Knowledge

Modular form

Source 📝

4622: 6181: 4328: 43: 5105: 4617:{\displaystyle {\begin{aligned}\Gamma _{0}(N)&=\left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in {\text{SL}}(2,\mathbf {Z} ):c\equiv 0{\pmod {N}}\right\}\\\Gamma (N)&=\left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in {\text{SL}}(2,\mathbf {Z} ):c\equiv b\equiv 0,a\equiv d\equiv 1{\pmod {N}}\right\}.\end{aligned}}} 1587: 5874:
are a mixture of modular forms and elliptic functions. Examples of such functions are very classical - the Jacobi theta functions and the Fourier coefficients of Siegel modular forms of genus two - but it is a relatively recent observation that the Jacobi forms have an arithmetic theory very
4932: 2878: 5490:. Such rings of modular forms are generated in weight at most 6 and the relations are generated in weight at most 12 when the congruence subgroup has nonzero odd weight modular forms, and the corresponding bounds are 5 and 10 when there are no nonzero odd weight modular forms. 2066: 2717: 870: 1329: 3032: 6111: 3394: 262: 5100:{\displaystyle \dim _{\mathbf {C} }M_{k}\left({\text{SL}}(2,\mathbf {Z} )\right)={\begin{cases}\left\lfloor k/12\right\rfloor &k\equiv 2{\pmod {12}}\\\left\lfloor k/12\right\rfloor +1&{\text{otherwise}}\end{cases}}} 2533: 1441: 2177: 1225: 3187: 2728: 5755: 1772: 1929: 6458: 3614: 3804: 5469: 1095: 330: 924: 582: 3696: 5665: 3944: 1382: 4333: 2733: 1963: 422: 5975: 4214: 996: 534: 2569: 1033: 685: 648: 5134: 6161: 4062:) of an elliptic curve, regarded as a function on the set of all elliptic curves, is a modular function. More conceptually, modular functions can be thought of as functions on the 761: 456: 132: 6493: 3856: 6722: 786: 1858: 1259: 6351: 5607: 1248: 1115: 360: 3488:
The second and third examples give some hint of the connection between modular forms and classical questions in number theory, such as representation of integers by
3988: 5324:
vary, we can find the numerators and denominators for constructing all the rational functions which are really functions on the underlying projective space P(
781: 872:
The identification of such functions with such matrices causes composition of such functions to correspond to matrix multiplication. In addition, it is called a
5577: 5557: 5537: 5158: 1949: 1135: 380: 2950: 5983: 3274: 195: 1582:{\displaystyle {\text{SL}}(2,\mathbf {Z} )=\left\{\left.{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\right|a,b,c,d\in \mathbf {Z} ,\ ad-bc=1\right\}} 2461: 6968: 5354:
Modular forms can also be profitably approached from this geometric direction, as sections of line bundles on the moduli space of elliptic curves.
61: 2873:{\displaystyle {\begin{aligned}G_{k}\left(-{\frac {1}{\tau }}\right)&=\tau ^{k}G_{k}(\tau ),\\G_{k}(\tau +1)&=G_{k}(\tau ).\end{aligned}}} 4051:. Thus, a modular function can also be regarded as a meromorphic function on the set of isomorphism classes of elliptic curves. For example, the 6293:. In 2001 all elliptic curves were proven to be modular over the rational numbers. In 2013 elliptic curves were proven to be modular over real 2077: 1143: 3104: 3259: 6297:. In 2023 elliptic curves were proven to be modular over about half of imaginary quadratic fields, including fields formed by combining the 6314: 5775:
is a modular form with a zero constant coefficient in its Fourier series. It is called a cusp form because the form vanishes at all cusps.
