Knowledge

Metabolic network modelling

Source 📝

1101:, are then able to simulate the system dynamics given an initial condition. Often these rate laws contain kinetic parameters with uncertain values. In many cases it is desired to estimate these parameter values with respect to given time-series data of metabolite concentrations. The system is then supposed to reproduce the given data. For this purpose the distance between the given data set and the result of the simulation, i.e., the numerically or in few cases analytically obtained solution of the differential equation system is computed. The values of the parameters are then estimated to minimize this distance. One step further, it may be desired to estimate the mathematical structure of the differential equation system because the real rate laws are not known for the reactions within the system under study. To this end, the program 892:
enzymatic activity) for which there is no known protein in the genome that encodes the enzyme that facilitates the catalysis. What can also happen in semi-automatically drafted reconstructions is that some pathways are falsely predicted and don't actually occur in the predicted manner. Because of this, a systematic verification is made in order to make sure no inconsistencies are present and that all the entries listed are correct and accurate. Furthermore, previous literature can be researched in order to support any information obtained from one of the many metabolic reaction and genome databases. This provides an added level of assurance for the reconstruction that the enzyme and the reaction it catalyzes do actually occur in the organism.
822:
and metabolites is drafted to relate sequences and function. When an uncharacterized protein is found in the genome, its amino acid sequence is first compared to those of previously characterized proteins to search for homology. When a homologous protein is found, the proteins are considered to have a common ancestor and their functions are inferred as being similar. However, the quality of a reconstruction model is dependent on its ability to accurately infer phenotype directly from sequence, so this rough estimation of protein function will not be sufficient. A number of algorithms and bioinformatics resources have been developed for refinement of sequence homology-based assignments of protein functions:
1152:
hypothesis-driven research. The results these experiments can uncover novel pathways and metabolic activities and decipher between discrepancies in previous experimental data. Information about the chemical reactions of metabolism and the genetic background of various metabolic properties (sequence to structure to function) can be utilized by genetic engineers to modify organisms to produce high value outputs whether those products be medically relevant like pharmaceuticals; high value chemical intermediates such as terpenoids and isoprenoids; or biotechnological outputs like biofuels, or polyhydroxybutyrates also known as bioplastics.
1163:, then the goal of metabolic reconstruction/simulation would be to determine the metabolites that are essential to the organism's proliferation inside of macrophages. If the proliferation cycle is inhibited, then the parasite would not continue to evade the host's immune system. A reconstruction model serves as a first step to deciphering the complicated mechanisms surrounding disease. These models can also look at the minimal genes necessary for a cell to maintain virulence. The next step would be to use the predictions and postulates generated from a reconstruction model and apply it to discover novel biological functions such as 810: 765:: An online resource for the analysis, comparison, reconstruction, and curation of genome-scale metabolic models. Users can submit genome sequences to the RAST annotation system, and the resulting annotation can be automatically piped into the ModelSEED to produce a draft metabolic model. The ModelSEED automatically constructs a network of metabolic reactions, gene-protein-reaction associations for each reaction, and a biomass composition reaction for each genome to produce a model of microbial metabolism that can be simulated using Flux Balance Analysis. 37: 415:
reconstruction. An initial fast reconstruction can be developed automatically using resources like PathoLogic or ERGO in combination with encyclopedias like MetaCyc, and then manually updated by using resources like PathwayTools. These semi-automatic methods allow for a fast draft to be created while allowing the fine tune adjustments required once new experimental data is found. It is only in this manner that the field of metabolic reconstructions will keep up with the ever-increasing numbers of annotated genomes.
681:: A bioinformatics software package that assists in the construction of pathway/genome databases such as EcoCyc. Developed by Peter Karp and associates at the SRI International Bioinformatics Research Group, Pathway Tools has several components. Its PathoLogic module takes an annotated genome for an organism and infers probable metabolic reactions and pathways to produce a new pathway/genome database. Its MetaFlux component can generate a quantitative metabolic model from that pathway/genome database using 20: 80:) into their respective reactions and enzymes, and analyzes them within the perspective of the entire network. In simplified terms, a reconstruction collects all of the relevant metabolic information of an organism and compiles it in a mathematical model. Validation and analysis of reconstructions can allow identification of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. This knowledge can then be applied to create novel 1114:
network graph from the inputs, those metabolites available to the organism from the environment, to the outputs, metabolites needed by the organism to survive. To simulate a gene knockout, the reactions enabled by the gene are removed from the network and the synthetic accessibility metric is recalculated. An increase in the total number of steps is predicted to cause lethality. Wunderlich and Mirny showed this simple, parameter-free approach predicted knockout lethality in
1048:
is much more compact. In contrast with elementary modes and extreme pathways, which use an inner description based on generating vectors of the flux cone, MMBs are using an outer description of the flux cone. This approach is based on sets of non-negativity constraints. These can be identified with irreversible reactions, and thus have a direct biochemical interpretation. One can characterize a metabolic network by MMBs and the reversible metabolic space.
818:
reconstructions to find homologous genes and reactions. These homologous genes and reactions are carried over from the known reconstructions to form the draft reconstruction of the organism of interest. Tools such as ERGO, Pathway Tools and Model SEED can compile data into pathways to form a network of metabolic and non-metabolic pathways. These networks are then verified and refined before being made into a mathematical simulation.
1070:, but in contrast to elementary mode analysis and extreme pathways, only a single solution results in the end. Linear programming is usually used to obtain the maximum potential of the objective function that you are looking at, and therefore, when using flux balance analysis, a single solution is found to the optimization problem. In a flux balance analysis approach, exchange 117:
genome-scale metabolic models. Simply put, these models correlate metabolic genes with metabolic pathways. In general, the more information about physiology, biochemistry and genetics is available for the target organism, the better the predictive capacity of the reconstructed models. Mechanically speaking, the process of reconstructing prokaryotic and eukaryotic
910:/products that are present for other reactions within the particular pathway. This is because products in one reaction go on to become the reactants for another reaction, i.e. products of one reaction can combine with other proteins or compounds to form new proteins/compounds in the presence of different enzymes or 1078:
Furthermore, this particular approach can accurately define if the reaction stoichiometry is in line with predictions by providing fluxes for the balanced reactions. Also, flux balance analysis can highlight the most effective and efficient pathway through the network in order to achieve a particular
1047:
In 2009, Larhlimi and Bockmayr presented a new approach called "minimal metabolic behaviors" for the analysis of metabolic networks. Like elementary modes or extreme pathways, these are uniquely determined by the network, and yield a complete description of the flux cone. However, the new description
1074:
are assigned to those metabolites that enter or leave the particular network only. Those metabolites that are consumed within the network are not assigned any exchange flux value. Also, the exchange fluxes along with the enzymes can have constraints ranging from a negative to positive value (ex: -10
817:
A reconstruction is built by compiling data from the resources above. Database tools such as KEGG and BioCyc can be used in conjunction with each other to find all the metabolic genes in the organism of interest. These genes will be compared to closely related organisms that have already developed
1113:
Synthetic accessibility is a simple approach to network simulation whose goal is to predict which metabolic gene knockouts are lethal. The synthetic accessibility approach uses the topology of the metabolic network to calculate the sum of the minimum number of steps needed to traverse the metabolic
1151:
Reconstructions and their corresponding models allow the formulation of hypotheses about the presence of certain enzymatic activities and the production of metabolites that can be experimentally tested, complementing the primarily discovery-based approach of traditional microbial biochemistry with
1092:
In order to perform a dynamic simulation with such a network it is necessary to construct an ordinary differential equation system that describes the rates of change in each metabolite's concentration or amount. To this end, a rate law, i.e., a kinetic equation that determines the rate of reaction
821:
The predictive aspect of a metabolic reconstruction hinges on the ability to predict the biochemical reaction catalyzed by a protein using that protein's amino acid sequence as an input, and to infer the structure of a metabolic network based on the predicted set of reactions. A network of enzymes
1030:
