 3255: 3151: 3116: 3003: 2960: 2936: 2901: 2602: 2509: 2474: 2316: 2273: 2225: 2200: 2001: 1976: 1952: 1927: 1844: 1819: 1722: 1625: 1449: 1424: 1294: 892: 333: 325: 210: 148: 4851: 2900:
Wang, J.; Jiang, Q.; Hao, X.; Yan, H.; Peng, H.; Xiong, B.; Liao, Y.; Xie, X. (2020).
1656: 1539: 1504: 1002:
The most complex macromolecular machines are found within cells, often in the form of
5773: 5452: 5403: 5372: 5360: 5314: 5302: 5249: 5212: 5169: 5134: 5099: 5042: 4992: 4953: 4941: 4898: 4855: 4808: 4713: 4656: 4621: 4577: 4567: 4532: 4524: 4489: 4440: 4430: 4371: 4327: 4276: 4225: 4190: 4128: 4089: 4008: 3965: 3922: 3886: 3851: 3816: 3716: 3659: 3612: 3544: 3493: 3398: 3367: 3285: 3236: 3201: 3156: 3043: 3008: 2990: 2941: 2882: 2847: 2805: 2770: 2735: 2694: 2659: 2651: 2594: 2514: 2455: 2420: 2357: 2320: 2308: 2277: 2265: 2230: 2181: 2146: 2111: 2076: 2041: 2006: 1957: 1849: 1800: 1765: 1617: 1544: 1454: 1370: 1332: 1298: 1286: 1238: 1099: 852: 706: 643: 301: 277: 269: 100: 4820: 4732: 4668: 4237: 4058: 3454: 3332: 1726: 1629: 1315:
Huang, T. J.; Juluri, B. K. (2008). "Biological and biomimetic molecular machines".
926: 802: 542:
isomerization in response to certain stimuli (typically irradiation with a suitable
5717: 5442: 5434: 5395: 5352: 5292: 5284: 5239: 5200: 5161: 5126: 5089: 5081: 5054: 5034: 4984: 4933: 4910: 4890: 4882: 4847: 4800: 4755: 4703: 4695: 4648: 4613: 4559: 4516: 4479: 4471: 4383: 4363: 4319: 4288: 4268: 4217: 4182: 4155: 4120: 4081: 4046: 4000: 3957: 3914: 3878: 3843: 3806: 3798: 3763: 3751: 3706: 3698: 3651: 3624: 3602: 3594: 3556: 3536: 3505: 3485: 3440: 3432: 3390: 3355: 3320: 3275: 3267: 3228: 3191: 3183: 3146: 3136: 3117:"A platinum(II) molecular hinge with motions visualized by phosphorescence changes" 3097: 3070: 3035: 2998: 2980: 2931: 2921: 2874: 2839: 2797: 2762: 2725: 2686: 2641: 2633: 2584: 2576: 2542: 2504: 2494: 2447: 2412: 2384: 2347: 2300: 2257: 2220: 2212: 2173: 2138: 2103: 2068: 2033: 1996: 1988: 1947: 1939: 1873: 1839: 1831: 1792: 1757: 1714: 1679: 1652: 1607: 1534: 1524: 1482: 1444: 1436: 1362: 1324: 1276: 1230: 1103: 870: 819: 679: 611: 487: 442: 313: 309: 249: 218: 38: 4804: 4004: 3961: 2606: 5666: 5653: 5591: 3983:
Wang, B.; Král, P. (2007). "Chemically Tunable Nanoscale Propellers of Liquids".
3882: 1761: 1500: 1391: 1118: 1071: 1043: 1003: 815: 767: 572: 490:
methods, making it the first example of an AMM. Here the two binding sites are a
458: 429: 415: 411: 359: 305: 245: 188: 168: 152: 2714:"Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups" 2438:
Balzani, V.; Credi, A.; Venturi, M. (2009). "Light powered molecular machines".
2261: 1943: 1835: 1058:." Other biological machines are responsible for energy production, for example 578: 5761: 5555: 5497: 5438: 3802: 3702: 2985: 1901: 1150: 1079: 1075: 1007: 903: 759: 687: 337: 261: 88: 53: 5038: 4652: 4475: 3359: 3115:
Ai, Y.; Chan, M. H.-Y.; Chan, A. K.-W.; Ng, M.; Li, Y.; Yam, V. W.-W. (2019).
5788: 5575: 4859: 4684:"Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media" 4528: 4444: 3271: 2994: 2655: 1328: 1139: 1083: 941: 907: 826: 619: 610:. If these two sites are different from each other in terms of features like 341: 5204: 4552:"Proteins MOVE! Protein dynamics and long-range allostery in cell signaling" 3141: 2499: 694: 5712: 5603: 5550: 5456: 5407: 5399: 5364: 5356: 5306: 5288: 5253: 5173: 5138: 5130: 5103: 5046: 4996: 4945: 4902: 4886: 4812: 4717: 4699: 4660: 4625: 4617: 4581: 4536: 4493: 4375: 4331: 4280: 4229: 4194: 4132: 4093: 4012: 3969: 3926: 3890: 3855: 3847: 3820: 3720: 3663: 3616: 3548: 3497: 3402: 3394: 3289: 3240: 3232: 3205: 3160: 3047: 3012: 2945: 2886: 2851: 2809: 2774: 2739: 2730: 2713: 2698: 2663: 2598: 2518: 2459: 2424: 2388: 2361: 2312: 2304: 2269: 2234: 2216: 2185: 2150: 2115: 2080: 2045: 2023: 2010: 1961: 1853: 1818:
Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. (2015).
1804: 1621: 1548: 1529: 1458: 1440: 1374: 1336: 1290: 1281: 1264: 1242: 1170: 1126: 1110: 1059: 1027: 1023: 991: 949: 884: 559: 551: 478: 474: 176: 156: 63: 4759: 1897:"3 Makers of 'World's Smallest Machines' Awarded Nobel Prize in Chemistry" 1797:
10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
1769: 1564:"Drexler and Smalley make the case for and against 'molecular assemblers'" 1235:
10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
1070:, the energy currency of a cell. Still other machines are responsible for 1050:
connected by them to recruit their binding partners and induce long-range
1035: 733: 5085: 4937: 4894: 4872: 4787: 2637: 1992: 1174: 1087: 919: 911: 910:
effects. For instance, the image on the right depicts tweezers formed by
751: 718: 683: 607: 598: 583: 535: 531: 527: 511: 387: 379: 241: 230: 206: 192: 5297: 4367: 4159: 3679:"Mechanically interlocked networks cross-linked by a molecular necklace" 3489: 3074: 2546: 1683: 1612: 1595: 1486: 1113:. For example, they could be used to identify and destroy cancer cells. 5244: 5227: 5165: 4988: 4398:"NanoCar Race : la course de petites voitures pour grands savants" 4124: 3436: 3196: 3187: 3173: 3039: 2926: 2878: 2843: 945: 811: 747: 722: 555: 543: 391: 383: 300:) in their relatively larger amplitude of movement (potentially due to 5756: 4594: 4520: 4429:. Voet, Judith G. (4th ed.). Hoboken, NJ: John Wiley & Sons. 4323: 4221: 4186: 4085: 3918: 3101: 2801: 2766: 2690: 2416: 2352: 2335: 2142: 2107: 2072: 2037: 1366: 974: 461:. Building upon the assembly of mechanically linked molecules such as 441:
unit (red) when the benzidine gets protonated (purple) as a result of
83: 5583: 5328:
Moulin, E.; Faour, L.; Carmona-Vargas, C. C.; Giuseppone, N. (2020).
4400:[NanoCar Race: the race of small cars for great scientists]. 4272: 4050: 3755: 3655: 3324: 2580: 2451: 2177: 1718: 1051: 877: 844: 615: 603: 534:
complexes. Bending or V-like shapes can be achieved by incorporating
491: 434: 4681: 4344: 1121:
subfield of nanotechnology regarding the possibility of engineering
781: 167:
are examples of molecular machines, and they often take the form of
5327: 2622:"Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions" 1925: 1817: 1642: 1095: 1039: 987: 953: 647: 547: 495: 466: 462: 438: 172: 164: 5768: 3598: 3540: 1739: 198: 95: 5466: 1568: 1154: 1146: 1019: 934: 726: 646:
or isomerization have gained attention (such as redox-responsive
568: 321: 265: 257: 202: 160: 3903: 2164:
Stoddart, J. F. (2009). "The chemistry of the mechanical bond".
1921: 1919: 3569: 3415: 3025: 2472: 1091: 1031: 1015: 1011: 705:
A molecular hinge is a molecule that can typically rotate in a
4923: 3416:
Carroll, GT; Pollard, MM; van Delden, RA; Feringa, BL (2010).
2562:"Molecular balances for quantifying non-covalent interactions" 944:
in 2005. They had an H-shaped chassis and 4 molecular wheels (
1916: 1669: 499: 445: 422:
such as nanoscale "assemblers", though their feasibility was
5009: 4207: 4106: 4028: 2822: 1696: 4250: 3467: 960: 4772: 1220: 5330:"From Molecular Machines to Stimuli-Responsive Materials" 5266: 4733:"Current Status of Nanomedicine and Medical Nanorobotics" 2958: 2752: 1782: 1471: 1138:
modeling has emerged as a pivotal tool to understand the
564: 5186: 5151: 3638:
Vicario, Javier; Meetsma, Auke; Feringa, Ben L. (2005).
