Knowledge

Maraging steel

Source 📝

29: 707:: It leads to increase in dislocation density in the materials which in turn assists in the ease of formation of intermetallic precipitates due to availability of faster diffusion pathways through the dislocation cores. It has been observed that plastic deformation before aging leads to reduced peak aging time and increase in peak hardness. Precipitate morphology in severely plastically deformed steel changes and becomes plate-like when overaged which is attributed to higher dislocation density. This in turn leads to significant reduction in ductility and increase in strength of the material. Along with morphology, the orientation of precipitates also play an important role in micromechanism of deformation as they induce 672:. Along with the processing parameters, the type of heat treatment subjected to LPBF steels also play an important role. It is observed that processing parameters which have a higher magnitude reduce the relative density of the sample due to rapid vaporization or creation of voids and pores. It is also observed that the microhardness and strength of the steel decreases after solution treatment due to 298:
manganese has a similar effect as nickel, i.e. it stabilizes the austenite phase. Hence, depending on their manganese content, Fe-Mn maraging steels can be fully martensitic after quenching them from the high temperature austenite phase or they can contain retained austenite. The latter effect enables the design of maraging-TRIP steels where TRIP stands for Transformation-Induced-Plasticity.
660:. The materials can be tailored to have specific mechanical properties by optimizing the process parameters associated with LPBF. It has been observed that processing parameters such as laser scanning speed, power and the scanning space can have significant effects on the mechanical properties of 300 maraging steel such as 958:. Testing has shown that the blade-breakage patterns in carbon steel and maraging steel are identical due to the similarity in the loading mode during bending. Additionally, a crack is likely to start at the same point and propagate along the same path (although much more slowly), as crack propagation in 725:
and have maximum service temperatures of over 400 °C (750 °F). They are suitable for engine components, such as crankshafts and gears, and the firing pins of automatic weapons that cycle from hot to cool repeatedly while under substantial load. Their uniform expansion and easy machinability
694:
compounds after aging process lead to marked increase in yield and ultimate tensile strength but substantial reduction in ductility of the material. This change in macroscopic behavior of the material can be linked to the evolution of microstructure from dimple to quasi-cleavage fracture morphology.
297:
when heat treated, while lower-nickel steels can transform to martensite. Alternative variants of nickel-reduced maraging steels are based on alloys of iron and manganese plus minor additions of aluminium, nickel and titanium where compositions between Fe-9wt% Mn to Fe-15wt% Mn have been used. The
645:
where precipitates hinder dislocation motion via Orowan mechanism or dislocation bowing lead to increase in the ultimate tensile strength of maraging steels. Aging is also beneficial for reducing the microstructural heterogeneities which may occur due to non-uniform thermal distribution along the
720:
Maraging steel's strength and malleability in the pre-aged stage allows it to be formed into thinner rocket and missile skins than other steels, reducing weight for a given strength. Maraging steels have very stable properties and, even after overaging due to excessive temperature, only soften
689:
Mo. The impact toughness increases after solution treatment but decreases after aging treatment, which can be attributed to the underlying microstructure consisting of tiny precipitates acting as regions of stress concentrators for crack formation. Formation of nanoscale precipitates of
515:
That family is known as the 18Ni maraging steels, from its nickel percentage. There is also a family of cobalt-free maraging steels which are cheaper but not quite as strong; one example is Fe-18.9Ni-4.1Mo-1.9Ti. There has been Russian and Japanese research in Fe-Ni-Mn maraging alloys.
