Knowledge

Lift-induced drag

Source 📝

961: 1004:). An aircraft flying at this speed is operating at its optimal aerodynamic efficiency. According to the above equations, the speed for minimum drag occurs at the speed where the induced drag is equal to the parasitic drag. This is the speed at which for unpowered aircraft, optimum glide angle is achieved. This is also the speed for greatest range (although V 1074:
The engine specific fuel consumption is normally expressed in units of fuel flow rate per unit of thrust or per unit of power depending on whether the engine output is measured in thrust, as for a jet engine, or shaft horsepower, as for a propeller engine. To convert fuel rate per unit thrust to fuel
1016:
since this gives 3-5% greater speed for only 1% less range. Flying higher where the air is thinner will raise the speed at which minimum drag occurs, and so permits a faster voyage for the same amount of fuel. If the plane is flying at the maximum permissible speed, then there is an altitude at which
483:
From this equation it is clear that the induced drag varies with the square of the lift; and inversely with the square of the equivalent airspeed; and inversely with the square of the wingspan. Deviation from the non-planar wing with elliptical lift distribution are taken into account by dividing the
203:
at a high angle of attack will generate an aerodynamic reaction force with a high drag component. By increasing the speed and reducing the angle of attack, the lift generated can be held constant while the drag component is reduced. At the optimum angle of attack, total drag is minimised. If speed is
1020:
The speed for maximum endurance (i.e. time in the air) is the speed for minimum fuel flow rate, and is always less than the speed for greatest range. The fuel flow rate is calculated as the product of the power required and the engine specific fuel consumption (fuel flow rate per unit of power). The
220:
The vortices reduce the wing's ability to generate lift, so that it requires a higher angle of attack for the same lift, which tilts the total aerodynamic force rearwards and increases the drag component of that force. The angular deflection is small and has little effect on the lift. However, there
216:
When producing lift, air below the wing is at a higher pressure than the air pressure above the wing. On a wing of finite span, this pressure difference causes air to flow from the lower surface, around the wingtip, towards the upper surface. This spanwise flow of air combines with chordwise flowing
153: 191:
Lift is produced by the changing direction of the flow around a wing. The change of direction results in a change of velocity (even if there is no speed change), which is an acceleration. To change the direction of the flow therefore requires that a force be applied to the fluid; the total
1446:
Winglets, which are small, nearly vertical, winglike surfaces mounted at the tips of a wing, are intended to provide, for lifting conditions and subsonic Mach numbers, reductions in drag coefficient greater than those achieved by a simple wing-tip extension with the same structural weight
1512: 936:
the wing area is held constant, then induced drag will be inversely proportional to aspect ratio. However, since wingspan can be increased while decreasing aspect ratio, or vice versa, the apparent relationship between aspect ratio and induced drag does not always hold.
641: 164:" is the actual lift on the wing; it is perpendicular to the effective relative airflow in the vicinity of the wing. The lift generated by the wing has been tilted rearwards through an angle equal to the downwash angle in three-dimensional flow. The component of "L 995:
Induced drag must be added to the parasitic drag to find the total drag. Since induced drag is inversely proportional to the square of the airspeed (at a given lift) whereas parasitic drag is proportional to the square of the airspeed, the combined overall
135:
For a constant amount of lift, induced drag can be reduced by increasing airspeed. A counter-intuitive effect of this is that, up to the speed-for-minimum-drag, aircraft need less power to fly faster. Induced drag is also reduced when the
339: 221:
is an increase in the drag equal to the product of the lift force and the angle through which it is deflected. Since the deflection is itself a function of the lift, the additional drag is proportional to the square of the lift.
1008:
will decrease as the plane consumes fuel and becomes lighter). The speed for greatest range (i.e. distance travelled) is the speed at which a straight line from the origin is tangent to the fuel flow rate curve.
720: 987:
His experiments were carried out at relatively low airspeeds, slower than the speed for minimum drag. He observed that, at these low airspeeds, increasing speed required reducing power. (At higher airspeeds,
932:
wing will produce less induced drag than a wing of low aspect ratio. While induced drag is inversely proportional to the square of the wingspan, not necessarily inversely proportional to aspect ratio,
1017:
the air density will be sufficient to keep it aloft while flying at the angle of attack that minimizes the drag. The optimum altitude will increase during the flight as the plane becomes lighter.