2712:
Hwang, J.; Li, P.; Smith, M. D.; Shimizu, K. D. (2016).
1173:-based systems, for versatile applications ranging from 3219:
de Silva, A. P. (2011). "Molecular Logic Gate Arrays".
3087: 2787: 880:-based switch that switches in response to pH changes. 483: 449: 3345: 3302: 571:
as part of their design, making use of phenomena like
4301: 3637: 2475:"Autonomous artificial nanomotor powered by sunlight" 1593: 4966: 4740:
Journal of Computational and Theoretical Nanoscience
4638: 3380: 1594:
Anelli, P. L.; Spencer, N.; Stoddart, J. F. (1991).
1165:, utilizing noncovalent interactions and biomimetic 1006:. Important examples of biological machines include 514:
for the design and synthesis of molecular machines.
4024: 4022: 3256:"Advances in Applications of Molecular Logic Gates" 2711: 2437: 2401: 2199:Mao, X.; Liu, M.; Li, Q.; Fan, C.; Zuo, X. (2022). 1109:Biological machines have potential applications in 195:
for the design and synthesis of molecular machines.
4071: 3518: 2333: 2058: 1066:to drive a turbine-like motion used to synthesise 5116: 4731:Freitas, Robert A. Jr.; Havukkala, Ilkka (2005). 3676: 3060: 2647:20.500.11820/604343eb-04aa-4d90-82d2-0998898400d2 2620:Y., Lixu; A., Catherine; Cockroft, S. L. (2015). 2590:20.500.11820/7ce18ff7-1196-48a1-8c67-3bc3f6b46946 2531: 2334:Tatum, L. A.; Foy, J. T.; Aprahamian, I. (2014). 2290: 1977:"Molecular Machines: putting the pieces together" 1974: 1161:is a prominent example, especially in areas like 729:modifications, and visualizing molecular motion. 530:can be visualized as axes of rotation, as can be 5786: 4730: 4457: 4019: 2676: 969: 517: 5414: 5067: 3733: 3121:Proceedings of the National Academy of Sciences 2899: 2864: 2479:Proceedings of the National Academy of Sciences 2374: 1895:Chang, Kenneth; Chan, Sewell (5 October 2016). 1509:Proceedings of the National Academy of Sciences 1022:, which moves cargo inside cells away from the 418:during the 1970s, who developed ideas based on 16:Molecular-scale artificial or biological device 4172: 3833: 3572:"Light-driven monodirectional molecular rotor" 1216: 1214: 1212: 1210: 554:and -closing reactions such as those seen for 5482: 2093: 1348: 1346: 1262: 546:), as seen in numerous designs consisting of 120: 4866: 4543: 4145: 3868: 3114: 2619: 2560:Mati, Ioulia K.; Cockroft, Scott L. (2010). 2559: 2128: 1888: 1142:or -disassembly processes in these systems. 1132: 4506: 4460:"Structure and function of mammalian cilia" 3776: 2198: 1860: 1776: 1572:. Vol. 81, no. 48. pp. 37–42 1352: 1314: 1310: 1308: 1258: 1256: 1254: 1252: 1207: 5489: 5475: 5420: 5225: 4549: 4100: 3608:11370/d8399fe7-11be-4282-8cd0-7c0adf42c96f 3446:11370/4fb63d6d-d764-45e3-b3cb-32a4c629b942 3253: 1343: 959: 925: 883: 861: 843: 825: 780: 758: 732: 693: 127: 113: 5446: 5296: 5243: 5093: 4786: 4707: 4483: 3810: 3710: 3606: 3444: 3279: 3254:Liu, L.; Liu, P.; Ga, L.; Ai, J. (2021). 3195: 3150: 3140: 3002: 2984: 2935: 2925: 2729: 2645: 2588: 2508: 2498: 2351: 2247: 2224: 2000: 1951: 1894: 1843: 1611: 1589: 1587: 1538: 1528: 1448: 1418: 1416: 1386: 1384: 1280: 5074:Journal of the American Chemical Society 4926:Journal of the American Chemical Society 4210:Journal of the American Chemical Society 4148:Journal of the American Chemical Society 4074:Journal of the American Chemical Society 3982: 3939: 3907:Journal of the American Chemical Society 3218: 3090:Journal of the American Chemical Society 3063:Journal of the American Chemical Society 2626:Journal of the American Chemical Society 2535:Journal of the American Chemical Society 2405:Journal of the American Chemical Society 2340:Journal of the American Chemical Society 2163: 2131:Journal of the American Chemical Society 2061:Journal of the American Chemical Society 2026:Journal of the American Chemical Society 1672:Journal of the American Chemical Society 1600:Journal of the American Chemical Society 1475:Journal of the American Chemical Society 1422: 1305: 1249: 973: 577: 428: 197: 5385: 5119:Angewandte Chemie International Edition 4833: 4688:Angewandte Chemie International Edition 2718:Angewandte Chemie International Edition 2293:Angewandte Chemie International Edition 1785:Angewandte Chemie International Edition 1499: 1429:Angewandte Chemie International Edition 1390: 1223:Angewandte Chemie International Edition 175:with a ring and two different possible 5787: 4458:Satir, P.; Christensen, S. T. (2008). 4424: 1811: 1584: 1493: 1413: 1396:"There's Plenty of Room at the Bottom" 1381: 510:was awarded to Sauvage, Stoddart, and 268:systems for varied functions (such as 5470: 4632: 1866: 1265:"Wholly Synthetic Molecular Machines" 638:chemical reactions (heavily based on 5743: 4836:"Building molecular machine systems" 1975:Nogales, E.; Grigorieff, N. (2001). 1561: 407:There's Plenty of Room at the Bottom 365:There's Plenty of Room at the Bottom 5226:Neal, E. A.; Goldup, S. M. (2014). 1869:"The Nobel Prize in Chemistry 2016" 1555: 1263:Cheng, C.; Stoddart, J. F. (2016). 717:isomerization when irradiated with 13: 5496: 5423:"The Future of Molecular Machines" 5189:"Molecular machines for catalysis" 4564:10.1016/B978-0-12-381262-9.00005-7 14: 5821: 1423:Kay, E. R.; Leigh, D. A. (2015). 1064:proton gradients across membranes 982:and membrane targeting stages of 550:and azobenzene units. Similarly, 394:unit, which could switch between 5767: 5755: 5742: 5731: 5730: 2679:The Journal of Organic Chemistry 1425:"Rise of the molecular machines" 437:unit (green), but shifts to the 94: 82: 5379: 5321: 5260: 5219: 5180: 5145: 5110: 5061: 5003: 4960: 4917: 4834:Drexler, K. Eric (1999-01-01). 4827: 4766: 4724: 4675: 4588: 4500: 4464:Histochemistry and Cell Biology 4451: 4418: 4390: 4338: 4295: 4244: 4201: 4166: 4139: 4065: 3976: 3933: 3897: 3862: 3827: 3770: 3727: 3670: 3631: 3563: 3512: 3461: 3409: 3374: 3339: 3296: 3247: 3212: 3167: 3108: 3081: 3054: 3019: 2952: 2893: 2858: 2816: 2781: 2746: 2705: 2670: 2613: 2553: 2525: 2466: 2431: 2395: 2368: 2327: 2284: 2241: 2192: 2157: 2122: 2087: 2052: 2017: 1968: 1928:"Artificial Molecular Machines" 1820:"Artificial Molecular Machines" 1733: 1690: 1663: 1636: 22:Part of a series of articles on 4556:Protein Structure and Diseases 4406:(in French). November 30, 2017 2201:"DNA-Based Molecular Machines" 1465: 1157:systems for varied functions. 