Knowledge

Mechanosynthesis

Source đź“ť

652:
early paper gives a predicted placement speed of 1 dimer per second for this tooltip, this limit was imposed by the slow speed of recharging the tool using an inefficient recharging method and is not based on any inherent limitation in the speed of use of a charged tooltip. Additionally, no sensing means was proposed for discriminating among the three possible outcomes of an attempted dimer placement—deposition at the correct location, deposition at the wrong location, and failure to place the dimer at all—because the initial proposal was to position the tooltip by dead reckoning, with the proper reaction assured by designing appropriate chemical energetics and relative bond strengths for the tooltip-surface interaction.
582:
mechanochemical means, under the control of an external computer. In the literature, such a tool is called an assembler or molecular assembler. Once assemblers exist, geometric growth (directing copies to make copies) could reduce the cost of assemblers rapidly. Control by an external computer should then permit large groups of assemblers to construct large, useful projects to atomic precision. One such project would combine molecular-level conveyor belts with permanently mounted assemblers to produce a factory.
398: 81: 1697: 1721: 410: 93: 1709: 613:
in 2003 commissioned a study to deal with these issues and larger social and ecological implications, led by mechanical engineering professor Ann Dowling. This was anticipated by some to take a strong position on these problems and potentials —– and suggest any development path to a general theory of
651:
The DCB6Ge tooltip motif, initially described at a Foresight Conference in 2002, was the first complete tooltip ever proposed for diamond mechanosynthesis and remains the only tooltip motif that has been successfully simulated for its intended function on a full 200-atom diamond surface. Although an
581:
The goal of one line of mechanoassembly research focuses on overcoming these problems by calibration, and selection of appropriate synthesis reactions. Some suggest attempting to develop a specialized, very small (roughly 1,000 nanometers on a side) machine tool that can build copies of itself using
497:
would be attached to molecular mechanical systems, and their encounters would result from mechanical motions bringing them together in planned sequences, positions, and orientations. It is envisioned that mechanosynthesis would avoid unwanted reactions by keeping potential reactants apart, and would
694:
on a cryogenic copper surface, grossly validating the approach. Since then, a number of research projects have undertaken to use similar techniques to store computer data in a compact fashion. More recently the technique has been used to explore novel physical chemistries, sometimes using lasers to
630:
There is a growing body of peer-reviewed theoretical work on synthesizing diamond by mechanically removing/adding hydrogen atoms and depositing carbon atoms (a process known as diamond mechanosynthesis or DMS). For example, the 2006 paper in this continuing research effort by Freitas, Merkle and
655:
More recent theoretical work analyzes a complete set of nine molecular tools made from hydrogen, carbon and germanium able to (a) synthesize all tools in the set (b) recharge all tools in the set from appropriate feedstock molecules and (c) synthesize a wide range of stiff hydrocarbons (diamond,
647:
temperature), and that the silicon variant (DCB6Si) also works at 80 K but not at 300 K. These tooltips are intended to be used only in carefully controlled environments (e.g., vacuum). Maximum acceptable limits for tooltip translational and rotational misplacement errors are reported in paper
577:
In practice, getting exactly one molecule to a known place on the microscope's tip is possible, but has proven difficult to automate. Since practical products require at least several hundred million atoms, this technique has not yet proven practical in forming a real product.
667:, and then use the microscope's precise positioning abilities to push the molecule on the tip into another on a substrate. Since the angles and distances can be precisely controlled, and the reaction occurs in a vacuum, novel chemical compounds and arrangements are possible. 539:, because of the many strong bonds it can form, the many types of chemistry these bonds permit, and utility of these bonds in medical and mechanical applications. Carbon forms diamond, for example, which if cheaply available, would be an excellent material for many machines. 460:
in which reaction outcomes are determined by the use of mechanical constraints to direct reactive molecules to specific molecular sites. There are presently no non-biological chemical syntheses which achieve this aim. Some atomic placement has been achieved with
573:
in 2000, is a focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda specifically aimed at positionally controlled diamond mechanosynthesis and diamondoid nanofactory development.
621:
Current technical proposals for nanofactories do not include self-replicating nanorobots, and recent ethical guidelines would prohibit development of unconstrained self-replication capabilities in nanomachines.