325:
the alloy has very little dimensional change, so it is often machined to its final dimensions. Due to the high alloy content maraging steels have a high hardenability. Since ductile FeNi martensites are formed upon cooling, cracks are non-existent or negligible. The steels can be
1442: 1044:
Raabe, D.; Sandlöbes, S.; Millan, J. J.; Ponge, D.; Assadi, H.; Herbig, M.; Choi, P.P. (2013), "Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite",
676:
reversion and disappearance of cellular microstructure. On the other hand, aging treatment after solution treatment increases the microhardness and tensile strength of steel which is attributed to formation of precipitates such as
1202:
Xu, Xiangfang; Ganguly, Supriyo; Ding, Jialuo; Guo, Shun; Williams, Stewart; Martina, Filomeno (2018), "Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process",
1080:
Dmitrieva, O.; Ponge, D.; Inden, G.; Millan, J.; Choi, P.; Sietsma, J.; Raabe, D. (2011), "Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation",
1300:
Mutua, James; Nakata, Shinya; Onda, Tetsuhiko; Chen, Zhong-Chun (2018), "Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel",
595:
can be tailored for different applications using various processing techniques. Some of the most widely used processing techniques for manufacturing and tuning of mechanical behavior of maraging steels are listed as follows:
284:
The common, non-stainless grades contain 17–19 wt% nickel, 8–12 wt% cobalt, 3–5 wt% molybdenum and 0.2–1.6 wt% titanium. Addition of chromium produces stainless grades resistant to corrosion. This also indirectly increases
603:: As described in the section of Heat treatment cycle, the maraging steel is heated to a specific temperature range, after which it is quenched rapidly. In this step the alloying elements are dissolved, and a homogeneous 1406:
Jacob, Kevin; Roy, Abhinav; Gururajan, MP; Jaya, B Nagamani (2022), "Effect of dislocation network on precipitate morphology and deformation behaviour in maraging steels: modelling and experimental validation",
1371:
Tian, Jialong; Wang, Wei; Li, Huabing; Shahzad, M Babar; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke (2019), "Effect of deformation on precipitation hardening behavior of a maraging steel in the aging process",
1247:
Bai, Yuchao; Yang, Yongqiang; Wang, Di; Zhang, Mingkang (2017), "Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting",
1605:
Ernie Ball M-Steel Electric Guitar Strings are made of a patented Super Cobalt alloy wrapped around a Maraging steel hex core wire, producing a richer and fuller tone with a powerful low-end response.
1189:
Military Specification 46850D: STEEL : BAR, PLATE, SHEET, STRIP, FORGINGS, AND EXTRUSIONS, 18 PERCENT NICKEL ALLOY, MARAGING, 200 KSI, 250 KSI, 300 KSI, AND 350 KSI, HIGH QUALITY, available from
552:
elements added for such precipitation. Overaging leads to a reduction in stability of the primary, metastable, coherent precipitates, leading to their dissolution and replacement with semi-coherent
793:
The production, import, and export of maraging steels by certain entities, such as the United States, is closely monitored by international authorities because it is particularly suited for use in
567:
Newer compositions of maraging steels have revealed other intermetallic stoichiometries and crystallographic relationships with the parent martensite, including rhombohedral and massive complex Ni
757:
because crack propagation in maraging steel is 10 times slower than in carbon steel, resulting in less frequent breaking of the blade and fewer injuries. Stainless maraging steel is used in
699:
matrix and lead to change in the grain orientation. Aging can reduce the plastic anisotropy to some extent, but directionality of properties is largely influenced by its fabrication history.
641:
contribute to improvement of mechanical behavior by activating various strengthening mechanisms related to hindering of dislocation motion by precipitates. Strengthening mechanisms such as
765:
club heads. It is also used in surgical components and hypodermic syringes, but is not suitable for scalpel blades because the lack of carbon prevents it from holding a good cutting edge.
1327:
Mooney, Barry; Kourousis, Kyriakos I; Raghavendra, Ramesh (2019), "Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments",
528:
at approximately 820 °C (1,510 °F) for 15–30 minutes for thin sections and for 1 hour per 25 mm (1 in) thickness for heavy sections, to ensure formation of a fully
365:
200, 250, 300 or 350), which indicates the approximate nominal tensile strength in thousands of pounds per square inch (ksi); the compositions and required properties are defined in
1274:
Suryawanshi, Jyoti; Prashanth, K.G.; Ramamurty, U. (2017), "Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting",
28: 656:
technique used to create components of intricate geometries using a powder metal which is fused together layer by layer using localized high power-density heat source such as a
1690:
Ohue, Yuji; Matsumoto, Koji (10 September 2007). "Sliding–rolling contact fatigue and wear of maraging steel roller with ion-nitriding and fine particle shot-peening".