774: 516: 1395:
With infinite span, fluid motion is 2-D and in the direction of flow perpendicular to the span. Infinite span can, for example, be simulated using a foil completely spanning a wind tunnel.
397: 884:
segment (or a 2D wing) would experience no induced drag. The drag characteristics of a wing with infinite span can be simulated using an airfoil segment the width of a
91: 427: 454: 217:
air, which twists the airflow and produces vortices along the wing trailing edge. Induced drag is the cause of the vortices; the vortices do not cause induced drag.
855: 130: 824: 801: 477: 367: 504: 176:
acting on a body is usually thought of as having two components, lift and drag. By definition, the component of force parallel to the oncoming flow is called
250: 160:
in the vicinity of the wing. The grey vertical line labeled "L" is the force required to counteract the weight of the aircraft. The red vector labeled "L
899:
to reduce the induced drag. Winglets also provide some benefit by increasing the vertical height of the wing system. Wingtip mounted fuel tanks and wing
895:
used curved trailing edges on their rectangular wings. Some early aircraft had fins mounted on the tips. More recent aircraft have wingtip-mounted
1365: 952:
is the largest component of total drag, at almost 48%. Reducing induced drag can therefore significantly reduce cost and environmental impact.
648: 976:
published the results of his experiments on various flat plates. At the same airspeed and the same angle of attack, plates with higher
876:
According to the equations above, for wings generating the same lift, the induced drag is inversely proportional to the square of the
914:
wing of a given span. A small number of aircraft have a planform approaching the elliptical — the most famous examples being the
868:. Similar methods can also be used to compute the minimum induced drag for non-planar wings or for arbitrary lift distributions. 1122: 1678: 1644: 1602: 1346: 1254: 510:
To compare with other sources of drag, it can be convenient to express this equation in terms of lift and drag coefficients:
636:{\displaystyle C_{D,i}={\frac {D_{\text{i}}}{{\frac {1}{2}}\rho _{0}V_{E}^{2}S}}={\frac {C_{L}^{2}}{\pi A\!\!{\text{R}}e}}} 731: 1300: 1716: 1547: 1459: 1410: 1388: 1324: 1202: 1182: 948:
speed, induced drag is the second-largest component of total drag, accounting for approximately 37% of total drag.
1100: 193: 1770: 830:
This indicates how, for a given wing area, high aspect ratio wings are beneficial to flight efficiency. With
1012:
The curve of range versus airspeed is normally very shallow and it is customary to operate at the speed for
1780: 1438:
A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted winglets
1436: 1013: 1755: 977: 1453: 1040: 891:
An increase in wingspan or a solution with a similar effect is one way to reduce induced drag. The
485: 1775: 374: 1574: 1535: 69: 404: 438: 1749: 1582: 945: 918: 833: 8: 1353:
For a two-dimensional wing at low Mach numbers, the drag contains no induced or wave drag
865: 808: 785: 777: 461: 430: 351: 102: 1586: 1734:
Invariant Formulation for the Minimum Induced Drag Conditions of Nonplanar Wing Systems
1726: 1359: 1226: 949: 941: 911: 900: 489: 334:{\displaystyle D_{\text{i}}={\frac {L^{2}}{{\frac {1}{2}}\rho _{0}V_{E}^{2}\pi b^{2}}}} 1712: 1674: 1640: 1608: 1598: 1543: 1384: 1342: 1320: 1296: 1250: 1198: 1178: 1030: 960: 929: 173: 1381:
Marine rudders and control surfaces : principles, data, design and applications
992:
came to dominate, causing the power required to increase with increasing airspeed.)
1636:
Taking Flight: Inventing the Aerial Age, from Antiquity Through the First World War
1590: 1490: 1055: 922: 225: 39: 1704: 1668: 1634: 1170: 925:. For modern wings with winglets, the ideal lift distribution is not elliptical. 907: 892: 858: 185: 1594: 1670:
The Bird Is on the Wing: Aerodynamics and the Progress of the American Airplane
1045: 1035: 989: 973: 965: 896: 141: 1764: 1612: 1269: 16:
Type of aerodynamic resistance against the motion of a wing or other airfoil
1480:
by Daniel O. Dommasch, Sydney S. Sherby, Thomas F. Connolly, 3rd ed. (1961)
1197:, Figure 3.29, Ninth edition. Longman Scientific & Technical, England. 981: 915: 205: 55: 51: 35: 1732:
Luciano Demasi, Antonio Dipace, Giovanni Monegato, and Rauno Cavallaro.