717:
reported the first instance of purely mechanical-based covalent bond-making and bond-breaking, i.e., the first experimental demonstration of true mechanosynthesis—albeit with silicon rather than carbon atoms.
706:(SPM) on an atomic surface at room temperature. The suggested methodology supports fully automatic control of single- and multiprobe instruments in solving tasks of mechanosynthesis and bottom-up 474: 559: 493:, reactive molecules encounter one another through random thermal motion in a liquid or vapor. In a hypothesized process of mechanosynthesis, reactive 123: 648:
III—tooltips must be positioned with great accuracy to avoid bonding the dimer incorrectly. Over 100,000 CPU hours were invested in this study.
1445: 1539: 209: 440: 978: 663:
and difficult laboratory work. In the early 2000s, a typical experimental arrangement was to attach a molecule to the tip of an
116: 1377:"Mechanical Vertical Manipulation of Selected Single Atoms by Soft Nanoindentation Using Near Contact Atomic Force Microscopy" 605:
and green goo (various potential disasters arising from runaway replicators, which could be built using mechanosynthesis) the
1359: 656:
graphite, fullerenes, and the like). All required reactions are analyzed using standard ab initio quantum chemistry methods.
1627: 702:(FOS) was suggested. The feature-oriented scanning methodology allows precisely controlling the position of the probe of a 313: 162: 532:. Such techniques appear to have many applications in medicine, aviation, resource extraction, manufacturing and warfare. 1713: 615: 724:
In 2008, a $ 3.1 million grant was proposed to fund the development of a proof-of-principle mechanosynthesis system.
550:
capable of building macroscopic objects with atomic precision. The potential for these has been disputed, notably by
109: 1532: 308: 1582: 631:
their collaborators reports that the most-studied mechanosynthesis tooltip motif (DCB6Ge) successfully places a C
1423:
Robert A. Freitas Jr., "A Simple Tool for Positional Diamond Mechanosynthesis, and its Method of Manufacture,"
462: 185: 514: 336: 695:
excite the tips to particular energy states, or examine the quantum chemistry of particular chemical bonds.
610: 433: 214: 498:
strongly favor desired reactions by holding reactants together in optimal orientations for many molecular
1752: 1701: 1682: 1525: 346: 288: 1612: 1266: 1617: 1562: 703: 699: 172: 167: 157: 904: 797: 738:, a more general explanation of the possible products, and discussion of other assembly techniques. 528:
Much of the excitement regarding advanced mechanosynthesis regards its potential use in assembly of
1592: 1430: 735: 529: 360: 260: 181: 24: 1462: 1747: 1657: 680: 664: 660: 426: 331: 265: 251: 140: 1332: 1291: 1672: 1622: 899: 838: 55: 1508: 1493: 1442: 1346: 1667: 1106: 1026: 518: 384: 876: 521:. Broader exploitation of mechanosynthesis awaits more advanced technology for constructing 1587: 1567: 1388: 1306: 1227: 1135: 1079: 937:"Theoretical Analysis of a Carbon-Carbon Dimer Placement Tool for Diamond Mechanosynthesis" 891: 293: 204: 1345:
R. V. Lapshin (2011). "Feature-oriented scanning probe microscopy". In H. S. Nalwa (ed.).
1212: 1064: 618:
did not address molecular manufacturing at all, except to dismiss it along with grey goo.
8: 1602: 1162: 877:"High-level Ab Initio Studies of Hydrogen Abstraction from Prototype Hydrocarbon Systems" 586: 369: 341: 66: 40: 1392: 1310: 1231: 1198: 1139: 1083: 1031:
Mediated Growth of Diamond C(110) Surface via Si/Ge-Triadamantane Dimer Placement Tools"
895: 1548: 1375:
Oyabu, Noriaki; Custance, Ă“Scar; Yi, Insook; Sugawara, Yasuhiro; Morita, Seizo (2003).
1125: 728: 590: 482: 457: 270: 1005: 535:
Most theoretical explorations of advanced machines of this kind have focused on using
1720: 1647: 1642: 1637: 1572: 1406: 1355: 1322: 1318: 959: 917: 809: 778: 636: 522: 414: 97: 45: 1490: 1725: 1607: 1396: 1314: 1235: 1181: 1143: 1087: 1045: 997: 951: 909: 875:
Temelso, Berhane; Sherrill, C. David; Merkle, Ralph C.; Freitas, Robert A. (2006).