1777: 801:; lack of maraging steel significantly hampers the uranium-enrichment process. Older centrifuges used aluminum tubes, while modern ones use carbon fiber composite. 591:
The maraging steels are a popular class of structural materials because of their superior mechanical properties among different categories of steel. Their
1026: 768:
Maraging steel is used in oil and gas sector as downhole tools and components due to its high mechanical strength. The steel's resistance to
369:
MIL-S-46850D. The higher grades have more cobalt and titanium in the alloy; the compositions below are taken from table 1 of MIL-S-46850D:
746: 1590: 273:. Original development (by Bieber of Inco in the late 1950s) was carried out on 20 and 25 wt% Ni steels to which small additions of 1141:
Raabe, D.; Ponge, D.; Dmitrieva, O.; Sander, B. (2009), "Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility",
540:) of the more common alloys for approximately 3 hours at a temperature of 480 to 500 °C (900 to 930 °F) produces a fine 1664: 536:
or quenching to room temperature to form a soft, heavily dislocated iron-nickel lath (untwinned) martensite. Subsequent aging (
1565:
Garrison, W.M.; Moody, N.R (2012). "Chapter 12 - Hydrogen embrittlement of high strength steels". In Gangloff, Richard (ed.).
1648: 1540: 1475: 1774: 611:
thus achieved improves the overall mechanical behavior of maraging steels such as fracture toughness and fatigue resistance.
695:
Aging followed by solution treatment of selective laser melted steels also reduces the amount of retained austenite in the
1574: 992: 251: 835: 564:
Mo. Further excessive heat-treatment brings about the decomposition of the martensite and reversion to austenite.
281:
were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.
103: 366: 1177: 310:. Prior to aging, they may also be cold rolled to as much as 90% without cracking. Maraging steels offer good 1617: 1491: 1516: 1167: 703: 1190: 548:(X,Y) intermetallic phases along dislocations left by martensitic transformation, where X and Y are 790:
out of maraging steel, claiming that this alloy provides more output and enhanced tonal response.
108: 537: 243: 851:: typically 1.6–2.5 GPa (230–360 ksi). Grades exist up to 3.5 GPa (510 ksi) 769: 653: 541: 525: 342: 1619:
Consolidated Federal Regulations part 110--export and import of nuclear equipment and material
1443:"Nuclear ruse: Posing as toymaker, Chinese merchant allegedly sought U.S. technology for Iran" 722: 642: 592: 238:
refers to the extended heat-treatment process. These steels are a special class of very-low-
1100: 1054: 828: 8: 731: 1753: 1735: 1717: 1104: 1058: 1424: 1389: 1354: 1230: 1124: 1090: 959: 864: 798: 315: 45: 1644: 1570: 1471: 1428: 1393: 1358: 1234: 1173: 1154: 1116: 988: 1128: 1699: 1416: 1381: 1344: 1336: 1310: 1283: 1257: 1220: 1212: 1150: 1108: 1062: 848: 773: 661: 362: 338: 159: 154: 1385: 1287: 1216: 1112: 1066: 1796: 1781: 1314: 819:, mean for 0–100 °C (32–212 °F): 452 J/kg·K (0.108 Btu/lb·°F) 784: 780: 529: 346: 149: 1340: 242:
ultra-high-strength steels that derive their strength not from carbon, but from
1703: 1420: 1261: 841: 794: 608: 604: 200: 124: 74: 36: 1790: 1120: 937:(Inexpensive maraging steels with less nickel and other expensive materials.) 880: 822: 816: 787: 727: 691: 665: 618: 327: 307: 289:
as they require less nickel; high-chromium, high-nickel steels are generally
286: 247: 230:
that are known for possessing superior strength and toughness without losing
617:: It is an important processing step as this step leads to precipitation of 955: 896: 750: 634: 322: 270: 205: 195: 134: 129: 306:
Due to the low carbon content (less than 0.03%) maraging steels have good
1012:
Maraging Steels: Modelling of Microstructure, Properties and Applications
934: 696: 553: 533: 350: 311: 223: 219: 139: 83: 637:
obtained during normal aging and incoherent precipitates obtained after
954:
However, the notion that maraging steel blades break flat is a fencing
749:
are usually made with maraging steel. Maraging blades are superior for
708: 314:, but must be aged afterward to restore the original properties to the 294: 262: 190: 164: 98: 60: 1349: 1225: 754: 673: 669: 638: 334: 290: 274: 231: 185: 180: 55: 50: 912: 726:
before aging make maraging steel useful in high-wear components of
266: 88: 65: 1567:
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
1191:
http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-S/MIL-S-46850D_19899/
1095: 915:(aged): 50 HRC (grade 250); 54 HRC (grade 300); 58 HRC (grade 350) 721:
slightly. These alloys retain their properties at mildly elevated
930: 810: 758: 742: 330:
to increase case hardness and polished to a fine surface finish.
