Knowledge

Lie algebra representation

Source 📝

32: 8202: 7428: 7810: 3486:. Thus, for semisimple Lie algebras, a classification of irreducible (i.e. simple) representations leads immediately to classification of all representations. For other Lie algebra, which do not have this special property, classifying the irreducible representations may not help much in classifying general representations. 1699: 8105: 3545:
is completely reducible, as we have just noted. In the other direction, the definition of a reductive Lie algebra means that it decomposes as a direct sum of ideals (i.e., invariant subspaces for the adjoint representation) that have no nontrivial sub-ideals. Some of these ideals will be
7309: 7725: 4200: 4082: 3904: 5441: 5138: 6028:
The universal enveloping algebra plays an important role in the representation theory of semisimple Lie algebras, described above. Specifically, the finite-dimensional irreducible representations are constructed as quotients of
1577: 2604:. Many other interesting Lie algebras (and their representations) arise in other parts of quantum physics. Indeed, the history of representation theory is characterized by rich interactions between mathematics and physics. 8197:{\displaystyle \operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {g}}\circ \operatorname {Res} _{\mathfrak {h}}\simeq \operatorname {Res} _{\mathfrak {g}}\circ \operatorname {Ind} _{\mathfrak {h_{1}}}^{\mathfrak {g_{1}}}} 4748: 4450:
acts on the second factor in the tensor product. In the context of representations of the Lie algebra su(2), the tensor product of representations goes under the name "addition of angular momentum." In this context,
4372: 6838: 6165: 2663: 7624: 7246: 7468: 4611: 8100: 8047: 7423:{\displaystyle \operatorname {Hom} _{\mathfrak {g}}(\operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {g}}W,E)\simeq \operatorname {Hom} _{\mathfrak {h}}(W,\operatorname {Res} _{\mathfrak {h}}^{\mathfrak {g}}E)} 2599:
will constitute a representation of the Lie algebra so(3). An understanding of the representation theory of so(3) is of great help in, for example, analyzing Hamiltonians with rotational symmetry, such as the
2549: 1089: 7180: 4821: 4909: 2003: 1883: 7888: 7849: 2325: 8271:
is a better place for the representation theory in the semisimple case in zero characteristic. For instance, the category O turned out to be of a right size to formulate the celebrated BGG reciprocity.
4995: 1467: 1211: 7922: 6994: 943: 2178: 1942: 3130: 7805:{\displaystyle \operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {g}}\simeq \operatorname {Ind} _{\mathfrak {h'}}^{\mathfrak {g}}\circ \operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {h'}}} 1378: 5605: 5543: 5361: 5260: 6291: 4090: 6391: 3087: 2210: 6458: 3646: 2825: 2289: 2230: 1726: 983: 887: 811: 8290:
One of the most important applications of Lie algebra representations is to the representation theory of real reductive Lie groups. The application is based on the idea that if
7582: 7549: 7121: 7060: 7027: 6928: 6700: 6616: 6352: 6218: 6067: 6023: 5942: 5909: 5848: 5791: 3995: 3675: 3177:
Similarly, many other constructions from module theory in abstract algebra carry over to this setting: submodule, quotient, subquotient, direct sum, Jordan-Hölder series, etc.
2103: 4856: 8367: 8336: 8265: 8234: 7994: 7970: 7946: 7652: 7516: 7492: 7298: 7270: 7204: 7084: 6960: 6895: 6752: 6724: 6667: 6640: 6579: 6482: 6419: 6319: 6099: 5990: 5966: 5876: 5815: 5758: 5726: 5649: 5567: 5465: 5284: 5222: 5198: 5076: 4635: 4559: 3770: 3718: 3584: 3543: 3515: 3468: 3397: 3308: 3225: 3031: 3007: 2947: 2911: 2687: 2349: 2258: 2030: 1818: 1794: 1569: 1498: 1335: 1275: 1242: 1011: 755: 8581:
and the adjoint representation of the Lie algebra on itself is a representation on an algebra (i.e., acts by derivations on the associative algebra structure), then it is a
7689: 6871: 3987: 3947: 2769: 2354:
A partial converse to this statement says that every representation of a finite-dimensional (real or complex) Lie algebra lifts to a unique representation of the associated
4521: 4485: 4448: 4412: 2142: 3778: 5366: 3616: 5052: 5025: 4254: 4227: 6185: 3340: 3257: 2979: 6532: 2795: 5676: 4662: 2875: 1754: 1304: 1113: 8387: 8308: 7717: 5174: 3160: 8407: 6552: 5625: 5505: 5485: 5081: 4929: 4682: 3360: 3277: 2849: 2727: 2707: 2597: 2577: 1031: 851: 831: 775: 689: 669: 1694:{\displaystyle {\textrm {ad}}:{\mathfrak {g}}\to {\mathfrak {gl}}({\mathfrak {g}}),\quad X\mapsto \operatorname {ad} _{X},\quad \operatorname {ad} _{X}(Y)=.} 8745:
Bernstein I.N., Gelfand I.M., Gelfand S.I., "Structure of Representations that are generated by vectors of highest weight," Functional. Anal. Appl. 5 (1971)
8767:
A. Beilinson and J. Bernstein, "Localisation de g-modules," Comptes Rendus de l'AcadĂ©mie des Sciences, SĂ©rie I, vol. 292, iss. 1, pp. 15–18, 1981.
3546:
one-dimensional and the rest are simple Lie algebras. Thus, a reductive Lie algebra is a direct sum of a commutative algebra and a semisimple algebra.
702:. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the 8919: 5687: 449: 4687: 9091: 4278: 2358:
Lie group, so that representations of simply-connected Lie groups are in one-to-one correspondence with representations of their Lie algebras.
6757: 6104: 2620: 497: 7587: 7209: 7437: 4564: 4272:
In the physics literature, the tensor product with the identity operator is often suppressed in the notation, with the formula written as
8052: 7999: 502: 2380: 1042: 8608: 492: 487: 7126: 4756: 8623: 8236:
be a finite-dimensional semisimple Lie algebra over a field of characteristic zero. (in the solvable or nilpotent case, one studies
5851: 4861: 8999: 8851: 1953: 1838: 307: 8409:-module structure allows harmonic analysis to be carried out in a way similar to that on connected compact semisimple Lie groups. 2294: 4937: 3483: 1542: 1386: 571: 454: 8968: 1121: 8267:
turns out to be too large especially for homological algebra methods to be useful: it was realized that a smaller subcategory
8950: 8833: 8803: 7854: 7815: 7893: 6965: 892: 602: 2147: 8628: 1902: 9009: 8884: 8866: 5142:
If we work in a basis, then the transpose in the above definition can be interpreted as the ordinary matrix transpose.
9033: 8929: 8902: 8780: 8758: 4265: 3691: 3092: 1347: 8633: 4195:{\displaystyle (\rho _{1}\otimes \rho _{2})(X)=\rho _{1}(X)\otimes \mathrm {I} +\mathrm {I} \otimes \rho _{2}(X)} 2555:
Thus, the span of these three operators forms a Lie algebra, which is isomorphic to the Lie algebra so(3) of the
464: 8817: 8603: 5572: 5510: 5289: 5227: 6234: 8598: 8464: 6357: 3036: 699: 459: 439: 2183: 9064: 5699: 1894: 714: 404: 312: 6424: 4077:{\displaystyle \rho _{1}\otimes \rho _{2}:{\mathfrak {g}}\rightarrow {\mathfrak {gl}}(V_{1}\otimes V_{2})} 3621: 3493:
if the adjoint representation is semisimple. Certainly, every (finite-dimensional) semisimple Lie algebra
2800: 2271: 9023: 2215: 1711: 952: 856: 780: 7554: 7521: 7093: 7032: 6999: 6900: 6672: 6588: 6324: 6190: 6039: 5995: 5914: 5881: 5820: 5763: 8821: 3651: 2050: 1833: 717:, associated with the Lie algebra plays an important role. The universality of this ring says that the 4829: 1889:
at the identities is a Lie algebra homomorphism. In particular, for a finite-dimensional vector space
1547:
The most basic example of a Lie algebra representation is the adjoint representation of a Lie algebra
8348: 8317: 8246: 8215: 7975: 7951: 7927: 7633: 7497: 7473: 7279: 7251: 7185: 7065: 6941: 6876: 6733: 6705: 6648: 6621: 6560: 6463: 6400: 6300: 6080: 5971: 5947: 5857: 5796: 5793:. The universal property of the universal enveloping algebra guarantees that every representation of 5739: 5707: 5630: 5548: 5446: 5265: 5203: 5179: 5057: 4616: 4540: 3751: 3699: 3565: 3524: 3496: 3449: 3378: 3289: 3206: 3191:
A simple but useful tool in studying irreducible representations is Schur's lemma. It has two parts:
3012: 2988: 2928: 2892: 2668: 2579:
is any subspace of the quantum Hilbert space that is invariant under the angular momentum operators,
2371: 2330: 2239: 2011: 1799: 1775: 1550: 1479: 1316: 1256: 1223: 992: 736: 692: 7661: 6843: 3952: 3912: 3899:{\displaystyle X\cdot (v_{1}\otimes v_{2})=(X\cdot v_{1})\otimes v_{2}+v_{1}\otimes (X\cdot v_{2}).} 2736: 8339: 5436:{\displaystyle \operatorname {Hom} _{\mathfrak {g}}(V,W)=\operatorname {Hom} (V,W)^{\mathfrak {g}}} 1034: 595: 79: 4490: 4454: 4417: 4381: 2108: 8976: 8790:
BĂ€uerle, G.G.A; de Kerf, E.A.; ten Kroode, A.P.E. (1997). A. van Groesen; E.M. de Jager (eds.).
4261: 3589: 8618: 6727: 5030: 5003: 4257: 4232: 4205: 3471: 2261: 718: 399: 362: 330: 317: 6170: 3313: 3230: 2952: 8285: 3734:
as their underlying vector spaces, then the tensor product of the representations would have
3490: 620: 431: 99: 6487: 2774: 174: 164: 154: 144: 8843: 8792: 8586: 8564: 8560: 8439: 5654: 4640: 2854: 2556: 2033: 1739: 1289: 1098: 722: 691:
satisfying some fixed set of commutation relations, such as the relations satisfied by the
636: 59: 49: 8372: 8293: 5133:{\displaystyle (AB)^{\operatorname {tr} }=B^{\operatorname {tr} }A^{\operatorname {tr} }.} 8: 8574: 8456: 7694: 6726:-module by extending the adjoint representation. But one can also use the left and right 6582: 5153: 4532: 3139: 588: 576: 417: 247: 9004:. Cambridge Studies in Advanced Mathematics. Vol. 113. Cambridge University Press. 8563:
of itself. This is a representation on an algebra: the (anti)derivation property is the
8310:
is a Hilbert-space representation of, say, a connected real semisimple linear Lie group
3407:(or semisimple) if it is isomorphic to a direct sum of irreducible representations (cf. 9068: 8638: 8392: 6537: 5733: 5610: 5490: 5470: 4914: 4667: 3345: 3262: 2834: 2712: 2692: 2601: 2582: 2562: 1016: 836: 816: 760: 710: 674: 654: 348: 338: 8989: 6033:, and Verma modules are constructed as quotients of the universal enveloping algebra. 9029: 9005: 8964: 8946: 8925: 8898: 8880: 8862: 8829: 8799: 8776: 8754: 3408: 412: 375: 2366:
In quantum theory, one considers "observables" that are self-adjoint operators on a
527: 265: 9019: 8984: 8960: 3186: 2355: 547: 227: 219: 211: 203: 195: 128: 109: 69: 8207: 2370:. The commutation relations among these operators are then an important tool. The 706:
of a Lie group are the integrated form of the representations of its Lie algebra.
8938: 8839: 8582: 8567: 8237: 7276:. It satisfies (and is in fact characterized by) the universal property: for any 1705: 703: 532: 285: 270: 41: 8556:, we simply drop all the gradings and the (−1) to the some power factors. 8538: 8468: 8430: 6074: 552: 370: 275: 6397:
implies that the canonical map is actually injective. Thus, every Lie algebra
537: 9085: 8809: 8794:
Finite and infinite dimensional Lie algebras and their application in physics
8773:
Finite and infinite dimensional Lie algebras and their application in physics
6221: 2367: 1886: 260: 89: 8771:
BĂ€uerle, G.G.A; de Kerf, E.A. (1990). A. van Groesen; E.M. de Jager (eds.).
6962:
be a finite-dimensional Lie algebra over a field of characteristic zero and
4743:{\displaystyle \rho ^{*}:{\mathfrak {g}}\rightarrow {\mathfrak {gl}}(V^{*})} 9067:(2012). "Beilinson-Bernstein localization over the Harish-Chandra center". 8828:. Graduate Texts in Mathematics. Vol. 129. New York: Springer-Verlag. 8499: 8483: 8281: 6669:
is a module over itself via adjoint representation, the enveloping algebra
6030: 1765: 1342: 644: 640: 557: 542: 343: 325: 255: 9025:
Representation theory of semisimple groups. An overview based on examples.
8879:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 8877:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
8613: 8578: 8426: 6394: 4367:{\displaystyle (\rho _{1}\otimes \rho _{2})(X)=\rho _{1}(X)+\rho _{2}(X)} 2914: 1821: 632: 616: 383: 299: 23: 8585:. The analogous observation for Lie superalgebras gives the notion of a 6833:{\displaystyle l_{X}(Y)=XY,X\in {\mathfrak {g}},Y\in U({\mathfrak {g}})} 6160:{\displaystyle T=\oplus _{n=0}^{\infty }\otimes _{1}^{n}{\mathfrak {g}}} 5968:. Thus, there is a one-to-one correspondence between representations of 2658:{\displaystyle \rho :{\mathfrak {g}}\rightarrow \operatorname {End} (V)} 8268: 648: 522: 388: 280: 8897:, Oxford Graduate Texts in Mathematics, Oxford Science Publications, 7619:{\displaystyle \operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {g}}W} 7241:{\displaystyle \operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {g}}W} 1769: 19: 9073: 8240:
of the enveloping algebra; cf. Dixmier for the definitive account.)