283: 1: 5690:Scanning tunneling microscope 4852:10.1016/S0167-7799(98)01278-5 4805:10.1103/PhysRevLett.94.220801 4175:Accounts of Chemical Research 4109:"Artificial molecular motors" 4005:10.1103/PhysRevLett.98.266102 3962:10.1103/PhysRevLett.98.266102 3836:Chemistry: A European Journal 2825:"Artificial molecular motors" 2096:Accounts of Chemical Research 1657:10.1016/S0040-4039(00)94050-4 1200: 970:Biological molecular machines 518:Artificial molecular machines 504:scanning tunneling microscope 3883:10.1021/acsmacrolett.1c00567 1762:10.1126/science.281.5376.531 1562:Baum, R. (1 December 2003). 1062:which harnesses energy from 7: 5662:Molecular scale electronics 3221:Chemistry: An Asian Journal 2262:10.1021/acs.chemrev.9b00249 1981:The Journal of Cell Biology 1944:10.1021/acs.chemrev.5b00146 1836:10.1021/acs.chemrev.5b00146 1188: 1102:. These machines and their 1014:, which is responsible for 797:-1 rings (hence comprising 354:different things we can do. 10: 5826: 5439:10.1021/acscentsci.0c00064 4550:Bu Z, Callaway DJ (2011). 3803:10.1038/s41467-020-16940-z 3703:10.1038/s41467-022-29141-7 2986:10.1038/s41467-019-12116-6 978:A ribosome performing the 774:Carbon nanotube nanomotors 347: 5726: 5698: 5677:Scanning probe microscopy 5675: 5652: 5619: 5574: 5537: 5504: 5039:10.1038/s41565-017-0059-x 4653:10.1080/10611860600612862 4641:Journal of Drug Targeting 4476:10.1007/s00418-008-0416-9 3360:10.1038/s41570-019-0122-2 1133:Research and applications 990:is green and yellow, the 686:or hydrophobic effects, 5800:Supramolecular chemistry 5700:Molecular nanotechnology 5644:Solid lipid nanoparticle 5629:Self-assembled monolayer 5193:Nature Reviews Chemistry 5154:Chemical Society Reviews 4113:Chemical Society Reviews 3348:Nature Reviews Chemistry 3272:10.1021/acsomega.1c02912 3176:Chemical Society Reviews 2867:Chemical Society Reviews 2832:Chemical Society Reviews 2569:Chemical Society Reviews 2440:Chemical Society Reviews 2166:Chemical Society Reviews 1867:Staff (5 October 2016). 1329:10.2217/17435889.3.1.107 1115:Molecular nanotechnology 653: 508:Nobel Prize in Chemistry 420:molecular nanotechnology 181:Nobel Prize in Chemistry 5685:Atomic force microscope 5634:Supramolecular assembly 5621:Molecular self-assembly 5421:Aprahamian, I. (2020). 5232:Chemical Communications 5205:10.1038/s41570-018-0117 4840:Trends in Biotechnology 4775:Physical Review Letters 3985:Physical Review Letters 3942:Physical Review Letters 3644:Chemical Communications 3142:10.1073/pnas.1908034116 3028:Chemical Communications 2500:10.1073/pnas.0509011103 1403:Engineering and Science 1056:protein domain dynamics 1004:multi-protein complexes 330:intracellular transport 215:protein domain dynamics 169:multi-protein complexes 5400:10.1002/cphc.201501048 5357:10.1002/adma.201906036 5289:10.1002/adma.201906064 5131:10.1002/anie.201105585 4887:10.1002/cphc.201501160 4700:10.1002/anie.201100115 4618:10.1002/ange.200905200 3848:10.1002/chem.201203093 3395:10.1002/cphc.200800216 3233:10.1002/asia.201000603 2731:10.1002/anie.201602752 2389:10.1002/celc.201402399 2305:10.1002/anie.201912659 2217:10.1021/jacsau.2c00292 1530:10.1073/pnas.78.9.5275 1441:10.1002/anie.201503375 1282:10.1002/cphc.201501155 1048:mobile protein domains 999: 594: 453: 370: 222: 189:Sir J. Fraser Stoddart 147:responsible for vital 59:Productive nanosystems 5774:Technology portal 5019:Nature Nanotechnology 4760:10.1166/jctn.2005.001 4425:Donald, Voet (2011). 3783:Nature Communications 3683:Nature Communications 2965:Nature Communications 1596:"A molecular shuttle" 1100:synthesising proteins 1078:for replicating DNA, 996:endoplasmic reticulum 977: 581: 432: 351: 306:random thermal motion 201: 101:Technology portal 5561:Green nanotechnology 5086:10.1021/jacs.2c01060 4938:10.1021/jacs.8b11351 2638:10.1021/jacs.5b05736 1993:10.1083/jcb.152.1.f1 1185:working conditions. 1163:asymmetric synthesis 1159:Homogenous catalysis 1123:molecular assemblers 900:van der Waals forces 742:Molecular logic gate 606:in an unsubstituted 586:. b) Bending due to 326:biological processes 274:homogenous catalysis 5708:Molecular assembler 5427:ACS Central Science 5349:2020AdM....3206036M 5281:2020AdM....3206064C 5031:2018NatNa..13..304O 4981:2016NatCh...8..625I 4932:(49): 17308–17315. 4797:2005PhRvL..94v0801G 4752:2005JCTN....2..471K 4610:2010AngCh.122..322A 4368:10.1038/nature10587 4360:2011Natur.479..208K 4316:2005NanoL...5.2330S 4265:2000Natur.406..605Y 4160:10.1021/ja00483a063 4043:1994Natur.369..133B 3997:2007PhRvL..98z6102W 3954:2007PhRvL..98z6102W 3842:(51): 16302–16309. 3795:2020NatCo..11.3178W 3748:1992Natur.356..325H 3695:2022NatCo..13.1393Z 3591:1999Natur.401..152K 3533:1999Natur.401..150K 3490:10.1038/nature01823 3482:2003Natur.424..408F 3317:1993Natur.364...42D 3266:(45): 30189–30204. 3133:2019PNAS..11613856A 3127:(28): 13856–13861. 3075:10.1021/ja00250a052 3034:(78): 11462–11464. 2977:2019NatCo..10.4159H 2918:2020RSCAd..10.3726W 2632:(32): 10084–10087. 2547:10.1021/ja00089a057 2491:2006PNAS..103.1178B 2411:(31): 10623–10625. 2346:(50): 17438–17441. 2137:(40): 14172–14178. 1938:(18): 10081–10206. 1830:(18): 10081–10206. 1754:1998Sci...281..531G 1711:1994Natur.369..133B 1684:10.1021/ja00322a055 1645:Tetrahedron Letters 1613:10.1021/ja00013a096 1521:1981PNAS...78.5275D 1487:10.1021/ja00538a026 1435:(35): 10080–10088. 984:protein translation 914:pincers clasping a 835:Molecular propeller 807:polyethylene glycol 789:Molecular necklace 640:acid-base chemistry 538:, that can undergo 471:Jean-Pierre Sauvage 459:Sir Fraser Stoddart 448:or lowering of the 334:muscle contractions 185:Jean-Pierre Sauvage 70:Engines of Creation 44:Molecular assembler 5805:Molecular machines 5762:Science portal 5639:DNA nanotechnology 5337:Advanced Materials 5269:Advanced Materials 5245:10.1039/C3CC47842D 5166:10.1039/c1cs15197e 4989:10.1038/nchem.2513 4403:La Dépêche du Midi 4125:10.1039/C7CS00245A 3437:10.1039/C0SC00162G 3188:10.1039/C7CS00491E 3040:10.1039/C4CC05331A 2927:10.1039/C9RA10161F 2879:10.1039/c1cs15179g 2844:10.1039/C7CS00245A 1177:to drug delivery. 1104:nanoscale dynamics 1000: 893:Molecular tweezers 675:Molecular balance 644:electron transfers 595: 512:Bernard L. Feringa 454: 302:chemical reactions 223: 211:biological machine 193:Bernard L. Feringa 144:Molecular machines 89:Science portal 5782: 5781: 5394:(12): 1759–1768. 5238:(40): 5128–5142. 5080:(15): 6851–6860. 4881:(12): 1913–1919. 4694:(18): 4161–4164. 4598:Angewandte Chemie 4521:10.1021/cr030071r 4354:(7372): 208–211. 