Knowledge

Manchester code

Source 📝

185: 745: 641: 229:). It specifies that for a 0 bit the signal levels will be low–high (assuming an amplitude physical encoding of the data) – with a low level in the first half of the bit period, and a high level in the second half. For a 1 bit the signal levels will be high–low. This is also known as Manchester II or Biphase-L code. 259:
The existence of guaranteed transitions allows the signal to be self-clocking, and also allows the receiver to align correctly; the receiver can identify if it is misaligned by half a bit period, as there will no longer always be a transition during each bit period. The price of these benefits is a
213:
Manchester code always has a transition at the middle of each bit period and may (depending on the information to be transmitted) have a transition at the start of the period also. The direction of the mid-bit transition indicates the data. Transitions at the period boundaries do not carry
645: 988: 247:
If a Manchester encoded signal is inverted in communication, it is transformed from one convention to the other. This ambiguity can be overcome by using
154:
Manchester coding's data rate is only half that of a non-coded signal, which limits its usefulness to systems where bandwidth is not an issue, such as a
244:(Ethernet) standards. It states that a logic 0 is represented by a high–low signal sequence and a logic 1 is represented by a low–high signal sequence. 458: 119:
whose frequency is the data rate. Manchester code ensures frequent line voltage transitions, directly proportional to the clock rate; this helps
695: 650: 503:
Manchester encoding introduces some difficult frequency-related problems that make it unsuitable for use at higher data rates.
480: 161:
Manchester encoding introduces difficult frequency-related problems that make it unsuitable for use at higher data rates.
414: 359:
by high-to-low transition (according to G. E. Thomas's convention – in the IEEE 802.3 convention, the reverse is true).
130:
of the encoded signal is not dependent on the data and therefore carries no information. Therefore connections may be
889: 575: 537: 787: 772: 393: 388: 248: 656: 138:
coupled, allowing the signal to be conveyed conveniently by galvanically isolated media (e.g., Ethernet) using a
777: 767: 894: 169: 79:
on 1600 bpi computer tapes before the introduction of 6250 bpi tapes which used the more efficient
823: 863: 448: 225:
The first of these was first published by G. E. Thomas in 1949 and is followed by numerous authors (e.g.,
214:
information. They exist only to place the signal in the correct state to allow the mid-bit transition.
945: 688: 108: 155: 96: 65: 935: 591: 84: 940: 567: 557: 529: 519: 673: 951: 681: 80: 26: 957: 930: 833: 383: 50: 8: 983: 962: 843: 803: 515: 135: 261: 184: 131: 76: 58: 22: 828: 744: 719: 571: 553: 533: 233: 143: 69: 858: 724: 660: 622: 139: 853: 490: 165: 925: 868: 848: 838: 762: 734: 226: 172:
to achieve the same data rate but may be less tolerant of frequency errors and
120: 116: 977: 729: 563: 525: 486: 112: 626: 422: 274: 127: 54: 613:
Forster, R. (2000). "Manchester encoding: Opposing definitions resolved".
68:, where the coding was used for storing data on the magnetic drums of the 57:. Consequently, electrical connections using a Manchester code are easily 704: 666: 373:
Transitions at the start of a period are overhead and don't signify data.
88: 241: 237: 754: 42: 222:
There are two opposing conventions for the representations of data.
920: 910: 49:
is either low then high, or high then low, for equal time. It is a
232:
The second convention is also followed by numerous authors (e.g.,
453: 873: 703: 173: 64:
Manchester code derives its name from its development at the
915: 818: 813: 808: 195: 189: 92: 260:
doubling of the bandwidth requirement compared to simpler
16:
Line code used in early magnetic data storage and Ethernet
217: 46: 989:
Department of Computer Science, University of Manchester
348:
