Knowledge

Metalorganic vapour-phase epitaxy

Source 📝

883:
operations. The safety as well as responsible environmental care have become major factors of paramount importance in the MOCVD-based crystal growth of compound semiconductors. As the application of this technique in industry has grown, a number of companies have also grown and evolved over the years to provide the ancillary equipment required to reduce risk. This equipment includes but is not limited to computer automated gas and chemical delivery systems, toxic and carrier gas sniffing sensors which can detect single digit ppb amounts of gas, and of course abatement equipment to fully capture toxic materials which can be present in the growth of arsenic containing alloys such as GaAs and InGaAsP.
31: 208: 163:
and the subspecies absorb onto the semiconductor wafer surface. Surface reaction of the precursor subspecies results in the incorporation of elements into a new epitaxial layer of the semiconductor crystal lattice. In the mass-transport-limited growth regime in which MOCVD reactors typically operate,
882:
As MOCVD has become well-established production technology, there are equally growing concerns associated with its bearing on personnel and community safety, environmental impact and maximum quantities of hazardous materials (such as gases and metalorganics) permissible in the device fabrication
250:
One type of reactor used to carry out MOCVD is a cold-wall reactor. In a cold-wall reactor, the substrate is supported by a pedestal, which also acts as a susceptor. The pedestal/susceptor is the primary origin of heat energy in the reaction chamber. Only the susceptor is heated, so gases do not
251:
react before they reach the hot wafer surface. The pedestal/susceptor is made of a radiation-absorbing material such as carbon. In contrast, the walls of the reaction chamber in a cold-wall reactor are typically made of quartz which is largely transparent to the
255:. The reaction chamber walls in a cold-wall reactor, however, may be indirectly heated by heat radiating from the hot pedestal/susceptor, but will remain cooler than the pedestal/susceptor and the substrate the pedestal/susceptor supports. 227:, such as quartz, are often used as the liner in the reactor chamber between the reactor wall and the susceptor. To prevent overheating, cooling water must be flowing through the channels within the reactor walls. A substrate sits on a 215:
In the metal organic chemical vapor deposition (MOCVD) technique, reactant gases are combined at elevated temperatures in the reactor to cause a chemical interaction, resulting in the deposition of materials on the substrate.
191:
strength of the precursor. The more carbon atoms are attached to the central metal atom, the weaker the bond. The diffusion of atoms on the substrate surface is affected by atomic steps on the surface.
297:. Toxic waste products must be converted to liquid or solid wastes for recycling (preferably) or disposal. Ideally processes will be designed to minimize the production of waste products. 219:
A reactor is a chamber made of a material that does not react with the chemicals being used. It must also withstand high temperatures. This chamber is composed by reactor walls, liner, a
750: 735: 740: 745: 68:
method used to produce single- or polycrystalline thin films. It is a process for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to
278:, which picks up some metalorganic vapour and transports it to the reactor. The amount of metalorganic vapour transported depends on the rate of carrier gas flow and the bubbler 258:
In hot-wall CVD, the entire chamber is heated. This may be necessary for some gases to be pre-cracked before reaching the wafer surface to allow them to stick to the wafer.
715: 710: 785: 760: 282:, and is usually controlled automatically and most accurately by using an ultrasonic concentration measuring feedback gas control system. Allowance must be made for 231:
which is at a controlled temperature. The susceptor is made from a material resistant to the temperature and metalorganic compounds used, often it is machined from
199:
of the group III metal organic source is an important control parameter for MOCVD growth, since it determines the growth rate in the mass-transport-limited regime.