770: 510: 1401: 1376: 1677: 1449: 1252: 1065:"Design and Analysis of a Molecular Tool for Carbon Transfer in Mechanosynthesis" 850: 707: 644: 594: 555: 543: 298: 279: 237: 1111:
Deposition on Diamond C(110) Surface using Si/Ge/Sn-based Dimer Placement Tools"
936: 826: 546:, that mechanosynthesis will be fundamental to molecular manufacturing based on 1652: 1597: 1512: 1497: 1292:"Feature-oriented scanning methodology for probe microscopy and nanotechnology" 862: 566: 490: 402: 303: 199: 148: 85: 50: 1425: 1161:
Yin, Zhi-Xiang; Cui, Jian-Zhong; Liu, Wenbin; Shi, Xiao-Hong; Xu, Jin (2007).
721:
In 2005, the first patent application on diamond mechanosynthesis was filed.
1741: 1662: 1326: 1025:
Mann, David J.; Peng, Jingping; Freitas, Robert A.; Merkle, Ralph C. (2004).
813: 782: 606: 517:. So far, such devices provide the closest approach to fabrication tools for 351: 322: 223: 1577: 1410: 1239: 963: 921: 676: 570: 374: 242: 194: 60: 1185: 1147: 1091: 1049: 1001: 798:"Drexler and Smalley make the case for and against 'molecular assemblers'" 758: 1130: 1107:"Theoretical Analysis of Diamond Mechanosynthesis. Part III. Positional C 979:"Theoretical Analysis of Diamond Mechanosynthesis. Part I. Stability of C 955: 691: 659:
Further research to consider alternate tips will require time-consuming
551: 547: 499: 1354:. Vol. 14. USA: American Scientific Publishers. pp. 105–115. 913: 525:
systems, with ribosome-like systems as an attractive early objective.
473: 397: 80: 1517: 774: 232: 1509:
2004 proposed practical method for enabling diamond mechanosynthesis
602: 598: 585:
In part to resolve this and related questions about the dangers of
503: 494: 478: 675:
The technique of moving single atoms mechanically was proposed by
558:(who proposed and then critiqued an unworkable approach based on " 409: 92: 640: 759:"Positioning single atoms with a scanning tunnelling microscope" 536: 506:
provides an example of a programmable mechanosynthetic device.
690:'s ZĂĽrich Research Institute successfully spelled the letters 1027:"Theoretical Analysis of Diamond Mechanosynthesis. Part II. C 977:
Peng, Jingping; Freitas, Robert A.; Merkle, Ralph C. (2004).
1167:
Dimer Placement Tooltip Motifs for Diamond Mechanosynthesis"
874: 1502: 1213:"A Minimal Toolset for Positional Diamond Mechanosynthesis" 983:
Mediated Growth of Nanocrystalline Diamond C(110) Surface"
687: 1374: 1024: 1020: 1018: 698:
In 1999, an experimentally proved methodology called
1443:
Digital Matter?: Towards Mechanised Mechanosynthesis
1253:
Speeding the development of molecular nanotechnology
1220:
Journal of Computational and Theoretical Nanoscience
1174:
Journal of Computational and Theoretical Nanoscience
1118:
Journal of Computational and Theoretical Nanoscience
1072:
Journal of Computational and Theoretical Nanoscience
1038:
Journal of Computational and Theoretical Nanoscience
990:
Journal of Computational and Theoretical Nanoscience
643:
surface at both 300 K (room temperature) and 80 K (