278: 93: 738:
alloys, are not as machinable because of their carbide content.
925: 735: 549: 258: 254: 239: 1273: 657: 227: 745:, blades used in competitions run under the auspices of the 1470:(Fourth ed.). John Wiley & Sons, Inc. p. 69. 762: 1326: 983:
Degarmo, E. Paul; Black, J. T.; Kohser, Ronald A. (2003),
1140: 1079: 1043: 361:
Maraging steels are usually described by a number (e.g.,
333:
Non-stainless varieties of maraging steel are moderately
1541:"The Impact of 18NI300-AM Maraging Steel in 3D Printing" 1492:"Reynolds turns 120: The history of Reynolds Technology" 646:
building direction in arc additive manufactured samples.
772:
is critical in downhole environments where exposure to
250:
compounds. The principal alloying element is 15 to 25
1405: 1027:"18% Nickel Maraging Steel – Engineering Properties" 962:
is a plastic phenomenon rather than microstructural.
1299: 844:: typically 1,400–2,400 MPa (200–350 ksi) 982: 761:frames (e.g. Reynolds 953 introduced in 2013) and 1370: 1788: 1246: 1201: 1465: 586: 1466:Juvinall, Robert C.; Marshek, Kurt M. (2006). 776:can lead to material degradation and failure. 1689: 1564: 257:. Secondary alloying elements, which include 1638: 1440: 779:American musical instrument string producer 734:. Other ultra-high-strength steels, such as 356: 345:. Corrosion-resistance can be increased by 1641:Nuclear Iran: The Birth of an Atomic State 1569:. Woodhead Publishing. pp. 421–492. 1348: 1224: 1094: 1005: 1003: 978: 976: 974: 1591:"Slinky M-Steel Electric Guitar Strings" 1468:Fundamentals of Machine Component Design 1459: 1183: 1037: 985:Materials and Processes in Manufacturing 861:fracture toughness: up to 175 MPa·m 1073: 519: 1789: 1671:. International Molybdenum Association 1134: 1009: 1000: 971: 804: 373:Maraging steel compositions, by grade 16:Steel known for strength and toughness 1639:Patrikarakos, David (November 2012). 269:, are added to produce intermetallic 1250:Materials Science and Engineering: A 987:(9th ed.), Wiley, p. 119, 1754:"Maraging 350 / VASCOMAX 350 Steel" 1736:"Maraging 300 / VASCOMAX 300 Steel" 1718:"Maraging 250 / VASCOMAX 250 Steel" 1169:Introduction to Aerospace Materials 747:Fédération Internationale d'Escrime 13: 838:: 11.3×10 K (20.3×10 °F) 14: 1808: 1768: 813:: 8.1 g/cm (0.29 lb/in) 1155:10.1016/j.scriptamat.2009.02.062 1024: 836:coefficient of thermal expansion 652:: Laser Powder Bed Fusion is an 27: 1746: 1728: 1710: 1683: 1657: 1632: 1610: 1583: 1558: 1533: 1509: 1484: 1434: 1399: 1364: 1320: 1293: 1276:Journal of Alloys and Compounds 1267: 1240: 948: 825:: 1,413 °C (2,575 °F) 532:structure. This is followed by 1517:"Maraging Steel in Golf Clubs" 1195: 1160: 1018: 854:Elongation at break: up to 15% 783:has made a specialist type of 650:Laser Powder Bed Fusion (LPBF) 1: 1386:10.1016/j.matchar.2019.109827 1288:10.1016/j.jallcom.2017.07.177 1217:10.1016/j.matchar.2017.12.002 1113:10.1016/j.actamat.2010.09.042 1067:10.1016/j.actamat.2013.06.055 1010:Sha, W; Guo, Z (2009-10-26). 