17: 1059: 223:, gas injection units, and temperature control units. Usually, the reactor walls are made from stainless steel or quartz. Ceramic or special 936: 124:
In MOCVD ultrapure precursor gases are injected into a reactor, usually with a non-reactive carrier gas. For a III-V semiconductor, a
1074: 996: 969: 164:
growth is driven by supersaturation of chemical species in the vapor phase. MOCVD can grow films containing combinations of
670: 1028: 902: 361: 1069: 1064: 665: 690: 675: 655: 780: 685: 660: 65: 822: 725: 650: 252: 93: 92:). As such, this technique is preferred for the formation of devices incorporating thermodynamically 592: 392: 892: 755: 105: 912: 730: 531: 128:
could be used as the group III precursor and a hydride for the group V precursor. For example,
109: 69: 576: 101: 986: 917: 8: 1043:
For examples see the websites of Matheson Tri Gas, Honeywell, Applied Energy, DOD Systems
645: 398: 156: 113: 680: 550: 311: 266:
Gas is introduced via devices known as 'bubblers'. In a bubbler a carrier gas (usually
992: 965: 897: 720: 705: 640: 580: 427: 317: 859: 770: 695: 463: 421: 330: 240: 173: 129: 1032: 959: 775: 700: 380: 349: 336: 283: 236: 133: 97: 765: 355: 235:. For growing nitrides and related materials, a special coating, typically of 196: 169: 47: 76:
is by chemical reaction and not physical deposition. This takes place not in
1053: 907: 817: 188: 243:, on the graphite susceptor is necessary to prevent corrosion by ammonia (NH 614: 181: 125: 948:
How MOCVD works. Deposition Technology for Beginners, Aixtron, May 2011.
620: 279: 165: 89: 1024: 104:, its most widespread application. It was first demonstrated in 1967 at 448: 854: 572: 545: 453: 375: 306: 220: 177: 160: 145: 587: 567: 500: 416: 294: 271: 267: 232: 85: 73: 27:
Method of producing thin films (polycrystalline and single crystal)
1012: 849: 526: 514: 474: 436: 404: 325: 96:
alloys, and it has become a major process in the manufacture of
30: 871: 479: 344: 275: 207: 77: 224: 812: 807: 609: 802: 797: 187:
Required pyrolysis temperature increases with increasing
81: 274:
for nitride growth) is bubbled through the metalorganic
988:
Organometallic Vapor-Phase Epitaxy: Theory and Practice
984: 961:
Springer Handbook of Electronic and Photonic Materials
389:
Dimethylamino germanium trichloride (DiMAGeC), Liquid
559: 367: 383: 877: 261: 1051: 629: 978: 1025:Metalorganic chemical vapor deposition (MOCVD) 289: 300: 957: 985:Gerald B. Stringfellow (2 December 2012). 958:Kasap, Safa; Capper, Peter (August 2007). 865: 206: 29: 1015:Advanced Institute of Technology, 2004. 791: 634: 112:) Autonetics Division in Anaheim CA by 58:metalorganic chemical vapour deposition 14: 1052: 604:Di-tert-butyl selenide (DTBSe), Liquid 511:Tri-isopropyl antimony (TIPSb), Liquid 270:in arsenide & phosphide growth or 601:Di-isopropyl selenide (DIPSe), Liquid 202: 1060:Chemical vapor deposition techniques 843: 540:Methyl Allyl Cadmium (MACd), Liquid 489:Tertiarybutyl arsine (TBAs), Liquid 119: 24: 362:Di-isopropylmethylindium (DIPMeIn) 25: 1086: 991:. Elsevier Science. pp. 3–. 