5670: 6519: 5281:. Unfortunately, the only such functions are constants. If we allow denominators (rational functions instead of polynomials), we can let 6941: 5493:
More generally, there are formulas for bounds on the weights of generators of the ring of modular forms and its relations for arbitrary
1677: 2937:
vectors forming the columns of a matrix of determinant 1 and satisfying the condition that the square of the length of each vector in
7391: 6730: 6382:
function can only have a finite number of negative-exponent terms in its Laurent series, its q-expansion. It can only have at most a
3517: 1863: 6410: 3566: 3718: 5407: 1054: 289: 17: 5838:
variables, each a complex number in the upper half-plane, satisfying a modular relation for 2×2 matrices with entries in a
5783:
There are a number of other usages of the term "modular function", apart from this classical one; for example, in the theory of
5164: 883: 541: 7483: 7120: 7080: 6961: 6599: 3626: 5612: 3870: 1828:
is "holomorphic at the cusp", a terminology that is explained below. Explicitly, the condition means that there exist some
1341: 6256:
and others towards the end of the nineteenth century as the automorphic form concept became understood (for one variable)
2061:{\displaystyle S={\begin{pmatrix}0&-1\\1&0\end{pmatrix}},\qquad T={\begin{pmatrix}1&1\\0&1\end{pmatrix}}} 7549: 7171: 7070: 6793: 4025:
be invariant with respect to a sub-group of the modular group of finite index. This is not adhered to in this article.
3493: 389: 7539: 6865: 6771: 6560: 6228: 5908: 4017:
Sometimes a weaker definition of modular functions is used – under the alternative definition, it is sufficient that
1396:
A modular function is a function that is invariant with respect to the modular group, but without the condition that
79: 6210: 2712:{\displaystyle G_{k}(\Lambda )=G_{k}(\tau )=\sum _{(0,0)\neq (m,n)\in \mathbf {Z} ^{2}}{\frac {1}{(m+n\tau )^{k}}},} 7249: 6954: 4164: 929: 461: 7579: 1385: 7396: 7317: 7307: 7244: 6206: 1001: 653: 587: 6994: 6202: 4047:
elliptic curves if and only if one is obtained from the other by multiplying by some non-zero complex number
5113: 7214: 7110: 6119: 5289:
polynomials of the same degree. Alternatively, we can stick with polynomials and loosen the dependence on
693: 7473: 7437: 7136: 7049: 3247: 435: 111: 7584: 7447: 7085: 6857: 6817: 6635: 4264: 4248: 1415:: they are holomorphic on the complement of a set of isolated points, which are poles of the function. 865:{\textstyle \gamma ={\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in {\text{SL}}_{2}(\mathbb {Z} ).\,} 143: 6356:"DLMF: §23.15 Definitions ‣ Modular Functions ‣ Chapter 23 Weierstrass Elliptic and Modular Functions" 7493: 6845: 6290: 6274:
Taniyama and Shimura identified a 1-to-1 matching between certain modular forms and elliptic curves.
5839: 3814: 3038: 2191: 6691: 5001: 4002:
at i∞. This condition is called "meromorphic at the cusp", meaning that only finitely many negative-
3496:. The crucial conceptual link between modular forms and number theory is furnished by the theory of 7406: 7386: 7322: 7239: 7141: 7100: 6910: 6191: 4915: 1335: 6167:, a modular form of weight 1/2, may be encompassed by the theory by allowing automorphic factors. 4278:. Typically it is not compact, but can be compactified by adding a finite number of points called 7297: 7105: 6383: 6195: 5516: 5511: 5237:
The situation can be profitably compared to that which arises in the search for functions on the
5184: 3069:
has integer coordinates, either all even or all odd, and such that the sum of the coordinates of
1324:{\displaystyle X_{\Gamma }=\Gamma \backslash ({\mathcal {H}}\cup \mathbb {P} ^{1}(\mathbb {Q} ))} 5816:. The holomorphic parts of certain weak Maass wave forms turn out to be essentially Ramanujan's 31: 7574: 7090: 7204: 6512: 1831: 7468: 7166: 7115: 7004: 6391: 6336: 6282:, which has become one of the most far-reaching and consequential research programs in math. 6164: 5586: 5363: 5192: 3960: 3501: 3265: 1233: 1100: 345: 275: 7544: 7416: 7075: 6923: 6825: 6609: 5831: 5813: 5286: 5168: 3966: 3561: 3548: 3520:
that the only modular forms are constant functions. However, relaxing the requirement that
3431: 3408: 2891: 1642: 1412: 1408: 384: 7327: 6687: 6617: 6333:
Some authors use different conventions, allowing an additional constant depending only on
8: 7381: 7259: 7224: 7181: 7161: 6919: 6831:
Provides an introduction to modular forms from the point of view of representation theory
6666: 5845: 5817: 5344: 4886:
to obtain further information about modular forms and functions. For example, the spaces
4745: 4320: 4241: 3235: 3027:{\displaystyle \vartheta _{L}(z)=\sum _{\lambda \in L}e^{\pi i\Vert \lambda \Vert ^{2}z}} 766: 139: 27:
Analytic function on the upper half-plane with a certain behavior under the modular group
6927: 6653:, Publications of the Mathematical Society of Japan, vol. 11, Tokyo: Iwanami Shoten 2372:
remains bounded above as long as the absolute value of the smallest non-zero element in
7511: 7302: 7282: 7095: 6801: 6756: 6267: 6106:{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=\varepsilon (a,b,c,d)(cz+d)^{k}f(z).} 5902: 5892:
are meromorphic functions on the upper half plane of moderate growth at infinity which
5562: 5542: 5522: 5336: 5196: 5143: 4713: 3859: 3404: 2921: 2380:
The key idea in proving the equivalence of the two definitions is that such a function
1934: 1120: 365: 166: 7254: 3389:{\displaystyle \eta (z)=q^{1/24}\prod _{n=1}^{\infty }(1-q^{n}),\qquad q=e^{2\pi iz}.} 2384:
is determined, because of the second condition, by its values on lattices of the form
257:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )\subset \mathrm {SL} _{2}(\mathbb {R} )} 57: 30:"Modular function" redirects here. A distinct use of this term appears in relation to 7411: 7358: 7229: 7044: 7039: 6884: 6861: 6789: 6767: 6595: 6556: 6279: 6246: 5977:
which are used to generalise the modularity relation defining modular forms, so that
5802: 4297: 2421: 2303: 2228: 189: 101: 3048:. It is not so easy to construct even unimodular lattices, but here is one way: Let 7401: 7287: 7264: 6931: 6613: 6590:, Grundlehren der Mathematischen Wissenschaften , vol. 244, Berlin, New York: 6298: 6294: 6275: 5878: 5849: 5487: 5238: 4288: 3552: 3482: 3426:
is a modular form of weight 12. The presence of 24 is related to the fact that the
3092: 1605: 1411:
in the upper half-plane (among other requirements). Instead, modular functions are
425: 337: 181: 158: 105: 6537: 3098:. Because there is only one modular form of weight 8 up to scalar multiplication, 7516: 7332: 7274: 7176: 6999: 6978: 6892: 6821: 6809: 6785: 6763: 6605: 6591: 6585: 5861: 4309: 4275: 4112: 1593: 2528:{\displaystyle G_{k}(\Lambda )=\sum _{0\neq \lambda \in \Lambda }\lambda ^{-k}.} 7199: 7024: 7009: 6986: 6751: 5494: 5483: 5331:
One might ask, since the homogeneous polynomials are not really functions on P(
5137: 4063: 4033: 4029: 3706: 3497: 3489: 3478: 3474: 3462: 2942: 2362: 2263: 2253: 2236: 1791: 1621: 267:
The term "modular form", as a systematic description, is usually attributed to
170: 6898:
Chapter VII provides an elementary introduction to the theory of modular forms
5316:. On the one hand, these form a finite dimensional vector space for each  7568: 7531: 7312: 7292: 7219: 7014: 6946: 6577: 5805: 5348: 3617: 3427: 3232: 1433: 1251: 1048: 174: 162: 147: 7478: 7452: 7442: 7432: 7234: 6286: 5864:
in the same sense that classical modular forms (which are sometimes called
5784: 4914:
are finite-dimensional, and their dimensions can be computed thanks to the
4145: 3466: 333: 5583:. These old forms can be constructed using the following observations: if 4788:. Again, modular forms that vanish at all cusps are called cusp forms for 2172:{\displaystyle f\left(-{\frac {1}{z}}\right)=z^{k}f(z),\qquad f(z+1)=f(z)} 1334:
The dimensions of these spaces of modular forms can be computed using the
1220:{\displaystyle f\in H^{0}(X_{\Gamma },\omega ^{\otimes k})=M_{k}(\Gamma )} 7353: 7191: 6837: 6379: 6302: 6260: 6253: 5871: 5798: 5381: 4052: 3470: 3239: 3218: 3182:{\displaystyle \vartheta _{L_{8}\times L_{8}}(z)=\vartheta _{L_{16}}(z),} 3088: 1044: 268: 93: 6875: 5351:
in this case). The situation with modular forms is precisely analogous.