941: 711:to the mechanical properties. 301: 1643:. I.B. Tauris. p. 168. 1315:10.1016/j.matdes.2017.11.042 587:Processing of maraging steel 497:Tensile strength, MPa (ksi) 7: 1545:Stanford Advanced Materials 1441:Joby Warrick (2012-08-11). 1341:10.1016/j.addma.2018.10.032 919: 293:and unable to transform to 10: 1813: 1775:Maraging steel data sheets 1704:10.1016/j.wear.2007.01.055 1496:www.reynoldstechnology.biz 1421:10.1016/j.mtla.2022.101358 1374:Materials Characterization 1262:10.1016/j.msea.2017.06.033 1205:Materials Characterization 704:Severe plastic deformation 633:Ti, etc. The semicoherent 173:Other iron-based materials 1172:, p. 244, Elsevier, 2012 607:is achieved. Homogeneous 583:in simplified notation). 496: 479: 462: 445: 428: 411: 394: 389: 386: 383: 380: 377: 615:Aging of maraging steels 357:Grades of maraging steel 109:Widmanstätten structures 1758:Service Steel Aerospace 1740:Service Steel Aerospace 1722:Service Steel Aerospace 715: 538:precipitation hardening 1329:Additive Manufacturing 1303:Materials & Design 842:Yield tensile strength 774:hydrogen sulfide (H₂S) 770:hydrogen embrittlement 723:operating temperatures 654:additive manufacturing 343:hydrogen embrittlement 337:-resistant and resist 643:precipitate hardening 593:mechanical properties 829:Thermal conductivity 524:The steel is first 520:Heat treatment cycle 367:US military standard 1760:. 10 December 2019. 1742:. 10 December 2019. 1724:. 10 December 2019. 1447:The Washington Post 1105:2011AcMat..59..364D 1059:2013AcMat..61.6132R 883:: 77 GPa (11.2 805:Physical properties 374: 226:" and "aging") are 104:Tempered martensite 1780:2016-08-15 at the 1498:. 20 December 2018 1166:Adrian P Mouritz, 1143:Scripta Materialia 899:: 140 GPa (20 867:: 210 GPa (30 799:uranium enrichment 601:Solution treatment 372: 316:heat affected zone 1665:"Maraging Steels" 1650:978-1-78076-125-1 1477:978-0-471-66177-1 1053:(16): 6132–6152, 831:: 25.5 W/m·K 621:compounds such Ni 513: 512: 213: 212: 1804: 1762: 1761: 1750: 1744: 1743: 1732: 1726: 1725: 1714: 1708: 1707: 1698:(1–6): 782–789. 1687: 1681: 1680: 1678: 1676: 1661: 1655: 1654: 1636: 1630: 1629: 1627: 1626: 1614: 1608: 1607: 1602: 1601: 1587: 1581: 1580: 1562: 1556: 1555: 1553: 1551: 1537: 1531: 1530: 1528: 1527: 1513: 1507: 1506: 1504: 1503: 1488: 1482: 1481: 1463: 1457: 1456: 1454: 1453: 1438: 1432: 1431: 1403: 1397: 1396: 1368: 1362: 1361: 1352: 1324: 1318: 1317: 1297: 1291: 1290: 1271: 1265: 1264: 1244: 1238: 1237: 1228: 1199: 1193: 1187: 1181: 1164: 1158: 1157: 1138: 1132: 1131: 1098: 1077: 1071: 1069: 1041: 1035: 1034: 1031:Nickel Institute 1022: 1016: 1015: 1007: 998: 997: 980: 963: 952: 905: 904: 889: 888: 873: 872: 849:tensile strength 741:In the sport of 662:tensile strength 375: 371: 363:SAE steel grades 339:stress corrosion 277:, titanium, and 160:Weathering steel 155:High-speed steel 31: 19: 18: 1812: 1811: 1807: 1806: 1805: 1803: 1802: 1801: 1787: 1786: 1782:Wayback