885: 200: 1383:(1st ed.). Amsterdam: Elsevier/Butterworth-Heinemann. p. 41. 1234:. 2005 Boeing Performance and Flight Operations Engineering Conference. 997: 224:
The vortices created are unstable, and they quickly combine to produce
204:
increased beyond this, total drag will increase again due to increased
152: 1050: 63: 1737: 1379:
Molland, Anthony F. (2007). "Physics of control surface operation".
715:{\displaystyle C_{L}={\frac {L}{{\frac {1}{2}}\rho _{0}V_{E}^{2}S}}} 1249:(Sixth ed.). New York, NY: McGraw-Hill Education. p. 20. 877: 857:
being a function of angle of attack, induced drag increases as the
157: 137: 881: 180:; and the component perpendicular to the oncoming flow is called 59: 43: 1405: 1403: 1673:. College Station: Texas A&M University Press. p. 23. 984:
and experienced lower drag than those with lower aspect ratio.
168:" parallel to the free stream is the induced drag on the wing. 1536:"Control of Turbulent Flows for Skin Friction Drag Reduction" 1520: 1400: 1736:, AIAA Journal, Vol. 52, No. 10 (2014), pp. 2223–2240. 1286: 1284: 1282: 1000:
shows a minimum at some airspeed - the minimum drag speed (V
1123:"Why Aspect Ratio doesn't Matter – Understanding Aerospace" 47: 955: 456:
is the ratio of circumference to diameter of a circle, and
1293:
Understanding Aerodynamics: Arguing from the Real Physics
1279: 240:
wing with an elliptical lift distribution, induced drag D
46:
coming at it. This drag force occurs in airplanes due to
42:
force that occurs whenever a moving object redirects the
1534:
Coustols, Eric (1996). Meier, GEA; Schnerr, GH (eds.).
105: 72: 1021:
power required is equal to the drag times the speed.
836: 811: 788: 734: 651: 519: 492: 464: 441: 407: 377: 354: 253: 1721:
Abbott, Ira H., and Von Doenhoff, Albert E. (1959),
769:{\displaystyle A\!\!{\text{R}}={\frac {b^{2}}{S}}\,} 156:
Induced drag is related to the angle of the induced
1434: 1751:Doug McLean, Common Misconceptions in Aerodynamics 1444:(Technical report). NASA. 19760019075. p. 1: 849: 818: 795: 768: 714: 635: 498: 471: 448: 421: 391: 361: 333: 124: 85: 1101:"Bjorn's Corner: Aircraft drag reduction, Part 3" 1075:rate per unit power one must divide by the speed. 739: 738: 621: 620: 1762: 1540:Control of Flow Instabilities and Unsteady Flows 1228:Wingtip Devices: What They Do and How They Do It 1517:Special Course on Skin Friction Drag Reduction 231: 1639:. Oxford University Press, USA. p. 147. 1511:Robert, JP (March 1992). Cousteix, J (ed.). 1474:The Elements of Aerofoil and Airscrew Theory 908:the elliptical spanwise distribution of lift 399:is the standard density of air at sea level, 1575:"Drag Reduction: A Major Task for Research" 1341:(Sixth ed.). Waltham, MA. p. 61. 1098: 1364:: CS1 maint: location missing publisher ( 1513:"Drag reduction: an industrial challenge" 1116: 1114: 815: 792: 765: 468: 445: 418: 388: 358: 1568: 1566: 1533: 1527: 1336: 1330: 1244: 1220: 1218: 1216: 1214: 1212: 1210: 1166: 1164: 1162: 1160: 1158: 1156: 959: 910:produces the minimum induced drag for a 871: 864:The above equation can be derived using 151: 1632: 1626: 1579:Aerodynamic Drag Reduction Technologies 1378: 1372: 1238: 1120: 1094: 1092: 956:Combined effect with other drag sources 1763: 1711:, Pitman Publishing Limited, London. 