7463:{\displaystyle \operatorname {Ind} _{\mathfrak {h}}^{\mathfrak {g}}} 4606:{\displaystyle \rho :{\mathfrak {g}}\rightarrow {\mathfrak {gl}}(V)} 8095:{\displaystyle {\mathfrak {h}}_{1}={\mathfrak {h}}/{\mathfrak {n}}} 8042:{\displaystyle {\mathfrak {g}}_{1}={\mathfrak {g}}/{\mathfrak {n}}} 5681: 3427:
is an invariant subspace, then there is another invariant subspace
3419:
is completely reducible if and only if every invariant subspace of
721:
of representations of a Lie algebra is the same as the category of
9028:, Princeton Landmarks in Mathematics, Princeton University Press, 8389:
allows algebraic especially homological methods to be applied and
2544:{\displaystyle =i\hbar L_{z},\;\;=i\hbar L_{x},\;\;=i\hbar L_{y},} 2268:. Applying the preceding, one gets the Lie algebra representation 1084:{\displaystyle \rho \colon {\mathfrak {g}}\to {\mathfrak {gl}}(V)} 8959: 479: 7175:{\displaystyle U({\mathfrak {g}})\otimes _{U({\mathfrak {h}})}W} 8798:. Studies in mathematical physics. Vol. 7. North-Holland. 8775:. Studies in mathematical physics. Vol. 1. North-Holland. 4816:{\displaystyle \rho ^{*}(X)=-(\rho (X))^{\operatorname {tr} },} 4664:
be the dual space, that is, the space of linear functionals on
709:
In the study of representations of a Lie algebra, a particular
4904:{\displaystyle A^{\operatorname {tr} }:V^{*}\rightarrow V^{*}} 8243:
The category of (possibly infinite-dimensional) modules over
1998:{\displaystyle d\phi :{\mathfrak {g}}\to {\mathfrak {gl}}(V)} 1878:{\displaystyle d_{e}\phi :{\mathfrak {g}}\to {\mathfrak {h}}} 3992:
In the language of homomorphisms, this means that we define
2320:{\displaystyle d_{e}\operatorname {Ad} =\operatorname {ad} } 4990:{\displaystyle (A^{\operatorname {tr} }\phi )(v)=\phi (Av)} 1462:{\displaystyle \cdot v=X\cdot (Y\cdot v)-Y\cdot (X\cdot v)} 651:. In the language of physics, one looks for a vector space 31: 8861:, Graduate Texts in Mathematics, vol. 267, Springer, 4487:
might, for example, be the orbital angular momentum while
1731: 6930:. The right regular representation is defined similarly. 2612: 1206:{\displaystyle \rho ()=\rho (X)\rho (Y)-\rho (Y)\rho (X)} 889:
into a Lie algebra with bracket given by the commutator:
8924:, Graduate Texts in Mathematics, vol. 9, Springer, 8789: 8314:, then it has two natural actions: the complexification 1508:. This is related to the previous definition by setting 7883:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {h}}'} 7844:{\displaystyle {\mathfrak {h'}}\subset {\mathfrak {g}}} 1736:
A Lie algebra representation also arises in nature. If
8921:
Introduction to Lie Algebras and Representation Theory
8912:
D-modules, perverse sheaves, and representation theory
8624:
Representation theory of a connected compact Lie group
7917:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 6989:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 938:{\displaystyle =\rho \circ \sigma -\sigma \circ \rho } 8852:
Geometric Representation theory, Math 267y, Fall 2005
8395: 8375: 8351: 8320: 8296: 8249: 8218: 8208:
Infinite-dimensional representations and "category O"
8108: 8055: 8002: 7978: 7954: 7930: 7896: 7857: 7818: 7728: 7697: 7664: 7636: 7590: 7557: 7524: 7500: 7476: 7440: 7312: 7282: 7254: 7212: 7188: 7129: 7096: 7068: 7035: 7002: 6968: 6944: 6903: 6879: 6846: 6760: 6736: 6708: 6675: 6651: 6624: 6591: 6563: 6540: 6490: 6466: 6427: 6403: 6360: 6327: 6303: 6237: 6193: 6173: 6107: 6083: 6042: 5998: 5974: 5950: 5917: 5884: 5860: 5823: 5799: 5766: 5742: 5710: 5657: 5633: 5613: 5575: 5551: 5513: 5493: 5473: 5449: 5369: 5292: 5268: 5230: 5206: 5182: 5156: 5084: 5060: 5033: 5006: 4940: 4917: 4864: 4832: 4759: 4690: 4670: 4643: 4619: 4567: 4543: 4493: 4457: 4420: 4384: 4281: 4235: 4208: 4093: 3998: 3955: 3915: 3781: 3754: 3702: 3685: 3654: 3624: 3592: 3568: 3527: 3499: 3452: 3381: 3348: 3316: 3292: 3265: 3233: 3209: 3142: 3095: 3039: 3015: 2991: 2955: 2931: 2895: 2857: 2837: 2803: 2777: 2739: 2715: 2695: 2671: 2623: 2585: 2565: 2383: 2333: 2297: 2274: 2242: 2218: 2186: 2150: 2111: 2053: 2014: 1956: 1905: 1841: 1802: 1778: 1742: 1714: 1580: 1553: 1482: 1389: 1350: 1319: 1292: 1259: 1226: 1124: 1101: 1045: 1019: 995: 955: 895: 859: 839: 819: 783: 763: 739: 677: 657: 647:) in such a way that the Lie bracket is given by the 8910:
Ryoshi Hotta, Kiyoshi Takeuchi, Toshiyuki Tanisaki,
5545:
that are invariant under the just-defined action of
2173:{\displaystyle \operatorname {GL} ({\mathfrak {g}})} 4414:acts on the first factor in the tensor product and 3748:as the underlying vector space, with the action of 1937:{\displaystyle \phi :G\to \operatorname {GL} (V)\,} 8895:Lie Groups - An Introduction Through Linear Groups 8791: 8401: 8381: 8361: 8330: 8302: 8259: 8228: 8196: 8094: 8041: 7988: 7964: 7940: 7916: 7882: 7843: 7804: 7711: 7683: 7646: 7618: 7576: 7543: 7510: 7486: 7462: 7422: 7292: 7264: 7240: 7198: 7174: 7115: 7078: 7054: 7021: 6988: 6954: 6922: 6889: 6865: 6832: 6746: 6718: 6694: 6661: 6634: 6610: 6573: 6546: 6526: 6476: 6452: 6413: 6385: 6346: 6313: 6285: 6212: 6179: 6159: 6093: 6061: 6017: 5984: 5960: 5936: 5903: 5870: 5842: 5809: 5785: 5752: 5720: 5670: 5643: 5619: 5599: 5561: 5537: 5499: 5479: 5459: 5435: 5355: 5278: 5254: 5216: 5192: 5168: 5132: 5070: 5046: 5019: 4989: 4923: 4903: 4850: 4815: 4742: 4676: 4656: 4629: 4605: 4553: 4515: 4479: 4442: 4406: 4366: 4248: 4221: 4194: 4076: 3981: 3941: 3898: 3764: 3712: 3669: 3648:. The set of all invariant elements is denoted by 3640: 3610: 3578: 3537: 3509: 3462: 3391: 3354: 3334: 3302: 3271: 3251: 3219: 3154: 3124: 3081: 3025: 3001: 2973: 2941: 2905: 2869: 2843: 2819: 2789: 2763: 2721: 2701: 2681: 2657: 2591: 2571: 2543: 2343: 2319: 2283: 2252: 2224: 2204: 2172: 2136: 2097: 2024: 1997: 1936: 1877: 1812: 1788: 1748: 1720: 1693: 1563: 1492: 1461: 1372: 1329: 1298: 1269: 1236: 1205: 1107: 1083: 1025: 1005: 977: 937: 881: 845: 825: 805: 769: 749: 683: 663: 8559:A Lie (super)algebra is an algebra and it has an 2374:, for example, satisfy the commutation relations 9083: 6228:by the ideal generated by elements of the form 5688:Representation theory of semisimple Lie algebras 5682:Representation theory of semisimple Lie algebras 5145: 3696:If we have two representations of a Lie algebra 2881:is also used for an irreducible representation. 1279:. (Many authors abuse terminology and refer to 450:Representation theory of semisimple Lie algebras 8412: 7890:. The induction commutes with restriction: let 5627:to be the base field, we recover the action of 3310:-module over an algebraically closed field and 9001:An Introduction to Lie Groups and Lie Algebras 8770: 8753:, Amsterdam, New York, Oxford: North-Holland, 9062: 7630:is simple (resp. absolutely simple). Here, a 6618:is the symmetric algebra of the vector space 3125:{\displaystyle X\in {\mathfrak {g}},\,v\in V} 1115:should be a linear map and it should satisfy 596: 8816: 6421:can be embedded into an associative algebra 6354:obtained by restricting the quotient map of 2864: 2858: 1373:{\displaystyle {\mathfrak {g}}\times V\to V} 8969:"Representation of Jordan and Lie Algebras" 5736:called the universal enveloping algebra of 3772:uniquely determined by the assumption that 833:, that is, the space of all linear maps of 698:The notion is closely related to that of a 671:together with a collection of operators on 7626:is simple (resp. absolutely simple), then 3423:has an invariant complement. (That is, if 2489: 2488: 2436: 2435: 1536: 603: 589: 488:Particle physics and representation theory 30: 9072: 8988: 8917: 7470:is an exact functor from the category of 6933: 6167:and the multiplication on it is given by 5600:{\displaystyle \operatorname {Hom} (V,W)} 5538:{\displaystyle \operatorname {Hom} (V,W)} 5356:{\displaystyle (X\cdot f)(v)=Xf(v)-f(Xv)} 5255:{\displaystyle \operatorname {Hom} (V,W)} 3112: 2827:. A nonzero representation is said to be 1933: 8997: 8937: 8892: 8730: 6286:{\displaystyle -(X\otimes Y-Y\otimes X)} 3474:over a field of characteristic zero and 3366: 8748: 8694: 8609:Weyl's theorem on complete reducibility 6386:{\displaystyle T\to U({\mathfrak {g}})} 4526: 3082:{\displaystyle f(X\cdot v)=X\cdot f(v)} 1732:Infinitesimal Lie group representations 1543:Adjoint representation of a Lie algebra 455:Representations of classical Lie groups 9084: 5693: 4684:. Then we can define a representation 4202:. This is called the Kronecker sum of 3680: 2613:Invariant subspaces and irreducibility 2205:{\displaystyle \operatorname {Ad} (g)} 1947:determines a Lie algebra homomorphism 9092:Representation theory of Lie algebras 9046: 9018: 8826:Representation theory. A first course 3375:be a representation of a Lie algebra 3362:is a scalar multiple of the identity. 