4324:10.1021/nl051915k 4310:(11): 2330–2334. 4259:(6796): 605–608. 4222:10.1021/ja070616p 4216:(13): 3842–3843. 4187:10.1021/ar0200448 4154:(15): 4921–4922. 4086:10.1021/ja057664z 4080:(12): 4058–4073. 4037:(6476): 133–137. 3919:10.1021/ja036732j 3913:(10): 3139–3147. 3877:(11): 1371–1376. 3871:ACS Macro Letters 3742:(6367): 325–327. 3585:(6749): 152–155. 3527:(6749): 150–152. 3476:(6947): 408–410. 3389:(11): 1503–1509. 3102:10.1021/ja962780a 3069:(16): 5035–5036. 2802:10.1021/ol801286k 2796:(16): 3547–3550. 2767:10.1021/ol201657p 2761:(16): 4320–4323. 2724:(28): 8086–8089. 2691:10.1021/jo400370e 2685:(11): 5303–5313. 2575:(11): 4195–4205. 2541:(10): 4497–4498. 2417:10.1021/ja1022267 2353:10.1021/ja511135k 2299:(22): 8344–8354. 2211:(11): 2381–2399. 2143:10.1021/ja105356w 2108:10.1021/ar400308f 2073:10.1021/ja801646b 2067:(21): 6725–6727. 2038:10.1021/ja503467e 2032:(25): 8871–8874. 1791:(19): 3348–3391. 1748:(5376): 531–533. 1705:(6476): 133–137. 1678:(10): 3043–3045. 1651:(46): 5095–5098. 1606:(13): 5131–5133. 1481:(18): 5860–5865. 1367:10.1021/cr030071r 1275:(12): 1780–1793. 1229:(19): 3348–3391. 967: 966: 853:Molecular shuttle 719:ultraviolet light 630:to deliver work. 278:surface chemistry 137: 136: 49:Molecular machine 5817: 5772: 5771: 5760: 5759: 5746: 5745: 5734: 5733: 5718:Mechanosynthesis 5609:characterization 5491: 5484: 5477: 5468: 5467: 5461: 5460: 5450: 5418: 5412: 5411: 5383: 5377: 5376: 5334: 5325: 5319: 5318: 5300: 5264: 5258: 5257: 5247: 5223: 5217: 5216: 5184: 5178: 5177: 5160:(5): 1892–1910. 5149: 5143: 5142: 5114: 5108: 5107: 5097: 5065: 5059: 5058: 5016: 5007: 5001: 5000: 4969:Nature Chemistry 4964: 4958: 4957: 4921: 4915: 4914: 4870: 4864: 4863: 4831: 4825: 4824: 4790: 4788:cond-mat/0701169 4770: 4764: 4763: 4737: 4728: 4722: 4721: 4711: 4679: 4673: 4672: 4636: 4630: 4629: 4592: 4586: 4585: 4547: 4541: 4540: 4515:(4): 1377–1400. 4509:Chemical Reviews 4504: 4498: 4497: 4487: 4455: 4449: 4448: 4422: 4416: 4415: 4413: 4411: 4394: 4388: 4387: 4342: 4336: 4335: 4299: 4293: 4292: 4273:10.1038/35020524 4248: 4242: 4241: 4205: 4199: 4198: 4170: 4164: 4163: 4143: 4137: 4136: 4119:(9): 2592–2621. 4104: 4098: 4097: 4069: 4063: 4062: 4051:10.1038/369133a0 4026: 4017: 4016: 3980: 3974: 3973: 3937: 3931: 3930: 3901: 3895: 3894: 3866: 3860: 3859: 3831: 3825: 3824: 3814: 3774: 3768: 3767: 3756:10.1038/356325a0 3731: 3725: 3724: 3714: 3674: 3668: 3667: 3656:10.1039/B507264F 3635: 3629: 3628: 3610: 3576: 3567: 3561: 3560: 3516: 3510: 3509: 3465: 3459: 3458: 3448: 3425:Chemical Science 3422: 3413: 3407: 3406: 3378: 3372: 3371: 3343: 3337: 3336: 3325:10.1038/364042a0 3300: 3294: 3293: 3283: 3251: 3245: 3244: 3216: 3210: 3209: 3199: 3182:(7): 2228–2248. 3171: 3165: 3164: 3154: 3144: 3112: 3106: 3105: 3085: 3079: 3078: 3058: 3052: 3051: 3023: 3017: 3016: 3006: 2988: 2956: 2950: 2949: 2939: 2929: 2912:(7): 3726–3733. 2897: 2891: 2890: 2873:(5): 1809–1825. 2862: 2856: 2855: 2838:(9): 2592–2621. 2829: 2820: 2814: 2813: 2785: 2779: 2778: 2750: 2744: 2743: 2733: 2709: 2703: 2702: 2674: 2668: 2667: 2649: 2617: 2611: 2610: 2592: 2581:10.1039/B822665M 2566: 2557: 2551: 2550: 2529: 2523: 2522: 2512: 2502: 2485:(5): 1178–1183. 2470: 2464: 2463: 2452:10.1039/B806328C 2446:(6): 1542–1550. 2435: 2429: 2428: 2399: 2393: 2392: 2372: 2366: 2365: 2355: 2331: 2325: 2324: 2288: 2282: 2281: 2250:Chemical Reviews 2245: 2239: 2238: 2228: 2196: 2190: 2189: 2178:10.1039/B819333A 2172:(6): 1802–1820. 2161: 2155: 2154: 2126: 2120: 2119: 2102:(6): 1663–1672. 2091: 2085: 2084: 2056: 2050: 2049: 2021: 2015: 2014: 2004: 1972: 1966: 1965: 1955: 1932:Chemical Reviews 1923: 1914: 1913: 1911: 1909: 1892: 1886: 1885: 1883: 1881: 1874:Nobel Foundation 1864: 1858: 1857: 1847: 1824:Chemical Reviews 1815: 1809: 1808: 1780: 1774: 1773: 1737: 1731: 1730: 1719:10.1038/369133a0 1694: 1688: 1687: 1667: 1661: 1660: 1640: 1634: 1633: 1615: 1591: 1582: 1581: 1579: 1577: 1559: 1553: 1552: 1542: 1532: 1515:(9): 5275–5278. 1497: 1491: 1490: 1469: 1463: 1462: 1452: 1420: 1411: 1410: 1400: 1388: 1379: 1378: 1361:(4): 1377–1400. 1355:Chemical Reviews 1350: 1341: 1340: 1312: 1303: 1302: 1284: 1260: 1247: 1246: 1218: 1044:Flexible linkers 963: 929: 887: 871:Molecular switch 865: 847: 829: 820:piezoelectricity 784: 762: 736: 702:Molecular hinge 697: 680:hydrogen bonding 661: 660: 612:electron density 524:characterization 469:as developed by 368: 314:magnetostrictive 246:molecular motors 227:characterization 209:is a molecular 149:living processes 129: 122: 115: 99: 98: 87: 86: 39:Mechanosynthesis 19: 18: 5825: 5824: 5820: 5819: 5818: 5816: 5815: 5814: 5785: 5784: 5783: 5778: 5766: 5754: 5722: 5694: 5671: 5667:Nanolithography 5654:Nanoelectronics 5648: 5615: 5570: 5533: 5524:Popular culture 5500: 5495: 5465: 5464: 5419: 5415: 5384: 5380: 5343:(20): 1906036. 5332: 5326: 5322: 5275:(20): 1906064. 5265: 5261: 5224: 5220: 5185: 5181: 5150: 5146: 5115: 5111: 5066: 5062: 5014: 5008: 5004: 4965: 4961: 4922: 4918: 4871: 4867: 4832: 4828: 4771: 4767: 4735: 4729: 4725: 4680: 4676: 4637: 4633: 4593: 4589: 4574: 4548: 4544: 4505: 4501: 4456: 4452: 4437: 4423: 4419: 4409: 4407: 4396: 4395: 4391: 4343: 4339: 4300: 4296: 4249: 4245: 4206: 4202: 4181:(12): 919–932. 4171: 4167: 4144: 4140: 4105: 4101: 4070: 4066: 4027: 4020: 3981: 3977: 3938: 3934: 3902: 3898: 3867: 3863: 3832: 3828: 3775: 3771: 3732: 3728: 3675: 3671: 3636: 3632: 3574: 3568: 3564: 3517: 3513: 3466: 3462: 3420: 3414: 3410: 3379: 3375: 3344: 3340: 3311:(6432): 42–44. 3301: 3297: 3252: 3248: 3217: 3213: 3172: 3168: 3113: 3109: 3086: 3082: 3059: 3055: 3024: 3020: 2957: 2953: 2898: 2894: 2863: 2859: 2827: 2821: 2817: 2790:Organic Letters 2786: 2782: 2755:Organic Letters 2751: 2747: 2710: 2706: 2675: 2671: 2618: 2614: 2564: 2558: 2554: 2530: 2526: 2471: 2467: 2436: 2432: 2400: 2396: 2377:ChemElectroChem 2373: 2369: 2332: 2328: 2289: 2285: 2246: 2242: 2197: 2193: 2162: 2158: 2127: 2123: 2092: 2088: 2057: 2053: 2022: 2018: 1973: 1969: 1924: 1917: 1907: 1905: 1893: 1889: 1879: 1877: 1865: 1861: 1816: 1812: 1781: 1777: 1738: 1734: 1695: 1691: 1668: 1664: 1641: 1637: 1592: 1585: 1575: 1573: 1560: 1556: 1498: 1494: 1470: 1466: 1421: 1414: 1398: 1389: 1382: 1351: 1344: 1313: 1306: 1261: 1250: 1219: 1208: 1203: 1191: 1135: 1080:RNA polymerases 1076:DNA polymerases 1072:gene expression 972: 816:desulfurization 803:α-cyclodextrins 768:Molecular motor 656: 624:kinetic control 575:and unfolding. 