Knowledge

Lift-to-drag ratio

Source đź“ť

317:, which can have glide ratios almost 60 to 1 (60 units of distance forward for each unit of descent) in the best cases, but with 30:1 being considered good performance for general recreational use. Achieving a glider's best L/D in practice requires precise control of airspeed and smooth and restrained operation of the controls to reduce drag from deflected control surfaces. In zero wind conditions, L/D will equal distance traveled divided by altitude lost. Achieving the maximum distance for altitude lost in wind conditions requires further modification of the best airspeed, as does alternating cruising and thermaling. To achieve high speed across country, glider pilots anticipating strong thermals often load their gliders (sailplanes) with 146: 981: 31: 204: 138: 173: 279:. Speed is shown increasing from left to right. The lift/drag ratio is given by the slope from the origin to some point on the curve and so the maximum L/D ratio does not occur at the point of least drag coefficient, the leftmost point. Instead, it occurs at a slightly greater speed. Designers will typically select a wing design which produces an L/D peak at the chosen 520:. One method for estimating the zero-lift drag coefficient of an aircraft is the equivalent skin-friction method. For a well designed aircraft, zero-lift drag (or parasite drag) is mostly made up of skin friction drag plus a small percentage of pressure drag caused by flow separation. The method uses the equation 87:
The term is calculated for any particular airspeed by measuring the lift generated, then dividing by the drag at that speed. These vary with speed, so the results are typically plotted on a 2-dimensional graph. In almost all cases the graph forms a U-shape, due to the two main components of drag. The
680:
is the wing reference area. The equivalent skin friction coefficient accounts for both separation drag and skin friction drag and is a fairly consistent value for aircraft types of the same class. Substituting this into the equation for maximum lift-to-drag ratio, along with the equation for aspect
325:
means optimum glide ratio at greater airspeed, but at the cost of climbing more slowly in thermals. As noted below, the maximum L/D is not dependent on weight or wing loading, but with greater wing loading the maximum L/D occurs at a faster airspeed. Also, the faster airspeed means the aircraft
176:
Polar curve showing glide angle for the best glide speed (best L/D). It is the flattest possible glide angle through calm air, which will maximize the distance flown. This airspeed (vertical line) corresponds to the tangent point of a line starting from the origin of the graph. A glider flying
828: 440: 313:, which is the ratio of an (unpowered) aircraft's forward motion to its descent, is (when flown at constant speed) numerically equal to the aircraft's L/D. This is especially of interest in the design and operation of high performance 594: 726: 233:). For this reason profile drag is more pronounced at greater speeds, forming the right side of the lift/velocity graph's U shape. Profile drag is lowered primarily by streamlining and reducing cross section. 963: 1669: 107:
The L/D ratio is affected by both the form drag of the body and by the induced drag associated with creating a lifting force. It depends principally on the lift and drag coefficients,
874: 721: 353: 678: 651: 624: 467: 504: 129:
The L/D ratio can also be used for water craft and land vehicles. The L/D ratios for hydrofoil boats and displacement craft are determined similarly to aircraft.
1625: 122:
for a given flightpath, so that doubling the L/D ratio will require only half of the energy for the same distance travelled. This results directly in better
1323:
the lift to drag determines the required thrust to maintain altitude (given the aircraft weight), and the SFC permits calculation of the fuel burn rate.
876:
is known as the wetted aspect ratio. The equation demonstrates the importance of wetted aspect ratio in achieving an aerodynamically efficient design.
526: 513:
Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading.