1666: 1660: 1510: 1290: 1224: 1111: 880:. A wing of infinite span and uniform 1572: 1563: 1504: 1339:Aerodynamics for engineering students 1207: 1177:. Pitman Publishing Limited, London. 1153: 1089: 188:the lift greatly exceeds the drag. 62:wings that redirect air to cause a 13: 1729:, Standard Book Number 486-60586-8 1476:(1926); referenced in Fig. 5.4 of 14: 1792: 1743: 1435:Richard T. Whitcomb (July 1976). 196:of the fluid acting on the wing. 1150:, Figure 1.30, NAVWEPS 00-80T-80 1121:Illsley, Michael (4 July 2017). 228:which trail behind the wingtip. 192:aerodynamic force is simply the 1698: 1633:Hallion, Richard (8 May 2003). 1483: 1466: 1428: 1337:Houghton, E. L. (2012). "1.6". 1309: 1272:, and Von Doenhoff, Albert E., 1148:Aerodynamics for Naval Aviators 1068: 903:may also provide some benefit. 1263: 1245:Anderson, John D. Jr. (2017). 1187: 1140: 928:For a given wing area, a high 826:is the span efficiency factor. 244:can be calculated as follows: 147: 1: 1458:: CS1 maint: date and year ( 1276:, Section 1.2 and Appendix IV 1082: 866:Prandtl's lifting-line theory 140:is higher, or for wings with 96:lift-induced drag coefficient 1581:. Springer. pp. 17–27. 1247:Fundamentals of aerodynamics 7: 1595:10.1007/978-3-540-45359-8_3 1099:Bjorn Fehrm (Nov 3, 2017). 1024: 392:{\displaystyle \rho _{0}\,} 232:Calculation of induced drag 211: 10: 1797: 1411:"Induced Drag Coefficient" 1315:Anderson, John D. (2005), 940:For a typical twin-engine 1667:Hansen, James R. (2004). 1577:. In Peter Thiede (ed.). 803:is a reference wing area, 484:induced drag by the span 86:{\textstyle D_{\text{i}}} 54:redirecting air to cause 1491:"Skybrary: Induced Drag" 1061: 1041:Oswald efficiency number 1723:Theory of Wing Sections 1274:Theory of Wing Sections 1127:Understanding Aerospace 422:{\displaystyle V_{E}\,} 1738:doi: 10.2514/1.J052837 1317:Introduction to Flight 1193:Kermode, A.C. (1972). 969: 851: 820: 797: 770: 716: 637: 500: 473: 450: 449:{\displaystyle \pi \,} 423: 393: 363: 335: 169: 126: 87: 66:. It is symbolized as 58:and also in cars with 1771:Aircraft aerodynamics 1573:Marec, J.-P. (2001). 1478:Airplane Aerodynamics 1291:McLean, Doug (2012). 1225:McLean, Doug (2005). 963: 872:Reducing induced drag 852: 850:{\displaystyle C_{L}} 821: 798: 771: 717: 638: 501: 474: 451: 424: 394: 364: 336: 155: 127: 88: 1519:. AGARD Report 786. 