2361: 813:denote the space of endomorphisms of 8874: 8856: 8718: 8706: 8682: 8670: 8658: 8425:on an algebra is a (not necessarily 6453:{\displaystyle A=U({\mathfrak {g}})} 5000:The minus sign in the definition of 4911:is defined as the "composition with 3641:{\displaystyle x\in {\mathfrak {g}}} 3484:Weyl's complete reducibility theorem 3166:. Such maps are also referred to as 2831:if the only invariant subspaces are 2820:{\displaystyle X\in {\mathfrak {g}}} 2284:{\displaystyle d\operatorname {Ad} } 2040:), i.e. the endomorphism algebra of 728: 308:Lie group–Lie algebra correspondence 8354: 8323: 8252: 8221: 8186: 8182: 8172: 8168: 8152: 8137: 8122: 8115: 8087: 8075: 8059: 8034: 8022: 8006: 7981: 7957: 7933: 7909: 7899: 7871: 7860: 7836: 7822: 7792: 7784: 7769: 7758: 7742: 7735: 7639: 7604: 7597: 7566: 7533: 7518:-modules. These uses the fact that 7503: 7479: 7454: 7447: 7405: 7398: 7374: 7344: 7337: 7319: 7285: 7257: 7226: 7219: 7191: 7159: 7138: 7105: 7071: 7044: 7011: 6981: 6971: 6947: 6912: 6882: 6822: 6800: 6754:-module; namely, with the notation 6739: 6711: 6684: 6654: 6627: 6600: 6566: 6469: 6442: 6406: 6375: 6336: 6306: 6297:There is a natural linear map from 6202: 6152: 6086: 6051: 6007: 5977: 5953: 5926: 5893: 5863: 5832: 5802: 5775: 5745: 5713: 5636: 5554: 5452: 5427: 5376: 5271: 5209: 5185: 5063: 4719: 4716: 4706: 4622: 4589: 4586: 4576: 4546: 4040: 4037: 4027: 3757: 3705: 3661: 3633: 3571: 3530: 3502: 3455: 3384: 3295: 3212: 3104: 3018: 2994: 2934: 2898: 2812: 2674: 2632: 2336: 2245: 2225:{\displaystyle \operatorname {Ad} } 2162: 2017: 1981: 1978: 1968: 1870: 1860: 1805: 1781: 1721:{\displaystyle \operatorname {ad} } 1616: 1606: 1603: 1593: 1556: 1485: 1353: 1322: 1262: 1248:, together with the representation 1229: 1067: 1064: 1054: 998: 978:{\displaystyle {\mathfrak {gl}}(V)} 961: 958: 882:{\displaystyle {\mathfrak {gl}}(V)} 865: 862: 806:{\displaystyle {\mathfrak {gl}}(V)} 789: 786: 742: 13: 9056: 9049:Lie Groups Beyond and Introduction 7691:is simple for any field extension 7577:{\displaystyle U({\mathfrak {h}})} 7544:{\displaystyle U({\mathfrak {g}})} 7116:{\displaystyle U({\mathfrak {g}})} 7055:{\displaystyle U({\mathfrak {g}})} 7022:{\displaystyle U({\mathfrak {h}})} 6923:{\displaystyle U({\mathfrak {g}})} 6695:{\displaystyle U({\mathfrak {g}})} 6611:{\displaystyle U({\mathfrak {g}})} 6460:in such a way that the bracket on 6347:{\displaystyle U({\mathfrak {g}})} 6213:{\displaystyle U({\mathfrak {g}})} 6130: 6062:{\displaystyle U({\mathfrak {g}})} 6018:{\displaystyle U({\mathfrak {g}})} 5937:{\displaystyle U({\mathfrak {g}})} 5911:, so that every representation of 5904:{\displaystyle U({\mathfrak {g}})} 5843:{\displaystyle U({\mathfrak {g}})} 5817:gives rise to a representation of 5786:{\displaystyle U({\mathfrak {g}})} 5678:given in the previous subsection. 4166: 4158: 3686:Tensor products of representations 14: 9103: 8990:10.1090/s0002-9947-1949-0029366-6 8859:Quantum Theory for Mathematicians 8459:and in addition, the elements of 7062:from the right and thus, for any 6730:to make the enveloping algebra a 4266:Tensor product of representations 3692:Tensor product of representations 3670:{\displaystyle V^{\mathfrak {g}}} 3279:is either zero or an isomorphism. 2607: 2525: 2472: 2419: 2144:at the identity is an element of 2098:{\displaystyle c_{g}(x)=gxg^{-1}} 8629:Whitehead's lemma (Lie algebras) 5054:is actually a representation of 4851:{\displaystyle A:V\rightarrow V} 3180: 2884: 2327:, the adjoint representation of 9039:(elementary treatment for SL(2, 8914:; translated by Kiyoshi Takeuch 8554:representation of a Lie algebra 8362:{\displaystyle {\mathfrak {g}}} 8331:{\displaystyle {\mathfrak {g}}} 8275: 8260:{\displaystyle {\mathfrak {g}}} 8229:{\displaystyle {\mathfrak {g}}} 7989:{\displaystyle {\mathfrak {h}}} 7965:{\displaystyle {\mathfrak {g}}} 7941:{\displaystyle {\mathfrak {n}}} 7647:{\displaystyle {\mathfrak {g}}} 7511:{\displaystyle {\mathfrak {g}}} 7487:{\displaystyle {\mathfrak {h}}} 7293:{\displaystyle {\mathfrak {g}}} 7265:{\displaystyle {\mathfrak {g}}} 7199:{\displaystyle {\mathfrak {g}}} 7079:{\displaystyle {\mathfrak {h}}} 6955:{\displaystyle {\mathfrak {g}}} 6890:{\displaystyle {\mathfrak {g}}} 6747:{\displaystyle {\mathfrak {g}}} 6719:{\displaystyle {\mathfrak {g}}} 6662:{\displaystyle {\mathfrak {g}}} 6635:{\displaystyle {\mathfrak {g}}} 6574:{\displaystyle {\mathfrak {g}}} 6477:{\displaystyle {\mathfrak {g}}} 6414:{\displaystyle {\mathfrak {g}}} 6314:{\displaystyle {\mathfrak {g}}} 6094:{\displaystyle {\mathfrak {g}}} 5985:{\displaystyle {\mathfrak {g}}} 5961:{\displaystyle {\mathfrak {g}}} 5871:{\displaystyle {\mathfrak {g}}} 5810:{\displaystyle {\mathfrak {g}}} 5753:{\displaystyle {\mathfrak {g}}} 5721:{\displaystyle {\mathfrak {g}}} 5644:{\displaystyle {\mathfrak {g}}} 5562:{\displaystyle {\mathfrak {g}}} 5460:{\displaystyle {\mathfrak {g}}} 5279:{\displaystyle {\mathfrak {g}}} 5217:{\displaystyle {\mathfrak {g}}} 5193:{\displaystyle {\mathfrak {g}}} 5071:{\displaystyle {\mathfrak {g}}} 4630:{\displaystyle {\mathfrak {g}}} 4554:{\displaystyle {\mathfrak {g}}} 3765:{\displaystyle {\mathfrak {g}}} 3713:{\displaystyle {\mathfrak {g}}} 3579:{\displaystyle {\mathfrak {g}}} 3538:{\displaystyle {\mathfrak {g}}} 3510:{\displaystyle {\mathfrak {g}}} 3463:{\displaystyle {\mathfrak {g}}} 3392:{\displaystyle {\mathfrak {g}}} 3303:{\displaystyle {\mathfrak {g}}} 3220:{\displaystyle {\mathfrak {g}}} 3026:{\displaystyle {\mathfrak {g}}} 3002:{\displaystyle {\mathfrak {g}}} 2942:{\displaystyle {\mathfrak {g}}} 2906:{\displaystyle {\mathfrak {g}}} 2682:{\displaystyle {\mathfrak {g}}} 2344:{\displaystyle {\mathfrak {g}}} 2253:{\displaystyle {\mathfrak {g}}} 2025:{\displaystyle {\mathfrak {g}}} 1813:{\displaystyle {\mathfrak {h}}} 1789:{\displaystyle {\mathfrak {g}}} 1728:is a Lie algebra homomorphism. 1647: 1627: 1564:{\displaystyle {\mathfrak {g}}} 1493:{\displaystyle {\mathfrak {g}}} 1330:{\displaystyle {\mathfrak {g}}} 1283:itself as the representation). 1270:{\displaystyle {\mathfrak {g}}} 1237:{\displaystyle {\mathfrak {g}}} 1006:{\displaystyle {\mathfrak {g}}} 750:{\displaystyle {\mathfrak {g}}} 629:representation of a Lie algebra 8724: 8712: 8700: 8688: 8676: 8664: 8652: 8604:Weight (representation theory) 8417:If we have a Lie superalgebra 7684:{\displaystyle V\otimes _{k}F} 7571: 7561: 7538: 7528: 7417: 7383: 7362: 7328: 7164: 7154: 7143: 7133: 7110: 7100: 7049: 7039: 7016: 7006: 6917: 6907: 6866:{\displaystyle X\mapsto l_{X}} 6850: 6827: 6817: 6777: 6771: 6689: 6679: 6605: 6595: 6503: 6491: 6447: 6437: 6380: 6370: 6364: 6341: 6331: 6280: 6256: 6250: 6238: 6207: 6197: 6056: 6046: 6012: 6002: 5931: 5921: 5898: 5888: 5837: 5827: 5780: 5770: 5732:, one can associate a certain 5594: 5582: 5532: 5520: 5422: 5409: 5397: 5385: 5350: 5341: 5332: 5326: 5314: 5308: 5305: 5293: 5249: 5237: 5095: 5085: 4984: 4975: 4966: 4960: 4957: 4941: 4888: 4842: 4801: 4797: 4791: 4785: 4776: 4770: 4737: 4724: 4711: 4600: 4594: 4581: 4523:is the spin angular momentum. 4510: 4504: 4474: 4468: 4437: 4431: 4401: 4395: 4361: 4355: 4339: 4333: 4317: 4311: 4308: 4282: 4189: 4183: 4151: 4145: 4129: 4123: 4120: 4094: 4071: 4045: 4032: 3982:{\displaystyle v_{2}\in V_{2}} 3942:{\displaystyle v_{1}\in V_{1}} 3890: 3871: 3839: 3820: 3814: 3788: 3326: 3243: 3076: 3070: 3055: 3043: 2965: 2764:{\displaystyle \rho (X)w\in W} 2749: 2743: 2652: 2646: 2637: 2516: 2490: 2463: 2437: 2410: 2384: 2199: 2193: 2167: 2157: 2128: 2070: 2064: 1992: 1986: 1973: 1930: 1924: 1915: 1865: 1685: 1673: 1667: 1661: 1631: 1621: 1611: 1598: 1456: 1444: 1432: 1420: 1402: 1390: 1364: 1313:One can equivalently define a 1200: 1194: 1188: 1182: 1173: 1167: 1161: 1155: 1146: 1143: 1131: 1128: 1078: 1072: 1059: 972: 966: 908: 896: 876: 870: 800: 794: 503:Galilean group representations 498:PoincarĂ© group representations 1: 9051:(second ed.), Birkhauser 8739: 8599:Representation of a Lie group 8573:If a vector space is both an 8445:which is a representation of 7722:The induction is transitive: 5146:Representation on linear maps 4258:Matrix addition#Kronecker_sum 3549: 2212:one obtains a representation 725:over its enveloping algebra. 700:representation of a Lie group 493:Lorentz group representations 460:Theorem of the highest weight 8413:Representation on an algebra 7551:is a free right module over 7494:-modules to the category of 6873:defines a representation of 5700:Universal enveloping algebra 4516:{\displaystyle \rho _{2}(X)} 4480:{\displaystyle \rho _{1}(X)} 4443:{\displaystyle \rho _{2}(x)} 4407:{\displaystyle \rho _{1}(x)} 4378:where it is understood that 4262:Kronecker product#Properties 3489:A Lie algebra is said to be 3478:is finite-dimensional, then 3415:is finite-dimensional, then 2949:-modules. Then a linear map 2137:{\displaystyle c_{g}:G\to G} 1895:representation of Lie groups 1095:Explicitly, this means that 715:universal enveloping algebra 7: 8634:Kazhdan–Lusztig conjectures 8592: 8421:, then a representation of 5507:are simply the elements of 5467:-module homomorphisms from 5078:, in light of the identity 4264:, and more specifically in 2105:. Then the differential of 1531: 10: 9108: 9047:Knapp, Anthony W. (2002), 8279: 5697: 4530: 3689: 3611:{\displaystyle x\cdot v=0} 3184: 2851:itself and the zero space 2372:angular momentum operators 2032:to the Lie algebra of the 1540: 1337:-module as a vector space 777:be a vector space. We let 693:angular momentum operators 625:Lie algebra representation 445:Lie algebra representation 8918:Humphreys, James (1972), 8641:- analog of Schur's lemma 6393:to degree one piece. The 5047:{\displaystyle \rho ^{*}} 5027:is needed to ensure that 5020:{\displaystyle \rho ^{*}} 4858:, the transpose operator 4249:{\displaystyle \rho _{2}} 4222:{\displaystyle \rho _{1}} 2689:, we say that a subspace 1704:Indeed, by virtue of the 757:be a Lie algebra and let 8645: 8340:maximal compact subgroup 7658:is absolutely simple if 7090:, one can form the left 6180:{\displaystyle \otimes } 3470:is a finite-dimensional 3342:is a homomorphism, then 3335:{\displaystyle f:V\to V} 3259:is a homomorphism, then 3252:{\displaystyle f:V\to W} 2974:{\displaystyle f:V\to W} 1035:Lie algebra homomorphism 440:Lie group representation 8977:Trans. Amer. Math. Soc. 8893:Rossmann, Wulf (2002), 8875:Hall, Brian C. (2015), 8857:Hall, Brian C. (2013), 8552:Now, for the case of a 7851:and any Lie subalgebra 7812:for any Lie subalgebra 6101:. Thus, by definition, 4826:where for any operator 4613:be a representation of 3482:is semisimple; this is 2617:Given a representation 2291:. It can be shown that 1832:respectively, then the 1537:Adjoint representations 465:Borel–Weil–Bott theorem 8619:Weyl character formula 