823:{\displaystyle (L/D)_{\text{max}}={\frac {1}{2}}{\sqrt {{\frac {\pi \varepsilon }{C_{\text{fe}}}}{\frac {b^{2}}{S_{\text{wet}}}}}},} 1862: 80:
For an aerofoil wing or powered aircraft, the L/D is specified when in straight and level flight. For a glider it determines the
309:
and control surfaces will also add drag and possibly some lift, it is fair to consider the L/D of the aircraft as a whole. The
900: 287:, the lift-to-drag ratio is not the only consideration for wing design. Performance at a high angle of attack and a gentle 1600: 1491: 200:, which results in a greater induced drag. This term dominates the low-speed side of the graph of lift versus velocity. 17: 1918: 1539: 1427: 516:
It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total
181:
Lift can be created when an aerofoil-shaped body travels through a viscous fluid such as air. The aerofoil is often
1724: 1320: 1633: 1349:"Accurate calculation of aerodynamic coefficients of parafoil airdrop system based on computational fluid dynamic" 77:
under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
1972: 1900: 1566: 1982: 1977: 1906: 1805: 89: 837: 684: 1997: 1992: 1606: 1068: 318: 435:{\displaystyle (L/D)_{\text{max}}={\frac {1}{2}}{\sqrt {\frac {\pi \varepsilon {\text{AR}}}{C_{D,0}}}},} 1769: 1757: 507: 331: 112: 1394:
Dominique Paul Bergmann, Jan Denzel, Ole Pfeifle, Stefan Notter, Walter Fichter and Andreas Strohmayer
1763: 1379: 656: 629: 1851: 602: 284: 123: 452: 1987: 1868: 1135: 1107: 1348: 888:
had a lift/drag ratio of about 7 at Mach 2, whereas a 747 has about 17 at about mach 0.85.
1942: 1878: 1747: 1326: 470: 310: 1697: 1556: 1529: 264:. The varying ratio of lift to drag with AoA is often plotted in terms of these coefficients. 1912: 1650: 1000: 476: 182: 1478: 891: 248:
The rates of change of lift and drag with angle of attack (AoA) are called respectively the
1873: 1717: 300: 8: 2002: 1752: 1314: 446: 237: 93: 1347:
Wu, Wannan; Sun, Qinglin; Luo, Shuzhen; Sun, Mingwei; Chen, Zengqiang; Sun, Hao (2018).
1784: 145: 1444: 1562: 1535: 1423: 193: 42: 894:
developed an empirical relationship for predicting L/D ratio for high Mach numbers:
1894: 1774: 1677: 1360: 1309: 972:
is the Mach number. Windtunnel tests have shown this to be approximately accurate.
253: 249: 157: 149: 70: 38: 980: 283:
for a powered fixed-wing aircraft, thereby maximizing economy. Like all things in
1710: 327: 197: 186: 165: 108: 221:
is caused by movement of the body through air. This type of drag, known also as
1779: 1190: 1093: 1040:
at takeoff and landing 4:1, increasing to 12:1 at Mach 0.95 and 7.5:1 at Mach 2
288: 280: 222: 141:
Drag vs Speed. L/DMAX occurs at minimum Total Drag (e.g. Parasite plus Induced)
1610: 589:{\displaystyle C_{D,0}=C_{\text{fe}}{\frac {S_{\text{wet}}}{S_{\text{ref}}}},} 196:
or induced drag. At low speeds an aircraft has to generate lift with a higher
1966: 1925: 1856: 1499: 1365: 1062: 994: 240:
on any aerodynamic body thus has two components, induced drag and form drag.
230: 1391: 473:, a number less than but close to unity for long, straight-edged wings, and 177:
faster or slower than this airspeed will cover less distance before landing.
1392:
In-flight Lift and Drag Estimation of an Unmanned Propeller-Driven Aircraft
1294: 1056: 1018: 985: 322: 226: 62: 50: 34: 1815: 1259: 1245: 1231: 1217: 1162: 1121: 1031: 1006: 517: 119: 101: 97: 1408:. Minneapolis: Bob Wander's Soaring Books & Supplies. pp. 7–10. 30: 1830: 1810: 1681: 1304: 1273: 1203: 1176: 1148: 1049: 1043: 1024: 276: 207: 189:
to the airflow. The lift then increases as the square of the airspeed.
74: 1573:
The maximum lift-to-drag ratio of the complete helicopter is about 4.5
1445:"Quest for performance: The evolution of modern aircraft. NASA SP-468" 1380:
Validation of software for the calculation of aerodynamic coefficients
1012: 314: 218: 1422:. U.S. Department of Transportation, FAA. 2003. p. 5-6 to 5-9. 1301:
can have an effective lift to drag ratio while maintaining altitude.
1835: 1825: 1820: 1670:"Historical evolution of air transport productivity and efficiency" 1037: 885: 347:
Mathematically, the maximum lift-to-drag ratio can be estimated as
306: 267:
For any given value of lift, the AoA varies with speed. Graphs of C
66: 1588: 172: 1888: 1883: 1733: 1298: 192:
Whenever an aerodynamic body generates lift, this also creates
203: 137: 884:
At very great speeds, lift-to-drag ratios tend to be lower.