Each bit is transmitted in a fixed time (the period).
176:in the transmitter and receiver reference clocks. 606: 593:Manchester Data Encoding for Radio Communications 975: 188:An example of Manchester encoding showing both 689: 449:"Old, but Still Useful: The Manchester Code" 355:is expressed by a low-to-high transition, a 615:Engineering Science & Education Journal 696: 682: 552: 514: 546: 508: 240:(token bus) and lower speed versions of 183: 179: 612: 107:Manchester coding is a special case of 976: 788:Differential Manchester/biphase (Bi-φ) 412: 218:Conventions for representation of data 190:conventions for representation of data 164:There are more complex codes, such as 768:Non-return-to-zero, level (NRZ/NRZ-L) 677: 344:Encoding conventions are as follows: 773:Non-return-to-zero, inverted (NRZ-I) 442: 440: 146:which cannot convey a DC component. 111:(BPSK), where the data controls the 83:. Manchester code was used in early 75:Manchester code was widely used for 461:from the original on 22 August 2022 446: 45:in which the encoding of each data 13: 370:occur at the midpoint of a period. 14: 1000: 890:Carrier-suppressed return-to-zero 778:Non-return-to-zero, space (NRZ-S) 437: 415:"Digital Magnetic Tape Recording" 743: 644: This article incorporates 639: 559:Data and Computer Communications 394:Binary offset carrier modulation 389:Differential Manchester encoding 249:differential Manchester encoding 707:(digital baseband transmission) 657:General Services Administration 87:standards and is still used in 895:Alternate-phase return-to-zero 584: 473: 447:Oed, Richard (22 April 2022). 406: 362:The transitions which signify 149: 1: 399: 864:Eight-to-fourteen modulation 413:Savard, John J. G. (2018) . 7: 377: 267: 254: 102: 10: 1005: 946:Pulse-amplitude modulation 903: 882: 796: 752: 741: 712: 323: 307: 299: 296: 277:logic (802.3 convention) 109:binary phase-shift keying 941:Pulse modulation methods 824:Alternate mark inversion 156:local area network (LAN) 97:near-field communication 66:University of Manchester 936:Ethernet physical layer 85:Ethernet physical layer 652:Federal Standard 1037C 646:public domain material 210: 952:Pulse-code modulation 869:Delay/Miller encoding 665: (in support of 627:10.1049/esej:20000609 482:Ethernet Technologies 187: 180:Encoding and decoding 142:—a simple one-to-one 81:group-coded recording 59:galvanically isolated 958:Serial communication 931:Digital transmission 834:Coded mark inversion 516:Tanenbaum, Andrew S. 384:Coded mark inversion 273:Encoding data using 51:self-clocking signal 963:Category:Line codes 844:Hybrid ternary code 804:Conditioned diphase 797:Extended line codes 763:Return to zero (RZ) 663:on 22 January 2022. 493:on 28 December 2018 278: 883:Optical line codes 554:Stallings, William 272: 211: 77:magnetic recording 23:telecommunications 971: 970: 829:Modified AMI code 720:Unipolar encoding 521:Computer Networks 342: 341: 292:Manchester value 234:William Stallings 144:pulse transformer 115:of a square wave 70:Manchester Mark 1 996: 859:64b/66b encoding 747: 725:Bipolar encoding 698: 691: 684: 675: 674: 670: 664: 659:. Archived from 643: 642: 631: 630: 610: 604: 603: 602: 600: 588: 582: 581: 562:(7th ed.). 550: 544: 543: 524:(4th ed.). 512: 506: 505: 500: 498: 489:, archived from 477: 471: 470: 468: 466: 444: 435: 434: 432: 430: 421:. Archived from 410: 369: 365: 358: 354: 279: 271: 264:coding schemes. 236:) as well as by 209: 168:, that use less 140:network isolator 1004: 1003: 999: 998: 997: 995: 994: 993: 974: 973: 972: 967: 899: 878: 854:8b/10b encoding 792: 748: 739: 708: 702: 672: 649: 640: 638: 635: 634: 611: 607: 598: 596: 590: 589: 585: 578: 551: 547: 540: 513: 509: 496: 494: 479: 478: 474: 464: 462: 445: 438: 428: 426: 411: 407: 402: 380: 367: 363: 356: 352: 301: 270: 257: 220: 208: 201: 193: 192:, where : 182: 166:8B/10B encoding 152: 105: 33:(also known as 31:Manchester code 17: 12: 11: 5: 1002: 992: 991: 986: 969: 968: 966: 965: 960: 955: 949: 943: 938: 933: 928: 926:Digital signal 923: 918: 913: 904: 901: 900: 898: 897: 892: 886: 884: 880: 879: 877: 876: 871: 866: 861: 856: 851: 849:6b/8b encoding 846: 841: 839:MLT-3 encoding 836: 831: 826: 821: 816: 811: 806: 800: 798: 794: 793: 791: 790: 785: 780: 775: 770: 765: 759: 757: 750: 749: 742: 740: 738: 737: 735:Mark and space 732: 727: 722: 716: 714: 710: 709: 701: 700: 693: 686: 678: 636: 633: 632: 621:(6): 278–280. 