573:protein folding 520: 488:electrochemical 443:electrochemical 412:Richard Feynman 369: 360:Richard Feynman 358: 350: 286: 183:was awarded to 179:. In 2016 the 153:DNA replication 133: 93: 81: 29: 17: 12: 11: 5: 5823: 5813: 5812: 5807: 5802: 5797: 5795:Nanotechnology 5780: 5779: 5777: 5776: 5764: 5752: 5740: 5727: 5724: 5723: 5721: 5720: 5715: 5710: 5704: 5702: 5696: 5695: 5693: 5692: 5687: 5681: 5679: 5673: 5672: 5670: 5669: 5664: 5658: 5656: 5650: 5649: 5647: 5646: 5641: 5636: 5631: 5625: 5623: 5617: 5616: 5614: 5613: 5612: 5611: 5601: 5600: 5599: 5594: 5586: 5580: 5578: 5572: 5571: 5569: 5568: 5563: 5558: 5556:Nanotoxicology 5553: 5547: 5545: 5535: 5534: 5532: 5531: 5526: 5521: 5516: 5510: 5508: 5502: 5501: 5498:Nanotechnology 5494: 5493: 5486: 5479: 5471: 5463: 5462: 5433:(3): 347–358. 5413: 5378: 5320: 5259: 5218: 5179: 5144: 5125:(4): 901–904. 5109: 5060: 5025:(4): 304–308. 5002: 4975:(6): 625–632. 4959: 4916: 4865: 4826: 4781:(22): 220801. 4765: 4723: 4674: 4631: 4604:(2): 322–326. 4587: 4572: 4542: 4499: 4470:(6): 687–693. 4450: 4435: 4417: 4389: 4337: 4294: 4243: 4200: 4165: 4138: 4099: 4064: 4018: 3991:(26): 266102. 3975: 3948:(26): 266102. 3932: 3896: 3861: 3826: 3769: 3726: 3669: 3650:(47): 5910–2. 3630: 3562: 3511: 3460: 3408: 3373: 3354:(9): 536–551. 3338: 3295: 3246: 3227:(3): 750–766. 3211: 3166: 3107: 3096:(5): 918–925. 3080: 3053: 3018: 2951: 2892: 2857: 2815: 2780: 2745: 2704: 2669: 2612: 2552: 2524: 2465: 2430: 2394: 2383:(4): 475–496. 2367: 2326: 2283: 2256:(1): 288–309. 2240: 2191: 2156: 2121: 2086: 2051: 2016: 1967: 1915: 1902:New York Times 1887: 1859: 1810: 1775: 1732: 1689: 1662: 1635: 1583: 1554: 1501:Drexler, K. E. 1492: 1464: 1412: 1380: 1342: 1323:(1): 107–124. 1304: 1248: 1205: 1204: 1202: 1199: 1198: 1197: 1190: 1187: 1151:liquid crystal 1134: 1131: 1082:for producing 1008:motor proteins 971: 968: 965: 964: 957: 952:took place in 937: 931: 930: 923: 904:π interactions 895: 889: 888: 881: 873: 867: 866: 859: 855: 849: 848: 841: 837: 831: 830: 823: 818:of fuels, and 790: 786: 785: 778: 770: 764: 763: 756: 744: 738: 737: 730: 703: 699: 698: 691: 688:π interactions 676: 672: 671: 668: 665: 655: 652: 519: 516: 390:containing an 380:aromatic rings 356: 349: 346: 338:ATP generation 285: 282: 262:liquid crystal 141: 140: 135: 134: 132: 131: 124: 117: 109: 106: 105: 104: 103: 91: 76: 75: 74: 73: 66: 61: 56: 54:Brownian motor 51: 46: 41: 33: 32: 30:nanotechnology 24: 23: 15: 9: 6: 4: 3: 2: 5822: 5811: 5808: 5806: 5803: 5801: 5798: 5796: 5793: 5792: 5790: 5775: 5770: 5765: 5763: 5758: 5753: 5751: 5750: 5741: 5739: 5738: 5729: 5728: 5725: 5719: 5716: 5714: 5711: 5709: 5706: 5705: 5703: 5701: 5697: 5691: 5688: 5686: 5683: 5682: 5680: 5678: 5674: 5668: 5665: 5663: 5660: 5659: 5657: 5655: 5651: 5645: 5642: 5640: 5637: 5635: 5632: 5630: 5627: 5626: 5624: 5622: 5618: 5610: 5607: 5606: 5605: 5604:Nanoparticles 5602: 5598: 5595: 5593: 5590: 5589: 5587: 5585: 5582: 5581: 5579: 5577: 5576:Nanomaterials 5573: 5567: 5564: 5562: 5559: 5557: 5554: 5552: 5549: 5548: 5546: 5544: 5540: 5536: 5530: 5527: 5525: 5522: 5520: 5519:Organizations 5517: 5515: 5512: 5511: 5509: 5507: 5503: 5499: 5492: 5487: 5485: 5480: 5478: 5473: 5472: 5469: 5458: 5454: 5449: 5444: 5440: 5436: 5432: 5428: 5424: 5417: 5409: 5405: 5401: 5397: 5393: 5389: 5382: 5374: 5370: 5366: 5362: 5358: 5354: 5350: 5346: 5342: 5338: 5331: 5324: 5316: 5312: 5308: 5304: 5299: 5294: 5290: 5286: 5282: 5278: 5274: 5270: 5263: 5255: 5251: 5246: 5241: 5237: 5233: 5229: 5222: 5214: 5210: 5206: 5202: 5198: 5194: 5190: 5183: 5175: 5171: 5167: 5163: 5159: 5155: 5148: 5140: 5136: 5132: 5128: 5124: 5120: 5113: 5105: 5101: 5096: 5091: 5087: 5083: 5079: 5075: 5071: 5064: 5056: 5052: 5048: 5044: 5040: 5036: 5032: 5028: 5024: 5020: 5013: 5006: 4998: 4994: 4990: 4986: 4982: 4978: 4974: 4970: 4963: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4927: 4920: 4912: 4908: 4904: 4900: 4896: 4895:11383/2057447 4892: 4888: 4884: 4880: 4876: 4869: 4861: 4857: 4853: 4849: 4845: 4841: 4837: 4830: 4822: 4818: 4814: 4810: 4806: 4802: 4798: 4794: 4789: 4784: 4780: 4776: 4769: 4761: 4757: 4753: 4749: 4745: 4741: 4734: 4727: 4719: 4715: 4710: 4705: 4701: 4697: 4693: 4689: 4685: 4678: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4642: 4635: 4627: 4623: 4619: 4615: 4611: 4607: 4603: 4599: 4591: 4583: 4579: 4575: 4573:9780123812629 4569: 4565: 4561: 4557: 4553: 4546: 4538: 4534: 4530: 4526: 4522: 4518: 4514: 4510: 4503: 4495: 4491: 4486: 4481: 4477: 4473: 4469: 4465: 4461: 4454: 4446: 4442: 4438: 4436:9780470570951 4432: 4428: 4421: 4405: 4404: 4399: 4393: 4385: 4381: 4377: 4373: 4369: 4365: 4361: 4357: 4353: 4349: 4341: 4333: 4329: 4325: 4321: 4317: 4313: 4309: 4305: 4298: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4254: 4247: 4239: 4235: 4231: 4227: 4223: 4219: 4215: 4211: 4204: 4196: 4192: 4188: 4184: 4180: 4176: 4169: 4161: 4157: 4153: 4149: 4142: 4134: 4130: 4126: 4122: 4118: 4114: 4110: 4103: 4095: 4091: 4087: 4083: 4079: 4075: 4068: 4060: 4056: 4052: 4048: 4044: 4040: 4036: 4032: 4025: 4023: 4014: 4010: 4006: 4002: 3998: 3994: 3990: 3986: 3979: 3971: 3967: 3963: 3959: 3955: 3951: 3947: 3943: 3936: 3928: 3924: 3920: 3916: 3912: 3908: 3900: 3892: 3888: 3884: 3880: 3876: 3872: 3865: 3857: 3853: 3849: 3845: 3841: 3837: 3830: 3822: 3818: 3813: 3808: 3804: 3800: 3796: 3792: 3788: 3784: 3780: 3773: 3765: 3761: 3757: 3753: 3749: 3745: 3741: 3737: 3730: 3722: 3718: 3713: 3708: 3704: 3700: 3696: 3692: 3688: 3684: 3680: 3673: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3634: 3626: 3622: 3618: 3614: 3609: 3604: 3600: 3599:10.1038/43646 3596: 3592: 3588: 3584: 3580: 3573: 3566: 3558: 3554: 3550: 3546: 3542: 3541:10.1038/43639 3538: 3534: 3530: 3526: 3522: 3515: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3464: 3456: 3452: 3447: 3442: 3438: 3434: 3431:(1): 97–101. 