8561:adjoint representation 8478:More specifically, if 8403: 8383: 8363: 8332: 8304: 8261: 8230: 8198: 8096: 8043: 7990: 7966: 7942: 7918: 7884: 7845: 7806: 7713: 7685: 7648: 7620: 7578: 7545: 7512: 7488: 7464: 7424: 7294: 7266: 7242: 7200: 7176: 7117: 7080: 7056: 7023: 6990: 6956: 6934:Induced representation 6924: 6891: 6867: 6834: 6748: 6728:regular representation 6720: 6696: 6663: 6636: 6612: 6575: 6548: 6528: 6527:{\displaystyle =XY-YX} 6478: 6454: 6415: 6387: 6348: 6315: 6287: 6214: 6181: 6161: 6095: 6063: 6019: 5986: 5962: 5938: 5905: 5872: 5844: 5811: 5787: 5754: 5722: 5672: 5645: 5621: 5601: 5563: 5539: 5501: 5481: 5461: 5443:; that is to say, the 5437: 5357: 5280: 5256: 5218: 5194: 5170: 5134: 5072: 5048: 5021: 4991: 4925: 4905: 4852: 4817: 4744: 4678: 4658: 4631: 4607: 4555: 4517: 4481: 4444: 4408: 4368: 4250: 4223: 4196: 4078: 3983: 3943: 3900: 3766: 3714: 3671: 3642: 3612: 3580: 3539: 3511: 3472:semisimple Lie algebra 3464: 3393: 3356: 3336: 3304: 3273: 3253: 3221: 3156: 3126: 3083: 3027: 3003: 2975: 2943: 2907: 2871: 2845: 2821: 2791: 2790:{\displaystyle w\in W} 2765: 2723: 2703: 2683: 2659: 2593: 2573: 2545: 2345: 2321: 2285: 2262:adjoint representation 2254: 2226: 2206: 2174: 2138: 2099: 2026: 1999: 1938: 1879: 1814: 1790: 1750: 1722: 1695: 1565: 1494: 1463: 1374: 1331: 1300: 1271: 1238: 1207: 1109: 1085: 1027: 1007: 979: 939: 883: 847: 827: 807: 771: 751: 685: 665: 631:is a way of writing a 363:Semisimple Lie algebra 318:Adjoint representation 8998:Kirillov, A. (2008). 8404: 8384: 8369:-module structure of 8364: 8333: 8305: 8286:Harish-Chandra module 8262: 8231: 8199: 8097: 8044: 7991: 7972:that is contained in 7967: 7943: 7919: 7885: 7846: 7807: 7714: 7686: 7649: 7621: 7579: 7546: 7513: 7489: 7465: 7425: 7295: 7267: 7243: 7201: 7177: 7118: 7081: 7057: 7024: 6991: 6957: 6925: 6892: 6868: 6835: 6749: 6721: 6697: 6664: 6637: 6613: 6576: 6549: 6529: 6479: 6455: 6416: 6388: 6349: 6316: 6288: 6215: 6182: 6162: 6096: 6064: 6020: 5987: 5963: 5944:can be restricted to 5939: 5906: 5873: 5845: 5812: 5788: 5755: 5723: 5673: 5671:{\displaystyle V^{*}} 5646: 5622: 5602: 5564: 5540: 5502: 5482: 5462: 5438: 5358: 5281: 5257: 5219: 5195: 5171: 5135: 5073: 5049: 5022: 4992: 4926: 4906: 4853: 4818: 4745: 4679: 4659: 4657:{\displaystyle V^{*}} 4632: 4608: 4561:be a Lie algebra and 4556: 4518: 4482: 4445: 4409: 4369: 4251: 4224: 4197: 4079: 3984: 3944: 3901: 3767: 3715: 3672: 3643: 3613: 3581: 3540: 3512: 3465: 3435:is the direct sum of 3394: 3367:Complete reducibility 3357: 3337: 3305: 3274: 3254: 3222: 3157: 3127: 3084: 3028: 3004: 2976: 2944: 2908: 2872: 2870:{\displaystyle \{0\}} 2846: 2822: 2792: 2766: 2724: 2704: 2684: 2660: 2594: 2574: 2546: 2346: 2322: 2286: 2255: 2227: 2207: 2175: 2139: 2100: 2027: 2000: 1939: 1880: 1815: 1791: 1768:of (real or complex) 1751: 1749:{\displaystyle \phi } 1723: 1696: 1566: 1495: 1464: 1375: 1332: 1301: 1299:{\displaystyle \rho } 1272: 1239: 1208: 1110: 1108:{\displaystyle \rho } 1086: 1028: 1008: 980: 940: 884: 848: 828: 808: 772: 752: 686: 666: 621:representation theory 432:Representation theory 8749:Dixmier, J. (1977), 8587:Poisson superalgebra 8393: 8382:{\displaystyle \pi } 8373: 8349: 8318: 8303:{\displaystyle \pi } 8294: 8247: 8216: 8106: 8053: 8000: 7976: 7952: 7928: 7894: 7855: 7816: 7726: 7695: 7662: 7634: 7588: 7584:. In particular, if 7555: 7522: 7498: 7474: 7438: 7310: 7280: 7252: 7210: 7186: 7127: 7094: 7066: 7033: 7000: 6966: 6942: 6901: 6877: 6844: 6758: 6734: 6706: 6673: 6649: 6622: 6589: 6561: 6538: 6488: 6464: 6425: 6401: 6358: 6325: 6301: 6235: 6191: 6171: 6105: 6081: 6077:of the vector space 6040: 6036:The construction of 5996: 5972: 5948: 5915: 5882: 5858: 5821: 5797: 5764: 5740: 5708: 5704:To each Lie algebra 5655: 5631: 5611: 5573: 5549: 5511: 5491: 5471: 5447: 5367: 5290: 5266: 5228: 5224:a Lie algebra. Then 5204: 5180: 5154: 5082: 5058: 5031: 5004: 4938: 4915: 4862: 4830: 4757: 4688: 4668: 4641: 4617: 4565: 4541: 4527:Dual representations 4491: 4455: 4418: 4382: 4279: 4233: 4206: 4091: 3996: 3953: 3913: 3779: 3752: 3700: 3652: 3622: 3590: 3566: 3525: 3517:is reductive, since 3497: 3450: 3405:completely reducible 3379: 3346: 3314: 3290: 3263: 3231: 3207: 3140: 3093: 3037: 3033:-equivariant; i.e., 3013: 2989: 2953: 2929: 2893: 2855: 2835: 2801: 2775: 2737: 2713: 2693: 2669: 2621: 2583: 2563: 2557:rotation group SO(3) 2381: 2331: 2295: 2272: 2240: 2236:on the vector space 2216: 2184: 2148: 2109: 2051: 2034:general linear group 2012: 1954: 1903: 1839: 1800: 1776: 1740: 1712: 1578: 1551: 1480: 1387: 1348: 1317: 1310:if it is injective. 1290: 1257: 1224: 1122: 1099: 1043: 1017: 993: 953: 893: 857: 837: 817: 781: 761: 737: 675: 655: 8751:Enveloping Algebras 8575:associative algebra 8457:graded vector space 8193: 8127: 7801: 7774: 7747: 7712:{\displaystyle F/k} 7609: 7459: 7410: 7349: 7272:-module induced by 7231: 7206:-module denoted by 6149: 6134: 6069:is as follows. Let 5694:Enveloping algebras 5286:-module by setting 5169:{\displaystyle V,W} 4533:Dual representation 3681:Basic constructions 3155:{\displaystyle V,W} 1286:The representation 1244:. The vector space 853:to itself. We make 577:Table of Lie groups 418:Compact Lie algebra 8399: 8379: 8359: 8338:and the connected 8328: 8300: 8257: 8226: 8194: 8161: 8109: 8092: 8039: 7986: 7962: 7938: 7924:be subalgebra and 7914: 7880: 7841: 7802: 7778: 7751: 7729: 7709: 7681: 7644: 7616: 7591: 7574: 7541: 7508: 7484: 7460: 7441: 7420: 7392: 7331: 7290: 7262: 7238: 7213: 7196: 7172: 7113: 7076: 7052: 7019: 6986: 6952: 6920: 6887: 6863: 6830: 6744: 6716: 6692: 6659: 6632: 6608: 6571: 6544: 6524: 6474: 6450: 6411: 6383: 6344: 6311: 6283: 6210: 6177: 6157: 6135: 6114: 6091: 6059: 6015: 5982: 5958: 5934: 5901: 5868: 5850:. Conversely, the 5840: 5807: 5783: 5750: 5718: 5668: 5641: 5617: 5597: 5559: 5535: 5497: 5477: 5457: 5433: 5353: 5276: 5252: 5214: 5190: 5166: 5130: 5068: 5044: 5017: 4987: 4921: 4901: 4848: 4813: 4740: 4674: 4654: 4627: 4603: 4551: 4513: 4477: 4440: 4404: 4364: 4246: 4219: 4192: 4074: 3979: 3939: 3896: 3762: 3710: 3667: 3638: 3608: 3576: 3535: 3521:representation of 3507: 3460: 3389: 3352: 3332: 3300: 3286:is an irreducible 3269: 3249: 3217: 3152: 3122: 3079: 3023: 3009:-modules if it is 2999: 2971: 2939: 2903: 2867: 2841: 2817: 2787: 2761: 2719: 2699: 2679: 2655: 2589: 2569: 2541: 2362:In quantum physics 2341: 2317: 2281: 2250: 2222: 2202: 2170: 2134: 2095: 2022: 1995: 1934: 1875: 1810: 1786: 1746: 1718: 1691: 1561: 1490: 1459: 1370: 1327: 1296: 1267: 1234: 1203: 1105: 1081: 1023: 1003: 975: 935: 879: 843: 823: 803: 767: 747: 681: 661: 349:Affine Lie algebra 339:Simple Lie algebra 80:Special orthogonal 9020:Knapp, Anthony W. 8965:Philip M. Whitman 8952:978-0-486-63832-4 8835:978-0-387-97495-8 8805:978-0-444-82836-1 8402:{\displaystyle K} 6547:{\displaystyle A} 5620:{\displaystyle W} 5500:{\displaystyle W} 5480:{\displaystyle V} 5363:. In particular, 4924:{\displaystyle A} 4677:{\displaystyle V} 3409:semisimple module 3355:{\displaystyle f} 3272:{\displaystyle f} 3168:intertwining maps 2844:{\displaystyle V} 2722:{\displaystyle V} 2702:{\displaystyle W} 2665:of a Lie algebra 2592:{\displaystyle V} 2572:{\displaystyle V} 2180:. Denoting it by 2047:For example, let 1585: 1026:{\displaystyle V} 846:{\displaystyle V} 826:{\displaystyle V} 770:{\displaystyle V} 729:Formal definition 684:{\displaystyle V} 664:{\displaystyle V} 613: 612: 413:Split Lie algebra 376:Cartan subalgebra 238: 237: 129:Simple Lie groups 9099: 9078: 9076: 9063:Ben-Zvi, David; 9052: 9038: 9015: 8994: 8992: 8973: 8961:Garrett Birkhoff 8956: 8939:Jacobson, Nathan 8934: 8907: 8889: 8871: 8847: 8813: 8797: 8786: 8763: 8733: 8728: 8722: 8716: 8710: 8704: 8698: 8692: 8686: 8680: 8674: 8668: 8662: 8656: 8408: 8406: 8405: 8400: 8388: 8386: 8385: 8380: 8368: 8366: 8365: 8360: 8358: 8357: 8337: 8335: 8334: 8329: 8327: 8326: 8309: 8307: 8306: 8301: 8266: 8264: 8263: 8258: 8256: 8255: 8238:primitive ideals 8235: 8233: 8232: 8227: 8225: 8224: 8203: 8201: 8200: 8195: 8192: 8191: 8190: 8189: 8178: 8177: 8176: 8175: 8157: 8156: 8155: 8142: 8141: 8140: 8126: 8125: 8119: 8118: 8101: 8099: 8098: 8093: 8091: 8090: 8084: 8079: 8078: 8069: 8068: 8063: 8062: 8048: 8046: 8045: 8040: 8038: 8037: 8031: 8026: 8025: 8016: 8015: 8010: 8009: 7995: 7993: 7992: 7987: 7985: 7984: 7971: 7969: 7968: 7963: 7961: 7960: 7947: 7945: 7944: 7939: 7937: 7936: 7923: 7921: 7920: 7915: 7913: 7912: 7903: 7902: 7889: 7887: 7886: 7881: 7879: 7875: 7874: 7864: 7863: 7850: 7848: 7847: 7842: 7840: 7839: 7830: 7829: 7828: 7811: 7809: 7808: 7803: 7800: 7799: 7798: 7788: 7787: 7773: 7772: 7766: 7765: 7764: 7746: 7745: 7739: 7738: 7718: 7716: 7715: 7710: 7705: 7690: 7688: 7687: 7682: 7677: 7676: 7653: 7651: 7650: 7645: 7643: 7642: 7625: 7623: 7622: 7617: 7608: 7607: 7601: 7600: 7583: 7581: 7580: 7575: 7570: 7569: 7550: 7548: 7547: 7542: 7537: 7536: 7517: 7515: 7514: 7509: 7507: 7506: 7493: 7491: 7490: 7485: 7483: 7482: 7469: 7467: 7466: 7461: 7458: 7457: 7451: 7450: 7429: 7427: 7426: 7421: 7409: 7408: 7402: 7401: 7379: 7378: 7377: 7348: 7347: 7341: 7340: 7324: 7323: 7322: 7299: 7297: 7296: 7291: 7289: 7288: 7271: 7269: 7268: 7263: 7261: 7260: 7247: 7245: 7244: 7239: 7230: 7229: 7223: 7222: 7205: 7203: 7202: 7197: 7195: 7194: 7181: 7179: 7178: 7173: 7168: 7167: 7163: 7162: 7142: 7141: 7122: 7120: 7119: 7114: 7109: 7108: 7085: 7083: 7082: 7077: 7075: 7074: 7061: 7059: 7058: 7053: 7048: 7047: 7028: 7026: 7025: 7020: 7015: 7014: 6995: 6993: 6992: 6987: 6985: 6984: 6975: 6974: 6961: 6959: 6958: 6953: 6951: 6950: 6929: 6927: 6926: 6921: 6916: 6915: 6896: 6894: 6893: 6888: 6886: 6885: 6872: 6870: 6869: 6864: 6862: 6861: 6839: 6837: 6836: 6831: 6826: 6825: 6804: 6803: 6770: 6769: 6753: 