505:Trimethyl antimony (TMSb), Liquid 433:Tertiarybutylamine (TBAm), Liquid 39:Metalorganic vapour-phase epitaxy 1075:Semiconductor device fabrication 556:Diethyl telluride (DETe), Liquid 508:Triethyl antimony (TESb), Liquid 469:Bisphosphinoethane (BPE), Liquid 18:Metalorganic vapor phase epitaxy 1011:MOCVD Basics and Applications, 903:List of semiconductor materials 598:Diethyl selenide (DESe), Liquid 495:Trimethyl arsine (TMAs), Liquid 492:Monoethyl arsine (MEAs), Liquid 295:Gas exhaust and cleaning system 155:As the precursors approach the 1037: 1018: 1005: 951: 942: 930: 878:Environment, health and safety 560:Di-isopropyl telluride (DIPTe) 537:Diethyl cadmium (DECd), Liquid 262:Gas inlet and switching system 13: 1: 923: 630:Semiconductors grown by MOCVD 464:Tertiarybutyl phosphine (TBP) 337:Triethylgallium (TEG or TEGa) 7: 1031:September 27, 2010, at the 886: 368:Ethyldimethylindium (EDMIn) 290:Pressure maintenance system 34:Illustration of the process 10: 1091: 66:chemical vapour deposition 393:Tetramethylgermane (TMGe) 301:Organometallic precursors 253:electromagnetic radiation 593:Dimethyl selenide (DMSe) 939:, Johnson Matthey, GPT. 893:Atomic layer deposition 532:Dimethyl cadmium (DMCd) 106:North American Aviation 913:Molecular beam epitaxy 866:IV-V-VI Semiconductors 212: 110:Rockwell International 70:molecular-beam epitaxy 35: 577:Titanium isopropoxide 358:(TEI or TEIn), Liquid 333:(TMG or TMGa), Liquid 320:(TEA or TEAl), Liquid 314:(TMA or TMAl), Liquid 210: 102:light-emitting diodes 72:(MBE), the growth of 33: 1070:Thin film deposition 1065:Semiconductor growth 918:Thin-film deposition 792:II-VI semiconductors 635:III-V semiconductors 352:(TMI or TMIn), Solid 50:vapour-phase epitaxy 399:Tetraethylgermanium 157:semiconductor wafer 114:Harold M. Manasevit 551:Dimethyl telluride 312:Trimethylaluminium 213: 203:Reactor components 132:can be grown with 84:phase at moderate 36: 998:978-0-323-13917-5 971:978-0-387-29185-7 898:Hydrogen purifier 844:IV Semiconductors 581:Titanium ethoxide 428:Dimethylhydrazine 318:Triethylaluminium 45:), also known as 16:(Redirected from 1082: 1044: 1041: 1035: 1022: 1016: 1009: 1003: 1002: 982: 976: 975: 955: 949: 946: 940: 934: 860:Strained silicon 838: 422:Phenyl hydrazine 331:Trimethylgallium 284:saturated vapors 241:tantalum carbide 130:indium phosphide 120:Basic principles 88:(10 to 760  21: 1090: 1089: 1085: 1084: 1083: 1081: 1080: 1079: 1050: 1049: 1048: 1047: 1042: 1038: 1033:Wayback Machine 1023: 1019: 1010: 1006: 999: 983: 979: 972: 956: 952: 947: 943: 935: 931: 926: 889: 880: 868: 846: 836: 829: 823: 794: 637: 632: 520: 485: 459: 442: 410: 381:Isobutylgermane 350:Trimethylindium 303: 292: 264: 246: 237:silicon nitride 211:MOCVD apparatus 205: 159:, they undergo 151: 143: 139: 134:trimethylindium 122: 98:optoelectronics 80:, but from the 28: 23: 22: 15: 12: 11: 5: 1088: 1078: 1077: 1072: 1067: 1062: 1046: 1045: 1036: 1017: 1004: 997: 977: 970: 950: 941: 928: 927: 925: 922: 921: 920: 915: 910: 905: 900: 895: 888: 885: 879: 876: 875: 874: 867: 864: 863: 862: 857: 852: 845: 842: 841: 840: 831: 825: 820: 815: 810: 805: 800: 793: 790: 789: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 636: 633: 631: 628: 627: 626: 625: 624: 618: 607: 606: 605: 602: 599: 596: 585: 584: 583: 565: 564: 563: 557: 554: 553:(DMTe), Liquid 543: 542: 541: 538: 535: 524: 523: 522: 518: 512: 509: 506: 498: 497: 496: 493: 490: 487: 483: 472: 471: 470: 467: 461: 457: 446: 445: 444: 440: 434: 431: 430:(DMHy), Liquid 425: 414: 413: 412: 408: 402: 401:(TEGe), Liquid 396: 390: 387: 373: 372: 371: 365: 359: 356:Triethylindium 353: 342: 341: 340: 334: 323: 322: 321: 315: 302: 299: 291: 288: 263: 260: 244: 204: 201: 197:vapor pressure 152:) precursors. 