73:
caused by moving through air. It describes the aerodynamic
1702: 958:{\displaystyle L/D_{\text{max}}={\frac {4(M+3)}{M}},} 903: 840: 729: 687: 659: 632: 605: 529: 479: 455: 356: 1667: 1554: 1527: 1668:Rodrigo MartĂ­nez-Val; et al. (January 2005). 957: 868: 822: 715: 672: 645: 618: 588: 498: 461: 434: 210:for light aircraft. The tangent gives the maximum 1353:International Journal of Advanced Robotic Systems 1964: 1674:43rd AIAA Aerospace Sciences Meeting and Exhibit 84:, of distance travelled against loss of height. 118:The L/D ratio is inversely proportional to the 1718: 1489: 626:is the equivalent skin friction coefficient, 243: 96:. It is measured empirically by testing in a 1648: 65:generated by an aerodynamic body such as an 1561:. Cambridge University Press. p. 230. 1406:Glider Polars and Speed-To-Fly...Made Easy! 1382:RamĂłn LĂłpez Pereira, Linköpings Universitet 1346: 1725: 1711: 1479:Aerospaceweb.org Hypersonic Vehicle Design 1442: 330:and this will usually bring about a lower 1587:Cessna Skyhawk II Performance Assessment 1364: 975: 1521: 1517:. Cambridge University Press. p. 4. 988:has the best glide ratio for a sailplane 979: 202: 171: 144: 136: 29: 1583: 1581: 1512: 14: 1965: 1642: 1466:Aircraft Design: A Conceptual Approach 1463: 1403: 1706: 1558:Principles of helicopter aerodynamics 1555:Leishman, J. Gordon (24 April 2006). 1548: 1420:Glider Flying Handbook, FAA-H-8083-13 1317:range depends on the lift/drag ratio. 1077:Computed aerodynamic characteristics 1046:at 100 kn (190 km/h) 4.5:1 229:varies with the square of speed (see 1578: 869:{\displaystyle b^{2}/S_{\text{wet}}} 716:{\displaystyle b^{2}/S_{\text{ref}}} 41:are the two components of the total 1863:California–Nevada Interstate Maglev 1483: 1087: 24: 1534:. Osprey Publishing. p. 116. 1412: 45:acting on an aerofoil or aircraft. 25: 2014: 1691: 1397: 301:Gliding flight § Glide ratio 27:Measure of aerodynamic efficiency 1321:Thrust specific fuel consumption 132: 81: 1661: 1593: 1589:http://temporal.com.au/c172.pdf 1506: 1496:Advanced topics in aerodynamics 1468:(5th ed.). New York: AIAA. 1649:David Noland (February 2005). 1632:. June 4, 2013. Archived from 1472: 1457: 1436: 1385: 1373: 1340: 943: 931: 745: 730: 673:{\displaystyle S_{\text{ref}}} 646:{\displaystyle S_{\text{wet}}} 372: 357: 294: 13: 1: 1919:Shanghai–Hangzhou Maglev Line 1698:Lift-to-drag ratio calculator 1332: 879: 619:{\displaystyle C_{\text{fe}}} 275:vs. speed are referred to as 1907:Qingyuan Maglev Tourist Line 1806:High Speed Surface Transport 1528:Christopher Orlebar (1997). 462:{\displaystyle \varepsilon } 111:to the airflow and the wing 90:computational fluid dynamics 88:L/D may be calculated using 69:or aircraft, divided by the 7: 1630:Central Intelligence Agency 1607:Central Intelligence Agency 1288: 1069:Virgin Atlantic GlobalFlyer 342: 10: 2019: 1758:Electromagnetic suspension 1732: 1602:U2 Developments transcript 1513:Cumpsty, Nicholas (2003). 