5179:
is not identically 0, then it can be shown that the number of zeroes of
4149:
is a modular function whose poles and zeroes are confined to the cusps.
7348: 6935: 6905: 6581: 6266:
In the 1960s, as the needs of number theory and the formulation of the
4044: 7209: 6270:
in particular made it clear that modular forms are deeply implicated.
5882: 5809: 5772: 5766: 4103: 3435: 2243: 185: 6180: 6163:
is called the nebentypus of the modular form. Functions such as the
5750:{\displaystyle M_{k}(\Gamma _{1}(M))\subseteq M_{k}(\Gamma _{1}(N))} 4852:), they are also referred to as modular/cusp forms and functions of 4216:
can be relaxed by requiring it only for matrices in smaller groups.
4028:
Another way to phrase the definition of modular functions is to use
4010:-expansion is bounded below, guaranteeing that it is meromorphic at 3500:, which also gives the link between the theory of modular forms and 180:
Modular form theory is a special case of the more general theory of
5852:
in the same way in which classical modular forms are associated to
3243: 2202:, the second condition above is equivalent to these two equations. 7521: 7506: 6355: 1767:{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=(cz+d)^{k}f(z)} 6816:, Annals of Mathematics Studies, vol. 83, Princeton, N.J.: 5312:). The solutions are then the homogeneous polynomials of degree 4312:, which allows one to speak of holo- and meromorphic functions. 1043:
Modular forms can also be interpreted as sections of a specific
7501: 6942:
Behold Modular Forms, the ‘Fifth Fundamental Operation’ of Math
5539:
which cannot be constructed from modular forms of lower levels
1924:{\displaystyle \operatorname {Im} (z)>M\implies |f(z)|<D} 6651:
Introduction to the arithmetic theory of automorphic functions
6453:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} 4300:±2) fixing the point. This yields a compact topological space 3609:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} 6908:(1988), "Jacobi forms and a certain space of modular forms", 5205:.It can be shown that the field of modular function of level 4776:
satisfying the above functional equation for all matrices in
3799:{\displaystyle f(z)=\sum _{n=-m}^{\infty }a_{n}e^{2i\pi nz}.} 3222: 6494:"Elliptic Curves Yield Their Secrets in a New Number System" 5464:{\displaystyle M(\Gamma )=\bigoplus _{k>0}M_{k}(\Gamma )} 3540:
is called modular if it satisfies the following properties:
3260:
Weierstrass's elliptic functions § Modular discriminant
1090:{\displaystyle \Gamma \subset {\text{SL}}_{2}(\mathbb {Z} )} 325:{\displaystyle \Gamma \subset {\text{SL}}_{2}(\mathbb {Z} )} 188:
that transform nicely with respect to the action of certain
161:. The main importance of the theory is its connections with 6241:
The theory of modular forms was developed in four periods:
5093: 1476: 6784:, Graduate Texts in Mathematics, vol. 228, New York: 4308:. What is more, it can be endowed with the structure of a 1817:, only the zero function can satisfy the second condition. 3037:
converges when Im(z) > 0, and as a consequence of the
2248:
A modular form can equivalently be defined as a function
6891:, Graduate Texts in Mathematics, vol. 7, New York: 6278:
built on this idea in the construction of his expansive
5868:
to emphasize the point) are related to elliptic curves.