834: 809: 786: 732: 649: 517: 490: 462: 439: 405: 375: 352: 251: 125:{\textstyle C_{D,i}} 103: 70: 1587:2001adrt.conf...17M 1195:Mechanics of Flight 1146:Hurt, H. H. (1965) 819:{\displaystyle e\,} 796:{\displaystyle S\,} 705: 612: 586: 472:{\displaystyle b\,} 431:equivalent airspeed 362:{\displaystyle L\,} 314: 1781:Gliding technology 1727:Dover Publications 970: 950:Skin friction drag 942:wide-body aircraft 847: 816: 793: 766: 712: 691: 633: 598: 572: 496: 486:efficiency factor 469: 446: 419: 389: 359: 331: 300: 170: 122: 83: 1680:978-1-58544-243-0 1646:978-0-19-516035-2 1604:978-3-642-07541-4 1348:978-0-08-096632-8 1256:978-1-259-12991-9 1031:Aerodynamic force 980:produced greater 968:plus induced drag 763: 743: 710: 679: 631: 625: 591: 560: 548: 499:{\displaystyle e} 329: 288: 261: 174:aerodynamic force 80: 32:drag due to lift, 20:Lift-induced drag 1788: 1752: 1692: 1691: 1689: 1687: 1664: 1658: 1657: 1655: 1653: 1630: 1624: 1623: 1621: 1619: 1570: 1561: 1560: 1558: 1556: 1531: 1525: 1524: 1508: 1502: 1501: 1499: 1497: 1487: 1481: 1470: 1464: 1463: 1457: 1454:cite tech report 1449: 1443: 1432: 1426: 1425: 1423: 1421: 1415:www.grc.nasa.gov 1407: 1398: 1397: 1376: 1370: 1369: 1363: 1355: 1334: 1328: 1313: 1307: 1306: 1288: 1277: 1267: 1261: 1260: 1242: 1236: 1235: 1233: 1222: 1205: 1191: 1185: 1168: 1151: 1144: 1138: 1137: 1135: 1133: 1118: 1109: 1108: 1096: 1076: 1072: 1056:Wingtip vortices 856: 854: 853: 848: 846: 845: 825: 823: 822: 817: 802: 800: 799: 794: 775: 773: 772: 767: 764: 759: 758: 749: 744: 741: 721: 719: 718: 713: 711: 709: 704: 699: 690: 689: 680: 672: 666: 661: 660: 642: 640: 639: 634: 632: 630: 626: 623: 611: 606: 597: 592: 590: 585: 580: 571: 570: 561: 553: 550: 549: 546: 540: 535: 534: 505: 503: 502: 497: 479:is the wingspan. 478: 476: 475: 470: 455: 453: 452: 447: 428: 426: 425: 420: 417: 416: 398: 396: 395: 390: 387: 386: 368: 366: 365: 360: 340: 338: 337: 332: 330: 328: 327: 326: 313: 308: 299: 298: 289: 281: 278: 277: 268: 263: 262: 259: 226:wingtip vortices 186:angles of attack 131: 129: 128: 123: 121: 120: 92: 90: 89: 84: 82: 81: 78: 40:aerodynamic drag 1796: 1795: 1791: 1790: 1789: 1787: 1786: 1785: 1761: 1760: 1750: 1746: 1701: 1696: 1695: 1685: 1683: 1681: 1665: 1661: 1651: 1649: 1647: 1631: 1627: 1617: 1615: 1605: 1571: 1564: 1554: 1552: 1550: 1532: 1528: 1509: 1505: 1495: 1493: 1489: 1488: 1484: 1471: 1467: 1451: 1450: 1441: 1433: 1429: 1419: 1417: 1409: 1408: 1401: 1391: 1377: 1373: 1357: 1356: 1349: 1335: 1331: 1319:, McGraw-Hill. 1314: 1310: 1303: 1289: 1280: 1268: 1264: 1257: 1243: 1239: 1231: 1223: 1208: 1192: 1188: 1169: 1154: 1145: 1141: 1131: 1129: 1119: 1112: 1097: 1090: 1085: 1080: 1079: 1073: 1069: 1064: 1027: 1007: 1003: 958: 893:Wright brothers 874: 859:angle of attack 841: 837: 835: 832: 831: 810: 807: 806: 787: 784: 783: 754: 750: 748: 740: 733: 730: 729: 700: 695: 685: 681: 671: 670: 665: 656: 652: 650: 647: 646: 622: 613: 607: 602: 596: 581: 576: 566: 562: 552: 551: 545: 541: 539: 524: 520: 518: 515: 514: 491: 488: 487: 463: 460: 459: 440: 437: 436: 412: 408: 406: 403: 402: 382: 378: 376: 373: 372: 353: 350: 349: 322: 318: 309: 304: 294: 290: 280: 279: 273: 269: 267: 258: 254: 252: 249: 248: 243: 234: 214: 199:An aircraft in 184:. At practical 167: 163: 150: 142:wingtip devices 110: 106: 104: 101: 100: 77: 73: 71: 68: 67: 30:, or sometimes 17: 12: 11: 5: 1794: 1784: 1783: 1778: 1776:Drag (physics) 1773: 1759: 1758: 1745: 1744:External links 1742: 1741: 1740: 1730: 1719: 1700: 