6751: 6750: 6745: 6743: 6742: 6725: 6723: 6722: 6717: 6715: 6714: 6701: 6699: 6698: 6693: 6688: 6687: 6668: 6666: 6665: 6660: 6658: 6657: 6641: 6639: 6638: 6633: 6631: 6630: 6617: 6615: 6614: 6609: 6604: 6603: 6580: 6578: 6577: 6572: 6570: 6569: 6553: 6551: 6550: 6545: 6533: 6531: 6530: 6525: 6483: 6481: 6480: 6475: 6473: 6472: 6459: 6457: 6456: 6451: 6446: 6445: 6420: 6418: 6417: 6412: 6410: 6409: 6392: 6390: 6389: 6384: 6379: 6378: 6353: 6351: 6350: 6345: 6340: 6339: 6320: 6318: 6317: 6312: 6310: 6309: 6292: 6290: 6289: 6284: 6219: 6217: 6216: 6211: 6206: 6205: 6186: 6184: 6183: 6178: 6166: 6164: 6163: 6158: 6156: 6155: 6148: 6143: 6133: 6128: 6100: 6098: 6097: 6092: 6090: 6089: 6068: 6066: 6065: 6060: 6055: 6054: 6024: 6022: 6021: 6016: 6011: 6010: 5991: 5989: 5988: 5983: 5981: 5980: 5967: 5965: 5964: 5959: 5957: 5956: 5943: 5941: 5940: 5935: 5930: 5929: 5910: 5908: 5907: 5902: 5897: 5896: 5877: 5875: 5874: 5869: 5867: 5866: 5849: 5847: 5846: 5841: 5836: 5835: 5816: 5814: 5813: 5808: 5806: 5805: 5792: 5790: 5789: 5784: 5779: 5778: 5759: 5757: 5756: 5751: 5749: 5748: 5727: 5725: 5724: 5719: 5717: 5716: 5677: 5675: 5674: 5669: 5667: 5666: 5650: 5648: 5647: 5642: 5640: 5639: 5626: 5624: 5623: 5618: 5606: 5604: 5603: 5598: 5568: 5566: 5565: 5560: 5558: 5557: 5544: 5542: 5541: 5536: 5506: 5504: 5503: 5498: 5486: 5484: 5483: 5478: 5466: 5464: 5463: 5458: 5456: 5455: 5442: 5440: 5439: 5434: 5432: 5431: 5430: 5381: 5380: 5379: 5362: 5360: 5359: 5354: 5285: 5283: 5282: 5277: 5275: 5274: 5261: 5259: 5258: 5253: 5223: 5221: 5220: 5215: 5213: 5212: 5199: 5197: 5196: 5191: 5189: 5188: 5175: 5173: 5172: 5167: 5139: 5137: 5136: 5131: 5126: 5125: 5116: 5115: 5103: 5102: 5077: 5075: 5074: 5069: 5067: 5066: 5053: 5051: 5050: 5045: 5043: 5042: 5026: 5024: 5023: 5018: 5016: 5015: 4996: 4994: 4993: 4988: 4953: 4952: 4930: 4928: 4927: 4922: 4910: 4908: 4907: 4902: 4900: 4899: 4887: 4886: 4874: 4873: 4857: 4855: 4854: 4849: 4822: 4820: 4819: 4814: 4809: 4808: 4769: 4768: 4749: 4747: 4746: 4741: 4736: 4735: 4723: 4722: 4710: 4709: 4700: 4699: 4683: 4681: 4680: 4675: 4663: 4661: 4660: 4655: 4653: 4652: 4636: 4634: 4633: 4628: 4626: 4625: 4612: 4610: 4609: 4604: 4593: 4592: 4580: 4579: 4560: 4558: 4557: 4552: 4550: 4549: 4522: 4520: 4519: 4514: 4503: 4502: 4486: 4484: 4483: 4478: 4467: 4466: 4449: 4447: 4446: 4441: 4430: 4429: 4413: 4411: 4410: 4405: 4394: 4393: 4373: 4371: 4370: 4365: 4354: 4353: 4332: 4331: 4307: 4306: 4294: 4293: 4255: 4253: 4252: 4247: 4245: 4244: 4228: 4226: 4225: 4220: 4218: 4217: 4201: 4199: 4198: 4193: 4182: 4181: 4169: 4161: 4144: 4143: 4119: 4118: 4106: 4105: 4084:by the formula 4083: 4081: 4080: 4075: 4070: 4069: 4057: 4056: 4044: 4043: 4031: 4030: 4021: 4020: 4008: 4007: 3988: 3986: 3985: 3980: 3978: 3977: 3965: 3964: 3948: 3946: 3945: 3940: 3938: 3937: 3925: 3924: 3905: 3903: 3902: 3897: 3889: 3888: 3867: 3866: 3854: 3853: 3838: 3837: 3813: 3812: 3800: 3799: 3771: 3769: 3768: 3763: 3761: 3760: 3719: 3717: 3716: 3711: 3709: 3708: 3676: 3674: 3673: 3668: 3666: 3665: 3664: 3647: 3645: 3644: 3639: 3637: 3636: 3617: 3615: 3614: 3609: 3585: 3583: 3582: 3577: 3575: 3574: 3544: 3542: 3541: 3536: 3534: 3533: 3516: 3514: 3513: 3508: 3506: 3505: 3469: 3467: 3466: 3461: 3459: 3458: 3398: 3396: 3395: 3390: 3388: 3387: 3361: 3359: 3358: 3353: 3341: 3339: 3338: 3333: 3309: 3307: 3306: 3301: 3299: 3298: 3278: 3276: 3275: 3270: 3258: 3256: 3255: 3250: 3226: 3224: 3223: 3218: 3216: 3215: 3203:are irreducible 3161: 3159: 3158: 3153: 3131: 3129: 3128: 3123: 3108: 3107: 3088: 3086: 3085: 3080: 3032: 3030: 3029: 3024: 3022: 3021: 3008: 3006: 3005: 3000: 2998: 2997: 2980: 2978: 2977: 2972: 2948: 2946: 2945: 2940: 2938: 2937: 2912: 2910: 2909: 2904: 2902: 2901: 2876: 2874: 2873: 2868: 2850: 2848: 2847: 2842: 2826: 2824: 2823: 2818: 2816: 2815: 2796: 2794: 2793: 2788: 2770: 2768: 2767: 2762: 2728: 2726: 2725: 2720: 2708: 2706: 2705: 2700: 2688: 2686: 2685: 2680: 2678: 2677: 2664: 2662: 2661: 2656: 2636: 2635: 2598: 2596: 2595: 2590: 2578: 2576: 2575: 2570: 2550: 2548: 2547: 2542: 2537: 2536: 2515: 2514: 2502: 2501: 2484: 2483: 2462: 2461: 2449: 2448: 2431: 2430: 2409: 2408: 2396: 2395: 2356:simply connected 2350: 2348: 2347: 2342: 2340: 2339: 2326: 2324: 2323: 2318: 2307: 2306: 2290: 2288: 2287: 2282: 2259: 2257: 2256: 2251: 2249: 2248: 2231: 2229: 2228: 2223: 2211: 2209: 2208: 2203: 2179: 2177: 2176: 2171: 2166: 2165: 2143: 2141: 2140: 2135: 2121: 2120: 2104: 2102: 2101: 2096: 2094: 2093: 2063: 2062: 2031: 2029: 2028: 2023: 2021: 2020: 2004: 2002: 2001: 1996: 1985: 1984: 1972: 1971: 1943: 1941: 1940: 1935: 1884: 1882: 1881: 1876: 1874: 1873: 1864: 1863: 1851: 1850: 1819: 1817: 1816: 1811: 1809: 1808: 1795: 1793: 1792: 1787: 1785: 1784: 1755: 1753: 1752: 1747: 1727: 1725: 1724: 1719: 1700: 1698: 1697: 1692: 1657: 1656: 1643: 1642: 1620: 1619: 1610: 1609: 1597: 1596: 1587: 1586: 1583: 1570: 1568: 1567: 1562: 1560: 1559: 1499: 1497: 1496: 1491: 1489: 1488: 1468: 1466: 1465: 1460: 1379: 1377: 1376: 1371: 1357: 1356: 1341:together with a 1336: 1334: 1333: 1328: 1326: 1325: 1305: 1303: 1302: 1297: 1276: 1274: 1273: 1268: 1266: 1265: 1243: 1241: 1240: 1235: 1233: 1232: 1212: 1210: 1209: 1204: 1114: 1112: 1111: 1106: 1090: 1088: 1087: 1082: 1071: 1070: 1058: 1057: 1032: 1030: 1029: 1024: 1012: 1010: 1009: 1004: 1002: 1001: 984: 982: 981: 976: 965: 964: 944: 942: 941: 936: 888: 886: 885: 880: 869: 868: 852: 850: 849: 844: 832: 830: 829: 824: 812: 810: 809: 804: 793: 792: 776: 774: 773: 768: 756: 754: 753: 748: 746: 745: 690: 688: 687: 682: 670: 668: 667: 662: 605: 598: 591: 548:Claude Chevalley 405:Complexification 248:Other Lie groups 134: 133: 42:Classical groups 34: 16: 15: 9107: 9106: 9102: 9101: 9100: 9098: 9097: 9096: 9082: 9081: 9059: 9057:Further reading 9036: 9012: 8971: 8953: 8932: 8905: 8887: 8869: 8836: 8806: 8783: 8761: 8742: 8737: 8736: 8729: 8725: 8717: 8713: 8705: 8701: 8697:, Theorem 1.6.3 8693: 8689: 8681: 8677: 8669: 8665: 8657: 8653: 8648: 8639:Quillen's lemma 8595: 8583:Poisson algebra 8568:Jacobi identity 8469:antiderivations 8455: 8436: 8415: 8394: 8391: 8390: 8374: 8371: 8370: 8353: 8352: 8350: 8347: 8346: 8322: 8321: 8319: 8316: 8315: 8295: 8292: 8291: 8288: 8280:Main articles: 8278: 8251: 8250: 8248: 8245: 8244: 8220: 8219: 8217: 8214: 8213: 8210: 8185: 8181: 8180: 8179: 8171: 8167: 8166: 8165: 8151: 8150: 8146: 8136: 8135: 8131: 8121: 8120: 8114: 8113: 8107: 8104: 8103: 8086: 8085: 8080: 8074: 8073: 8064: 8058: 8057: 8056: 8054: 8051: 8050: 8033: 8032: 8027: 8021: 8020: 8011: 8005: 8004: 8003: 8001: 7998: 7997: 7980: 7979: 7977: 7974: 7973: 7956: 7955: 7953: 7950: 7949: 7932: 7931: 7929: 7926: 7925: 7908: 7907: 7898: 7897: 7895: 7892: 7891: 7870: 7869: 7868: 7859: 7858: 7856: 7853: 7852: 7835: 7834: 7821: 7820: 7819: 7817: 7814: 7813: 7791: 7790: 7789: 7783: 7782: 7768: 7767: 7757: 7756: 7755: 7741: 7740: 7734: 7733: 7727: 7724: 7723: 7701: 7696: 7693: 7692: 7672: 7668: 7663: 7660: 7659: 7638: 7637: 7635: 7632: 7631: 7603: 7602: 7596: 7595: 7589: 7586: 7585: 7565: 7564: 7556: 7553: 7552: 7532: 7531: 7523: 7520: 7519: 7502: 7501: 7499: 7496: 7495: 7478: 7477: 7475: 7472: 7471: 7453: 7452: 7446: 7445: 7439: 7436: 7435: 7404: 7403: 7397: 7396: 7373: 7372: 7368: 7343: 7342: 7336: 7335: 7318: 7317: 7313: 7311: 7308: 7307: 7284: 7283: 7281: 7278: 7277: 7256: 7255: 7253: 7250: 7249: 7248:and called the 7225: 7224: 7218: 7217: 7211: 7208: 7207: 7190: 7189: 7187: 7184: 7183: 7158: 7157: 7150: 7146: 7137: 7136: 7128: 7125: 7124: 7104: 7103: 7095: 7092: 7091: 7070: 7069: 7067: 7064: 7063: 7043: 7042: 7034: 7031: 7030: 7010: 7009: 7001: 6998: 6997: 6980: 6979: 6970: 6969: 6967: 6964: 6963: 6946: 6945: 6943: 6940: 6939: 6936: 6911: 6910: 6902: 6899: 6898: 6881: 6880: 6878: 6875: 6874: 6857: 6853: 6845: 6842: 6841: 6821: 6820: 6799: 6798: 6765: 6761: 6759: 6756: 6755: 6738: 6737: 6735: 6732: 6731: 6710: 6709: 6707: 6704: 6703: 6683: 6682: 6674: 6671: 6670: 6653: 6652: 6650: 6647: 6646: 6626: 6625: 6623: 6620: 6619: 6599: 6598: 6590: 6587: 6586: 6565: 6564: 6562: 6559: 6558: 6539: 6536: 6535: 6489: 6486: 6485: 6468: 6467: 6465: 6462: 6461: 6441: 6440: 6426: 6423: 6422: 6405: 6404: 6402: 6399: 6398: 6374: 6373: 6359: 6356: 6355: 6335: 6334: 6326: 6323: 6322: 6305: 6304: 6302: 6299: 6298: 6236: 6233: 6232: 6201: 6200: 6192: 6189: 6188: 6172: 6169: 6168: 6151: 6150: 6144: 6139: 6129: 6118: 6106: 6103: 6102: 6085: 6084: 6082: 6079: 6078: 6050: 6049: 6041: 6038: 6037: 6006: 6005: 5997: 5994: 5993: 5976: 5975: 5973: 5970: 5969: 5952: 5951: 5949: 5946: 5945: 5925: 5924: 5916: 5913: 5912: 5892: 5891: 5883: 5880: 5879: 5862: 5861: 5859: 5856: 5855: 5831: 5830: 5822: 5819: 5818: 5801: 5800: 5798: 5795: 5794: 5774: 5773: 5765: 5762: 5761: 5744: 5743: 5741: 5738: 5737: 5712: 5711: 5709: 5706: 5705: 5702: 5696: 5684: 5662: 5658: 5656: 5653: 5652: 5635: 5634: 5632: 5629: 5628: 5612: 5609: 5608: 5574: 5571: 5570: 5553: 5552: 5550: 5547: 5546: 5512: 5509: 5508: 5492: 5489: 5488: 5472: 5469: 5468: 5451: 5450: 5448: 5445: 5444: 5426: 5425: 5421: 5375: 5374: 5370: 5368: 5365: 5364: 5291: 5288: 5287: 5270: 5269: 5267: 5264: 5263: 5229: 5226: 5225: 5208: 5207: 5205: 5202: 5201: 5184: 5183: 5181: 5178: 5177: 5155: 5152: 5151: 5148: 5121: 5117: 5111: 5107: 5098: 5094: 5083: 5080: 5079: 5062: 5061: 5059: 5056: 5055: 5038: 5034: 5032: 5029: 5028: 5011: 5007: 5005: 5002: 5001: 4948: 4944: 4939: 4936: 4935: 4916: 4913: 4912: 4895: 4891: 4882: 4878: 4869: 4865: 4863: 4860: 4859: 4831: 4828: 4827: 4804: 4800: 4764: 4760: 4758: 4755: 4754: 4750:by the formula 4731: 4727: 4715: 4714: 4705: 4704: 4695: 4691: 4689: 4686: 4685: 4669: 4666: 4665: 4648: 4644: 4642: 4639: 4638: 4621: 4620: 4618: 4615: 4614: 4585: 4584: 4575: 4574: 4566: 4563: 4562: 4545: 