Machine 1771: 1766: 1765: 1752: 1751: 1747: 1734: 1733: 1729: 1716: 1715: 1711: 1688: 1684: 1674: 1672: 1663: 1662: 1658: 1651: 1637: 1633: 1624: 1622: 1616: 1615: 1611: 1599: 1597: 1589: 1588: 1584: 1577: 1563: 1559: 1549: 1547: 1539: 1538: 1534: 1525: 1523: 1521:Golf Compendium 1515: 1514: 1510: 1501: 1499: 1490: 1489: 1485: 1478: 1464: 1460: 1451: 1449: 1439: 1435: 1404: 1400: 1369: 1365: 1325: 1321: 1298: 1294: 1272: 1268: 1245: 1241: 1200: 1196: 1188: 1184: 1165: 1161: 1139: 1135: 1083:Acta Materialia 1078: 1074: 1047:Acta Materialia 1042: 1038: 1023: 1019: 1008: 1001: 995: 981: 972: 967: 966: 953: 949: 944: 922: 902: 900: 886: 884: 870: 868: 865:Young's modulus 860: 807: 795:gas centrifuges 785:electric guitar 718: 688: 684: 680: 632: 628: 624: 589: 582: 578: 574: 570: 563: 559: 547: 522: 359: 347:cadmium plating 304: 216:Maraging steels 150:Stainless steel 75:Microstructures 17: 12: 11: 5: 1810: 1800: 1799: 1785: 1784: 1770: 1769:External links 1767: 1764: 1763: 1745: 1727: 1709: 1682: 1656: 1649: 1631: 1609: 1582: 1575: 1557: 1532: 1508: 1483: 1476: 1458: 1433: 1398: 1363: 1319: 1292: 1266: 1239: 1194: 1182: 1159: 1133: 1089:(1): 364–374, 1072: 1036: 1017: 999: 993: 969: 968: 965: 964: 946: 945: 943: 940: 939: 938: 928: 921: 918: 917: 916: 910: 894: 878: 862: 858: 855: 852: 845: 839: 832: 826: 820: 814: 806: 803: 728:assembly lines 717: 714: 713: 712: 700: 686: 682: 678: 647: 630: 626: 622: 612: 609:microstructure 605:microstructure 588: 585: 580: 576: 572: 568: 561: 557: 545: 521: 518: 511: 510: 507: 504: 501: 498: 494: 493: 490: 487: 484: 481: 477: 476: 473: 470: 467: 464: 460: 459: 456: 453: 450: 447: 443: 442: 439: 436: 433: 430: 426: 425: 422: 419: 416: 413: 409: 408: 405: 402: 399: 396: 392: 391: 388: 385: 382: 379: 358: 355: 303: 300: 211: 210: 209: 208: 203: 201:Malleable iron 198: 193: 188: 183: 175: 174: 170: 169: 168: 167: 162: 157: 152: 147: 145:Maraging steel 142: 137: 132: 127: 125:Crucible steel 119: 118: 114: 113: 112: 111: 106: 101: 96: 91: 86: 78: 77: 71: 70: 69: 68: 63: 58: 53: 48: 40: 39: 33: 32: 24: 23: 15: 9: 6: 4: 3: 2: 1809: 1798: 1795: 1794: 1792: 1783: 1779: 1776: 1773: 1772: 1759: 1755: 1749: 1741: 1737: 1731: 1723: 1719: 1713: 1705: 1701: 1697: 1693: 1686: 1670: 1666: 1660: 1652: 1646: 1642: 1635: 1621: 1620: 1613: 1606: 1596: 1592: 1586: 1578: 1576:9781845696771 1572: 1568: 1561: 1546: 1542: 1536: 1522: 1518: 1512: 1497: 1493: 1487: 1479: 1473: 1469: 1462: 1448: 1444: 1437: 1430: 1426: 1422: 1418: 1414: 1410: 1402: 1395: 1391: 1387: 1383: 1379: 1375: 1367: 1360: 1356: 1351: 1346: 1342: 1338: 1334: 1330: 1323: 1316: 1312: 1308: 1304: 1296: 1289: 1285: 1281: 1277: 1270: 1263: 1259: 1255: 1251: 1243: 1236: 1232: 1227: 1222: 1218: 1214: 1210: 1206: 1198: 1192: 1186: 1179: 1175: 1171: 1170: 1163: 1156: 1152: 1148: 1144: 1137: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1097: 1092: 1088: 1084: 1076: 1068: 1064: 1060: 1056: 1052: 1048: 1040: 1032: 1028: 1021: 1013: 1006: 