1697: 1694: 1693: 1679: 1659: 1645: 1625: 1603: 1562: 1548: 1526: 1503: 1482: 1465: 1427: 1399: 1389: 1371: 1347: 1329: 1308: 1302:978-1119967514 1301: 1278: 1270:Abbott, Ira H. 1262: 1255: 1237: 1206: 1186: 1152: 1139: 1110: 1087: 1086: 1084: 1081: 1078: 1077: 1066: 1065: 1063: 1060: 1059: 1058: 1053: 1048: 1046:Parasitic drag 1043: 1038: 1033: 1026: 1023: 1014:99% best range 1005: 1001: 990:parasitic drag 974:Samuel Langley 966:parasitic drag 964:Total drag is 957: 954: 873: 870: 844: 840: 828: 827: 814: 804: 791: 781: 762: 757: 753: 747: 737: 723: 722: 708: 703: 698: 694: 688: 684: 678: 675: 669: 664: 659: 655: 644: 629: 619: 616: 610: 605: 601: 595: 589: 584: 579: 575: 569: 565: 559: 556: 544: 538: 533: 530: 527: 523: 495: 481: 480: 467: 457: 444: 434: 415: 411: 400: 385: 381: 370: 357: 343: 342: 325: 321: 317: 312: 307: 303: 297: 293: 287: 284: 276: 272: 266: 257: 241: 233: 230: 213: 210: 194:reaction force 165: 161: 149: 146: 119: 116: 113: 109: 76: 15: 9: 6: 4: 3: 2: 1793: 1782: 1779: 1777: 1774: 1772: 1769: 1768: 1766: 1757: 1753: 1748: 1747: 1739: 1735: 1731: 1728: 1724: 1720: 1718: 1717:0-273-01120-0 1714: 1710: 1706: 1703: 1702: 1682: 1676: 1672: 1671: 1663: 1648: 1642: 1638: 1637: 1629: 1614: 1610: 1606: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1569: 1567: 1551: 1549:9783709126882 1545: 1541: 1537: 1530: 1522: 1518: 1514: 1507: 1492: 1486: 1479: 1475: 1469: 1461: 1455: 1448: 1440: 1439: 1431: 1416: 1412: 1406: 1404: 1396: 1392: 1390:9780750669443 1386: 1382: 1375: 1367: 1361: 1354: 1350: 1344: 1340: 1333: 1326: 1325:0-07-123818-2 1322: 1318: 1312: 1304: 1298: 1294: 1287: 1285: 1283: 1275: 1271: 1266: 1258: 1252: 1248: 1241: 1230: 1229: 1221: 1219: 1217: 1215: 1213: 1211: 1204: 1203:0-582-42254-X 1200: 1196: 1190: 1184: 1183:0-273-01120-0 1180: 1176: 1172: 1167: 1165: 1163: 1161: 1159: 1157: 1149: 1143: 1128: 1124: 1117: 1115: 1106: 1102: 1095: 1093: 1088: 1071: 1067: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1022: 1018: 1015: 1010: 999: 993: 991: 985: 983: 979: 975: 967: 962: 953: 951: 947: 943: 938: 935: 931: 926: 924: 920: 917: 913: 909: 904: 902: 898: 894: 889: 887: 883: 879: 869: 867: 862: 860: 842: 838: 812: 805: 789: 782: 779: 760: 755: 751: 745: 735: 728: 727: 726: 706: 701: 696: 692: 686: 682: 676: 673: 667: 662: 657: 653: 645: 627: 617: 614: 608: 603: 599: 593: 587: 582: 577: 573: 567: 563: 557: 554: 542: 536: 531: 528: 525: 521: 513: 512: 511: 508: 506: 493: 465: 458: 442: 435: 432: 413: 409: 401: 383: 379: 371: 355: 348: 347: 346: 323: 319: 315: 310: 305: 301: 295: 291: 285: 282: 274: 270: 264: 255: 247: 246: 245: 239: 229: 227: 222: 218: 209: 207: 202: 197: 195: 189: 187: 183: 179: 175: 159: 154: 145: 143: 139: 133: 117: 114: 111: 107: 98: 97: 74: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 1733: 1722: 1709:Aerodynamics 1708: 1705:L. J. Clancy 1699:Bibliography 1684:. Retrieved 1669: 1662: 1650:. Retrieved 1635: 1628: 1616:. Retrieved 1578: 1553:. Retrieved 1539: 1529: 1516: 1506: 1494:. Retrieved 1485: 1477: 1473: 1472:Glauert, H. 