available for a particular metabolic network. These are the smallest sub-networks that allow a metabolic reconstruction network to function in steady state. According to Stelling (2002), elementary modes can be used to understand cellular objectives for the overall metabolic network. Furthermore,
3355:
Overbeek R, Larsen N, Walunas T, D'Souza M, Pusch G, Selkov Jr, Liolios K, Joukov V, Kaznadzey D, Anderson I, Bhattacharyya A, Burd H, Gardner W, Hanke P, Kapatral V, Mikhailova N, Vasieva O, Osterman A, Vonstein V, Fonstein M, Ivanova N, Kyrpides N. (2003) The ERGO genome analysis and discovery
414:
Because the timescale for the development of reconstructions is so recent, most reconstructions have been built manually. However, now, there are quite a few resources that allow for the semi-automatic assembly of these reconstructions that are utilized due to the time and effort necessary for a
116:
A metabolic reconstruction provides a highly mathematical, structured platform on which to understand the systems biology of metabolic pathways within an organism. The integration of biochemical metabolic pathways with rapidly available, annotated genome sequences has developed what are called
1008:, it is possible to develop a ‘solution space’ where all the feasible options fall within. Then, using a kinetic model approach, a single solution that falls within the extreme pathway solution space can be determined. Therefore, in their study, Price, Reed, and Papin, use both constraint and 891:
An initial metabolic reconstruction of a genome is typically far from perfect due to the high variability and diversity of microorganisms. Often, metabolic pathway databases such as KEGG and MetaCyc will have "holes", meaning that there is a conversion from a substrate to a product (i.e., an
905:
Any new reaction not present in the databases needs to be added to the reconstruction. This is an iterative process that cycles between the experimental phase and the coding phase. As new information is found about the target organism, the model will be adjusted to predict the metabolic and
1131:
Several inconsistencies exist between gene, enzyme, reaction databases, and published literature sources regarding the metabolic information of an organism. A reconstruction is a systematic verification and compilation of data from various sources that takes into account all of the
946:
Therefore, systematic verification of the initial reconstruction will bring to light several inconsistencies that can adversely affect the final interpretation of the reconstruction, which is to accurately comprehend the molecular mechanisms of the organism. Furthermore, the
121:
is essentially the same. Having said this, eukaryote reconstructions are typically more challenging because of the size of genomes, coverage of knowledge, and the multitude of cellular compartments. The first genome-scale metabolic model was generated in 1995 for
693:: A subscription-based service developed by Integrated Genomics. It integrates data from every level including genomic, biochemical data, literature, and high-throughput analysis into a comprehensive user friendly network of metabolic and nonmetabolic pathways. 902:, create energy costs that need to be incorporated into models. It is likely that many genes of unknown function encode proteins that repair or pre-empt metabolite damage, but most genome-scale metabolic reconstructions only include a fraction of all genes. 1083:
studies can be performed using flux balance analysis. The enzyme that correlates to the gene that needs to be removed is given a constraint value of 0. Then, the reaction that the particular enzyme catalyzes is completely removed from the analysis.
951:
step also ensures that all the reactions present in the reconstruction are properly balanced. To sum up, a reconstruction that is fully accurate can lead to greater insight about understanding the functioning of the organism of interest.
800:, which contains a massive collection of medical journals. Using the link provided by ENZYME, the search can be directed towards the organism of interest, thus recovering literature on the enzyme and its use inside of the organism. 519:: Is a collection of metabolic profiles and phylogenomic information on a taxonomically diverse range of eukaryotes which provides novel facilities for viewing and comparing the metabolic profiles between organisms. 495:). After searching for a particular enzyme on the database, this resource gives you the reaction that is catalyzed. ENZYME has direct links to other gene/enzyme/literature databases such as KEGG, BRENDA, and PUBMED. 875:. Accurate metabolic reconstructions require additional information about the reversibility and preferred physiological direction of an enzyme-catalyzed reaction which can come from databases such as 960:
A metabolic network can be broken down into a stoichiometric matrix where the rows represent the compounds of the reactions, while the columns of the matrix correspond to the reactions themselves.
863:
Once proteins have been established, more information about the enzyme structure, reactions catalyzed, substrates and products, mechanisms, and more can be acquired from databases such as
1155:
Metabolic network reconstructions and models are used to understand how an organism or parasite functions inside of the host cell. For example, if the parasite serves to compromise the
843:: Resource for the annotation of functional units in proteins. Its collection of domain models utilizes 3D structure to provide insights into sequence/structure/function relationships. 1012:
approaches to understand the human red blood cell metabolism. In conclusion, using extreme pathways, the regulatory mechanisms of a metabolic network can be studied in further detail.
713:-files) into multiple output formats. Unlike other translators, KEGGtranslator supports a plethora of output formats, is able to augment the information in translated documents (e.g., 130:, was reconstructed in 1998. Since then, many reconstructions have been formed. For a list of reconstructions that have been converted into a model and experimentally validated, see 968:
of a chemical reaction. In order to deduce what the metabolic network suggests, recent research has centered on a few approaches, such as extreme pathways, elementary mode analysis,
783:
as reaction database to link with the EC number predictions from CoReCo. Its automatic gap filling using atom map of all the reactions produce functional models ready for simulation.
992:
functions of a metabolic network. For any particular metabolic network, there is always a unique set of extreme pathways available. Furthermore, Price, Reed, and Papin, define a
1346:
Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. (July 1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd".
2211:
Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (September 2010). "High-throughput generation, optimization and analysis of genome-scale metabolic models".
2761:
Schuster S, Fell DA, Dandekar T (March 2000). "A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks".
993: 730: 921:
provide an excellent example as to why the verification step of the project needs to be performed in significant detail. During a metabolic network reconstruction of
980:
Price, Reed, and Papin, from the Palsson lab, use a method of singular value decomposition (SVD) of extreme pathways in order to understand regulation of a human
2809:
Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (November 2002). "Metabolic network structure determines key aspects of functionality and regulation".
685:. Its Navigator component provides extensive query and visualization tools, such as visualization of metabolites, pathways, and the complete metabolic network. 721:
document, and amends missing components to fragmentary reactions within the pathway to allow simulations on those. KEGGtranslator converts these files to
475:, an encyclopedia of experimentally defined metabolic pathways and enzymes, contains 2,100 metabolic pathways and 11,400 metabolic reactions (Oct 2013). 3305:"Whole-genome sequencing and genome-scale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use" 1711:"Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets" 1164: 2144:"SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools" 431:: a bioinformatics database containing information on genes, proteins, reactions, and pathways. The ‘KEGG Organisms’ section, which is divided into 1556:
Sheikh K, Förster J, Nielsen LK (January 2005). "Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus".
2666:
Price ND, Reed JL, Papin JA, Wiback SJ, Palsson BO (November 2003). "Network-based analysis of metabolic regulation in the human red blood cell".
3430: 899: 3359:
Whitaker, J.W., Letunic, I., McConkey, G.A. and Westhead, D.R. metaTIGER: a metabolic evolution resource. Nucleic Acids Res. 2009 37: D531-8.
1026:
Elementary mode analysis closely matches the approach used by extreme pathways. Similar to extreme pathways, there is always a unique set of
797: 3560: 1397:
The C. elegans Sequencing Consortium (December 1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology".
1093:
based on the concentrations of all reactants is required for each reaction. Software packages that include numerical integrators, such as
771:: algorithm for semi-automatically reconciling a pair of existing metabolic network reconstructions into a single metabolic network model. 3520: 3254:"RetSynth: determining all optimal and sub-optimal synthetic pathways that facilitate synthesis of target compounds in chassis organisms" 3152:"Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model" 935:. However, an understanding of the physiology of the organism would have revealed that due to an incomplete tricarboxylic acid pathway, 2936:"Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies" 2564:
Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (August 2004). "Comparison of network-based pathway analysis methods".
1762:"Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data" 471:
signaling pathways and regulatory network. The EcoCyc database can serve as a paradigm and model for any reconstruction. Additionally,
3477: 60:, allows for an in-depth insight into the molecular mechanisms of a particular organism. In particular, these models correlate the 3688: 718: 706: 453:
Is a collection of 3,000 pathway/genome databases (as of Oct 2013), with each database dedicated to one organism. For example,
3445: 515: 1138:
Metabolic comparisons can be performed between various organisms of the same species as well as between different organisms.