4544: 4542: 4539: 4538: 4535: 4529: 4498: 4494: 4492: 4489: 4488: 4462: 4458: 4456: 4453: 4452: 4425: 4421: 4419: 4416: 4415: 4389: 4385: 4383: 4380: 4379: 4349: 4345: 4327: 4323: 4302: 4298: 4289: 4285: 4280: 4277: 4276: 4240: 4236: 4234: 4231: 4230: 4213: 4209: 4207: 4204: 4203: 4177: 4173: 4165: 4157: 4139: 4135: 4114: 4110: 4101: 4097: 4092: 4089: 4088: 4065: 4061: 4052: 4048: 4036: 4035: 4026: 4025: 4016: 4012: 4003: 3999: 3997: 3994: 3993: 3973: 3969: 3960: 3956: 3954: 3951: 3950: 3933: 3929: 3920: 3916: 3914: 3911: 3910: 3884: 3880: 3862: 3858: 3849: 3845: 3833: 3829: 3808: 3804: 3795: 3791: 3780: 3777: 3776: 3756: 3755: 3753: 3750: 3749: 3747: 3740: 3733: 3726: 3704: 3703: 3701: 3698: 3697: 3694: 3688: 3683: 3660: 3659: 3655: 3653: 3650: 3649: 3632: 3631: 3623: 3620: 3619: 3591: 3588: 3587: 3570: 3569: 3567: 3564: 3563: 3552: 3529: 3528: 3526: 3523: 3522: 3501: 3500: 3498: 3495: 3494: 3454: 3453: 3451: 3448: 3447: 3383: 3382: 3380: 3377: 3376: 3369: 3347: 3344: 3343: 3315: 3312: 3311: 3294: 3293: 3291: 3288: 3287: 3264: 3261: 3260: 3232: 3229: 3228: 3211: 3210: 3208: 3205: 3204: 3189: 3183: 3162:are said to be 3141: 3138: 3137: 3103: 3102: 3094: 3091: 3090: 3038: 3035: 3034: 3017: 3016: 3014: 3011: 3010: 2993: 2992: 2990: 2987: 2986: 2954: 2951: 2950: 2933: 2932: 2930: 2927: 2926: 2897: 2896: 2894: 2891: 2890: 2887: 2856: 2853: 2852: 2836: 2833: 2832: 2811: 2810: 2802: 2799: 2798: 2776: 2773: 2772: 2738: 2735: 2734: 2714: 2711: 2710: 2694: 2691: 2690: 2673: 2672: 2670: 2667: 2666: 2631: 2630: 2622: 2619: 2618: 2615: 2610: 2584: 2581: 2580: 2564: 2561: 2560: 2532: 2528: 2510: 2506: 2497: 2493: 2479: 2475: 2457: 2453: 2444: 2440: 2426: 2422: 2404: 2400: 2391: 2387: 2382: 2379: 2378: 2364: 2335: 2334: 2332: 2329: 2328: 2302: 2298: 2296: 2293: 2292: 2273: 2270: 2269: 2244: 2243: 2241: 2238: 2237: 2217: 2214: 2213: 2185: 2182: 2181: 2161: 2160: 2149: 2146: 2145: 2116: 2112: 2110: 2107: 2106: 2086: 2082: 2058: 2054: 2052: 2049: 2048: 2016: 2015: 2013: 2010: 2009: 1977: 1976: 1967: 1966: 1955: 1952: 1951: 1904: 1901: 1900: 1869: 1868: 1859: 1858: 1846: 1842: 1840: 1837: 1836: 1804: 1803: 1801: 1798: 1797: 1780: 1779: 1777: 1774: 1773: 1741: 1738: 1737: 1734: 1713: 1710: 1709: 1706:Jacobi identity 1652: 1648: 1638: 1634: 1615: 1614: 1602: 1601: 1592: 1591: 1582: 1581: 1579: 1576: 1575: 1555: 1554: 1552: 1549: 1548: 1545: 1539: 1534: 1484: 1483: 1481: 1478: 1477: 1388: 1385: 1384: 1352: 1351: 1349: 1346: 1345: 1321: 1320: 1318: 1315: 1314: 1291: 1288: 1287: 1261: 1260: 1258: 1255: 1254: 1228: 1227: 1225: 1222: 1221: 1123: 1120: 1119: 1100: 1097: 1096: 1063: 1062: 1053: 1052: 1044: 1041: 1040: 1018: 1015: 1014: 997: 996: 994: 991: 990: 957: 956: 954: 951: 950: 894: 891: 890: 861: 860: 858: 855: 854: 838: 835: 834: 818: 815: 814: 785: 784: 782: 779: 778: 762: 759: 758: 741: 740: 738: 735: 734: 731: 704:universal cover 676: 673: 672: 656: 653: 652: 609: 564: 563: 562: 533:Wilhelm Killing 517: 509: 508: 507: 482: 471: 470: 469: 434: 424: 423: 422: 409: 393: 371:Dynkin diagrams 365: 355: 354: 353: 335: 313:Exponential map 302: 292: 291: 290: 271:Conformal group 250: 240: 239: 231: 223: 215: 207: 199: 180: 170: 160: 150: 131: 121: 120: 119: 100:Special unitary 44: 12: 11: 5: 9105: 9095: 9094: 9080: 9079: 9058: 9055: 9054: 9053: 9044: 9034: 9016: 9011:978-0521889698 9010: 8995: 8957: 8951: 8935: 8930: 8915: 8908: 8903: 8890: 8886:978-3319134666 8885: 8872: 8868:978-1461471158 8867: 8854: 8850:D. Gaitsgory, 8848: 8834: 8814: 8804: 8787: 8781: 8768: 8765: 8759: 8746: 8741: 8738: 8735: 8734: 8723: 8711: 8699: 8687: 8675: 8663: 8650: 8649: 8647: 8644: 8643: 8642: 8636: 8631: 8626: 8621: 8616: 8611: 8606: 8601: 8594: 8591: 8550: 8549: 8531: 8530: 8453: 8434: 8414: 8411: 8398: 8378: 8356: 8325: 8299: 8277: 8274: 8254: 8223: 8209: 8206: 8188: 8184: 8174: 8170: 8164: 8160: 8154: 8149: 8145: 8139: 8134: 8130: 8124: 8117: 8112: 8089: 8083: 8077: 8072: 8067: 8061: 8036: 8030: 8024: 8019: 8014: 8008: 7983: 7959: 7935: 7911: 7906: 7901: 7878: 7873: 7867: 7862: 7838: 7833: 7827: 7824: 7797: 7794: 7786: 7781: 7777: 7771: 7763: 7760: 7754: 7750: 7744: 7737: 7732: 7708: 7704: 7700: 7680: 7675: 7671: 7667: 7641: 7615: 7612: 7606: 7599: 7594: 7573: 7568: 7563: 7560: 7540: 7535: 7530: 7527: 7505: 7481: 7456: 7449: 7444: 7432: 7431: 7419: 7416: 7413: 7407: 7400: 7395: 7391: 7388: 7385: 7382: 7376: 7371: 7367: 7364: 7361: 7358: 7355: 7352: 7346: 7339: 7334: 7330: 7327: 7321: 7316: 7287: 7259: 7237: 7234: 7228: 7221: 7216: 7193: 7171: 7166: 7161: 7156: 7153: 7149: 7145: 7140: 7135: 7132: 7112: 7107: 7102: 7099: 7073: 7051: 7046: 7041: 7038: 7018: 7013: 7008: 7005: 6996:a subalgebra. 6983: 6978: 6973: 6949: 6935: 6932: 6919: 6914: 6909: 6906: 6884: 6860: 6856: 6852: 6849: 6840:, the mapping 6829: 6824: 6819: 6816: 6813: 6810: 6807: 6802: 6797: 6794: 6791: 6788: 6785: 6782: 6779: 6776: 6773: 6768: 6764: 6741: 6713: 6691: 6686: 6681: 6678: 6656: 6629: 6607: 6602: 6597: 6594: 6568: 6543: 6523: 6520: 6517: 6514: 6511: 6508: 6505: 6502: 6499: 6496: 6493: 6471: 6449: 6444: 6439: 6436: 6433: 6430: 6408: 6382: 6377: 6372: 6369: 6366: 6363: 6343: 6338: 6333: 6330: 6308: 6295: 6294: 6282: 6279: 6276: 6273: 6270: 6267: 6264: 6261: 6258: 6255: 6252: 6249: 6246: 6243: 6240: 6209: 6204: 6199: 6196: 6176: 6154: 6147: 6142: 6138: 6132: 6127: 6124: 6121: 6117: 6113: 6110: 6088: 6075:tensor algebra 6058: 6053: 6048: 6045: 6014: 6009: 6004: 6001: 5979: 5955: 5933: 5928: 5923: 5920: 5900: 5895: 5890: 5887: 5865: 5854:tells us that 5839: 5834: 5829: 5826: 5804: 5782: 5777: 5772: 5769: 5747: 5715: 5698:Main article: 5695: 5692: 5683: 5680: 5665: 5661: 5638: 5616: 5596: 5593: 5590: 5587: 5584: 5581: 5578: 5556: 5534: 5531: 5528: 5525: 5522: 5519: 5516: 5496: 5476: 5454: 5429: 5424: 5420: 5417: 5414: 5411: 5408: 5405: 5402: 5399: 5396: 5393: 5390: 5387: 5384: 5378: 5373: 5352: 5349: 5346: 5343: 5340: 5337: 5334: 5331: 5328: 5325: 5322: 5319: 5316: 5313: 5310: 5307: 5304: 5301: 5298: 5295: 5273: 5251: 5248: 5245: 5242: 5239: 5236: 5233: 5211: 5187: 5165: 5162: 5159: 5147: 5144: 5129: 5124: 5120: 5114: 5110: 5106: 5101: 5097: 5093: 5090: 5087: 5065: 5041: 5037: 5014: 5010: 4998: 4997: 4986: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4962: 4959: 4956: 4951: 4947: 4943: 4920: 4898: 4894: 4890: 4885: 4881: 4877: 4872: 4868: 4847: 4844: 4841: 4838: 4835: 4824: 4823: 4812: 4807: 4803: 4799: 4796: 4793: 4790: 4787: 4784: 4781: 4778: 4775: 4772: 4767: 4763: 4739: 4734: 4730: 4726: 4721: 4718: 4713: 4708: 4703: 4698: 4694: 4673: 4651: 4647: 4624: 4602: 4599: 4596: 4591: 4588: 4583: 4578: 4573: 4570: 4548: 4531:Main article: 4528: 4525: 4512: 4509: 4506: 4501: 4497: 4476: 4473: 4470: 4465: 4461: 4439: 4436: 4433: 4428: 4424: 4403: 4400: 4397: 4392: 4388: 4376: 4375: 4363: 4360: 4357: 4352: 4348: 4344: 4341: 4338: 4335: 4330: 4326: 4322: 4319: 4316: 4313: 4310: 4305: 4301: 4297: 4292: 4288: 4284: 4270: 4269: 4243: 4239: 4216: 4212: 4191: 4188: 4185: 4180: 4176: 4172: 4168: 4164: 4160: 4156: 4153: 4150: 4147: 4142: 4138: 4134: 4131: 4128: 4125: 4122: 4117: 4113: 4109: 4104: 4100: 4096: 4073: 4068: 4064: 4060: 4055: 4051: 4047: 4042: 4039: 4034: 4029: 4024: 4019: 4015: 4011: 4006: 4002: 3976: 3972: 3968: 3963: 3959: 3936: 3932: 3928: 3923: 3919: 3907: 3906: 3895: 3892: 3887: 3883: 3879: 3876: 3873: 3870: 3865: 3861: 3857: 3852: 3848: 3844: 3841: 3836: 3832: 3828: 3825: 3822: 3819: 3816: 3811: 3807: 3803: 3798: 3794: 3790: 3787: 3784: 3759: 3745: 3738: 3731: 3724: 3707: 3690:Main article: 3687: 3684: 3682: 3679: 3663: 3658: 3635: 3630: 3627: 3607: 3604: 3601: 3598: 3595: 3586:-invariant if 3573: 3562:is said to be 3551: 3548: 3532: 3504: 3457: 3403:is said to be 3386: 3368: 3365: 3364: 3363: 3351: 3331: 3328: 3325: 3322: 3319: 3297: 3280: 3268: 3248: 3245: 3242: 3239: 3236: 3214: 3185:Main article: 3182: 3179: 3151: 3148: 3145: 3136:is bijective, 3121: 3118: 3115: 3111: 3106: 3101: 3098: 3078: 3075: 3072: 3069: 3066: 3063: 3060: 3057: 3054: 3051: 3048: 3045: 3042: 3020: 2996: 2970: 2967: 2964: 2961: 2958: 2936: 2900: 2886: 2883: 2866: 2863: 2860: 2840: 2814: 2809: 2806: 2786: 2783: 2780: 2760: 2757: 2754: 2751: 2748: 2745: 2742: 2718: 2698: 2676: 2654: 2651: 2648: 2645: 2642: 2639: 2634: 2629: 2626: 2614: 2611: 2609: 2608:Basic concepts 2606: 2588: 2568: 2553: 2552: 2540: 2535: 2531: 2527: 2524: 2521: 2518: 2513: 2509: 2505: 2500: 2496: 2492: 2487: 2482: 2478: 2474: 2471: 2468: 2465: 2460: 2456: 2452: 2447: 2443: 2439: 2434: 2429: 2425: 2421: 2418: 2415: 2412: 2407: 2403: 2399: 2394: 2390: 2386: 2363: 2360: 2338: 2316: 2313: 2310: 2305: 2301: 2280: 2277: 2260:. This is the 2247: 2221: 2201: 2198: 2195: 2192: 2189: 2169: 2164: 2159: 2156: 2153: 2133: 2130: 2127: 2124: 2119: 2115: 2092: 2089: 2085: 2081: 2078: 2075: 2072: 2069: 2066: 2061: 2057: 2019: 2006: 2005: 1994: 1991: 1988: 1983: 1980: 1975: 1970: 1965: 1962: 1959: 1945: 1944: 1932: 1929: 1926: 1923: 1920: 1917: 1914: 1911: 1908: 1887:tangent spaces 1872: 1867: 1862: 1857: 1854: 1849: 1845: 1807: 1783: 1745: 1733: 1730: 1717: 1702: 1701: 1690: 1687: 1684: 1681: 1678: 1675: 1672: 1669: 1666: 1663: 1660: 1655: 1651: 1646: 1641: 1637: 1633: 1630: 1626: 1623: 1618: 1613: 1608: 1605: 1600: 1595: 1590: 1558: 1541:Main article: 1538: 1535: 1533: 1530: 1487: 1470: 1469: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1369: 1366: 1363: 1360: 1355: 1324: 1306:is said to be 1295: 1264: 1252:, is called a 1231: 1214: 1213: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1104: 1093: 1092: 1080: 1077: 1074: 1069: 1066: 1061: 1056: 1051: 1048: 1022: 1000: 987:representation 974: 971: 968: 963: 960: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 898: 878: 875: 872: 867: 864: 842: 822: 802: 799: 796: 791: 788: 