605: 583: 576: 545: 538: 507: 472: 436: 425:on 2 July 2018 404: 403: 401: 398: 397: 396: 391: 386: 379: 376: 375: 374: 371: 360: 349: 340: 339: 336: 332: 331: 328: 325: 321: 320: 317: 313: 312: 309: 306: 303: 298: 294: 293: 290: 288: 285: 283: 282:Original data 269: 266: 256: 253: 227:Andy Tanenbaum 219: 216: 206: 199: 181: 178: 151: 148: 121:clock recovery 104: 101: 35:phase encoding 15: 9: 6: 4: 3: 2: 1001: 990: 987: 985: 982: 981: 979: 964: 961: 959: 956: 953: 950: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 906: 905: 902: 896: 893: 891: 888: 887: 885: 881: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 801: 799: 795: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 760: 758: 756: 751: 746: 736: 733: 731: 730:On-off keying 728: 726: 723: 721: 718: 717: 715: 713:Main articles 711: 706: 699: 694: 692: 687: 685: 680: 679: 676: 671: 668: 662: 658: 654: 653: 647: 628: 624: 620: 616: 609: 595: 594: 587: 579: 577:0-13-100681-9 573: 569: 565: 564:Prentice Hall 561: 560: 555: 549: 541: 539:0-13-066102-3 535: 531: 527: 526:Prentice Hall 523: 522: 517: 511: 504: 492: 488: 487:Cisco Systems 484: 483: 476: 460: 456: 455: 450: 443: 441: 424: 420: 416: 409: 405: 395: 392: 390: 387: 385: 382: 381: 372: 361: 350: 347: 346: 345: 337: 334: 333: 329: 326: 322: 318: 315: 314: 310: 304: 295: 291: 289: 286: 284: 281: 280: 276: 265: 263: 252: 250: 245: 243: 239: 235: 230: 228: 223: 215: 205: 198: 197: 191: 186: 177: 175: 171: 167: 162: 159: 157: 147: 145: 141: 137: 133: 129: 124: 122: 118: 114: 110: 100: 98: 94: 90: 86: 82: 78: 73: 71: 67: 62: 60: 56: 52: 48: 44: 40: 36: 32: 28: 24: 19: 907: 782: 661:the original 651: 637: 618: 614: 608: 597:, retrieved 592: 586: 558: 548: 520: 510: 502: 497:12 September 495:, retrieved 491:the original 481: 475: 463:. Retrieved 452: 427:. Retrieved 423:the original 418: 408: 343: 275:exclusive or 258: 246: 231: 224: 221: 212: 203: 194: 163: 160: 153: 136:capacitively 128:DC component 125: 106: 74: 63: 55:DC component 38: 34: 30: 27:data storage 20: 18: 705:Line coding 667:MIL-STD-188 566:. pp.  528:. pp.  204:10100111001 150:Limitations 132:inductively 91:protocols, 89:consumer IR 984:Line codes 978:Categories 783:Manchester 755:line codes 465:2 February 400:References 242:IEEE 802.3 238:IEEE 802.4 72:computer. 908:See also: 419:quadibloc 170:bandwidth 43:line code 921:Bit rate 911:Baseband 556:(2004). 518:(2002). 459:Archived 378:See also 268:Encoding 255:Decoding 103:Features 53:with no 568:137–138 530:274–275 454:DigiKey 429:16 July 117:carrier 41:) is a 874:TC-PAM 753:Basic 599:28 May 574:  536:  287:Clock 174:jitter 954:(PCM) 948:(PAM) 648:from 113:phase 37:, or 916:Baud 819:2B1Q 814:4B5B 809:4B3T 601:2018 572:ISBN 534:ISBN 499:2017 467:2023 431:2018 300:XOR 196:1337 126:The 95:and 93:RFID 25:and 623:doi 366:or 262:NRZ 134:or 47:bit 21:In 980:: 669:). 655:. 617:. 570:. 532:. 501:, 485:, 457:. 451:. 439:^ 417:. 351:A 338:0 330:1 324:1 319:1 311:0 308:= 305:0 302:⊕ 297:0 251:. 202:= 200:10 158:. 123:. 99:. 61:. 39:PE 29:, 697:e 690:t 683:v 629:. 625:: 619:9 580:. 542:. 469:. 433:. 368:1 364:0 357:1 353:0 335:1 327:0 316:1 207:2

Index

telecommunications
data storage
line code
bit
self-clocking signal
DC component
galvanically isolated
University of Manchester
Manchester Mark 1
magnetic recording
group-coded recording
Ethernet physical layer
consumer IR
RFID
near-field communication
binary phase-shift keying
phase
carrier
clock recovery
DC component
inductively
capacitively
network isolator
pulse transformer
local area network (LAN)
8B/10B encoding
bandwidth
jitter

conventions for representation of data

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.