511:: A knowledge base of biochemically, genetically, and genomically structured genome-scale metabolic network reconstructions. 3724: 906:
phenotypical output of the cell. The presence or absence of certain reactions of the metabolism will affect the amount of
851:: Provides functional analysis of proteins by classifying them into families and predicting domains and important sites. 1254:
Francke C, Siezen RJ, Teusink B (November 2005). "Reconstructing the metabolic network of a bacterium from its genome".
779:: algorithm for automatic reconstruction of metabolic models of related species. The first version of the software used 1039:
when evaluating whether a particular metabolic route or network is feasible and likely for a set of proteins/enzymes.
3216: 2435: 492: 3770: 3765: 3652: 3513: 3384: 3450: 2483:
Linster CL, Van Schaftingen E, Hanson AD (February 2013). "Metabolite damage and its repair or pre-emption".
2256:"MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis" 1450:"The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities" 1180: 738: 1836:"Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction" 876: 3621: 3575: 3570: 3537: 3466: 3425: 1220: 503:: A comprehensive enzyme database that allows for an enzyme to be searched by name, EC number, or organism. 2307:"Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species" 2469: 2142:
Chaouiya C, Bérenguier D, Keating SM, Naldi A, van Iersel MP, Rodriguez N, et al. (December 2013).
32:
citric acid cycle. Enzymes and metabolites are the red dots and interactions between them are the lines.
3678: 3506: 1200: 3379: 3550: 484: 3238: 2457: 1985:"Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology" 3775: 3596: 2601:"Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods" 997: 939:
does not actually produce succinyl-CoA, and the correct reactant for that part of the reaction was
108:
seeks to mathematically simulate metabolism in genome-scale reconstructions of metabolic networks.
3435: 2987:"SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks" 3780: 2934:
Dräger A, Kronfeld M, Ziller MJ, Supper J, Planatscher H, Magnus JB, et al. (January 2009).
1205: 923: 697: 3703: 1983:
Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, et al. (January 2010).
1936:"BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree" 1934:
Norsigian CJ, Pusarla N, McConn JL, Yurkovich JT, Dräger A, Palsson BO, King Z (January 2020).
1098: 985: 36: 3093:
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. (January 2010).
2364:
Castillo S, Barth D, Arvas M, Pakula TM, Pitkänen E, Blomberg P, et al. (November 2016).
1102: 3729: 3673: 1190: 1063: 1057: 969: 965: 682: 105: 2422:
Ivanova N, Lykidis A (2009). "Metabolic Reconstruction". (3rd ed.). pp. 607–621.
3683: 3529: 3106: 3049: 2818: 2675: 2318: 2165: 1885:
de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (February 2010).
1663: 1461: 1406: 1355: 809: 28: 3402:- provides an open source Java API to the pathway tool BioCyc to extract Metabolic graphs. 2536: 2519: 2305:
Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, et al. (February 2014).
1652:"Global reconstruction of the human metabolic network based on genomic and bibliomic data" 8: 3790: 3626: 3482: 2095:"KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats" 1803:"Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion" 1185: 3110: 3053: 2903:"A new constraint-based description of the steady-state flux cone of metabolic networks" 2822: 2679: 2322: 2169: 1667: 1465: 1410: 1359: 131: 3719: 3616: 3606: 3329: 3304: 3280: 3253: 3226: 3127: 3094: 3070: 3037: 3013: 2986: 2962: 2935: 2842: 2786: 2711:"Extreme pathway lengths and reaction participation in genome-scale metabolic networks" 2625: 2600: 2445: 2396: 2365: 2341: 2306: 2282: 2255: 2236: 2188: 2155: 2143: 2119: 2094: 2070: 2043: 2019: 1996: 1984: 1960: 1935: 1911: 1887:"AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis" 1886: 1862: 1835: 1737: 1710: 1686: 1651: 1650:
Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, et al. (February 2007).
1581: 1430: 1379: 1320: 1295: 1105:
allows automatic creation of appropriate rate laws for all reactions with the network.
1067: 895: 3487: 3176: 3151: 2735: 2710: 2687: 1627: 1600: 1533: 1508: 3785: 3631: 3611: 3591: 3472: 3334: 3285: 3212: 3208: 3181: 3167: 3132: 3075: 3018: 2967: 2883: 2834: 2778: 2740: 2691: 2630: 2581: 2541: 2500: 2431: 2427: 2401: 2346: 2287: 2228: 2193: 2124: 2075: 2024: 1965: 1916: 1867: 1783: 1742: 1691: 1632: 1601:"Computational prediction of human metabolic pathways from the complete human genome" 1573: 1538: 1489: 1484: 1449: 1422: 1371: 1325: 1271: 1215: 1210: 1122:
as well as elementary mode analysis and flux balance analysis in a variety of media.
118: 77: 23: 3303:
Enuh BM, Nural Yaman B, Tarzi C, Aytar Çelik P, Mutlu MB, Angione C (October 2022).
2110: 1585: 1434: 1383: 3744: 3739: 3657: 3324: 3316: 3275: 3265: 3204: 3171: 3163: 3122: 3114: 3065: 3057: 3008: 2998: 2957: 2947: 2914: 2873: 2846: 2826: 2790: 2770: 2730: 2722: 2683: 2620: 2612: 2573: 2531: 2492: 2423: 2391: 2381: 2336: 2326: 2277: 2267: 2240: 2220: 2183: 2173: 2114: 2106: 2065: 2055: 2014: 2006: 1955: 1947: 1906: 1898: 1857: 1847: 1814: 1773: 1732: 1722: 1681: 1671: 1622: 1612: 1565: 1528: 1520: 1479: 1469: 1414: 1363: 1315: 1307: 1263: 1027: 1021: 463: 42: 2577: 1418: 3647: 3555: 3038:"Using the topology of metabolic networks to predict viability of mutant strains" 2331: 3061: 1296:"A protocol for generating a high-quality genome-scale metabolic reconstruction" 827: 813:
This is a visual representation of the metabolic network reconstruction process.
3734: 3698: 3545: 3469:
at the University of Oxford, Biochemical reaction pathway inference techniques.
1884: 1656:
Proceedings of the National Academy of Sciences of the United States of America
1509:"Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network" 1454:
Proceedings of the National Academy of Sciences of the United States of America
1036: 1009: 1005: 981: 931:
was one of the reactants for a reaction that was a part of the biosynthesis of
458: 19: 3270: 2919: 2902: 2878: 2862:"gEFM: An Algorithm for Computing Elementary Flux Modes Using Graph Traversal" 2861: 2386: 1267: 3759: 3693: 3601: 1168: 1156: 1135:
The combination of relevant metabolic and genomic information of an organism.
1080: 1032: 961: 81: 3463:
The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.
3118: 2272: 2178: 1676: 1474: 1367: 3440: 3338: 3289: 3185: 3136: 3079: 3022: 3003: 2971: 2887: 2838: 2782: 2744: 2695: 2634: 2585: 2545: 2504: 2405: 2350: 2291: 2232: 2197: 2128: 2079: 2060: 2028: 1969: 1920: 1871: 1852: 1787: 1778: 1761: 1746: 1727: 1695: 1636: 1617: 1599:
Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (June 2004).
1577: 1542: 1493: 1329: 1311: 1275: 1225: 1001: 989: 928: 872: 677: 2952: 2496: 1951: 1902: 1426: 1375: 2010: 1160: 436: 2830: 2616: 1760:
Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (September 2007).
701:: an easy-to-use stand-alone application that can visualize and convert 472: 3498: 3399: 948: 940: 932: 832: 432: 73: 65: 3369: 3320: 3252:
Whitmore LS, Nguyen B, Pinar A, George A, Hudson CM (September 2019).
2726: 2254:
Chindelevitch L, Stanley S, Hung D, Regev A, Berger B (January 2012).
1819: 1802: 1569: 1524: 1062:
A different technique to simulate the metabolic network is to perform
689: 2224: 1195: 911: 907: 69: 1396: 775: 3492: 2647: 2001: 839: 3390: 2774: 2160: 1834:
Raghunathan A, Reed J, Shin S, Palsson B, Daefler S (April 2009).
1507:
Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (February 2003).