513:has been performed at cryogenic temperatures using 1201:. Molecularassembler.com. Retrieved on 2011-07-23. 1015: 841:. Molecularassembler.com. Retrieved on 2011-07-23. 829:. Molecularassembler.com. Retrieved on 2011-07-23. 589:and popular fears of runaway events equivalent to 1211:Freitas Jr., Robert A.; Merkle, Ralph C. (2008). 1210: 976: 1739: 1104: 934: 756: 752: 750: 1348:Encyclopedia of Nanoscience and Nanotechnology 1163:"Horizontal Ge-Substituted Polymantane-Based C 1062: 757:Eigler, D. M.; Schweizer, E. K. (April 1990). 1533: 1344: 1289: 434: 117: 1160: 747: 1452:. Gow.epsrc.ac.uk. Retrieved on 2011-07-23. 1105:De Federico, Miguel; Jaime, Carlos (2006). 625: 1540: 1526: 565:The Nanofactory Collaboration, founded by 441: 427: 124: 110: 1400: 1267:"IBM's 35 atoms and the rise of nanotech" 1264: 1129: 944:Journal of Nanoscience and Nanotechnology 903: 853:. Foresight.org. Retrieved on 2011-07-23. 614:so-called mechanosynthesis. However, the 1063:Sourina, Olga; Korolev, Nikolay (2005). 597:disasters, and the more remote issue of 472: 789: 1740: 1547: 489:In conventional chemical synthesis or 1521: 731:, a short animated film using atoms. 1708: 795: 1265:Shankland, S. (28 September 2009). 935:Merkle, RC; Freitas Jr, RA (2003). 884:The Journal of Physical Chemistry A 851:Molecular Nanotechnology Guidelines 13: 865:. (PDF) . Retrieved on 2011-07-23. 542:It has been suggested, notably by 14: 1764: 1484: 1719: 1707: 1696: 1695: 839:Nanofactory Technical Challenges 408: 396: 309:Semiconductor device fabrication 91: 79: 1455: 1436: 1417: 1368: 1338: 1283: 1258: 1246: 1204: 1192: 1154: 1098: 1056: 802:Chemical & Engineering News 616:Royal Society's nanotech report 468: 463:scanning tunnelling microscopes 19:Part of a series of articles on 970: 928: 868: 856: 844: 832: 820: 515:scanning tunneling microscopes 1: 1402:10.1103/PhysRevLett.90.176102 741: 337:Scanning tunneling microscope 611:Royal Academy of Engineering 314:Semiconductor scale examples 7: 1683:Volume combustion synthesis 456:is a term for hypothetical 347:Super resolution microscopy 289:Molecular scale electronics 10: 1769: 1613:Enantioselective synthesis 1319:10.1088/0957-4484/15/9/006 670: 1691: 1618:Fully automated synthesis 1563:Artificial gene synthesis 1555: 827:Nanofactory Collaboration 796:Baum, Rudy (2003-12-01). 704:scanning probe microscope 700:feature-oriented scanning 509:A non-biological form of 1593:Custom peptide synthesis 1433:Retrieved on 2011-07-23. 1199:Diamond Mechanosynthesis 736:molecular nanotechnology 686:In 1989, researchers at 626:Diamond mechanosynthesis 502:cycles. In biology, the 361:Molecular nanotechnology 261:Self-assembled monolayer 1503:The Foresight Institute 1429:, issued 30 March 2010 1381:Physical Review Letters 681:The Engines of Creation 665:atomic force microscope 661:computational chemistry 530:molecular-scale devices 332:Atomic force microscopy 266:Supramolecular assembly 252:Molecular self-assembly 1673:Solvothermal synthesis 1623:Hydrothermal synthesis 1290:R. V. Lapshin (2004). 