1004: 996: 994:0-471-65653-4 990: 986: 979: 977: 975: 970: 961: 957: 951: 947: 936: 932: 929: 927: 924: 923: 914: 911: 908: 898: 895: 892: 882: 881:Shear modulus 879: 876: 866: 863: 856: 853: 850: 846: 843: 840: 837: 833: 830: 827: 824: 823:Melting point 821: 818: 817:Specific heat 815: 812: 809: 808: 802: 800: 796: 791: 789: 786: 782: 777: 775: 771: 766: 764: 760: 756: 752: 748: 744: 739: 737: 733: 729: 724: 710: 706: 705: 701: 698: 693: 692:intermetallic 675: 671: 668:, and impact 667: 666:microhardness 663: 659: 655: 651: 648: 644: 640: 636: 620: 619:intermetallic 616: 613: 610: 606: 602: 599: 598: 597: 594: 584: 565: 555: 551: 543: 539: 535: 531: 527: 517: 508: 505: 502: 499: 495: 491: 488: 485: 482: 478: 474: 471: 468: 465: 461: 457: 454: 451: 448: 444: 440: 437: 434: 431: 427: 423: 420: 417: 414: 410: 406: 403: 400: 397: 393: 376: 370: 368: 364: 354: 352: 348: 344: 340: 336: 331: 329: 324: 319: 317: 313: 309: 308:machinability 299: 296: 292: 288: 287:hardenability 282: 280: 276: 272: 268: 264: 260: 256: 253: 249: 248:intermetallic 245: 244:precipitation 241: 237: 233: 229: 225: 221: 217: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 178: 177: 176: 172: 171: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 136: 133: 131: 128: 126: 123: 122: 121: 120: 116: 115: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 81: 80: 79: 76: 73: 72: 67: 64: 62: 59: 57: 54: 52: 49: 47: 44: 43: 42: 41: 38: 35: 34: 30: 26: 25: 21: 20: 1757: 1748: 1739: 1730: 1721: 1712: 1695: 1691: 1685: 1673:. Retrieved 1668: 1659: 1640: 1634: 1623:, retrieved 1618: 1612: 1604: 1598:. Retrieved 1594: 1585: 1566: 1560: 1548:. Retrieved 1544: 1535: 1524:. Retrieved 1520: 1511: 1500:. Retrieved 1495: 1486: 1467: 1461: 1450:. Retrieved 1446: 1436: 1412: 1408: 1401: 1377: 1373: 1366: 1332: 1328: 1322: 1306: 1302: 1295: 1279: 1275: 1269: 1253: 1249: 1242: 1208: 1204: 1197: 1185: 1168: 1162: 1149:(12): 1141, 1146: 1142: 1136: 1086: 1082: 1075: 1050: 1046: 1039: 1030: 1020: 1011: 984: 956:urban legend 950: 906: 897:Bulk modulus 890: 874: 792: 778: 767: 740: 719: 702: 649: 635:precipitates 614: 600: 590: 566: 554:Laves phases 530:austenitized 523: 514: 509:2,413 (350) 360: 332: 323:heat-treated 320: 305: 283: 271:precipitates 235: 215: 214: 206:Wrought iron 196:Ductile iron 144: 135:Spring steel 130:Carbon steel 1309:: 486–497, 1282:: 355–364, 1256:: 116–123, 1211:: 152–162, 1014:. Elsevier. 935:Eglin steel 697:martensitic 534:air cooling 506:2,068 (300) 503:1,724 (250) 500:1,379 (200) 446:Molybdenum 351:phosphating 312:weldability 224:martensitic 220:portmanteau 140:Alloy steel 84:Spheroidite 1625:2009-11-11 1600:2020-07-15 1595:Ernie Ball 1526:2022-12-29 1502:2022-12-29 1452:2014-02-21 1415:: 101358, 1409:Materialia 1380:: 109827, 1350:10344/7510 1226:1826/12819 1178:0857095153 942:References 909: psi) 893: psi) 877: psi) 781:Ernie Ball 709:anisotropy 556:such as Fe 542:dispersion 492:0.05–0.15 480:Aluminium 441:11.5–12.5 424:18.0–19.0 