499: 2866:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
2044:"Precise generation of systems biology models from KEGG pathways" 847: 742: 87:
In general, the process to build a reconstruction is as follows:
2808: 1982: 898:
and spontaneous chemical reactions can damage metabolites. This
3302: 2985:
Dräger A, Hassis N, Supper J, Schröder A, Zell A (April 2008).
2517: 2042:
Wrzodek C, Büchel F, Ruff M, Dräger A, Zell A (February 2013).
1933: 1094: 726: 714: 488: 61: 3415: 2518:
Hanson AD, Henry CS, Fiehn O, de Crécy-Lagard V (April 2016).
2141: 1087: 443:
information can be searched by typing in the enzyme of choice.
97:
Convert model into a mathematical/computational representation
3092: 2253: 754: 2482: 1345: 479: 26:
showing interactions between enzymes and metabolites in the
2520:"Metabolite Damage and Metabolite Damage Control in Plants" 1071: 972:, and a number of other constraint-based modeling methods. 780: 734: 722: 702: 3460: 2984: 2933: 1833: 1649: 880: 868: 3395: 3374: 3199:
Ivanova A, Lykidis A (2009). "Metabolic Reconstruction".
2210: 855: 750: 746: 710: 440: 3420: 2363: 859:: Database of known and predicted protein interactions. 804: 761: 524:
This table quickly compares the scope of each database.
507: 111: 3455: 3245: 3086: 2563: 2041: 461:
database on the genome and metabolic reconstruction of
3410: 2304: 1759: 1506: 864: 831:: Identifies eukaryotic orthologs by looking only at 426: 3405: 2598: 1598: 1042: 454: 450: 132:
http://sbrg.ucsd.edu/InSilicoOrganisms/OtherOrganisms
3149: 2760: 2665: 1555: 1253: 955: 3150:Fong SS, Marciniak JY, Palsson BØ (November 2003). 2599:Lewis NE, Nagarajan H, Palsson BO (February 2012). 1341: 1339: 1147:
Use in metabolic engineering for high value outputs
1125: 2859: 2708: 2092: 3757: 3467:Systems Analysis, Modelling and Prediction Group 2900: 2804: 2802: 2800: 2756: 2754: 2709:Papin JA, Price ND, Palsson BØ (December 2002). 1807:Journal of Chemical Technology and Biotechnology 1336: 900:metabolite damage, and its repair or pre-emption 439:, encompasses many organisms for which gene and 100:Evaluate and debug model through experimentation 3035: 2417: 2415: 1708: 670: 3198: 2421: 1447: 3514: 2894: 2797: 2751: 2661: 2659: 2657: 2655: 2559: 2557: 2555: 1927: 1293: 1289: 1287: 1285: 1249: 1247: 1245: 1243: 1241: 798:National Center for Biotechnology Information 796:: This is an online library developed by the 2412: 1031:elementary mode analysis takes into account 737:, SBML with qualitative modeling extension, 404: 2093:Wrzodek C, Dräger A, Zell A (August 2011). 1088:Dynamic simulation and parameter estimation 1015: 3521: 3507: 2853: 2702: 2652: 2552: 2204: 1282: 1238: 1108: 3356:system. Nucleic Acids Res. 31(1):164-71 3328: 3279: 3269: 3175: 3143: 3126: 3069: 3036:Wunderlich Z, Mirny LA (September 2006). 3012: 3002: 2961: 2951: 2918: 2877: 2734: 2648:CoBRA Methods - Constraint-based analysis 2624: 2535: 2395: 2385: 2340: 2330: 2281: 2271: 2187: 2177: 2159: 2118: 2069: 2059: 2018: 2000: 1976: 1959: 1910: 1861: 1851: 1818: 1777: 1736: 1726: 1685: 1675: 1626: 1616: 1532: 1483: 1473: 1319: 425:Kyoto Encyclopedia of Genes and Genomes ( 3528: 3483:Cellnet analyzer from Klamt and von Kamp 1051: 984:metabolism. Extreme pathways are convex 808: 35: 18: 1592: 964:is a quantitative relationship between 787: 3758: 3689:Construction and management simulation 3495:A graph-based tool for EFM computation 3431:SBRI Bioinformatics Tools and Software 1390: 3502: 2537:10.1146/annurev-arplant-043015-111648 1294:Thiele I, Palsson BØ (January 2010). 805:Methodology to draft a reconstruction 717:annotations) beyond the scope of the 467:, including thorough descriptions of 126:. The first multicellular organism, 112:Genome-scale metabolic reconstruction 3725:List of computer simulation software 2860:Ullah E, Aeron S, Hassoun S (2015). 2370:built by comparative reconstruction" 1709:Jamshidi N, Palsson BØ (June 2007). 1766:The Journal of Biological Chemistry 1448:Edwards JS, Palsson BO (May 2000). 1144:Predict adaptive evolution outcomes 975: 886: 13: 3349: 1800: 1043:Minimal metabolic behaviors (MMBs) 14: 3802: 3363: 3251: 3095:"The genetic landscape of a cell" 2366:"Whole-genome metabolic model of 1079:objective function. In addition, 956:Metabolic stoichiometric analysis 523: 493:Swiss Institute of Bioinformatics 3473:efmtool provided by Marco Terzer 3209:10.1016/B978-012373944-5.00010-9 3168:10.1128/JB.185.21.6400-6408.2003 2428:10.1016/B978-012373944-5.00010-9 1126:Applications of a reconstruction 54:metabolic network reconstruction 3653:Integrated assessment modelling 3387:Case Western Reserve University 3296: 3192: 3029: 2978: 2927: 2901:Larhlimi A, Bockmayr A (2009). 2641: 2592: 2511: 2476: 2357: 2298: 2247: 2135: 2086: 2035: 1878: 1827: 1794: 1753: 1702: 1141:Analysis of synthetic lethality 68:. A reconstruction breaks down 2668:Journal of Theoretical Biology 2524:Annual Review of Plant Biology 1643: 1549: 1500: 1441: 1: 2688:10.1016/s0022-5193(03)00237-6 2578:10.1016/j.tibtech.2004.06.010 2111:10.1093/bioinformatics/btr377 1419:10.1126/science.282.5396.2012 1231: 1181:Computational systems biology 3622:Hydrological transport model 3576:Protein structure prediction 3571:Modelling biological systems 3201:Encyclopedia of Microbiology 2907:Discrete Applied Mathematics 2605:Nature Reviews. Microbiology 2332:10.1371/journal.pcbi.1003465 1221:Biochemical systems equation 996:, where through the help of 671:Tools for metabolic modeling 418: 409: 40:Metabolic network model for 16:Form of biological modelling 7: 3566:Metabolic network modelling 3062:10.1529/biophysj.105.080572 1989:Briefings in Bioinformatics 1174: 491:proteonomics server of the 447:BioCyc, EcoCyc, and MetaCyc 50:Metabolic network modelling 10: 3807: 3679:Business process modelling 3451:Stanford Genomic Resources 2374:Biotechnology for Biofuels 2311:PLOS Computational Biology 