766: 744: 730: 727: 680: 660: 611: 610: 608: 607: 600: 593: 585: 582: 581: 580: 579: 574: 566: 565: 561: 560: 555: 553:Harish-Chandra 550: 545: 540: 535: 530: 528:Henri PoincarĂ© 525: 519: 518: 515: 514: 511: 510: 506: 505: 500: 495: 490: 484: 483: 478:Lie groups in 477: 476: 473: 472: 468: 467: 462: 457: 452: 447: 442: 436: 435: 430: 429: 426: 425: 421: 420: 415: 410: 408: 407: 402: 396: 394: 392: 391: 386: 380: 378: 373: 367: 366: 361: 360: 357: 356: 352: 351: 346: 341: 336: 334: 333: 328: 322: 320: 315: 310: 304: 303: 298: 297: 294: 293: 289: 288: 283: 278: 276:Diffeomorphism 273: 268: 263: 258: 252: 251: 246: 245: 242: 241: 236: 235: 234: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 190: 189: 185: 184: 183: 182: 176: 172: 166: 162: 156: 152: 146: 139: 138: 132: 127: 126: 123: 122: 118: 117: 107: 97: 87: 77: 67: 60:Special linear 57: 50:General linear 46: 45: 40: 39: 36: 35: 27: 26: 9: 6: 4: 3: 2: 9104: 9093: 9090: 9089: 9087: 9075: 9070: 9066: 9065:Nadler, David 9061: 9060: 9050: 9045: 9042: 9037: 9035:0-691-09089-0 9031: 9027: 9026: 9021: 9017: 9013: 9007: 9003: 9002: 8996: 8991: 8986: 8982: 8979: 8978: 8970: 8966: 8962: 8958: 8954: 8948: 8944: 8940: 8936: 8933: 8931:9781461263982 8927: 8923: 8922: 8916: 8913: 8909: 8906: 8904:0-19-859683-9 8900: 8896: 8891: 8888: 8882: 8878: 8873: 8870: 8864: 8860: 8855: 8853: 8849: 8845: 8841: 8837: 8831: 8827: 8823: 8819: 8815: 8811: 8810:ScienceDirect 8807: 8801: 8796: 8795: 8788: 8784: 8782:0-444-88776-8 8778: 8774: 8769: 8766: 8762: 8760:0-444-11077-1 8756: 8752: 8747: 8744: 8743: 8732: 8731:Jacobson 1962 8727: 8720: 8715: 8708: 8703: 8696: 8691: 8684: 8679: 8672: 8667: 8660: 8655: 8651: 8640: 8637: 8635: 8632: 8630: 8627: 8625: 8622: 8620: 8617: 8615: 8612: 8610: 8607: 8605: 8602: 8600: 8597: 8596: 8590: 8588: 8584: 8580: 8576: 8571: 8569: 8566: 8562: 8557: 8555: 8547: 8544: 8543: 8542: 8540: 8536: 8528: 8524: 8520: 8516: 8512: 8509: 8508: 8507: 8505: 8501: 8500:pure elements 8497: 8493: 8489: 8485: 8481: 8476: 8474: 8470: 8466: 8462: 8458: 8452: 8448: 8444: 8441: 8438: 8433: 8428: 8424: 8420: 8410: 8396: 8376: 8344: 8341: 8313: 8297: 8287: 8283: 8273: 8270: 8241: 8239: 8205: 8162: 8158: 8147: 8143: 8132: 8128: 8110: 8081: 8070: 8065: 8028: 8017: 8012: 7904: 7876: 7865: 7831: 7825: 7795: 7779: 7775: 7761: 7752: 7748: 7730: 7720: 7706: 7702: 7698: 7678: 7673: 7669: 7665: 7657: 7629: 7613: 7610: 7592: 7558: 7525: 7442: 7434:Furthermore, 7414: 7411: 7393: 7389: 7386: 7380: 7369: 7365: 7359: 7356: 7353: 7350: 7332: 7325: 7314: 7306: 7305: 7304: 7303: 7275: 7235: 7232: 7214: 7169: 7151: 7147: 7130: 7097: 7089: 7036: 7003: 6976: 6931: 6904: 6858: 6854: 6847: 6814: 6811: 6808: 6805: 6795: 6792: 6789: 6786: 6783: 6780: 6774: 6766: 6762: 6729: 6676: 6643: 6592: 6584: 6555: 6541: 6521: 6518: 6515: 6512: 6509: 6506: 6500: 6497: 6494: 6434: 6431: 6428: 6396: 6367: 6361: 6328: 6277: 6274: 6271: 6268: 6265: 6262: 6259: 6253: 6247: 6244: 6241: 6231: 6230: 6229: 6227: 6223: 6222:quotient ring 6194: 6174: 6145: 6140: 6136: 6125: 6122: 6119: 6115: 6111: 6108: 6076: 6072: 6043: 6034: 6032: 6031:Verma modules 6026: 5999: 5992:and those of 5918: 5885: 5853: 5824: 5767: 5735: 5731: 5728:over a field 5701: 5691: 5689: 5679: 5663: 5659: 5614: 5607:. If we take 5591: 5588: 5585: 5579: 5576: 5529: 5526: 5523: 5517: 5514: 5494: 5474: 5418: 5415: 5412: 5406: 5403: 5400: 5394: 5391: 5388: 5382: 5371: 5347: 5344: 5338: 5335: 5329: 5323: 5320: 5317: 5311: 5302: 5299: 5296: 5246: 5243: 5240: 5234: 5231: 5163: 5160: 5157: 5143: 5140: 5127: 5122: 5118: 5112: 5108: 5104: 5099: 5091: 5088: 5039: 5035: 5012: 5008: 4981: 4978: 4972: 4969: 4963: 4954: 4949: 4945: 4934: 4933: 4932: 4918: 4896: 4892: 4883: 4879: 4875: 4870: 4866: 4845: 4839: 4836: 4833: 4810: 4805: 4794: 4788: 4782: 4779: 4773: 4765: 4761: 4753: 4752: 4751: 4732: 4728: 4701: 4696: 4692: 4671: 4649: 4645: 4597: 4571: 4568: 4534: 4524: 4507: 4499: 4495: 4471: 4463: 4459: 4434: 4426: 4422: 4398: 4390: 4386: 4358: 4350: 4346: 4342: 4336: 4328: 4324: 4320: 4314: 4303: 4299: 4295: 4290: 4286: 4275: 4274: 4273: 4267: 4263: 4259: 4256:, defined in 4241: 4237: 4214: 4210: 4186: 4178: 4174: 4170: 4162: 4154: 4148: 4140: 4136: 4132: 4126: 4115: 4111: 4107: 4102: 4098: 4087: 4086: 4085: 4066: 4062: 4058: 4053: 4049: 4022: 4017: 4013: 4009: 4004: 4000: 3990: 3974: 3970: 3966: 3961: 3957: 3934: 3930: 3926: 3921: 3917: 3893: 3885: 3881: 3877: 3874: 3868: 3863: 3859: 3855: 3850: 3846: 3842: 3834: 3830: 3826: 3823: 3817: 3809: 3805: 3801: 3796: 3792: 3785: 3782: 3775: 3774: 3773: 3744: 3737: 3730: 3723: 3693: 3678: 3656: 3628: 3625: 3605: 3602: 3599: 3596: 3593: 3561: 3557: 3547: 3520: 3492: 3487: 3485: 3481: 3477: 3473: 3444: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3374: 3349: 3329: 3323: 3320: 3317: 3285: 3281: 3266: 3246: 3240: 3237: 3234: 3227:-modules and 3202: 3198: 3194: 3193: 3192: 3188: 3187:Schur's lemma 3181:Schur's lemma 3178: 3175: 3173: 3169: 3165: 3149: 3146: 3143: 3135: 3119: 3116: 3113: 3109: 3099: 3096: 3073: 3067: 3064: 3061: 3058: 3052: 3049: 3046: 3040: 2984: 2968: 2962: 2959: 2956: 2924: 2920: 2916: 2885:Homomorphisms 2882: 2880: 2879:simple module 2861: 2838: 2830: 2807: 2804: 2784: 2781: 2778: 2758: 2755: 2752: 2746: 2740: 2732: 2716: 2696: 2649: 2643: 2640: 2627: 2624: 2605: 2603: 2602:hydrogen atom 2586: 2566: 2558: 2538: 2533: 2529: 2522: 2519: 2511: 2507: 2503: 2498: 2494: 2485: 2480: 2476: 2469: 2466: 2458: 2454: 2450: 2445: 2441: 2432: 2427: 2423: 2416: 2413: 2405: 2401: 2397: 2392: 2388: 2377: 2376: 2375: 2373: 2369: 2368:Hilbert space 2359: 2357: 2352: 2314: 2311: 2308: 2303: 2299: 2278: 2275: 2267: 2263: 2235: 2219: 2196: 2190: 2187: 2154: 2151: 2131: 2125: 2122: 2117: 2113: 2090: 2087: 2083: 2079: 2076: 2073: 2067: 2059: 2055: 2045: 2043: 2039: 2035: 1989: 1963: 1960: 1957: 1950: 1949: 1948: 1927: 1921: 1918: 1912: 1909: 1906: 1899: 1898: 1897: 1896: 1892: 1888: 1855: 1852: 1847: 1843: 1835: 1831: 1827: 1823: 1771: 1767: 1763: 1759: 1743: 1729: 1715: 1707: 1688: 1682: 1679: 1676: 1670: 1664: 1658: 1653: 1649: 1644: 1639: 1635: 1628: 1624: 1588: 1574: 1573: 1572: 1544: 1529: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1475: 1453: 1450: 1447: 1441: 1438: 1435: 1429: 1426: 1423: 1417: 1414: 1411: 1408: 1405: 1399: 1396: 1393: 1383: 1382: 1381: 1367: 1361: 1358: 1344: 1340: 1311: 1309: 1293: 1284: 1282: 1278: 1251: 1247: 1219: 1197: 1191: 1185: 1179: 1176: 1170: 1164: 1158: 1152: 1149: 1140: 1137: 1134: 1125: 1118: 1117: 1116: 1102: 1075: 1049: 1046: 1039: 1038: 1037: 1036: 1020: 988: 969: 948: 932: 929: 926: 923: 920: 917: 914: 911: 905: 902: 899: 873: 840: 820: 797: 764: 726: 724: 720: 716: 713:, called the 712: 707: 705: 701: 696: 694: 678: 658: 650: 646: 642: 641:endomorphisms 638: 634: 630: 626: 622: 618: 606: 601: 599: 594: 592: 587: 586: 584: 583: 578: 575: 573: 570: 569: 568: 567: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 520: 513: 512: 504: 501: 499: 496: 494: 491: 489: 486: 485: 481: 475: 474: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 437: 433: 428: 427: 419: 416: 414: 411: 406: 403: 401: 398: 397: 395: 390: 387: 385: 382: 381: 379: 377: 374: 372: 369: 368: 364: 359: 358: 350: 347: 345: 342: 340: 337: 332: 329: 327: 324: 323: 321: 319: 316: 314: 311: 309: 306: 305: 301: 296: 295: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 253: 249: 244: 243: 232: 226: 224: 218: 216: 210: 208: 202: 200: 194: 193: 192: 191: 187: 186: 181: 179: 173: 171: 169: 163: 161: 159: 153: 151: 149: 143: 142: 141: 140: 136: 135: 130: 125: 124: 115: 111: 108: 105: 101: 98: 95: 91: 88: 85: 81: 78: 75: 71: 68: 65: 61: 58: 55: 51: 48: 47: 43: 38: 37: 33: 29: 28: 25: 21: 18: 17: 9048: 9040: 9024: 9000: 8980: 8975: 8943:Lie algebras 8942: 8920: 8911: 8894: 8876: 8858: 8825: 8808:– via 8793: 8772: 8750: 8726: 8714: 8702: 8695:Dixmier 1977 8690: 8685:Theorem 4.29 8678: 8673:Section 17.3 8666: 8654: 8572: 8558: 8553: 8551: 8545: 8534: 8532: 8526: 8522: 8521:+ (−1) 8518: 8514: 8510: 8503: 8495: 8491: 8487: 8484:pure element 8479: 8477: 8472: 8460: 8450: 8446: 8442: 8431: 8422: 8418: 8416: 8342: 8311: 8289: 8282:(g,K)-module 8276:(g,K)-module 8242: 8211: 7948:an ideal of 7721: 7655: 7627: 7433: 7301: 7273: 7087: 6937: 6644: 6556: 6484:is given by 6296: 6225: 6070: 6035: 6027: 5878:sits inside 5760:and denoted 5729: 5703: 5685: 5149: 5141: 4999: 4931:" operator: 4825: 4536: 4377: 4271: 3991: 3908: 3742: 3735: 3728: 3721: 3695: 3559: 3555: 3553: 3518: 3488: 3479: 3475: 3445: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3404: 3400: 3372: 3370: 3283: 3200: 3196: 3190: 3176: 3171: 3167: 3163: 3133: 2983:homomorphism 2982: 2922: 2918: 2888: 2878: 2828: 2730: 2616: 2554: 2365: 2353: 2265: 2233: 2046: 2041: 2037: 2007: 1946: 1890: 1834:differential 1829: 1825: 1822:Lie algebras 1766:homomorphism 1761: 1757: 1735: 1703: 1546: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1473: 1471: 1343:bilinear map 1338: 1312: 1307: 1285: 1280: 1253: 1249: 1245: 1217: 1215: 1094: 986: 946: 732: 708: 697: 645:vector space 635:as a set of 628: 624: 617:mathematical 614: 558:Armand Borel 543:Hermann Weyl 444: 344:Loop algebra 326:Killing form 300:Lie algebras 177: 167: 157: 147: 113: 103: 93: 83: 73: 63: 53: 24:Lie algebras 9074:1209.0188v1 8983:: 116–136. 8721:Section 9.5 8709:Section 4.3 8661:Theorem 5.6 8614:Root system 8579:Lie algebra 8465:derivations 8427:associative 6395:PBW theorem 5852:PBW theorem 3554:An element 2915:Lie algebra 2877:. The term 2829:irreducible 1571:on itself: 633:Lie algebra 538:Élie Cartan 384:Root system 188:Exceptional 8822:Harris, J. 8818:Fulton, W. 8740:References 8269:category O 7182:. It is a 6702:becomes a 5262:becomes a 5200:-modules, 3550:Invariants 3431:such that 3164:equivalent 2559:. Then if 1770:Lie groups 1380:such that 649:commutator 523:Sophus Lie 516:Scientists 389:Weyl group 110:Symplectic 70:Orthogonal 20:Lie groups 8945:. Dover. 