390:Grade 350 387:Grade 300 384:Grade 250 381:Grade 200 302:Properties 295:martensite 291:austenitic 263:molybdenum 191:White iron 165:Tool steel 99:Ledeburite 61:Martensite 1669:imoa.info 1429:246668007 1394:199188852 1359:139243144 1335:: 19–31, 1235:115137237 1121:1359-6454 1096:1402.0232 847:Ultimate 674:austenite 670:toughness 639:overaging 489:0.05–0.15 486:0.05–0.15 483:0.05–0.15 466:0.15–0.25 463:Titanium 421:18.0–19.0 418:17.0–19.0 415:17.0–19.0 335:corrosion 275:aluminium 232:ductility 186:Gray iron 181:Cast iron 56:Cementite 51:Austenite 1791:Category 1778:Archived 1129:13781776 920:See also 913:Hardness 526:annealed 475:1.3–1.6 458:4.6–5.2 407:balance 378:Element 328:nitrided 267:titanium 89:Pearlite 66:Graphite 1675:8 April 1101:Bibcode 1055:Bibcode 960:fatigue 931:USAF-96 811:Density 759:bicycle 743:fencing 571:(X,Y,Z) 472:0.5–0.8 469:0.3–0.5 455:4.6–5.2 452:4.6–5.2 449:3.0–3.5 438:8.5–9.5 435:7.0–8.5 432:8.0–9.0 429:Cobalt 412:Nickel 404:balance 401:balance 398:balance 279:niobium 117:Classes 94:Bainite 46:Ferrite 1797:Steels 1647:  1573:  1550:Aug 1, 1474:  1427:  1392:  1357:  1233:  1176:  1127:  1119:  1025:INCO. 991:  926:Aermet 788:string 736:AerMet 685:Ti, Fe 681:Mo, Ni 629:Mo, Ni 625:Al, Ni 550:solute 259:cobalt 255:nickel 240:carbon 228:steels 37:Phases 22:Steels 1425:S2CID 1390:S2CID 1355:S2CID 1231:S2CID 1125:S2CID 1091:arXiv 834:Mean 658:laser 560:Ni/Fe 544:of Ni 395:Iron 321:When 236:Aging 1692:Wear 1677:2015 1645:ISBN 1571:ISBN 1552:2024 1472:ISBN 1174:ISBN 1117:ISSN 989:ISBN 933:and 797:for 763:golf 755:épée 753:and 751:foil 732:dies 730:and 716:Uses 341:and 265:and 222:of " 1700:doi 1696:263 1417:doi 1382:doi 1378:155 1345:hdl 1337:doi 1311:doi 1307:139 1284:doi 1280:725 1258:doi 1254:703 1221:hdl 1213:doi 1209:143 1151:doi 1109:doi 1063:doi 575:(Ni 349:or 252:wt% 246:of 218:(a 1793:: 1756:. 1738:. 1720:. 1694:. 1667:. 1603:. 1593:. 1543:. 1519:. 1494:. 1445:. 1423:, 1413:21 1411:, 1388:, 1376:, 1353:, 1343:, 1333:25 1331:, 1305:, 1278:, 1252:, 1229:, 1219:, 1207:, 1147:60 1145:, 1123:, 1115:, 1107:, 1099:, 1087:59 1085:, 1061:, 1051:61 1049:, 1029:. 1002:^ 973:^ 903:10 887:10 871:10 859:IC 677:Ni 664:, 581:50 577:50 573:50 569:50 353:. 318:. 261:, 234:. 1706:. 1702:: 1679:. 1653:. 1628:. 1579:. 1554:. 1529:. 1505:. 1480:. 1455:. 1419:: 1384:: 1347:: 1339:: 1313:: 1286:: 1260:: 1223:: 1215:: 1180:. 1153:: 1111:: 1103:: 1093:: 1070:. 1065:: 1057:: 1033:. 907:^ 901:× 891:^ 885:× 875:^ 869:× 857:K 687:2 683:3 679:3 631:3 627:3 623:3 579:M 562:2 558:2 546:3

Index


Phases
Ferrite
Austenite
Cementite
Martensite
Graphite
Microstructures
Spheroidite
Pearlite
Bainite
Ledeburite
Tempered martensite
Widmanstätten structures
Crucible steel
Carbon steel
Spring steel
Alloy steel
Maraging steel
Stainless steel
High-speed steel
Weathering steel
Tool steel
Cast iron
Gray iron
White iron
Ductile iron
Malleable iron
Wrought iron
portmanteau

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.