1201:Metabolic control analysis 1055: 1019: 284:Mycobacterium tuberculosis 58:metabolic pathway analysis 3712: 3666: 3640: 3584: 3551:Chemical process modeling 3536: 3271:10.1186/s12859-019-3025-9 2920:10.1016/j.dam.2008.06.039 2879:10.1109/TCBB.2015.2430344 2387:10.1186/s13068-016-0665-0 1268:10.1016/j.tim.2005.09.001 994:constraint-based approach 531: 405:Drafting a reconstruction 332:Synechocystis sp. PCC6803 3597:Chemical transport model 3561:Infectious disease model 1016:Elementary mode analysis 927:, the model showed that 212:Saccharomyces cerevisiae 3156:Journal of Bacteriology 3119:10.1126/science.1180823 2566:Trends in Biotechnology 2485:Nature Chemical Biology 2273:10.1186/gb-2012-13-1-r6 2179:10.1186/1752-0509-7-135 1677:10.1073/pnas.0610772104 1475:10.1073/pnas.97.10.5528 1368:10.1126/science.7542800 1206:Metabolic flux analysis 1109:Synthetic accessibility 937:Lactobacillus plantarum 924:Lactobacillus plantarum 3771:Biomedical engineering 3766:Biological engineering 3004:10.1186/1752-0509-2-39 2061:10.1186/1752-0509-7-15 1940:Nucleic Acids Research 1853:10.1186/1752-0509-3-38 1779:10.1074/jbc.M703759200 1728:10.1186/1752-0509-1-26 1618:10.1186/gb-2004-6-1-r2 1558:Biotechnology Progress 1312:10.1038/nprot.2009.203 1256:Trends in Microbiology 814: 487:database (part of the 356:Salmonella typhimurium 164:Haemophilus influenzae 155:Date of reconstruction 124:Haemophilus influenzae 104:The related method of 91:Draft a reconstruction 46: 33: 3730:Mathematical modeling 3674:Biopsychosocial model 2953:10.1186/1752-0509-3-5 2497:10.1038/nchembio.1141 1903:10.1104/pp.109.148817 1801:Fu P (October 2008). 1191:Flux balance analysis 1064:flux balance analysis 1058:Flux balance analysis 1052:Flux balance analysis 970:flux balance analysis 812: 683:flux-balance analysis 457:is a highly detailed 106:flux balance analysis 39: 22: 3684:Catastrophe modeling 3530:Scientific modelling 3203:. pp. 607–621. 2763:Nature Biotechnology 2213:Nature Biotechnology 788:Tools for literature 380:Arabidopsis thaliana 29:Arabidopsis thaliana 3627:Modular Ocean Model 3456:Pathway Hunter Tool 3111:2010Sci...327..425C 3054:2006BpJ....91.2304W 3042:Biophysical Journal 2991:BMC Systems Biology 2940:BMC Systems Biology 2831:10.1038/nature01166 2823:2002Natur.420..190S 2680:2003JThBi.225..185P 2617:10.1038/nrmicro2737 2323:2014PLSCB..10E3465P 2170:2013arXiv1309.1910C 2148:BMC Systems Biology 2048:BMC Systems Biology 1952:10.1093/nar/gkz1054 1840:BMC Systems Biology 1772:(39): 28791–28799. 1715:BMC Systems Biology 1668:2007PNAS..104.1777D 1466:2000PNAS...97.5528E 1411:1998Sci...282.2012. 1405:(5396): 2012–2018. 1360:1995Sci...269..496F 1186:Computer simulation 1066:. This method uses 525: 3720:Data visualization 3704:Input–output model 3617:Hydrological model 3607:Geologic modelling 3258:BMC Bioinformatics 2368:Trichoderma reesei 2011:10.1093/bib/bbp043 1068:linear programming 896:Enzyme promiscuity 815: 119:metabolic networks 72:pathways (such as 47: 34: 3753: 3752: 3632:Wildfire modeling 3612:Groundwater model 3592:Atmospheric model 3321:10.1002/mbo3.1328 3162:(21): 6400–6408. 3105:(5964): 425–431. 2913:(10): 2257–2266. 2817:(6912): 190–193. 2727:10.1101/gr.327702 2721:(12): 1889–1900. 2464:Missing or empty 2105:(16): 2314–2315. 1946:(D1): D402–D406. 1820:10.1002/jctb.2065 1570:10.1021/bp0498138 1525:10.1101/gr.234503 1460:(10): 5528–5533. 1354:(5223): 496–512. 1216:Metabolic pathway 1211:Metabolic network 668: 667: 402: 401: 308:Bacillus subtilis 78:citric acid cycle 24:Metabolic network 3798: 3745:Visual analytics 3740:Systems thinking 3658:Population model 3523: 3516: 3509: 3500: 3499: 3343: 3342: 3332: 3309:MicrobiologyOpen 3300: 3294: 3293: 3283: 3273: 3249: 3243: 3242: 3236: 3232: 3230: 3222: 3196: 3190: 3189: 3179: 3147: 3141: 3140: 3130: 3090: 3084: 3083: 3073: 3048:(6): 2304–2311. 3033: 3027: 3026: 3016: 3006: 2982: 2976: 2975: 2965: 2955: 2931: 2925: 2924: 2922: 2898: 2892: 2891: 2881: 2857: 2851: 2850: 2806: 2795: 2794: 2758: 2749: 2748: 2738: 2706: 2700: 2699: 2663: 2650: 2645: 2639: 2638: 2628: 2596: 2590: 2589: 2561: 2550: 2549: 2539: 2515: 2509: 2508: 2480: 2474: 2473: 2467: 2461: 2455: 2451: 2449: 2441: 2419: 2410: 2409: 2399: 2389: 2361: 2355: 2354: 2344: 2334: 2302: 2296: 2295: 2285: 2275: 2251: 2245: 2244: 2225:10.1038/nbt.1672 2208: 2202: 2201: 2191: 2181: 2163: 2139: 2133: 2132: 2122: 2090: 2084: 2083: 2073: 2063: 2039: 2033: 2032: 2022: 2004: 1980: 1974: 1973: 1963: 1931: 1925: 1924: 1914: 1891:Plant Physiology 1882: 1876: 1875: 1865: 1855: 1831: 1825: 1824: 1822: 1798: 1792: 1791: 1781: 1757: 1751: 1750: 1740: 1730: 1706: 1700: 1699: 1689: 1679: 1662:(6): 1777–1782. 1647: 1641: 1640: 1630: 1620: 1596: 1590: 1589: 1553: 1547: 1546: 1536: 1504: 1498: 1497: 1487: 1477: 1445: 1439: 1438: 1394: 1388: 1387: 1343: 1334: 1333: 1323: 1300:Nature Protocols 1291: 1280: 1279: 1251: 1165:drug-engineering 1028:elementary modes 1022:Elementary modes 988:that consist of 976:Extreme pathways 887:Model refinement 526: 522: 464:Escherichia coli 188:Escherichia coli 137: 136: 94:Refine the model 52:, also known as 43:Escherichia coli 3806: 3805: 3801: 3800: 3799: 3797: 3796: 3795: 3776:Systems biology 3756: 3755: 3754: 3749: 3708: 3662: 3648:Energy modeling 3636: 3580: 3556:Ecosystem model 3532: 3527: 3366: 3352: 3350:Further reading 3347: 3346: 3301: 3297: 3250: 3246: 3234: 3233: 3224: 3223: 3219: 3197: 3193: 3148: 3144: 3091: 3087: 3034: 3030: 2983: 2979: 2932: 2928: 2899: 2895: 2858: 2854: 2807: 2798: 2759: 2752: 2715:Genome Research 2707: 2703: 2664: 2653: 2646: 2642: 2597: 2593: 2562: 2553: 2516: 2512: 2481: 2477: 2465: 2463: 2453: 2452: 2443: 2442: 2438: 2420: 2413: 2362: 2358: 2317:(2): e1003465. 2303: 2299: 2252: 2248: 2209: 2205: 2140: 2136: 2091: 2087: 2040: 2036: 1981: 1977: 1932: 1928: 1883: 1879: 1832: 1828: 1799: 1795: 1758: 1754: 1707: 1703: 1648: 1644: 1597: 1593: 1554: 1550: 1513:Genome Research 1505: 1501: 1446: 1442: 1395: 1391: 1344: 1337: 1292: 1283: 1262:(11): 550–558. 