1240:10.1166/jctn.2008.2531 486: 56:Productive nanosystems 1668:Solid-phase synthesis 1426:U.S. patent 7,687,146 1186:10.1166/jctn.2007.004 1148:10.1166/jctn.2006.003 1092:10.1166/jctn.2005.003 1050:10.1166/jctn.2004.008 1002:10.1166/jctn.2004.007 519:molecular engineering 476: 415:Technology portal 385:Molecular engineering 98:Technology portal 1588:Convergent synthesis 1568:Biomimetic synthesis 1463:"A Boy And His Atom" 956:10.1166/jnn.2003.203 692:"IBM" in xenon atoms 587:industrial accidents 294:Molecular logic gate 205:Green nanotechnology 1603:Divergent synthesis 1393:2003PhRvL..90q6102O 1333:Russian translation 1311:2004Nanot..15.1135L 1255:. www.foresight.org 1232:2008JCTN....5..760F 1140:2006JCTN....3..624S 1084:2005JCTN....2..492S 896:2006JPCA..11011160T 890:(38): 11160–11173. 370:Molecular assembler 342:Electron microscope 67:Engines of Creation 41:Molecular assembler 1753:Chemical synthesis 1549:Chemical synthesis 1448:2011-11-04 at the 729:A Boy and His Atom 727:In 2013, IBM made 487: 483:biological machine 458:chemical syntheses 403:Science portal 271:DNA nanotechnology 86:Science portal 1735: 1734: 1648:Peptide synthesis 1643:Organic synthesis 1638:One-pot synthesis 1573:Bioretrosynthesis 1361:978-1-58883-163-7 914:10.1021/jp061821e 769:(6266): 524–526. 679:in his 1986 book 523:molecular machine 451: 450: 134: 133: 46:Molecular machine 1760: 1723: 1711: 1710: 1699: 1698: 1633:Mechanosynthesis 1608:Electrosynthesis 1542: 1535: 1528: 1519: 1518: 1479: 1478: 1476: 1474: 1459: 1453: 1440: 1434: 1428: 1421: 1415: 1414: 1404: 1372: 1366: 1365: 1353: 1342: 1336: 1330: 1305:(9): 1135–1151. 1296: 1287: 1281: 1280: 1278: 1277: 1262: 1256: 1250: 1244: 1243: 1217: 1208: 1202: 1196: 1190: 1189: 1180:(7): 1243–1248. 1171: 1158: 1152: 1151: 1133: 1131:cond-mat/0605239 1115: 1102: 1096: 1095: 1069: 1060: 1054: 1053: 1035: 1022: 1013: 1012: 1010: 1004:. Archived from 987: 974: 968: 967: 941: 932: 926: 925: 907: 881: 872: 866: 863:N04FR06-p.15.pmd 860: 854: 848: 842: 836: 830: 824: 818: 817: 793: 787: 786: 775:10.1038/344524a0 754: 607:UK Royal Society 511:mechanochemistry 454:Mechanosynthesis 443: 436: 429: 413: 412: 401: 400: 380:Mechanosynthesis 238:Carbon nanotubes 136: 135: 126: 119: 112: 96: 95: 84: 83: 36:Mechanosynthesis 16: 15: 1768: 1767: 1763: 1762: 1761: 1759: 1758: 1757: 1738: 1737: 1736: 1731: 1687: 1678:Total synthesis 1551: 1546: 1505:remains active. 1487: 1482: 1472: 1470: 1461: 1460: 1456: 1450:Wayback Machine 1441: 1437: 1424: 1422: 1418: 1373: 1369: 1362: 1351: 1343: 1339: 1294: 1288: 1284: 1275: 1273: 1263: 1259: 1251: 1247: 1215: 1209: 1205: 1197: 1193: 1169: 1166: 1159: 1155: 1113: 1110: 1103: 1099: 1067: 1061: 1057: 1033: 1030: 1023: 1016: 1008: 985: 982: 975: 971: 939: 933: 929: 905:10.1.1.154.7331 879: 873: 869: 861: 857: 849: 845: 837: 833: 825: 821: 794: 790: 755: 748: 744: 713:In 2003, Oyabu 708:nanofabrication 673: 645:liquid nitrogen 634: 628: 560:Smalley fingers 556:Richard Smalley 544:K. Eric Drexler 471: 447: 407: 395: 299:Nanolithography 280:Nanoelectronics 168:Popular culture 130: 90: 78: 26: 12: 11: 5: 1766: 1756: 1755: 1750: 1748:Nanotechnology 1733: 1732: 1730: 1729: 1717: 1705: 1692: 1689: 1688: 1686: 1685: 1680: 1675: 1670: 1665: 1660: 1658:Retrosynthesis 1655: 1653:Radiosynthesis 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1605: 1600: 1598:Direct process 1595: 1590: 1585: 1583:Chemosynthesis 1580: 1575: 1570: 1565: 1559: 1557: 1553: 1552: 1545: 1544: 1537: 1530: 1522: 1516: 1515: 1513:Robert Freitas 1506: 1500: 1498:Robert Freitas 1486: 1485:External links 1483: 1481: 1480: 1454: 1435: 1416: 1387:(17): 176102. 