4152: 3709:. The third condition is that this series is of the form 2354:
is a constant (typically a positive integer) called the
919:{\displaystyle \gamma \in {\text{SL}}_{2}(\mathbb {Z} )} 577:{\displaystyle \gamma \in {\text{SL}}_{2}(\mathbb {Z} )} 6758:
Modular functions and Dirichlet Series in Number Theory
3691:{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=f(z)} 3446:
is expanded as a power series in q, the coefficient of
2324:
is the lattice obtained by multiplying each element of
6419: 5660:{\displaystyle \Gamma _{1}(N)\subseteq \Gamma _{1}(M)} 4494: 4372: 3939:{\displaystyle f(z)=\sum _{n=-m}^{\infty }a_{n}q^{n}.} 3575: 3052:
be an integer divisible by 8 and consider all vectors
2420:
The simplest examples from this point of view are the
2027: 1978: 1483: 1279: 801: 789: 769: 696: 6694: 6413: 6339: 6122: 5986: 5911: 5673: 5615: 5589: 5565: 5545: 5525: 5410: 5245:): in that setting, one would ideally like functions 5146: 5116: 4935: 4828:, respectively. Similarly, a meromorphic function on 4331: 4167: 4021:
be meromorphic in the open upper half-plane and that
3969: 3873: 3817: 3721: 3629: 3569: 3277: 3107: 2953: 2731: 2572: 2464: 2080: 1966: 1937: 1866: 1834: 1680: 1444: 1377:{\displaystyle \Gamma ={\text{SL}}_{2}(\mathbb {Z} )} 1344: 1262: 1236: 1146: 1123: 1103: 1057: 1004: 932: 886: 656: 590: 544: 464: 438: 392: 368: 348: 292: 198: 114: 3485:, which were shown to imply Ramanujan's conjecture. 3087:, this is the lattice generated by the roots in the 4870:, this gives back the afore-mentioned definitions. 4796:-vector spaces of modular and cusp forms of weight 4066:of isomorphism classes of complex elliptic curves. 3231:by these two lattices are consequently examples of 1820:The third condition is also phrased by saying that 52:
may be too technical for most readers to understand
6755: 6716: 6452: 6345: 6155: 6105: 5969: 5749: 5659: 5601: 5571: 5551: 5531: 5474:Rings of modular forms of congruence subgroups of 5463: 5167:of the Riemann surface, and hence form a field of 5152: 5128: 5099: 4616: 4208: 3982: 3938: 3850: 3798: 3690: 3608: 3388: 3181: 3026: 2872: 2711: 2527: 2244:Definition in terms of lattices or elliptic curves 2171: 2060: 1943: 1923: 1852: 1766: 1581: 1376: 1323: 1242: 1219: 1129: 1109: 1089: 1027: 990: 918: 864: 775: 755: 679: 642: 576: 528: 450: 416: 374: 354: 324: 256: 126: 5519:are a subspace of modular forms of a fixed level 4878:The theory of Riemann surfaces can be applied to 4315:Important examples are, for any positive integer 157:The theory of modular forms therefore belongs to 7566: 5875:analogous to the usual theory of modular forms. 4292:∪{∞}, such that there is a parabolic element of 876:if it satisfies the following growth condition: 417:{\displaystyle f:{\mathcal {H}}\to \mathbb {C} } 192:, generalizing the example of the modular group 6634:, Annals of Mathematics Studies, vol. 48, 6550: 5970:{\displaystyle \varepsilon (a,b,c,d)(cz+d)^{k}} 5396:is the vector space of modular forms of weight 4157:The functional equation, i.e., the behavior of 2916:II. Theta functions of even unimodular lattices 1038: 165:. Modular forms appear in other areas, such as 6976: 6903: 6780:Diamond, Fred; Shurman, Jerry Michael (2005), 6779: 5881:extend the notion of modular forms to general 5335:), what are they, geometrically speaking? The 6962: 6877:Lectures on Modular Forms and Hecke Operators 4209:{\displaystyle z\mapsto {\frac {az+b}{cz+d}}} 1418: 991:{\displaystyle (cz+d)^{-k}f(\gamma (z))\to 0} 6800:Leads up to an overview of the proof of the 5667:giving a reverse inclusion of modular forms 5123: 5117: 3041:can be shown to be a modular form of weight 3010: 3003: 2912:, so that such