508:zero-lift drag coefficient 332:zero-lift drag coefficient 298: 244:Lift and drag coefficients 1951: 1935: 1844: 1798: 1764:Electrodynamic suspension 1740: 337: 1366:10.1177/1729881418766190 285:aeronautical engineering 1869:Changsha Maglev Express 1464:Raymer, Daniel (2012). 1136:McDonnell Douglas MD-11 1108:McDonnell Douglas DC-10 723:), yields the equation 653:is the wetted area and 499:{\displaystyle C_{D,0}} 1943:Lathen train collision 1879:Incheon Airport Maglev 1748:Linear induction motor 1609:. 1960. Archived from 1327:Thrust-to-weight ratio 989: 976:Examples of L/D ratios 959: 870: 834:is wingspan. The term 824: 717: 674: 647: 620: 590: 500: 471:span efficiency factor 463: 436: 215: 178: 169: 142: 46: 1973:Aircraft aerodynamics 1913:Shanghai Maglev Train 1492:"Lift-to-Drag Ratios" 983: 960: 871: 825: 718: 675: 648: 621: 591: 501: 464: 437: 206: 175: 148: 140: 33: 1983:Aircraft wing design 1978:Aircraft performance 1954:Proposals in italics 1620:– via YouTube. 1404:Wander, Bob (2003). 901: 838: 727: 685: 657: 630: 603: 527: 477: 453: 354: 326:will fly at greater 291:are also important. 150:Coefficients of drag 1936:Transport Accidents 1753:Magnetic levitation 1651:"The Ultimate Solo" 1490:Antonio Filippone. 1315:Range (aeronautics) 1078: 94:computer simulation 1998:Gliding technology 1993:Engineering ratios 1790:Lift-to-drag ratio 1785:Eddy current brake 1682:10.2514/6.2005-121 1531:The Concorde Story 1502:on March 28, 2008. 1076: 990: 955: 892:Dietrich KĂĽchemann 866: 820: 713: 670: 643: 616: 586: 496: 459: 432: 216: 179: 170: 143: 55:lift-to-drag ratio 47: 18:Lift to drag ratio 1960: 1959: 1955: 1857:Birmingham Maglev 1655:Popular Mechanics 1626:"U2 Developments" 1305:Inductrack maglev 1286: 1285: 1027:in cruise 17.7:1. 950: 919: 863: 815: 813: 810: 789: 786: 765: 751: 710: 667: 640: 613: 581: 578: 568: 556: 427: 426: 407: 392: 378: 254:drag coefficients 194:lift-induced drag 185:and/or set at an 43:aerodynamic force 16:(Redirected from 2010: 1953: 1895:Northeast Maglev 1775:Magnetic bearing 1727: 1720: 1713: 1704: 1703: 1686: 1685: 1665: 1659: 1658: 1646: 1640: 1637: 1621: 1619: 1618: 1597: 1591: 1585: 1576: 1575: 1552: 1546: 1545: 1525: 1519: 1518: 1510: 1504: 1503: 1498:. Archived from 1487: 1481: 1476: 1470: 1469: 1461: 1455: 1454: 1452: 1451: 1440: 1434: 1433: 1416: 1410: 1409: 1401: 1395: 1389: 1383: 1377: 1371: 1370: 1368: 1344: 1310:Lift coefficient 1079: 1075: 964: 962: 961: 956: 951: 946: 926: 921: 920: 917: 911: 875: 873: 872: 867: 865: 864: 861: 855: 850: 849: 829: 827: 826: 821: 816: 814: 812: 811: 808: 802: 801: 792: 790: 788: 787: 784: 778: 770: 768: 766: 758: 753: 752: 749: 740: 722: 720: 719: 714: 712: 711: 708: 702: 697: 696: 679: 677: 676: 671: 669: 668: 665: 652: 650: 649: 644: 642: 641: 638: 625: 623: 622: 617: 615: 614: 611: 595: 593: 592: 587: 582: 580: 579: 576: 570: 569: 566: 560: 558: 557: 554: 545: 544: 505: 503: 502: 497: 495: 494: 468: 466: 465: 460: 445:where AR is the 441: 439: 438: 433: 428: 425: 424: 409: 408: 405: 396: 395: 393: 385: 380: 379: 376: 367: 321:: the increased 305:As the aircraft 213: 71:aerodynamic