1252: 1239: 1234: 1177: 1128: 1111: 1090: 1060: 1054: 1045: 1033:stoichiometrics 1024: 1018: 978: 958: 889: 807: 790: 673: 421: 412: 407: 143:Genes in Genome 114: 64:with molecular 17: 12: 11: 5: 3804: 3794: 3793: 3788: 3783: 3781:Bioinformatics 3778: 3773: 3768: 3751: 3750: 3748: 3747: 3742: 3737: 3735:Systems theory 3732: 3727: 3722: 3716: 3714: 3713:Related topics 3710: 3709: 3707: 3706: 3701: 3699:Economic model 3696: 3691: 3686: 3681: 3676: 3670: 3668: 3664: 3663: 3661: 3660: 3655: 3650: 3644: 3642: 3641:Sustainability 3638: 3637: 3635: 3634: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3594: 3588: 3586: 3582: 3581: 3579: 3578: 3573: 3568: 3563: 3558: 3553: 3548: 3546:Cellular model 3542: 3540: 3534: 3533: 3526: 3525: 3518: 3511: 3503: 3497: 3496: 3490: 3485: 3480: 3475: 3470: 3464: 3458: 3453: 3448: 3443: 3438: 3433: 3428: 3423: 3418: 3413: 3408: 3403: 3393: 3388: 3382: 3377: 3372: 3365: 3364:External links 3362: 3361: 3360: 3357: 3351: 3348: 3345: 3344: 3295: 3244: 3235:|journal= 3217: 3191: 3142: 3085: 3028: 2977: 2926: 2893: 2872:(1): 122–134. 2852: 2796: 2769:(3): 326–332. 2750: 2701: 2674:(2): 185–194. 2651: 2640: 2611:(4): 291–305. 2591: 2572:(8): 400–405. 2551: 2510: 2475: 2454:|journal= 2436: 2411: 2356: 2297: 2260:Genome Biology 2246: 2219:(9): 977–982. 2203: 2134: 2099:Bioinformatics 2085: 2034: 1975: 1926: 1897:(2): 579–589. 1877: 1826: 1813:(4): 473–483. 1793: 1752: 1701: 1642: 1605:Genome Biology 1591: 1564:(1): 112–121. 1548: 1519:(2): 244–253. 1499: 1440: 1389: 1335: 1281: 1236: 1235: 1233: 1230: 1229: 1228: 1223: 1218: 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1176: 1173: 1149: 1148: 1145: 1142: 1139: 1136: 1133: 1132:discrepancies. 1127: 1124: 1110: 1107: 1089: 1086: 1056:Main article: 1053: 1050: 1044: 1041: 1037:thermodynamics 1020:Main article: 1017: 1014: 1006:reaction rates 982:red blood cell 977: 974: 957: 954: 888: 885: 861: 860: 852: 844: 836: 806: 803: 802: 801: 789: 786: 785: 784: 772: 766: 758: 698:KEGGtranslator 694: 686: 672: 669: 666: 665: 662: 659: 657: 654: 652: 648: 647: 644: 642: 639: 637: 634: 630: 629: 626: 624: 621: 619: 616: 612: 611: 608: 605: 602: 600: 597: 593: 592: 589: 586: 583: 580: 577: 573: 572: 569: 566: 563: 560: 557: 553: 552: 549: 546: 543: 540: 537: 534: 533: 530: 521: 520: 512: 504: 496: 476: 459:bioinformatics 444: 420: 417: 411: 408: 406: 403: 400: 399: 397: 394: 391: 388: 385: 382: 376: 375: 373: 370: 367: 364: 361: 358: 352: 351: 349: 346: 343: 340: 337: 334: 328: 327: 325: 324:September 2007 322: 319: 316: 313: 310: 304: 303: 301: 298: 295: 292: 289: 286: 280: 279: 277: 274: 271: 268: 265: 262: 256: 255: 253: 250: 247: 244: 241: 238: 232: 231: 229: 226: 223: 220: 217: 214: 208: 207: 205: 202: 199: 196: 193: 190: 184: 183: 181: 178: 175: 172: 169: 166: 160: 159: 156: 153: 150: 147: 146:Genes in Model 144: 141: 113: 110: 102: 101: 98: 95: 92: 15: 9: 6: 4: 3: 2: 3803: 3792: 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3763: 3761: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3717: 3715: 3711: 3705: 3702: 3700: 3697: 3695: 3694:Crime mapping 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3671: 3669: 3665: 3659: 3656: 3654: 3651: 3649: 3646: 3645: 3643: 3639: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3602:Climate model 3600: 3598: 3595: 3593: 3590: 3589: 3587: 3585:Environmental 3583: 3577: 3574: 3572: 3569: 3567: 3564: 3562: 3559: 3557: 3554: 3552: 3549: 3547: 3544: 3543: 3541: 3539: 3535: 3531: 3524: 3519: 3517: 3512: 3510: 3505: 3504: 3501: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3468: 3465: 3462: 3459: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3441:Pathway Tools 3439: 3437: 3434: 3432: 3429: 3427: 3424: 3422: 3419: 3417: 3414: 3412: 3409: 3407: 3404: 3401: 3397: 3394: 3392: 3389: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3367: 3358: 3354: 3353: 3340: 3336: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3299: 3291: 3287: 3282: 3277: 3272: 3267: 3263: 3259: 3255: 3248: 3240: 3228: 3220: 3218:9780123739445 3214: 3210: 3206: 3202: 3195: 3187: 3183: 3178: 3173: 3169: 3165: 3161: 3157: 3153: 3146: 3138: 3134: 3129: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3096: 3089: 3081: 3077: 3072: 3067: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3032: 3024: 3020: 3015: 3010: 3005: 3000: 2996: 2992: 2988: 2981: 2973: 2969: 2964: 2959: 2954: 2949: 2945: 2941: 2937: 2930: 2921: 2916: 2912: 2908: 2904: 2897: 2889: 2885: 2880: 2875: 2871: 2867: 2863: 2856: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2805: 2803: 2801: 2792: 2788: 2784: 2780: 2776: 2775:10.1038/73786 2772: 2768: 2764: 2757: 2755: 2746: 2742: 2737: 2732: 2728: 2724: 2720: 2716: 2712: 2705: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2662: 2660: 2658: 2656: 2649: 2644: 2636: 2632: 2627: 2622: 2618: 2614: 2610: 2606: 2602: 2595: 2587: 2583: 2579: 2575: 2571: 2567: 2560: 2558: 2556: 2547: 2543: 2538: 2533: 2529: 2525: 2521: 2514: 2506: 2502: 2498: 2494: 2490: 2486: 2479: 2471: 2459: 2447: 2439: 2437:9780123739445 2433: 2429: 2425: 2418: 2416: 2407: 2403: 2398: 2393: 2388: 2383: 2379: 2375: 2371: 2369: 2360: 2352: 2348: 2343: 2338: 2333: 2328: 2324: 2320: 2316: 2312: 2308: 2301: 2293: 2289: 2284: 2279: 2274: 2269: 2265: 2261: 2257: 2250: 2242: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2207: 2199: 2195: 2190: 2185: 2180: 2175: 2171: 2167: 2162: 2157: 2153: 2149: 2145: 2138: 2130: 2126: 2121: 2116: 2112: 2108: 2104: 2100: 2096: 2089: 2081: 2077: 2072: 2067: 2062: 2057: 2053: 2049: 2045: 2038: 2030: 2026: 2021: 2016: 2012: 2008: 2003: 1998: 1994: 1990: 1986: 1979: 1971: 1967: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1930: 1922: 1918: 1913: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1873: 1869: 1864: 1859: 1854: 1849: 1845: 1841: 1837: 1830: 1821: 1816: 1812: 1808: 1804: 1797: 1789: 1785: 1780: 1775: 1771: 1767: 1763: 1756: 1748: 1744: 1739: 1734: 1729: 1724: 1720: 1716: 1712: 1705: 1697: 1693: 1688: 1683: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1638: 1634: 1629: 1624: 1619: 1614: 1610: 1606: 1602: 1595: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1552: 1544: 1540: 1535: 1530: 1526: 1522: 1518: 1514: 1510: 1503: 1495: 1491: 1486: 1481: 1476: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1393: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1342: 1340: 1331: 1327: 1322: 1317: 1313: 1309: 1306:(1): 93–121. 