1367: 1360: 1337: 1335:is available). 1299:Nanotechnology 1282: 1257: 1245: 1226:(7): 760–861. 1203: 1191: 1164: 1153: 1124:(6): 874–879. 1108: 1097: 1078:(4): 492–498. 1055: 1028: 1014: 1011:on 2009-03-16. 980: 969: 927: 867: 855: 843: 831: 819: 788: 745: 743: 740: 672: 669: 632: 627: 624: 567:Robert Freitas 491:chemosynthesis 470: 467: 449: 448: 446: 445: 438: 431: 423: 420: 419: 418: 417: 405: 390: 389: 388: 387: 382: 377: 372: 364: 363: 357: 356: 355: 354: 349: 344: 339: 334: 326: 325: 319: 318: 317: 316: 311: 306: 301: 296: 291: 283: 282: 276: 275: 274: 273: 268: 263: 255: 254: 248: 247: 246: 245: 240: 235: 227: 226: 220: 219: 218: 217: 212: 207: 202: 200:Nanotoxicology 197: 189: 188: 178: 177: 176: 175: 170: 165: 160: 152: 151: 149:Nanotechnology 145: 144: 143:of articles on 132: 131: 129: 128: 121: 114: 106: 103: 102: 101: 100: 88: 73: 72: 71: 70: 63: 58: 53: 51:Brownian motor 48: 43: 38: 30: 29: 27:nanotechnology 21: 20: 9: 6: 4: 3: 2: 1765: 1754: 1751: 1749: 1746: 1745: 1743: 1728: 1727: 1722: 1718: 1716: 1715: 1706: 1704: 1703: 1694: 1693: 1690: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1663:Semisynthesis 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1560: 1558: 1554: 1550: 1543: 1538: 1536: 1531: 1529: 1524: 1523: 1520: 1514: 1510: 1507: 1504: 1501: 1499: 1495: 1492: 1489: 1488: 1469:. May 1, 2013 1468: 1464: 1458: 1451: 1447: 1444: 1439: 1432: 1427: 1420: 1412: 1408: 1403: 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1363: 1357: 1350: 1349: 1341: 1334: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1286: 1272: 1268: 1261: 1254: 1249: 1241: 1237: 1233: 1229: 1225: 1221: 1214: 1207: 1200: 1195: 1187: 1183: 1179: 1175: 1168: 1157: 1149: 1145: 1141: 1137: 1132: 1127: 1123: 1119: 1112: 1101: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1059: 1051: 1047: 1043: 1039: 1032: 1021: 1019: 1007: 1003: 999: 995: 991: 984: 973: 965: 961: 957: 953: 950:(4): 319–24. 949: 945: 938: 931: 923: 919: 915: 911: 906: 901: 897: 893: 889: 885: 878: 871: 864: 859: 852: 847: 840: 835: 828: 823: 815: 811: 808:(48): 27–42. 807: 803: 799: 792: 784: 780: 776: 772: 768: 764: 760: 753: 751: 746: 739: 737: 732: 730: 725: 722: 719: 716: 711: 709: 705: 701: 696: 693: 689: 684: 682: 678: 668: 666: 662: 657: 653: 649: 646: 642: 638: 623: 619: 617: 612: 608: 604: 600: 596: 592: 588: 583: 579: 575: 572: 568: 563: 561: 557: 553: 549: 548:nanofactories 545: 540: 538: 533: 531: 526: 524: 520: 516: 512: 507: 505: 501: 496: 492: 484: 480: 475: 466: 464: 459: 455: 444: 439: 437: 432: 430: 425: 424: 422: 421: 416: 411: 406: 404: 399: 394: 393: 392: 391: 386: 383: 381: 378: 376: 373: 371: 368: 367: 366: 365: 362: 359: 358: 353: 352:Nanotribology 350: 348: 345: 343: 340: 338: 335: 333: 330: 329: 328: 327: 324: 323:Nanometrology 321: 320: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 286: 285: 284: 281: 278: 277: 272: 269: 267: 264: 262: 259: 258: 257: 256: 253: 250: 249: 244: 243:Nanoparticles 241: 239: 236: 234: 231: 230: 229: 228: 225: 224:Nanomaterials 222: 221: 216: 213: 211: 208: 206: 203: 201: 198: 196: 193: 192: 191: 190: 187: 183: 180: 179: 174: 171: 169: 166: 164: 163:Organizations 161: 159: 156: 