drag 21: 2018: 2017: 2013: 2012: 2011: 2009: 2008: 2007: 1963: 1962: 1961: 1956: 1947: 1931: 1874:ChĹ«ĹŤ Shinkansen 1852:Beijing line S1 1840: 1794: 1736: 1731: 1694: 1689: 1666: 1662: 1647: 1643: 1624: 1616: 1614: 1599: 1598: 1594: 1586: 1579: 1569: 1553: 1549: 1542: 1526: 1522: 1511: 1507: 1488: 1484: 1477: 1473: 1462: 1458: 1449: 1447: 1443:Loftin, LK Jr. 1441: 1437: 1430: 1418: 1417: 1413: 1402: 1398: 1390: 1386: 1378: 1374: 1345: 1341: 1335: 1291: 1074: 978: 927: 925: 916: 912: 907: 902: 899: 898: 882: 860: 856: 851: 845: 841: 839: 836: 835: 807: 803: 797: 793: 791: 783: 779: 771: 769: 767: 757: 748: 744: 736: 728: 725: 724: 707: 703: 698: 692: 688: 686: 683: 682: 664: 660: 658: 655: 654: 637: 633: 631: 628: 627: 610: 606: 604: 601: 600: 575: 571: 565: 561: 559: 553: 549: 534: 530: 528: 525: 524: 484: 480: 478: 475: 474: 454: 451: 450: 414: 410: 404: 397: 394: 384: 375: 371: 363: 355: 352: 351: 345: 340: 328:Reynolds number 303: 297: 274: 270: 263: 259: 246: 211: 198:angle of attack 187:angle of attack 166:angle of attack 163: 155: 135: 120:energy required 109:angle of attack 28: 23: 22: 15: 12: 11: 5: 2016: 2006: 2005: 2000: 1995: 1990: 1988:Drag (physics) 1985: 1980: 1975: 1958: 1957: 1952: 1949: 1948: 1946: 1945: 1939: 1937: 1933: 1932: 1930: 1929: 1922: 1915: 1910: 1903: 1898: 1891: 1886: 1881: 1876: 1871: 1866: 1859: 1854: 1848: 1846: 1842: 1841: 1839: 1838: 1833: 1828: 1823: 1818: 1813: 1808: 1802: 1800: 1796: 1795: 1793: 1792: 1787: 1782: 1780:Servomechanism 1777: 1772: 1767: 1761: 1755: 1750: 1744: 1742: 1738: 1737: 1730: 1729: 1722: 1715: 1707: 1701: 1700: 1693: 1692:External links 1690: 1688: 1687: 1660: 1641: 1639: 1638: 1636:on 2013-08-16. 1592: 1577: 1567: 1547: 1540: 1520: 1515:Jet Propulsion 1505: 1482: 1471: 1456: 1435: 1428: 1411: 1396: 1384: 1372: 1338: 1334: 1331: 1330: 1329: 1324: 1318: 1312: 1307: 1302: 1290: 1287: 1284: 1283: 1280: 1277: 1270: 1269: 1266: 1263: 1256: 1255: 1252: 1249: 1242: 1241: 1238: 1235: 1228: 1227: 1224: 1221: 1214: 1213: 1210: 1207: 1200: 1199: 1196: 1193: 1191:Boeing 747-400 1187: 1186: 1183: 1180: 1173: 1172: 1169: 1166: 1159: 1158: 1155: 1152: 1145: 1144: 1141: 1138: 1132: 1131: 1128: 1125: 1118: 1117: 1114: 1111: 1104: 1103: 1100: 1097: 1094:Lockheed L1011 1090: 1089: 1086: 1083: 1073: 1072: 1066: 1060: 1053: 1052:gliding 10.9:1 1047: 1041: 1035: 1028: 1022: 1016: 1010: 1004: 998: 991: 977: 974: 966: 965: 954: 949: 945: 942: 939: 936: 933: 930: 924: 915: 910: 906: 881: 878: 859: 854: 848: 844: 819: 806: 800: 796: 782: 777: 774: 764: 761: 756: 747: 743: 739: 735: 732: 706: 701: 695: 691: 663: 636: 609: 597: 596: 585: 574: 564: 552: 548: 543: 540: 537: 533: 493: 490: 487: 483: 458: 443: 442: 431: 423: 420: 417: 413: 403: 400: 391: 388: 383: 374: 370: 366: 362: 359: 344: 341: 339: 336: 296: 293: 281:cruising speed 272: 268: 261: 257: 245: 242: 223:air resistance 161: 153: 134: 131: 26: 9: 6: 4: 3: 2: 2015: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1970: 1968: 1950: 1944: 1941: 1940: 1938: 1934: 1928: 1927: 1926:UK