8941:(1979) . 8719:Hall 2015 8707:Hall 2015 8683:Hall 2015 8671:Hall 2013 8659:Hall 2015 8533:Also, if 8377:π 8298:π 8159:∘ 8144:≃ 8129:∘ 7905:⊂ 7866:⊂ 7832:⊂ 7776:∘ 7749:≃ 7670:⊗ 7611:⁡ 7412:⁡ 7381:⁡ 7366:≃ 7351:⁡ 7326:⁡ 7233:⁡ 7148:⊗ 6977:⊂ 6851:↦ 6812:∈ 6796:∈ 6516:− 6365:→ 6275:⊗ 6269:− 6263:⊗ 6254:− 6175:⊗ 6137:⊗ 6131:∞ 6116:⊕ 5664:∗ 5580:⁡ 5518:⁡ 5407:⁡ 5383:⁡ 5336:− 5300:⋅ 5235:⁡ 5040:∗ 5036:ρ 5013:∗ 5009:ρ 4973:ϕ 4955:ϕ 4897:∗ 4889:→ 4884:∗ 4843:→ 4789:ρ 4783:− 4766:∗ 4762:ρ 4733:∗ 4712:→ 4697:∗ 4693:ρ 4650:∗ 4582:→ 4569:ρ 4496:ρ 4460:ρ 4423:ρ 4387:ρ 4347:ρ 4325:ρ 4300:ρ 4296:⊗ 4287:ρ 4238:ρ 4211:ρ 4175:ρ 4171:⊗ 4155:⊗ 4137:ρ 4112:ρ 4108:⊗ 4099:ρ 4059:⊗ 4033:→ 4014:ρ 4010:⊗ 4001:ρ 3967:∈ 3927:∈ 3878:⋅ 3869:⊗ 3843:⊗ 3827:⋅ 3802:⊗ 3786:⋅ 3629:∈ 3597:⋅ 3491:reductive 3327:→ 3244:→ 3172:morphisms 3117:∈ 3100:∈ 3065:⋅ 3050:⋅ 2966:→ 2808:∈ 2782:∈ 2756:∈ 2741:ρ 2731:invariant 2644:⁡ 2638:→ 2625:ρ 2526:ℏ 2473:ℏ 2420:ℏ 2191:⁡ 2155:⁡ 2129:→ 2088:− 1974:→ 1961:ϕ 1922:⁡ 1916:→ 1907:ϕ 1866:→ 1853:ϕ 1744:ϕ 1659:⁡ 1632:↦ 1599:→ 1451:⋅ 1442:⋅ 1436:− 1427:⋅ 1418:⋅ 1406:⋅ 1365:→ 1359:× 1294:ρ 1192:ρ 1180:ρ 1177:− 1165:ρ 1153:ρ 1126:ρ 1103:ρ 1060:→ 1050:: 1047:ρ 985:. Then a 933:ρ 930:∘ 927:σ 924:− 921:σ 918:∘ 915:ρ 906:σ 900:ρ 619:field of 400:Real form 286:Euclidean 137:Classical 9086:Category 9022:(2001), 8967:(1949). 8824:(1991). 8593:See also 8463:acts as 7877:′ 7826:′ 7796:′ 7762:′ 7654:-module 7300:-module 7123:-module 7086:-module 7029:acts on 3909:for all 3618:for all 3089:for any 2771:for all 1820:are the 1532:Examples 1472:for all 1308:faithful 1216:for all 945:for all 719:category 637:matrices 572:Glossary 266:PoincarĂ© 8844:1153249 8541:, then 8440:algebra 8102:. Then 6585:, then 6583:abelian 6220:be the 6073:be the 3720:, with 3399:. Then 1277:-module 723:modules 615:In the 480:physics 261:Lorentz 90:Unitary 9032:  9008:  8949:  8928:  8901:  8883:  8865:  8842:  8832:  8802:  8779:  8757:  8577:and a 8539:unital 8437:graded 8345:. The 7996:. Set 6645:Since 6187:. Let 4637:. Let 3411:). If 2917:. Let 1772:, and 256:Circle 9069:arXiv 8972:(PDF) 8646:Notes 8565:super 8482:is a 8449:as a 6321:into 3519:every 3132:. If 2981:is a 2913:be a 2008:from 1764:is a 1033:is a 643:of a 331:Index 9030:ISBN 9006:ISBN 8947:ISBN 8926:ISBN 8899:ISBN 8881:ISBN 8863:ISBN 8830:ISBN 8800:ISBN 8777:ISBN 8755:ISBN 8498:are 8494:and 8490:and 8284:and 8212:Let 8049:and 6938:Let 5734:ring 5686:See 5150:Let 4537:Let 4260:and 4229:and 3949:and 3727:and 3439:and 3371:Let 2889:Let 2797:and 1893:, a 1828:and 1796:and 1500:and 1218:X, Y 733:Let 711:ring 639:(or 623:, a 281:Loop 22:and 8985:doi 8548:= 0 8537:is 8513:= ( 8502:of 8486:of 8471:on 8163:Ind 8148:Res 8133:Res 8111:Ind 7780:Ind 7753:Ind 7731:Ind 7593:Ind 7443:Ind 7394:Res 7370:Hom 7333:Ind 7315:Hom 7215:Ind 6897:on 6581:is 6557:If 6534:in 6224:of 5651:on 5577:Hom 5569:on 5515:Hom 5487:to 5404:Hom 5372:Hom 5232:Hom 5176:be 3558:of 3446:If 3443:.) 3282:If 3195:If 3170:or 2985:of 2925:be 2733:if 2729:is 2709:of 2641:End 2264:of 2232:of 2036:GL( 1885:on 1824:of 1528:). 1504:in 1476:in 1474:X,Y 1220:in 1013:on 989:of 949:in 947:ρ,σ 627:or 112:Sp( 102:SU( 82:SO( 62:SL( 52:GL( 9088:: 9043:)) 8981:65 8974:. 8963:; 8840:MR 8838:. 8820:; 8589:. 8570:. 8506:, 8475:. 8429:) 8204:. 7719:. 6642:. 6554:. 6025:. 5690:. 5123:tr 5113:tr 5100:tr 4950:tr 4871:tr 4806:tr 3989:. 3741:⊗ 3677:. 3199:, 3174:. 2921:, 2351:. 2315:ad 2309:Ad 2279:Ad 2220:Ad 2188:Ad 2152:GL 2044:. 1919:GL 1760:→ 1756:: 1716:ad 1708:, 1650:ad 1636:ad 1584:ad 1524:)( 1516:= 1512:⋅ 695:. 92:U( 72:O( 9077:. 9071:: 9041:C 9014:. 8993:. 8987:: 8955:. 8846:. 8812:. 8785:. 8764:. 8546:H 8535:A 8529:) 8527:H 8525:( 8523:x 8519:y 8517:) 8515:H 8511:H 8504:A 8496:y 8492:x 8488:L 8480:H 8473:A 8467:/ 8461:L 8454:2 8451:Z 8447:L 8443:A 8435:2 8432:Z 8423:L 8419:L 8397:K 8355:g 8343:K 8324:g 8312:G 8253:g 8222:g 8187:1 8183:g 8173:1 8169:h 8153:g 8138:h 8123:g 8116:h 8088:n 8082:/ 8076:h 8071:= 8066:1 8060:h 8035:n 8029:/ 8023:g 8018:= 8013:1 8007:g 7982:h 7958:g 7934:n 7910:g 7900:h 7872:h 7861:h 7837:g 7823:h 7793:h 7785:h 7770:g 7759:h 7743:g 7736:h 7707:k 7703:/ 7699:F 7679:F 7674:k 7666:V 7656:V 7640:g 7628:W 7614:W 7605:g 7598:h 7572:) 7567:h 7562:( 7559:U 7539:) 7534:g 7529:( 7526:U 7504:g 7480:h 7455:g 7448:h 7430:. 7418:) 7415:E 7406:g 7399:h 7390:, 7387:W 7384:( 7375:h 7363:) 7360:E 7357:, 7354:W 7345:g 7338:h 7329:( 7320:g 7302:E 7286:g 7274:W 7258:g 7236:W 7227:g 7220:h 7192:g 7170:W 7165:) 7160:h 7155:( 7152:U 7144:) 7139:g 7134:( 7131:U 7111:) 7106:g 7101:( 7098:U 7088:W 7072:h 7050:) 7045:g 7040:( 7037:U 7017:) 7012:h 7007:( 7004:U 6982:g 6972:h 6948:g 6918:) 6913:g 6908:( 6905:U 6883:g 6859:X 6855:l 6848:X 6828:) 6823:g 6818:( 6815:U 6809:Y 6806:, 6801:g 6793:X 6790:, 6787:Y 6784:X 6781:= 6778:) 6775:Y 6772:( 6767:X 6763:l 6740:g 6712:g 6690:) 6685:g 6680:( 6677:U 6655:g 6628:g 6606:) 6601:g 6596:( 6593:U 6567:g 6542:A 6522:X 6519:Y 6513:Y 6510:X 6507:= 6504:] 6501:Y 6498:, 6495:X 6492:[ 6470:g 6448:) 6443:g 6438:( 6435:U 6432:= 6429:A 6407:g 6381:) 6376:g 6371:( 6368:U 6362:T 6342:) 6337:g 6332:( 6329:U 6307:g 6293:. 6281:) 6278:X 6272:Y 6266:Y 6260:X 6257:( 6251:] 6248:Y 6245:, 6242:X 6239:[ 6226:T 6208:) 6203:g 6198:( 6195:U 6153:g 6146:n 6141:1 6126:0 6123:= 6120:n 6112:= 6109:T 6087:g 6071:T 6057:) 6052:g 6047:( 6044:U 6013:) 6008:g 6003:( 6000:U 5978:g 5954:g 5932:) 5927:g 5922:( 5919:U 5899:) 5894:g 5889:( 5886:U 5864:g 5838:) 5833:g 5828:( 5825:U 5803:g 5781:) 5776:g 5771:( 5768:U 5746:g 5730:k 5714:g 5660:V 5637:g 5615:W 5595:) 5592:W 5589:, 5586:V 5583:( 5555:g 5533:) 5530:W 5527:, 5524:V 5521:( 5495:W 5475:V 5453:g 5428:g 5423:) 5419:W 5416:, 5413:V 5410:( 5401:= 5398:) 5395:W 5392:, 5389:V 5386:( 5377:g 5351:) 5348:v 5345:X 5342:( 5339:f 5333:) 5330:v 5327:( 5324:f 5321:X 5318:= 5315:) 5312:v 5309:( 5306:) 5303:f 5297:X 5294:( 5272:g 5250:) 5247:W 5244:, 5241:V 5238:( 5210:g 5186:g 5164:W 5161:, 5158:V 5128:. 5119:A 5109:B 5105:= 5096:) 5092:B 5089:A 5086:( 5064:g 4985:) 4982:v 4979:A 4976:( 4970:= 4967:) 4964:v 4961:( 4958:) 4946:A 4942:( 4919:A 4893:V 4880:V 4876:: 4867:A 4846:V 4840:V 4837:: 4834:A 4811:, 4802:) 4798:) 4795:X 4792:( 4786:( 4780:= 4777:) 4774:X 4771:( 4738:) 4729:V 4725:( 4720:l 4717:g 4707:g 4702:: 4672:V 4646:V 4623:g 4601:) 4598:V 4595:( 4590:l 4587:g 4577:g 4572:: 4547:g 4511:) 4508:X 4505:( 4500:2 4475:) 4472:X 4469:( 4464:1 4438:) 4435:x 4432:( 4427:2 4402:) 4399:x 4396:( 4391:1 4374:, 4362:) 4359:X 4356:( 4351:2 4343:+ 4340:) 4337:X 4334:( 4329:1 4321:= 4318:) 4315:X 4312:( 4309:) 4304:2 4291:1 4283:( 4268:. 4242:2 4215:1 4190:) 4187:X 4184:( 4179:2 4167:I 4163:+ 4159:I 4152:) 4149:X 4146:( 4141:1 4133:= 4130:) 4127:X 4124:( 4121:) 4116:2 4103:1 4095:( 4072:) 4067:2 4063:V 4054:1 4050:V 4046:( 4041:l 4038:g 4028:g 4023:: 4018:2 4005:1 3975:2 3971:V 3962:2 3958:v 3935:1 3931:V 3922:1 3918:v 3894:. 3891:) 3886:2 3882:v 3875:X 3872:( 3864:1 3860:v 3856:+ 3851:2 3847:v 3840:) 3835:1 3831:v 3824:X 3821:( 3818:= 3815:) 3810:2 3806:v 3797:1 3793:v 3789:( 3783:X 3758:g 3746:2 3743:V 3739:1 3736:V 3732:2 3729:V 3725:1 3722:V 3706:g 3662:g 3657:V 3634:g 3626:x 3606:0 3603:= 3600:v 3594:x 3572:g 3560:V 3556:v 3531:g 3503:g 3480:V 3476:V 3456:g 3441:P 3437:W 3433:V 3429:P 3425:W 3421:V 3417:V 3413:V 3401:V 3385:g 3373:V 3350:f 3330:V 3324:V 3321:: 3318:f 3296:g 3284:V 3267:f 3247:W 3241:V 3238:: 3235:f 3213:g 3201:W 3197:V 3150:W 3147:, 3144:V 3134:f 3120:V 3114:v 3110:, 3105:g 3097:X 3077:) 3074:v 3071:( 3068:f 3062:X 3059:= 3056:) 3053:v 3047:X 3044:( 3041:f 3019:g 2995:g 2969:W 2963:V 2960:: 2957:f 2935:g 2923:W 2919:V 2899:g 2865:} 2862:0 2859:{ 2839:V 2813:g 2805:X 2785:W 2779:w 2759:W 2753:w 2750:) 2747:X 2744:( 2717:V 2697:W 2675:g 2653:) 2650:V 2647:( 2633:g 2628:: 2587:V 2567:V 2551:. 2539:, 2534:y 2530:L 2523:i 2520:= 2517:] 2512:x 2508:L 2504:, 2499:z 2495:L 2491:[ 2486:, 2481:x 2477:L 2470:i 2467:= 2464:] 2459:z 2455:L 2451:, 2446:y 2442:L 2438:[ 2433:, 2428:z 2424:L 2417:i 2414:= 2411:] 2406:y 2402:L 2398:, 2393:x 2389:L 2385:[ 2337:g 2312:= 2304:e 2300:d 2276:d 2266:G 2246:g 2234:G 2200:) 2197:g 2194:( 2168:) 2163:g 2158:( 2132:G 2126:G 2123:: 2118:g 2114:c 2091:1 2084:g 2080:x 2077:g 2074:= 2071:) 2068:x 2065:( 2060:g 2056:c 2042:V 2038:V 2018:g 1993:) 1990:V 1987:( 1982:l 1979:g 1969:g 1964:: 1958:d 1931:) 1928:V 1925:( 1913:G 1910:: 1891:V 1871:h 1861:g 1856:: 1848:e 1844:d 1830:H 1826:G 1806:h 1782:g 1762:H 1758:G 1689:. 1686:] 1683:Y 1680:, 1677:X 1674:[ 1671:= 1668:) 1665:Y 1662:( 1654:X 1645:, 1640:X 1629:X 1625:, 1622:) 1617:g 1612:( 1607:l 1604:g 1594:g 1589:: 1557:g 1526:v 1522:X 1520:( 1518:ρ 1514:v 1510:X 1506:V 1502:v 1486:g 1457:) 1454:v 1448:X 1445:( 1439:Y 1433:) 1430:v 1424:Y 1421:( 1415:X 1412:= 1409:v 1403:] 1400:Y 1397:, 1394:X 1391:[ 1368:V 1362:V 1354:g 1339:V 1323:g 1281:V 1263:g 1250:ρ 1246:V 1230:g 1201:) 1198:X 1195:( 1189:) 1186:Y 1183:( 1174:) 1171:Y 1168:( 1162:) 1159:X 1156:( 1150:= 1147:) 1144:] 1141:Y 1138:, 1135:X 1132:[ 1129:( 1091:. 1079:) 1076:V 1073:( 1068:l 1065:g 1055:g 1021:V 999:g 973:) 970:V 967:( 962:l 959:g 912:= 909:] 903:, 897:[ 877:) 874:V 871:( 866:l 863:g 841:V 821:V 801:) 798:V 795:( 790:l 787:g 765:V 743:g 679:V 659:V 604:e 597:t 590:v 230:8 228:E 222:7 220:E 214:6 212:E 206:4 204:F 198:2 196:G 178:n 175:D 168:n 165:C 158:n 155:B 148:n 145:A 116:) 114:n 106:) 104:n 96:) 94:n 86:) 84:n 76:) 74:n 66:) 64:n 56:) 54:n

Index

Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop
Euclidean
Lie algebras

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