155: 154: 153: 150: 147: 146: 142: 138: 137: 127: 122: 120: 115: 113: 108: 107: 105: 104: 99: 94: 89: 87: 82: 77: 76: 75: 74: 69: 68: 64: 62: 59: 57: 54: 52: 49: 47: 44: 42: 39: 37: 34: 33: 32: 31: 28: 23: 22: 18: 17: 1724: 1712: 1700: 1632: 1578:Biosynthesis 1494:updated here 1491:Bibliography 1473:December 29, 1471:. Retrieved 1467:IBM Research 1466: 1457: 1438: 1419: 1384: 1380: 1370: 1347: 1340: 1302: 1298: 1285: 1274:. Retrieved 1270: 1260: 1248: 1223: 1219: 1206: 1194: 1177: 1173: 1156: 1121: 1117: 1100: 1075: 1071: 1058: 1041: 1037: 1006:the original 993: 989: 972: 947: 943: 930: 887: 883: 870: 858: 846: 834: 822: 805: 801: 791: 766: 762: 733: 726: 723: 720: 714: 712: 697: 685: 677:Eric Drexler 674: 658: 654: 650: 639:on a C(110) 629: 620: 584: 580: 576: 571:Ralph Merkle 564: 541: 534: 527: 508: 488: 469:Introduction 453: 452: 379: 375:Nanorobotics 195:Nanomedicine 186:applications 65: 61:Nanorobotics 35: 304:Moore's law 1742:Categories 1276:2023-05-09 742:References 233:Fullerenes 215:Regulation 1431:HTML copy 1327:0957-4484 1044:: 71–80. 996:: 62–70. 900:CiteSeerX 814:0009-2347 783:0028-0836 734:See also 591:Chernobyl 554:Laureate 500:vibration 495:molecules 25:Molecular 1702:Category 1446:Archived 1411:12786084 964:14598446 922:16986851 603:grey goo 599:ecophagy 504:ribosome 479:ribosome 141:a series 139:Part of 1714:Commons 1389:Bibcode 1307:Bibcode 1228:Bibcode 1136:Bibcode 1080:Bibcode 892:Bibcode 671:History 641:diamond 635:carbon 609:and UK 210:Hazards 173:Outline 158:History 1726:Portal 1409:  1358:  1325:  962:  920:  902:  812:  781:  763:Nature 715:et al. 595:Bhopal 537:carbon 182:Impact 1628:LASiS 1556:Types 1511:, by 1352:(PDF) 1295:(PDF) 1216:(PDF) 1170:(PDF) 1126:arXiv 1114:(PDF) 1068:(PDF) 1034:(PDF) 1009:(PDF) 986:(PDF) 940:(PDF) 880:(PDF) 637:dimer 552:Nobel 481:is a 1475:2015 1407:PMID 1356:ISBN 1323:ISSN 1271:CNET 960:PMID 918:PMID 810:ISSN 779:ISSN 593:and 569:and 562:"). 184:and 1496:by 1397:doi 1315:doi 1236:doi 1182:doi 1144:doi 1088:doi 1046:doi 998:doi 952:doi 910:doi 888:110 771:doi 767:344 688:IBM 1744:: 1465:. 1405:. 1395:. 1385:90 1383:. 1379:. 1321:. 1313:. 1303:15 1301:. 1297:. 1269:. 1234:. 1222:. 1218:. 1176:. 1172:. 1142:. 1134:. 1120:. 1116:. 1086:. 1074:. 1070:. 1040:. 1036:. 1017:^ 992:. 988:. 958:. 946:. 942:. 916:. 908:. 898:. 886:. 882:. 806:81 804:. 800:. 777:. 765:. 761:. 749:^ 710:. 683:. 601:, 477:A 465:. 1541:e 1534:t 1527:v 1477:. 1413:. 1399:: 1391:: 1364:. 1331:( 1329:. 1317:: 1309:: 1279:. 1242:. 1238:: 1230:: 1224:5 1188:. 1184:: 1178:4 1165:2 1150:. 1146:: 1138:: 1128:: 1122:3 1109:2 1094:. 1090:: 1082:: 1076:2 1052:. 1048:: 1042:1 1029:2 1000:: 994:1 981:2 966:. 954:: 948:3 924:. 912:: 894:: 816:. 785:. 773:: 633:2 485:. 442:e 435:t 428:v 125:e 118:t 111:v

Index

Molecular
nanotechnology

Mechanosynthesis
Molecular assembler
Molecular machine
Brownian motor
Productive nanosystems
Nanorobotics
Engines of Creation
icon
Science portal
icon
Technology portal
v
t
e
a series
Nanotechnology
History
Organizations
Popular culture
Outline
Impact
applications
Nanomedicine
Nanotoxicology
Green nanotechnology
Hazards
Regulation
Nanomaterials
Fullerenes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