149: 141: 137: 121: 118: 48:organometallic 26: 9: 6: 4: 3: 2: 1087: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1055: 1040: 1034: 1030: 1026: 1021: 1014: 1008: 1000: 994: 990: 989: 981: 973: 967: 963: 962: 954: 945: 938: 937:MOCVD Epitaxy 933: 929: 919: 916: 914: 911: 909: 908:Metalorganics 906: 904: 901: 899: 896: 894: 891: 890: 884: 873: 870: 869: 861: 858: 856: 853: 851: 848: 847: 839: 835: 828: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 795: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 638: 623:(DEZ), Liquid 622: 619: 617:(DMZ), Liquid 616: 613: 612: 611: 608: 603: 600: 597: 594: 591: 590: 589: 586: 582: 578: 574: 571: 570: 569: 566: 561: 558: 555: 552: 549: 548: 547: 544: 539: 536: 533: 530: 529: 528: 525: 516: 513: 510: 507: 504: 503: 502: 499: 494: 491: 488: 481: 478: 477: 476: 473: 468: 465: 462: 455: 452: 451: 450: 447: 438: 435: 432: 429: 426: 423: 420: 419: 418: 415: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 378: 377: 374: 369: 366: 363: 360: 357: 354: 351: 348: 347: 346: 343: 338: 335: 332: 329: 328: 327: 324: 319: 316: 313: 310: 309: 308: 305: 304: 298: 296: 287: 285: 281: 277: 273: 269: 259: 256: 254: 248: 242: 238: 234: 230: 226: 222: 217: 209: 200: 198: 193: 190: 189:chemical bond 185: 183: 179: 175: 171: 167: 162: 158: 153: 147: 135: 131: 127: 117: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 49: 44: 40: 32: 19: 1039: 1020: 1007: 987: 980: 964:. Springer. 960: 953: 944: 932: 881: 833: 826: 615:Dimethylzinc 293: 265: 257: 249: 228: 218: 214: 194: 186: 154: 126:metalorganic 123: 61: 57: 53: 46: 42: 38: 37: 621:Diethylzinc 280:temperature 1054:Categories 924:References 575:, such as 449:Phosphorus 100:, such as 94:metastable 573:Alkoxides 546:Tellurium 454:Phosphine 376:Germanium 307:Aluminium 229:susceptor 221:susceptor 166:group III 161:pyrolysis 146:phosphine 86:pressures 1029:Archived 887:See also 736:GaInAlAs 595:, Liquid 588:Selenium 568:Titanium 562:, Liquid 534:, Liquid 501:Antimony 466:, Liquid 424:, Liquid 417:Nitrogen 395:, Liquid 386:, Liquid 370:, Liquid 364:, Liquid 339:, Liquid 272:nitrogen 268:hydrogen 233:graphite 182:group IV 178:group VI 174:group II 144:In) and 74:crystals 64:), is a 1013:Samsung 751:GaInAsP 746:GaInAsN 741:GaInAlN 671:AlGaInP 527:Cadmium 515:Stibine 475:Arsenic 437:Ammonia 405:Germane 326:Gallium 247:) gas. 225:glasses 170:group V 108:(later 995:  968:  872:GeSbTe 781:InAsSb 756:GaInAs 726:InGaSb 711:InAlAs 691:GaAsSb 676:AlInSb 666:AlGaSb 661:AlGaAs 480:Arsine 384:(IBGe) 345:Indium 276:liquid 78:vacuum 786:AlInN 761:GaInP 731:InGaN 716:InAlP 686:GaAsP 656:AlGaP 651:AlGaN 521:, Gas 486:, Gas 460:, Gas 443:, Gas 411:, Gas 62:MOCVD 56:) or 54:OMVPE 43:MOVPE 993:ISBN 966:ISBN 813:ZnTe 808:ZnSe 776:InAs 721:InSb 696:GaAs 681:GaSb 610:Zinc 195:The 176:and 168:and 136:((CH 90:Torr 818:CdO 803:ZnS 798:ZnO 771:InP 766:InN 706:GaP 701:GaN 646:AlP 641:AlN 579:or 517:SbH 482:AsH 407:GeH 239:or 148:(PH 82:gas 1056:: 1027:. 855:Ge 850:Si 837:Te 832:1− 830:Hg 824:Cd 456:PH 439:NH 286:. 184:. 180:, 172:, 116:. 1001:. 974:. 834:x 827:x 519:3 484:3 458:3 441:3 409:4 245:3 150:3 142:3 140:) 138:3 60:( 52:( 41:( 20:)

Index

Metalorganic vapor phase epitaxy

organometallic
chemical vapour deposition
molecular-beam epitaxy
crystals
vacuum
gas
pressures
Torr
metastable
optoelectronics
light-emitting diodes
North American Aviation
Rockwell International
Harold M. Manasevit
metalorganic
indium phosphide
trimethylindium
phosphine
semiconductor wafer
pyrolysis
group III
group V
group II
group VI
group IV
chemical bond
vapor pressure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.