1305: 1301: 1297: 1290: 1288: 1286: 1277: 1273: 1269: 1265: 1261: 1257: 1250: 1248: 1246: 1244: 1242: 1237: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1178: 1172: 1170: 1169:drug delivery 1166: 1162: 1158: 1157:immune system 1153: 1146: 1143: 1140: 1137: 1134: 1130: 1129: 1123: 1121: 1120:S. cerevisiae 1117: 1106: 1104: 1100: 1099:SBMLsimulator 1096: 1085: 1082: 1081:gene knockout 1076: 1073: 1069: 1065: 1059: 1049: 1040: 1038: 1034: 1029: 1023: 1013: 1011: 1007: 1003: 999: 995: 991: 987: 986:basis vectors 983: 973: 971: 967: 963: 962:Stoichiometry 953: 950: 944: 942: 938: 934: 930: 926: 925: 920: 915: 913: 909: 903: 901: 897: 893: 884: 882: 878: 874: 870: 866: 858: 857: 853: 850: 849: 845: 842: 841: 837: 834: 830: 829: 825: 824: 823: 819: 811: 799: 795: 792: 791: 782: 778: 777: 773: 770: 767: 764: 763: 759: 756: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 704: 700: 699: 695: 692: 691: 687: 684: 680: 679: 678:Pathway Tools 675: 674: 663: 660: 658: 655: 653: 650: 649: 645: 643: 640: 638: 635: 632: 631: 627: 625: 622: 620: 617: 614: 613: 609: 606: 603: 601: 598: 595: 594: 590: 587: 584: 581: 578: 575: 574: 570: 567: 564: 561: 558: 555: 554: 550: 547: 544: 541: 538: 536: 535: 528: 527: 518: 517: 513: 510: 509: 505: 502: 501: 497: 494: 490: 486: 482: 481: 477: 474: 470: 466: 465: 460: 456: 452: 448: 445: 442: 438: 434: 430: 428: 423: 422: 416: 398: 396:February 2010 395: 392: 389: 386: 383: 381: 378: 377: 374: 371: 368: 365: 362: 359: 357: 354: 353: 350: 347: 344: 341: 338: 335: 333: 330: 329: 326: 323: 320: 317: 314: 311: 309: 306: 305: 302: 299: 296: 293: 290: 287: 285: 282: 281: 278: 275: 272: 269: 266: 263: 261: 258: 257: 254: 251: 248: 245: 242: 239: 237: 234: 233: 230: 228:February 2003 227: 224: 221: 218: 215: 213: 210: 209: 206: 203: 200: 197: 194: 191: 189: 186: 185: 182: 179: 176: 173: 170: 167: 165: 162: 161: 157: 154: 151: 148: 145: 142: 139: 138: 135: 133: 129: 125: 120: 109: 107: 99: 96: 93: 90: 89: 88: 85: 83: 82:biotechnology 79: 75: 71: 67: 63: 59: 55: 51: 45: 44: 38: 31: 30: 25: 21: 3565: 3478:SBMLsqueezer 3315:(5): e1328. 3312: 3308: 3298: 3261: 3257: 3247: 3200: 3194: 3159: 3155: 3145: 3102: 3098: 3088: 3045: 3041: 3031: 2994: 2990: 2980: 2943: 2939: 2929: 2910: 2906: 2896: 2869: 2865: 2855: 2814: 2810: 2766: 2762: 2718: 2714: 2704: 2671: 2667: 2643: 2608: 2604: 2594: 2569: 2565: 2527: 2523: 2513: 2491:(2): 72–80. 2488: 2484: 2478: 2466:|title= 2377: 2373: 2367: 2359: 2314: 2310: 2300: 2263: 2259: 2249: 2216: 2212: 2206: 2151: 2147: 2137: 2102: 2098: 2088: 2051: 2047: 2037: 1995:(1): 40–79. 1992: 1988: 1978: 1943: 1939: 1929: 1894: 1890: 1880: 1843: 1839: 1829: 1810: 1806: 1796: 1769: 1765: 1755: 1718: 1714: 1704: 1659: 1655: 1645: 1608: 1604: 1594: 1561: 1557: 1551: 1516: 1512: 1502: 1457: 1453: 1443: 1402: 1398: 1392: 1351: 1347: 1303: 1299: 1259: 1255: 1226:Metagenomics 1171:techniques. 1154: 1150: 1119: 1115: 1112: 1103:SBMLsqueezer 1091: 1077: 1061: 1046: 1025: 1004:and maximum 1002:mass balance 990:steady state 979: 959: 945: 936: 929:succinyl-CoA 922: 918: 916: 904: 894: 890: 862: 854: 846: 838: 826: 820: 816: 793: 774: 768: 760: 696: 688: 676: 551:Metabolites 514: 506: 498: 485:nomenclature 483:: An enzyme 478: 468: 462: 446: 424: 413: 379: 355: 348:October 2008 331: 307: 283: 276:January 2007 260:Homo sapiens 259: 252:January 2005 236:Mus musculus 235: 211: 187: 163: 127: 123: 115: 103: 86: 57: 53: 49: 48: 41: 27: 2530:: 131–152. 1161:macrophages 998:constraints 833:in-paralogs 437:prokaryotes 152:Metabolites 3791:Metabolism 3760:Categories 3538:Biological 3264:(1): 461. 2154:(1): 135. 2002:1510.03964 1232:References 1159:by lysing 966:substrates 949:simulation 941:acetyl-CoA 933:methionine 883:database. 828:InParanoid 709:formatted 433:eukaryotes 372:April 2009 158:Reference 128:C. elegans 74:glycolysis 66:physiology 3446:metaTIGER 3421:ModelSEED 3237:ignored ( 3227:cite book 2997:(1): 39. 2456:ignored ( 2446:cite book 2266:(1): r6. 2161:1309.1910 2054:(1): 15. 1611:(1): R2. 1196:Fluxomics 912:catalysts 908:reactants 769:MetaMerge 762:ModelSEED 545:Reactions 516:metaTIGER 419:Databases 410:Resources 300:June 2007 180:June 1999 149:Reactions 70:metabolic 3786:Genomics 3385:PathCase 3339:36314754 3290:31500573 3186:14563875 3137:20093466 3080:16782788 3023:18447902 2972:19144170 2946:(5): 5. 2888:26886737 2839:12432396 2783:10700151 2745:12466293 2696:14575652 2635:22367118 2586:15283984 2546:26667673 2505:23334546 2406:27895706 2351:24516375 2292:22292986 2233:20802497 2198:24321545 2129:21700675 2080:23433509 2029:19955237 1970:31696234 1921:20044452 1872:19356237 1788:17573341 1747:17555602 1696:17267599 1637:15642094 1586:38627979 1578:15903248 1543:12566402 1494:10805808 1435:16873716 1384:10423613 1330:20057383 1276:16169729 1175:See also 1075:to 10). 917:Francke 873:NC-IUBMB 848:InterPro 548:Pathways 529:Database 204:May 2000 140:Organism 76:and the 3411:MetaCyc 3400:Cyclone 3330:9597258 3281:6734243 3128:5600254 3107:Bibcode 3099:Science 3071:1557581 3050:Bibcode 3014:2412839 2963:2661887 2847:4301741 2819:Bibcode 2791:7742485 2676:Bibcode 2626:3536058 2397:5117618 2380:: 252. 