3430: 3426: 3419: 3412: 3404: 3400: 3396: 3392: 3388: 3384: 3377: 3369: 3365: 3361: 3357: 3353: 3349: 3342: 3334: 3330: 3326: 3322: 3318: 3314: 3310: 3306: 3299: 3291: 3287: 3282: 3277: 3273: 3269: 3265: 3261: 3257: 3250: 3242: 3238: 3234: 3230: 3226: 3222: 3215: 3207: 3203: 3198: 3193: 3189: 3185: 3181: 3177: 3170: 3162: 3158: 3153: 3148: 3143: 3138: 3134: 3130: 3126: 3122: 3118: 3111: 3103: 3099: 3095: 3091: 3084: 3076: 3072: 3068: 3064: 3057: 3049: 3045: 3041: 3037: 3033: 3029: 3022: 3014: 3010: 3005: 3000: 2996: 2992: 2987: 2982: 2978: 2974: 2970: 2966: 2962: 2955: 2947: 2943: 2938: 2933: 2928: 2923: 2919: 2915: 2911: 2907: 2903: 2896: 2888: 2884: 2880: 2876: 2872: 2868: 2861: 2853: 2849: 2845: 2841: 2837: 2833: 2826: 2819: 2811: 2807: 2803: 2799: 2795: 2791: 2784: 2776: 2772: 2768: 2764: 2760: 2756: 2749: 2741: 2737: 2732: 2727: 2723: 2719: 2715: 2708: 2700: 2696: 2692: 2688: 2684: 2680: 2673: 2665: 2661: 2657: 2653: 2648: 2643: 2639: 2635: 2631: 2627: 2623: 2616: 2608: 2604: 2600: 2596: 2591: 2586: 2582: 2578: 2574: 2570: 2563: 2556: 2548: 2544: 2540: 2536: 2528: 2520: 2516: 2511: 2506: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2469: 2461: 2457: 2453: 2449: 2445: 2441: 2434: 2426: 2422: 2418: 2414: 2410: 2406: 2398: 2390: 2386: 2382: 2378: 2371: 2363: 2359: 2354: 2349: 2345: 2341: 2337: 2330: 2322: 2318: 2314: 2310: 2306: 2302: 2298: 2294: 2287: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2251: 2244: 2236: 2232: 2227: 2222: 2218: 2214: 2210: 2206: 2202: 2195: 2187: 2183: 2179: 2175: 2171: 2167: 2160: 2152: 2148: 2144: 2140: 2136: 2132: 2125: 2117: 2113: 2109: 2105: 2101: 2097: 2090: 2082: 2078: 2074: 2070: 2066: 2062: 2055: 2047: 2043: 2039: 2035: 2031: 2027: 2020: 2012: 2008: 2003: 1998: 1994: 1990: 1986: 1982: 1978: 1971: 1963: 1959: 1954: 1949: 1945: 1941: 1937: 1933: 1929: 1922: 1920: 1904: 1903: 1898: 1891: 1876: 1875: 1870: 1863: 1855: 1851: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1814: 1806: 1802: 1798: 1794: 1790: 1786: 1779: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1736: 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1700: 1693: 1685: 1681: 1677: 1673: 1666: 1658: 1654: 1650: 1647:(in French). 1646: 1639: 1631: 1627: 1623: 1619: 1614: 1609: 1605: 1601: 1597: 1590: 1588: 1571: 1570: 1565: 1558: 1550: 1546: 1541: 1536: 1531: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1496: 1488: 1484: 1480: 1476: 1468: 1460: 1456: 1451: 1446: 1442: 1438: 1434: 1430: 1426: 1419: 1417: 1408: 1404: 1397: 1393: 1387: 1385: 1376: 1372: 1368: 1364: 1360: 1356: 1349: 1347: 1338: 1334: 1330: 1326: 1322: 1318: 1311: 1309: 1300: 1296: 1292: 1288: 1283: 1278: 1274: 1270: 1266: 1259: 1257: 1255: 1253: 1244: 1240: 1236: 1232: 1228: 1224: 1217: 1215: 1213: 1211: 1206: 1196: 1193: 1192: 1186: 1182: 1178: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1143: 1141: 1140:self-assembly 1130: 1128: 1124: 1120: 1116: 1112: 1107: 1105: 1101: 1097: 1093: 1090:for removing 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1018:contraction, 1017: 1013: 1009: 1005: 997: 993: 989: 985: 981: 976: 962: 958: 955: 951: 947: 943: 942:James M. Tour 938: 936: 933: 932: 928: 924: 921: 917: 916:C60 fullerene 913: 909: 908:electrostatic 905: 901: 896: 894: 891: 890: 886: 882: 879: 874: 872: 869: 868: 864: 860: 856: 854: 851: 850: 846: 842: 838: 836: 833: 832: 828: 824: 821: 817: 813: 812:antibacterial 808: 804: 800: 796: 791: 788: 787: 783: 779: 775: 771: 769: 766: 765: 761: 757: 753: 749: 745: 743: 740: 739: 735: 731: 728: 725:recognition, 724: 720: 716: 712: 708: 704: 701: 700: 696: 692: 689: 685: 681: 677: 674: 673: 669: 666: 663: 662: 659: 651: 649: 645: 641: 637: 631: 629: 625: 621: 620:drug delivery 617: 613: 609: 605: 600: 591: 590: 585: 580: 576: 574: 570: 566: 561: 557: 553: 549: 545: 541: 537: 533: 529: 525: 515: 513: 509: 505: 501: 497: 493: 489: 486:variation or 485: 480: 476: 475:binding sites 472: 468: 464: 460: 451: 447: 444: 440: 436: 431: 427: 425: 421: 417: 413: 409: 408: 403: 399: 398: 393: 389: 385: 381: 376: 367: 366: 361: 355: 345: 343: 342:cell division 339: 335: 331: 327: 323: 317: 315: 311: 310:Piezoelectric 307: 303: 299: 297: 293: 281: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 238:isomerization 237: 232: 228: 220: 216: 212: 208: 205:walking on a 204: 200: 196: 194: 190: 186: 182: 178: 177:binding sites 174: 170: 166: 162: 158: 157:ATP synthesis 154: 150: 145: 139: 138: 130: 125: 123: 118: 116: 111: 110: 108: 107: 102: 97: 92: 90: 85: 80: 79: 78: 77: 72: 71: 67: 65: 62: 60: 57: 55: 52: 50: 47: 45: 42: 40: 37: 36: 35: 34: 31: 26: 25: 21: 20: 5810:Nanomachines 5747: 5735: 5713:Nanorobotics 5551:Nanomedicine 5543:applications 5430: 5426: 5416: 5391: 5388:ChemPhysChem 5387: 5381: 5340: 5336: 5323: 5298:11585/718295 5272: 5268: 5262: 5235: 5231: 5221: 5196: 5192: 5182: 5157: 5153: 5147: 5122: 5118: 5112: 5077: 5073: 5063: 5022: 5018: 5005: 4972: 4968: 4962: 4929: 4925: 4919: 4878: 4875:ChemPhysChem 4874: 4868: 4843: 4839: 4829: 4778: 4774: 4768: 4743: 4739: 4726: 4691: 4687: 4677: 4644: 4640: 4634: 4601: 4597: 4590: 4555: 4545: 4512: 4508: 4502: 4467: 4463: 4453: 4427:Biochemistry 4426: 4420: 4408:. Retrieved 4401: 4392: 4351: 4347: 4340: 4307: 4304:Nano Letters 4303: 4297: 4256: 4252: 4246: 4213: 4209: 4203: 4178: 4174: 4168: 4151: 4147: 4141: 4116: 4112: 4102: 4077: 4073: 4067: 4034: 4030: 3988: 3984: 3978: 3945: 3941: 3935: 3910: 3906: 3899: 3874: 3870: 3864: 3839: 3835: 3829: 3786: 3782: 3772: 3739: 3735: 3729: 3686: 3682: 3672: 3647: 3643: 3633: 3582: 3578: 3565: 3524: 3520: 3514: 3473: 3469: 3463: 3428: 3424: 3411: 3386: 3383:ChemPhysChem 3382: 3376: 3351: 3347: 3341: 3308: 3304: 3298: 3263: 3259: 3249: 3224: 3220: 3214: 3179: 3175: 3169: 3124: 3120: 3110: 3093: 3089: 3083: 3066: 3062: 3056: 3031: 3027: 3021: 2968: 2964: 2954: 2909: 2906:RSC Advances 2905: 2895: 2870: 2866: 2860: 2835: 2831: 2818: 2793: 2789: 2783: 2758: 2754: 2748: 2721: 2717: 2707: 2682: 2678: 2672: 2629: 2625: 2615: 2572: 2568: 2555: 2538: 2534: 2527: 2482: 2478: 2468: 2443: 2439: 2433: 2408: 2404: 2397: 2380: 2376: 2370: 2343: 2339: 2329: 2296: 2292: 2286: 2253: 2249: 2243: 2208: 2204: 2194: 2169: 2165: 2159: 2134: 2130: 2124: 2099: 2095: 2089: 2064: 2060: 2054: 2029: 2025: 2019: 1987:(1): F1-10. 1984: 1980: 1970: 1935: 1931: 1906:. Retrieved 1900: 1890: 1878:. Retrieved 1872: 1862: 1827: 1823: 1813: 1788: 1784: 1778: 1745: 1741: 1735: 1702: 1698: 1692: 1675: 1671: 1665: 1648: 1644: 1638: 1603: 1599: 1574:. Retrieved 1567: 1557: 1512: 1508: 1495: 1478: 1474: 1467: 1432: 1428: 1406: 1402: 1358: 1354: 1320: 1317:Nanomedicine 1316: 1272: 1269:ChemPhysChem 1268: 1226: 1222: 1195:Technorganic 1183: 1179: 1171:nanoparticle 1144: 1136: 1111:nanomedicine 1108: 1074:, including 1060:ATP synthase 1036:motile cilia 1028:microtubules 1001: 950:nanocar race 920:DNA machines 805:on a single 798: 794: 714: 710: 657: 632: 596: 587: 584:metallocenes 560:diarylethene 552:ring-opening 539: 536:double bonds 528:single bonds 521: 479:hydroquinone 455: 416:Eric Drexler 405: 401: 395: 371: 363: 352: 318: 295: 291: 287: 235: 231:single bonds 224: 143: 142: 68: 64:Nanorobotics 48: 5199:(3): 0117. 