1468: 1445: 1437: 1430: 1418:. Retrieved 1414: 1394: 1380: 1374: 1352: 1338: 1332: 1316: 1311: 1292: 1273: 1265: 1246: 1240: 1227: 1194: 1189: 1175:Aerodynamics 1174: 1171:Clancy, L.J. 1147: 1142: 1130:. Retrieved 1126: 1104: 1070: 1019: 1011: 994: 986: 978:aspect ratio 971: 939: 933: 930:aspect ratio 927: 916:World War II 905: 890: 875: 863: 829: 778:aspect ratio 724: 509: 482: 369:is the lift, 344: 237: 235: 223: 219: 215: 206:profile drag 198: 190: 181: 177: 171: 134: 95: 94: 52:lifting body 36:aerodynamics 31: 27: 24:induced drag 23: 19: 18: 923:Thunderbolt 906:Typically, 886:wind tunnel 861:increases. 201:slow flight 148:Explanation 28:vortex drag 1765:Categories 1420:9 February 1083:References 998:drag curve 172:The total 93:, and the 1613:0179-9614 1360:cite book 1051:Wave drag 972:In 1891, 683:ρ 643:, where 615:π 564:ρ 443:π 380:ρ 316:π 292:ρ 64:downforce 1707:(1975), 1686:13 April 1652:13 April 1618:22 March 1555:24 March 1447:penalty. 1132:25 March 1025:See also 919:Spitfire 897:winglets 878:wingspan 212:Vortices 158:downwash 138:wingspan 38:, is an 1756:YouTube 1583:Bibcode 1542:: 156. 1523:: 2-13. 1173:(1975) 901:washout 882:airfoil 776:is the 429:is the 60:airfoil 44:airflow 1715:  1677:  1643:  1611:  1601:  1546:  1387:  1345:  1327:. p318 1323:  1299:  1253:  1201:  1181:  1105:Leeham 946:cruise 912:planar 345:where 238:planar 236:For a 1521:AGARD 1496:5 May 1442:(PDF) 1232:(PDF) 1062:Notes 50:or a 48:wings 1713:ISBN 1688:2022 1675:ISBN 1654:2022 1641:ISBN 1620:2022 1609:ISSN 1599:ISBN 1557:2022 1544:ISBN 1498:2015 1460:link 1422:2023 1385:ISBN 1366:link 1343:ISBN 1321:ISBN 1297:ISBN 1251:ISBN 1199:ISBN 1179:ISBN 1134:2022 1036:Drag 982:lift 921:and 725:and 182:lift 178:drag 56:lift 1754:on 1591:doi 944:at 166:eff 162:eff 99:as 34:in 1767:: 1725:, 1607:. 1597:. 1589:. 1565:^ 1538:. 1515:. 1456:}} 1452:{{ 1413:. 1402:^ 1393:. 1362:}} 1358:{{ 1351:. 1295:. 1281:^ 1209:^ 1155:^ 1125:. 1113:^ 1103:. 1091:^ 1006:MD 1002:MD 934:if 888:. 507:. 208:. 144:. 132:. 26:, 22:, 1690:. 1656:. 1622:. 1593:: 1585:: 1559:. 1500:. 1462:) 1424:. 1368:) 1305:. 1259:. 1136:. 1107:. 843:L 839:C 813:e 790:S 780:, 761:S 756:2 752:b 746:= 742:R 736:A 707:S 702:2 697:E 693:V 687:0 677:2 674:1 668:L 663:= 658:L 654:C 628:e 624:R 618:A 609:2 604:L 600:C 594:= 588:S 583:2 578:E 574:V 568:0 558:2 555:1 547:i 543:D 537:= 532:i 529:, 526:D 522:C 494:e 466:b 433:, 414:E 410:V 384:0 356:L 341:, 324:2 320:b 311:2 306:E 302:V 296:0 286:2 283:1 275:2 271:L 265:= 260:i 256:D 242:i 118:i 115:, 112:D 108:C 79:i 75:D

Index

aerodynamics
aerodynamic drag
airflow
wings
lifting body
lift
airfoil
downforce
wingspan
wingtip devices

downwash
aerodynamic force
angles of attack
reaction force
slow flight
profile drag
wingtip vortices
equivalent airspeed
efficiency factor e {\displaystyle e}
aspect ratio
angle of attack
Prandtl's lifting-line theory
wingspan
airfoil
wind tunnel
Wright brothers
winglets
washout
the elliptical spanwise distribution of lift

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.