2342:3916221 2319:Bibcode 2283:3488975 2241:6641097 2189:3892043 2166:Bibcode 2120:3150042 2071:3623889 2020:2810111 1961:7145653 1912:2815881 1863:2678070 1738:1925256 1687:1794290 1664:Bibcode 1462:Bibcode 1427:9851916 1407:Bibcode 1399:Science 1376:7542800 1356:Bibcode 1348:Science 1321:3125167 1116:E. coli 1010:kinetic 881:MetaCyc 869:MetaCyc 743:GraphML 705:files ( 596:MetaCyc 539:Enzymes 473:MetaCyc 469:E. coli 3667:Social 3488:Copasi 3426:ENZYME 3406:EcoCyc 3396:BioCyc 3391:BRENDA 3375:GeneDB 3337:  3327:  3288:  3278:  3215:  3184:  3177:219384 3174:  3135:  3125:  3078:  3068:  3021:  3011:  2970:  2960:  2886:  2845:  2837:  2811:Nature 2789:  2781:  2743:  2736:187577 2733:  2694:  2633:  2623:  2584:  2544:  2503:  2434:  2404:  2394:  2349:  2339:  2290:  2280:  2239:  2231:  2196:  2186:  2127:  2117:  2078:  2068:  2027:  2017:  1968:  1958:  1919:  1909:  1870:  1860:  1846:: 38. 1786:  1745:  1735:  1721:: 26. 1694:  1684:  1635:  1628:549063 1625:  1584:  1576:  1541:  1534:420374 1531:  1492:  1482:  1433:  1425:  1382:  1374:  1328:  1318:  1274:  1095:COPASI 1072:fluxes 919:et al. 877:BRENDA 856:STRING 794:PUBMED 776:CoReCo 757:, etc. 727:BioPAX 715:MIRIAM 633:BRENDA 615:ENZYME 576:BioCyc 532:Scope 500:BRENDA 489:ExPASy 480:ENZYME 455:EcoCyc 451:BioCyc 384:27,379 264:21,090 240:28,287 62:genome 2843:S2CID 2787:S2CID 2237:S2CID 2156:arXiv 1997:arXiv 1582:S2CID 1485:25862 1431:S2CID 1380:S2CID 1000:like 755:LaTeX 542:Genes 393:1,748 390:1,567 387:1,419 366:1,087 363:1,083 360:4,489 336:3,221 318:1,020 312:4,114 288:4,402 270:3,673 267:3,623 222:1,175 216:6,183 192:4,405 168:1,775 3493:gEFM 3436:TIGR 3416:SEED 3398:and 3380:KEGG 3370:ERGO 3335:PMID 3286:PMID 3239:help 3213:ISBN 3182:PMID 3133:PMID 3076:PMID 3019:PMID 2968:PMID 2884:PMID 2835:PMID 2779:PMID 2741:PMID 2692:PMID 2631:PMID 2582:PMID 2542:PMID 2501:PMID 2470:help 2458:help 2432:ISBN 2402:PMID 2347:PMID 2288:PMID 2229:PMID 2194:PMID 2125:PMID 2076:PMID 2025:PMID 1966:PMID 1917:PMID 1868:PMID 1784:PMID 1743:PMID 1692:PMID 1633:PMID 1574:PMID 1539:PMID 1490:PMID 1423:PMID 1372:PMID 1326:PMID 1272:PMID 1167:and 1118:and 1035:and 871:and 865:KEGG 781:KEGG 735:SBGN 723:SBML 719:KGML 707:KGML 703:KEGG 690:ERGO 651:BiGG 556:KEGG 508:BiGG 435:and 427:KEGG 246:1220 3461:IMG 3325:PMC 3317:doi 3276:PMC 3266:doi 3205:doi 3172:PMC 3164:doi 3160:185 3123:PMC 3115:doi 3103:327 3066:PMC 3058:doi 3009:PMC 2999:doi 2958:PMC 2948:doi 2915:doi 2911:157 2874:doi 2827:doi 2815:420 2771:doi 2731:PMC 2723:doi 2684:doi 2672:225 2621:PMC 2613:doi 2574:doi 2532:doi 2493:doi 2424:doi 2392:PMC 2382:doi 2337:PMC 2327:doi 2278:PMC 2268:doi 2221:doi 2184:PMC 2174:doi 2115:PMC 2107:doi 2066:PMC 2056:doi 2015:PMC 2007:doi 1956:PMC 1948:doi 1907:PMC 1899:doi 1895:152 1858:PMC 1848:doi 1815:doi 1774:doi 1770:282 1733:PMC 1723:doi 1682:PMC 1672:doi 1660:104 1623:PMC 1613:doi 1566:doi 1529:PMC 1521:doi 1480:PMC 1470:doi 1415:doi 1403:282 1364:doi 1352:269 1316:PMC 1308:doi 1264:doi 1097:or 879:or 840:CDD 751:GIF 747:JPG 739:GML 731:SIF 711:XML 441:DNA 369:774 345:704 342:831 339:633 321:988 315:844 297:828 294:939 291:661 249:872 243:473 225:584 219:708 201:438 198:627 195:660 177:343 174:488 171:296 56:or 3762:: 3333:. 3323:. 3313:11 3311:. 3307:. 3284:. 3274:. 3262:20 3260:. 3256:. 3231:: 3229:}} 3225:{{ 3211:. 3180:. 3170:. 3158:. 3154:. 3131:. 3121:. 3113:. 3101:. 3097:. 3074:. 3064:. 3056:. 3046:91 3044:. 3040:. 3017:. 3007:. 2993:. 2989:. 2966:. 2956:. 2942:. 2938:. 2909:. 2905:. 2882:. 2870:13 2868:. 2864:. 2841:. 2833:. 2825:. 2813:. 2799:^ 2785:. 2777:. 2767:18 2765:. 2753:^ 2739:. 2729:. 2719:12 2717:. 2713:. 2690:. 2682:. 2670:. 2654:^ 2629:. 2619:. 2609:10 2607:. 2603:. 2580:. 2570:22 2568:. 2554:^ 2540:. 2528:67 2526:. 2522:. 2499:. 2487:. 2462:; 2450:: 2448:}} 2444:{{ 2430:. 2414:^ 2400:. 2390:. 2376:. 2372:. 2345:. 2335:. 2325:. 2315:10 2313:. 2309:. 2286:. 2276:. 2264:13 2262:. 2258:. 2235:. 2227:. 2217:28 2215:. 2192:. 2182:. 2172:. 2164:. 2150:. 2146:. 2123:. 2113:. 2103:27 2101:. 2097:. 2074:. 2064:. 2050:. 2046:. 2023:. 2013:. 2005:. 1993:11 1991:. 1987:. 1964:. 1954:. 1944:48 1942:. 1938:. 1915:. 1905:. 1893:. 1889:. 1866:. 1856:. 1842:. 1838:. 1811:84 1809:. 1805:. 1782:. 1768:. 1764:. 1741:. 1731:. 1717:. 1713:. 1690:. 1680:. 1670:. 1658:. 1654:. 1631:. 1621:. 1607:. 1603:. 1580:. 1572:. 1562:21 1560:. 1537:. 1527:. 1517:13 1515:. 1511:. 1488:. 1478:. 1468:. 1458:97 1456:. 1452:. 1429:. 1421:. 1413:. 1401:. 1378:. 1370:. 1362:. 1350:. 1338:^ 1324:. 1314:. 1302:. 1298:. 1284:^ 1270:. 1260:13 1258:. 1240:^ 943:. 914:. 867:, 753:, 749:, 745:, 741:, 733:, 729:, 725:, 664:X 646:X 628:X 610:X 591:X 571:X 449:: 273:-- 134:. 84:. 3522:e 3515:t 3508:v 3341:. 3319:: 3292:. 3268:: 3241:) 3221:. 3207:: 3188:. 3166:: 3139:. 3117:: 3109:: 3082:. 3060:: 3052:: 3025:. 3001:: 2995:2 2974:. 2950:: 2944:3 2923:. 2917:: 2890:. 2876:: 2849:. 2829:: 2821:: 2793:. 2773:: 2747:. 2725:: 2698:. 2686:: 2678:: 2637:. 2615:: 2588:. 2576:: 2548:. 2534:: 2507:. 2495:: 2489:9 2472:) 2468:( 2460:) 2440:. 2426:: 2408:. 2384:: 2378:9 2353:. 2329:: 2321:: 2294:. 2270:: 2243:. 2223:: 2200:. 2176:: 2168:: 2158:: 2152:7 2131:. 2109:: 2082:. 2058:: 2052:7 2031:. 2009:: 1999:: 1972:. 1950:: 1923:. 1901:: 1874:. 1850:: 1844:3 1823:. 1817:: 1790:. 1776:: 1749:. 1725:: 1719:1 1698:. 1674:: 1666:: 1639:. 1615:: 1609:6 1588:. 1568:: 1545:. 1523:: 1496:. 1472:: 1464:: 1437:. 1417:: 1409:: 1386:. 1366:: 1358:: 1332:. 1310:: 1304:5 1278:. 1266:: 835:. 661:X 656:X 641:X 636:X 623:X 618:X 607:X 604:X 599:X 588:X 585:X 582:X 579:X 568:X 565:X 562:X 559:X 429:)

Index


Metabolic network
Arabidopsis thaliana

Escherichia coli
genome
physiology
metabolic
glycolysis
citric acid cycle
biotechnology
flux balance analysis
metabolic networks
http://sbrg.ucsd.edu/InSilicoOrganisms/OtherOrganisms
KEGG
eukaryotes
prokaryotes
DNA
BioCyc
EcoCyc
bioinformatics
Escherichia coli
MetaCyc
ENZYME
nomenclature
ExPASy
Swiss Institute of Bioinformatics
BRENDA
BiGG
metaTIGER

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.