Ultraspeed 1923: 1921: 1920: 1916: 1914: 1911: 1909: 1908: 1904: 1902: 1899: 1897: 1896: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1864: 1860: 1858: 1855: 1853: 1850: 1849: 1847: 1843: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1803: 1801: 1797: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1765: 1762: 1759: 1756: 1754: 1751: 1749: 1746: 1745: 1743: 1739: 1735: 1728: 1723: 1721: 1716: 1714: 1709: 1708: 1705: 1699: 1696: 1695: 1683: 1679: 1675: 1671: 1664: 1656: 1652: 1645: 1635: 1631: 1627: 1623: 1622: 1613:on 2022-06-19 1612: 1608: 1604: 1603: 1596: 1590: 1584: 1582: 1574: 1570: 1564: 1560: 1559: 1551: 1543: 1541:9781855326675 1537: 1533: 1532: 1524: 1516: 1509: 1501: 1497: 1493: 1486: 1480: 1475: 1467: 1460: 1446: 1439: 1431: 1429:9780160514197 1425: 1421: 1415: 1407: 1400: 1393: 1388: 1381: 1376: 1367: 1362: 1358: 1354: 1350: 1343: 1339: 1337: 1328: 1325: 1322: 1319: 1316: 1313: 1311: 1308: 1306: 1303: 1300: 1296: 1293: 1292: 1282:Jun 12, 1994 1281: 1278: 1275: 1272: 1271: 1268:Oct 25, 1991 1267: 1264: 1261: 1258: 1257: 1253: 1250: 1247: 1244: 1243: 1239: 1236: 1233: 1230: 1229: 1226:Feb 22, 1987 1225: 1222: 1219: 1216: 1215: 1212:Feb 19, 1982 1211: 1208: 1205: 1202: 1201: 1198:Apr 29, 1988 1197: 1194: 1192: 1189: 1188: 1184: 1181: 1178: 1175: 1174: 1170: 1167: 1164: 1161: 1160: 1157:Sep 26, 1981 1156: 1153: 1150: 1147: 1146: 1143:Jan 10, 1990 1142: 1139: 1137: 1134: 1133: 1130:Oct 28, 1972 1129: 1126: 1123: 1120: 1119: 1116:Aug 29, 1970 1115: 1112: 1109: 1106: 1105: 1102:Nov 16, 1970 1101: 1098: 1095: 1092: 1091: 1088:First flight 1084: 1081: 1080: 1070: 1067: 1064: 1063:Rutan Voyager 1061: 1058: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 995:House sparrow 993: 992: 987: 982: 973: 971: 952: 947: 940: 937: 934: 928: 922: 913: 908: 904: 897: 896: 895: 893: 889: 887: 877: 857: 852: 846: 842: 833: 817: 804: 798: 794: 780: 775: 772: 762: 759: 754: 741: 737: 733: 704: 699: 693: 689: 661: 634: 607: 583: 572: 562: 550: 546: 541: 538: 535: 531: 523: 522: 521: 519: 514: 511: 509: 491: 488: 485: 481: 472: 456: 448: 429: 421: 418: 415: 411: 401: 398: 389: 386: 381: 368: 364: 360: 350: 349: 348: 335: 333: 329: 324: 320: 319:water ballast 316: 312: 308: 302: 292: 290: 286: 282: 278: 265: 255: 251: 241: 239: 234: 232: 231:drag equation 228: 224: 220: 209: 205: 201: 199: 195: 190: 188: 184: 174: 167: 159: 151: 147: 139: 133:Lift and drag 130: 127: 125: 121: 116: 114: 110: 105: 103: 99: 95: 91: 85: 83: 78: 76: 72: 68: 64: 60: 56: 52: 44: 40: 36: 32: 19: 1924: 1917: 1905: 1893: 1861: 1789: 1741:Technologies 1673: 1663: 1654: 1644: 1634:the original 1629: 1615:. Retrieved 1611:the original 1601: 1595: 1572: 1557: 1550: 1530: 1523: 1514: 1508: 1500:the original 1495: 1485: 1474: 1465: 1459: 1448:. Retrieved 1438: 1419: 1414: 1405: 1399: 1387: 1375: 1356: 1352: 1342: 1336: 1295:Gravity drag 1254:Apr 1, 1992 1240:Nov 2, 1992 1185:Feb 9, 1969 1171:Apr 3, 1982 1057:Lockheed U-2 1019:Wright Flyer 1001:Herring gull 969: 967: 890: 883: 831: 598: 515: 512: 447:aspect