4647:(2): 63–7. 4410:December 2, 3789:(1): 3178. 3689:(1): 1393. 3197:11693/50034 2971:(1): 4159. 1409:(5): 22–36. 1392:Feynman, R. 1175:3D printing 1155:crystalline 1119:speculative 1088:spliceosome 912:corannulene 752:food safety 748:logic gates 684:solvophobic 628:equilibrium 608:cyclohexane 599:bistability 532:metallocene 388:crown ether 384:triptycenes 284:Terminology 266:crystalline 254:logic gates 242:bistability 207:microtubule 5789:Categories 5597:Non-carbon 5588:Nanotubes 5584:Fullerenes 5566:Regulation 4846:(1): 5–7. 4746:(4): 471. 1576:16 January 1201:References 1167:allosteric 1127:nanorobots 1094:, and the 1046:allow the 980:elongation 946:fullerenes 814:activity, 723:nucleobase 636:reversible 556:spiropyran 544:wavelength 392:azobenzene 375:conformers 272:research, 219:nanoscales 5373:209343354 5315:210830979 5213:139606220 4954:207195871 4860:0167-7799 4529:0009-2665 4445:690489261 3368:199661943 3260:ACS Omega 2995:2041-1723 2656:0002-7863 2321:209676880 2278:202562979 1908:5 October 1880:5 October 1299:205704375 1147:polymeric 1052:allostery 878:hydrazone 648:viologens 616:catalysis 604:ring flip 593:catenane. 589:cis-trans 540:cis-trans 492:benzidine 467:rotaxanes 463:catenanes 446:oxidation 435:benzidine 270:materials 258:polymeric 236:cis-trans 165:ribosomes 28:Molecular 5737:Category 5506:Overview 5457:32232135 5408:26717523 5365:31833132 5307:31957172 5254:24434901 5174:22012174 5139:22028196 5104:35380815 5047:29434262 4997:27219709 4946:30415536 4903:26918775 4821:18989399 4813:16090376 4718:21472835 4669:25551052 4661:16608733 4626:19921669 4582:21570668 4537:15826015 4494:18365235 4376:22071765 4332:16277478 4281:10949296 4238:25154754 4230:17348661 4195:14674783 4133:28426052 4094:16551115 4059:44926804 4013:17678108 3970:17678108 3927:15012144 3891:35549010 3856:23168579 3821:32576814 3721:35296669 3664:16317472 3617:10490022 3549:10490021 3498:12879064 3455:97346507 3403:18618534 3333:38260349 3290:34805654 3241:21290607 3206:29493684 3161:31243146 3048:25132052 3013:31519876 2946:35492656 2887:22008710 2852:28426052 2810:18630926 2775:21797218 2740:27159670 2699:23675885 2664:26159869 2599:20844782 2519:16432207 2460:19587950 2425:20681678 2362:25474221 2313:31898850 2270:31509383 2235:36465542 2186:19587969 2151:20858003 2116:24617966 2081:18447353 2046:24911467 2011:11149934 1962:26346838 1854:26346838 1805:11091368 1727:44926804 1630:39993887 1622:27715028 1569:C&EN 1549:16593078 1503:(1981). 1459:26219251 1394:(1960). 1375:15826015 1337:18393670 1291:26833859 1243:11091368 1189:See also 1096:ribosome 1040:flagella 1010:such as 988:ribosome 954:Toulouse 755:inputs. 569:proteins 548:stilbene 500:oxidized 496:biphenol 439:biphenol 424:disputed 357:—  328:such as 322:proteins 250:switches 173:rotaxane 161:Kinesins 151:such as 5749:Commons 5529:Outline 5514:History 5448:7099591 5345:Bibcode 5277:Bibcode 5095:9026258 5055:3326300 5027:Bibcode 4977:Bibcode 4911:9660916 4793:Bibcode 4748:Bibcode 4709:3119711 4606:Bibcode 4485:2386530 4384:6175720 4356:Bibcode 4312:Bibcode 4289:2064216 4261:Bibcode 4039:Bibcode 3993:Bibcode 3950:Bibcode 3812:7311404 3791:Bibcode 3764:4304539 3744:Bibcode 3712:8927564 3691:Bibcode 3625:4412610 3587:Bibcode 3557:4351615 3529:Bibcode 3506:2200106 3478:Bibcode 3313:Bibcode 3281:8600522 3152:6628644 3129:Bibcode 3004:6744564 2973:Bibcode 2937:9048773 2914:Bibcode 2510:1360556 2487:Bibcode 2226:9709946 2205:JACS Au 2002:2193665 1953:4585175 1845:4585175 1770:9677189 1750:Bibcode 1742:Science 1707:Bibcode 1517:Bibcode 1450:4557038 1092:introns 1024:nucleus 1020:kinesin 935:Nanocar 727:peptide 667:Details 348:History 298:isomers 203:Kinesin 5592:Carbon 5539:Impact 5455:  5445:  5406:  5371:  5363:  5313:  5305:  5252:  5211:  5172:  5137:  5102:  5092:  5053:  5045:  4995:  4952:  4944:  4909:  4901:  4858:  4819:  4811:  4716:  4706:  4667:  4659:  4624:  4580:  4570:  4535:  4527:  4492:  4482:  4443:  4433:  4382:  4374:  4348:Nature 4330:  4287:  4279:  4253:Nature 4236:  4228:  4193:  4131:  4092:  4057:  4031:Nature 4011:  3968:  3925:  3889:  3854:  3819:  3809:  3762:  3736:Nature 3719:  3709:  3662:  3623:  3615:  3579:Nature 3555:  3547:  3521:Nature 3504:  3496:  3470:Nature 3453:  3401:  3366:  3331:  3305:Nature 3288:  3278:  3239:  3204:  3159:  3149:  3046:  3011:  3001:  2993:  2944:  2934:  2885:  2850:  2808:  2773:  2738:  2697:  2662:  2654:  2607:263667 2605:  2597:  2517:  2507:  2458:  2423:  2360:  2319:  2311:  2276:  2268:  2233:  2223:  2184:  2149:  2114:  2079:  2044:  2009:  1999:  1960:  1950:  1852:  1842:  1803:  1768:  1725:  1699:Nature 1628:  1620:  1547:  1540:348724 1537:  1457:  1447:  1373:  1335:  1297:  1289:  1241:  1153:, and 1086:, the 1032:dynein 1030:, and 1026:along 1016:muscle 1012:myosin 986:. The 670:Image 494:and a 264:, and 252:, and 213:using 191:, and 5369:S2CID 5333:(PDF) 5311:S2CID 5209:S2CID 5051:S2CID 5015:(PDF) 4950:S2CID 4907:S2CID 4817:S2CID 4783:arXiv 4736:(PDF) 4665:S2CID 4380:S2CID 4285:S2CID 4234:S2CID 4055:S2CID 3760:S2CID 3621:S2CID 3575:(PDF) 3553:S2CID 3502:S2CID 3451:S2CID 3421:(PDF) 3364:S2CID 3329:S2CID 2828:(PDF) 2603:S2CID 2565:(PDF) 2317:S2CID 2274:S2CID 1723:S2CID 1626:S2CID 1399:(PDF) 1295:S2CID 1117:is a 992:tRNAs 906:, or 715:trans 707:crank 654:Types 402:trans 296:trans 5541:and 5453:PMID 5404:PMID 5361:PMID 5303:PMID 5250:PMID 5170:PMID 5135:PMID 5100:PMID 5043:PMID 4993:PMID 4942:PMID 4899:PMID 4856:ISSN 4809:PMID 4714:PMID 4657:PMID 4622:PMID 4578:PMID 4568:ISBN 4533:PMID 4525:ISSN 4490:PMID 4441:OCLC 4431:ISBN 4412:2018 4372:PMID 4328:PMID 4277:PMID 4226:PMID 4191:PMID 4129:PMID 4090:PMID 4009:PMID 3966:PMID 3923:PMID 3887:PMID 3852:PMID 3817:PMID 3717:PMID 3660:PMID 3613:PMID 3545:PMID 3494:PMID 3399:PMID 3286:PMID 3237:PMID 3202:PMID 3157:PMID 3044:PMID 3009:PMID 2991:ISSN 2942:PMID 2883:PMID 2848:PMID 2806:PMID 2771:PMID 2736:PMID 2695:PMID 2660:PMID 2652:ISSN 2595:PMID 2515:PMID 2456:PMID 2421:PMID 2358:PMID 2309:PMID 2266:PMID 2231:PMID 2182:PMID 2147:PMID 2112:PMID 2077:PMID 2042:PMID 2007:PMID 1958:PMID 1910:2016 1882:2016 1850:PMID 1801:PMID 1766:PMID 1618:PMID 1578:2023 1545:PMID 1455:PMID 1371:PMID 1333:PMID 1287:PMID 1239:PMID 1098:for 1084:mRNA 1054:via 1038:and 664:Type 618:and 602:the 567:and 558:and 465:and 400:and 340:and 276:and 163:and 155:and 5443:PMC 5435:doi 5396:doi 5353:doi 5293:hdl 5285:doi 5240:doi 5201:doi 5162:doi 5127:doi 5090:PMC 5082:doi 5078:144 5035:doi 4985:doi 4934:doi 4930:140 4891:hdl 4883:doi 4848:doi 4801:doi 4756:doi 4704:PMC 4696:doi 4649:doi 4614:doi 4602:122 4560:doi 4517:doi 4513:105 4480:PMC 4472:doi 4468:129 4364:doi 4352:479 4320:doi 4269:doi 4257:406 4218:doi 4214:129 4183:doi 4156:doi 4152:100 4121:doi 4082:doi 4078:128 4047:doi 4035:369 4001:doi 3958:doi 3915:doi 3911:126 3879:doi 3844:doi 3807:PMC 3799:doi 3752:doi 3740:356 3707:PMC 3699:doi 3652:doi 3648:116 3603:hdl 3595:doi 3583:401 3537:doi 3525:401 3486:doi 3474:424 3441:hdl 3433:doi 3391:doi 3356:doi 3321:doi 3309:364 3276:PMC 3268:doi 3229:doi 3192:hdl 3184:doi 3147:PMC 3137:doi 3125:116 3098:doi 3094:119 3071:doi 3067:109 3036:doi 2999:PMC 2981:doi 2932:PMC 2922:doi 2875:doi 2840:doi 2798:doi 2763:doi 2726:doi 2687:doi 2642:hdl 2634:doi 2630:137 2585:hdl 2577:doi 2543:doi 2539:116 2505:PMC 2495:doi 2483:103 2448:doi 2413:doi 2409:132 2385:doi 2348:doi 2344:136 2301:doi 2258:doi 2254:120 2221:PMC 2213:doi 2174:doi 2139:doi 2135:132 2104:doi 2069:doi 2065:130 2034:doi 2030:136 1997:PMC 1989:doi 1985:152 1948:PMC 1940:doi 1936:115 1840:PMC 1832:doi 1828:115 1793:doi 1758:doi 1746:281 1715:doi 1703:369 1680:doi 1676:106 1653:doi 1608:doi 1604:113 1535:PMC 1525:doi 1483:doi 1479:102 1445:PMC 1437:doi 1363:doi 1359:105 1325:doi 1277:doi 1231:doi 1068:ATP 711:cis 565:DNA 397:cis 382:in 308:). 292:cis 280:). 233:or 217:on 5791:: 5451:. 5441:. 5429:. 5425:. 5402:. 5392:17 5390:. 5367:. 5359:. 5351:. 5341:32 5339:. 5335:. 5309:. 5301:. 5291:. 5283:. 5273:32 5271:. 5248:. 5236:50 5234:. 5230:. 5207:. 5195:. 5191:. 5168:. 5158:41 5156:. 5133:. 5123:51 5121:. 5098:. 5088:. 5076:. 5072:. 5049:. 5041:. 5033:. 5023:13 5021:. 5017:. 4991:. 4983:. 4971:. 4948:. 4940:. 4928:. 4905:. 4897:. 4889:. 4879:17 4877:. 4854:. 4844:17 4842:. 4838:. 4815:. 4807:. 4799:. 4791:. 4779:94 4777:. 4754:. 4742:. 4738:. 4712:. 4702:. 4692:50 4690:. 4686:. 4663:. 4655:. 4645:14 4643:. 4620:. 4612:. 4600:. 4576:. 4566:. 4554:. 4531:. 4523:. 4511:. 4488:. 4478:. 4466:. 4462:. 4439:. 4378:. 4370:. 4362:. 4350:. 4326:. 4318:. 4306:. 4283:. 4275:. 4267:. 4255:. 4232:. 4224:. 4212:. 4189:. 4179:36 4177:. 4150:. 4127:. 4117:46 4115:. 4111:. 4088:. 4076:. 4053:. 4045:. 4033:. 4021:^ 4007:. 3999:. 3989:98 3987:. 3964:. 3956:. 3946:98 3944:. 3921:. 3909:. 3885:. 3875:10 3873:. 3850:. 3840:18 3838:. 3815:. 3805:. 3797:. 3787:11 3785:. 3781:. 3758:. 3750:. 3738:. 3715:. 3705:. 3697:. 3687:13 3685:. 3681:. 3658:. 3646:. 3642:. 3619:. 3611:. 3601:. 3593:. 3581:. 3577:. 3551:. 3543:. 3535:. 3523:. 3500:. 3492:. 3484:. 3472:. 3449:. 3439:. 3427:. 3423:. 3397:. 3385:. 3362:. 3350:. 3327:. 3319:. 3307:. 3284:. 3274:. 3262:. 3258:. 3235:. 3223:. 3200:. 3190:. 3180:47 3178:. 3155:. 3145:. 3135:. 3123:. 3119:. 3092:. 3065:. 3042:. 3032:50 3030:. 3007:. 2997:. 2989:. 2979:. 2969:10 2967:. 2963:. 2940:. 2930:. 2920:. 2910:10 2908:. 2904:. 2881:. 2871:41 2869:. 2846:. 2836:46 2834:. 2830:. 2804:. 2794:10 2792:. 2769:. 2759:13 2757:. 2734:. 2722:55 2720:. 2716:. 2693:. 2683:78 2681:. 2658:. 2650:. 2640:. 2628:. 2624:. 2601:. 2593:. 2583:. 2573:39 2571:. 2567:. 2537:. 2513:. 2503:. 2493:. 2481:. 2477:. 2454:. 2444:38 2442:. 2419:. 2407:. 2379:. 2356:. 2342:. 2338:. 2315:. 2307:. 2297:59 2295:. 2272:. 2264:. 2252:. 2229:. 2219:. 2207:. 2203:. 2180:. 2170:38 2168:. 2145:. 2133:. 2110:. 2100:47 2098:. 2075:. 2063:. 2040:. 2028:. 2005:. 1995:. 1983:. 1979:. 1956:. 1946:. 1934:. 1930:. 1918:^ 1899:. 1871:. 1848:. 1838:. 1826:. 1822:. 1799:. 1789:39 1787:. 1764:. 1756:. 1744:. 1721:. 1713:. 1701:. 1674:. 1649:24 1624:. 1616:. 1602:. 1598:. 1586:^ 1566:. 1543:. 1533:. 1523:. 1513:78 1511:. 1507:. 1477:. 1453:. 1443:. 1433:54 1431:. 1427:. 1415:^ 1407:23 1405:. 1401:. 1383:^ 1369:. 1357:. 1345:^ 1331:. 1319:. 1307:^ 1293:. 1285:. 1273:17 1271:. 1267:. 1251:^ 1237:. 1227:39 1225:. 1209:^ 1149:, 956:. 922:. 902:, 822:. 682:, 484:pH 450:pH 426:. 410:, 362:, 344:. 336:, 332:, 312:, 260:, 248:, 187:, 159:. 5490:e 5483:t 5476:v 5459:. 5437:: 5431:6 5410:. 5398:: 5375:. 5355:: 5347:: 5317:. 5295:: 5287:: 5279:: 5256:. 5242:: 5215:. 5203:: 5197:2 5176:. 5164:: 5141:. 5129:: 5106:. 5084:: 5057:. 5037:: 5029:: 4999:. 4987:: 4979:: 4973:8 4956:. 4936:: 4913:. 4893:: 4885:: 4862:. 4850:: 4823:. 4803:: 4795:: 4785:: 4762:. 4758:: 4750:: 4744:2 4720:. 4698:: 4671:. 4651:: 4628:. 4616:: 4608:: 4584:. 4562:: 4539:. 4519:: 4496:. 4474:: 4447:. 4414:. 4386:. 4366:: 4358:: 4334:. 4322:: 4314:: 4308:5 4291:. 4271:: 4263:: 4240:. 4220:: 4197:. 4185:: 4162:. 4158:: 4135:. 4123:: 4096:. 4084:: 4061:. 4049:: 4041:: 4015:. 4003:: 3995:: 3972:. 3960:: 3952:: 3929:. 3917:: 3893:. 3881:: 3858:. 3846:: 3823:. 3801:: 3793:: 3766:. 3754:: 3746:: 3723:. 3701:: 3693:: 3666:. 3654:: 3627:. 3605:: 3597:: 3589:: 3559:. 3539:: 3531:: 3508:. 3488:: 3480:: 3457:. 3443:: 3435:: 3429:1 3405:. 3393:: 3387:9 3370:. 3358:: 3352:3 3335:. 3323:: 3315:: 3292:. 3270:: 3264:6 3243:. 3231:: 3225:6 3208:. 3194:: 3186:: 3163:. 3139:: 3131:: 3104:. 3100:: 3077:. 3073:: 3050:. 3038:: 3015:. 2983:: 2975:: 2948:. 2924:: 2916:: 2889:. 2877:: 2854:. 2842:: 2812:. 2800:: 2777:. 2765:: 2742:. 2728:: 2701:. 2689:: 2666:. 2644:: 2636:: 2609:. 2587:: 2579:: 2549:. 2545:: 2521:. 2497:: 2489:: 2462:. 2450:: 2427:. 2415:: 2391:. 2387:: 2381:2 2364:. 2350:: 2323:. 2303:: 2280:. 2260:: 2237:. 2215:: 2209:2 2188:. 2176:: 2153:. 2141:: 2118:. 2106:: 2083:. 2071:: 2048:. 2036:: 2013:. 1991:: 1964:. 1942:: 1912:. 1884:. 1856:. 1834:: 1807:. 1795:: 1772:. 1760:: 1752:: 1729:. 1717:: 1709:: 1686:. 1682:: 1659:. 1655:: 1632:. 1610:: 1580:. 1551:. 1527:: 1519:: 1489:. 1485:: 1461:. 1439:: 1377:. 1365:: 1339:. 1327:: 1321:3 1301:. 1279:: 1245:. 1233:: 998:. 799:n 795:n 713:- 477:( 452:. 294:- 221:. 128:e 121:t 114:v

Index

Molecular
nanotechnology

Mechanosynthesis
Molecular assembler
Molecular machine
Brownian motor
Productive nanosystems
Nanorobotics
Engines of Creation
icon
Science portal
icon
Technology portal
v
t
e
living processes
DNA replication
ATP synthesis
Kinesins
ribosomes
multi-protein complexes
rotaxane
binding sites
Nobel Prize in Chemistry
Jean-Pierre Sauvage
Sir J. Fraser Stoddart
Bernard L. Feringa

Kinesin
microtubule

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.