ratio 444: 346: 323:wing loading 304: 266: 247: 235: 227:profile drag 217: 191: 180: 128: 124:fuel economy 117: 113:aspect ratio 106: 86: 79: 58: 54: 51:aerodynamics 48: 1816:Launch loop 1260:Airbus A340 1246:Airbus A340 1232:Airbus A310 1218:Airbus A320 1163:Airbus A310 1122:Airbus A300 1032:Airbus A380 1007:Common tern 518:wetted area 311:glide ratio 295:Glide ratio 277:drag curves 102:flight test 100:or in free 98:wind tunnel 82:glide ratio 2003:Wind power 1967:Categories 1901:ODU maglev 1831:Transrapid 1811:Inductrack 1617:2016-03-05 1568:0521858607 1450:2006-04-22 1333:References 1274:Boeing 777 1204:Boeing 757 1177:Boeing 747 1149:Boeing 767 1085:cruise L/D 1050:Cessna 172 1044:Helicopter 1025:Boeing 747 880:Supersonic 315:sailplanes 299:See also: 238:total drag 208:Drag curve 75:efficiency 1055:Cruising 1030:Cruising 1013:Albatross 776:ε 773:π 457:ε 402:ε 399:π 219:Form drag 61:) is the 59:L/D ratio 1836:SCMaglev 1826:StarTram 1821:Vactrain 1770:Guideway 1289:See also 1082:Jetliner 1038:Concorde 886:Concorde 343:Subsonic 307:fuselage 183:cambered 67:aerofoil 1799:Systems 1299:rockets 681:ratio ( 1889:M-Bahn 1884:Linimo 1734:Maglev 1565:  1538:  1426:  1151:-200ER 1059:25.6:1 968:where 830:where 599:where 338:Theory 214:point. 53:, the 1845:Lines 1766:(EDS) 1760:(EMS) 1359:(2). 1021:8.3:1 997:: 4:1 289:stall 271:and C 260:and C 1563:ISBN 1536:ISBN 1424:ISBN 1279:19.3 1276:-200 1265:19.1 1262:-300 1251:19.2 1248:-200 1237:18.1 1234:-300 1223:16.3 1220:-200 1209:15.0 1206:-200 1195:15.5 1182:15.3 1179:-200 1168:15.3 1165:-300 1154:16.1 1140:16.1 1127:15.2 1124:-600 1113:13.8 1099:14.5 1096:-100 1071:37:1 1065:27:1 1034:20:1 1015:20:1 1009:12:1 1003:10:1 984:The 506:the 469:the 252:and 250:lift 236:The 158:lift 156:and 63:lift 57:(or 39:drag 37:and 35:Lift 1678:doi 1361:doi 1110:-40 986:eta 918:max 862:wet 809:wet 750:max 709:ref 666:ref 639:wet 577:ref 567:wet 377:max 225:or 212:L/D 164:vs 92:or 49:In 1969:: 1676:. 1672:. 1653:. 1628:. 1605:. 1580:^ 1571:. 1494:. 1357:15 1355:. 1351:. 785:fe 612:fe 555:fe 510:. 449:, 406:AR 334:. 126:. 115:. 104:. 1726:e 1719:t 1712:v 1684:. 1680:: 1657:. 1544:. 1453:. 1432:. 1369:. 1363:: 1297:— 970:M 953:, 948:M 944:) 941:3 938:+ 935:M 932:( 929:4 923:= 914:D 909:/ 905:L 858:S 853:/ 847:2 843:b 832:b 818:, 805:S 799:2 795:b 781:C 763:2 760:1 755:= 746:) 742:D 738:/ 734:L 731:( 705:S 700:/ 694:2 690:b 662:S 635:S 608:C 584:, 573:S 563:S 551:C 547:= 542:0 539:, 536:D 532:C 492:0 489:, 486:D 482:C 430:, 422:0 419:, 416:D 412:C 390:2 387:1 382:= 373:) 369:D 365:/ 361:L 358:( 273:D 269:L 262:D 258:L 256:C 168:. 162:L 160:C 154:D 152:C 20:)

Index

Lift to drag ratio

Lift
drag
aerodynamic force
aerodynamics
lift
aerofoil
aerodynamic drag
efficiency
glide ratio
computational fluid dynamics
computer simulation
wind tunnel
flight test
angle of attack
aspect ratio
energy required
fuel economy


Coefficients of drag
lift
angle of attack

cambered
angle of attack
lift-induced drag
angle of attack

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