series are identically zero. 1630:satisfying the following three conditions: 529:{\displaystyle f(\gamma (z))=(cz+d)^{k}f(z)} 6209:. Unsourced material may be challenged and 5253:which are polynomial in the coordinates of 4219: 6969: 6955: 6576: 5482:are finitely generated due to a result of 4740:exactly once and such that the closure of 1892: 1888: 6229:Learn how and when to remove this message 5357: 3990:are known as the Fourier coefficients of 3073:is an even integer. We call this lattice 1367: 1311: 1297: 1080: 1028:{\displaystyle {\text{im}}(z)\to \infty } 909: 861: 851: 680:{\displaystyle {\text{im}}(z)\to \infty } 567: 410: 315: 247: 218: 123: 115: 80:Learn how and when to remove this message 64:, without removing the technical details. 643:{\displaystyle (cz+d)^{-k}f(\gamma (z))} 428:such that two conditions are satisfied: 6808: 6750: 6648: 6629: 6491: 14: 7567: 7392:Clifford's theorem on special divisors 6873: 6851: 6315:Wiles's proof of Fermat's Last Theorem 5860:; in other words, they are related to 5795:determined by the conjugation action. 5129:{\displaystyle \lfloor \cdot \rfloor } 4282:. These are points at the boundary of 3524:be holomorphic leads to the notion of 3481:as a result of Deligne's proof of the 1951:is bounded above some horizontal line. 1423: 6950: 6883: 6836: 6664: 6538:"Modular Functions and Modular Forms" 6156:{\displaystyle \varepsilon (a,b,c,d)} 5163:The modular functions constitute the 4153:Modular forms for more general groups 1384:are sections of a line bundle on the 756:{\textstyle \gamma (z)=(az+b)/(cz+d)} 62:make it understandable to non-experts 6487: 6485: 6207:adding citations to reliable sources 6174: 5820:. Groups which are not subgroups of 5400:, then the ring of modular forms of 3507: 3461:. This was confirmed by the work of 2266:which satisfies certain conditions: 36: 6668:Modular Functions and Modular Forms 6525:from the original on 1 August 2020. 6513:"Cohomology of Automorphic Bundles" 5380:, the ring of modular forms is the 5213:≥ 1) is generated by the functions 5044: 5037: 4744:meets all orbits. For example, the 4594: 4448: 3998:is called the order of the pole of 1391: 274:Each modular form is attached to a 24: 7550:Vector bundles on algebraic curves 7484:Weber's theorem (Algebraic curves) 7081:Hasse's theorem on elliptic curves 7071:Counting points on elliptic curves 6736:from the original on 31 July 2020. 6696: 6685: 5778: 5726: 5688: 5639: 5617: 5455: 5417: 5384:generated by the modular forms of 4465: 4337: 4006:coefficients are non-zero, so the 3908: 3756: 3701:The second condition implies that 3327: 2941:is an even integer. The so-called 2586: 2504: 2478: 1345: 1338:. The classical modular forms for 1287: 1276: 1268: 1250:is a canonical line bundle on the 1211: 1171: 1104: 1058: 1022: 674: 451:{\displaystyle \gamma \in \Gamma } 445: 401: 349: 293: 233: 230: 204: 201: 127:{\displaystyle \,{\mathcal {H}}\,} 118: 25: 7596: 6814:Automorphic Forms on Adèle Groups 6535: 6482: 6249:, in the early nineteenth century 6245:In connection with the theory of 4836:is called a modular function for 3705:is periodic, and therefore has a 3221:observed that the 16-dimensional 2317:is a non-zero complex number and 184:, which are functions defined on 6655:, Theorem 2.33, Proposition 2.26 6179: 4981: 4942: 4918:in terms of the geometry of the 4543: 4421: 4032:: every lattice Λ determines an 3951:This is also referred to as the 3811:It is often written in terms of 2660: 1810:is typically a positive integer. 1543: 1460: 41: 7172:Hurwitz's automorphisms theorem 6782:A First Course in Modular Forms 6679: 6658: 6642: 6510: 5232: 4873: 4759: 4587: 4441: 3851:{\displaystyle q=\exp(2\pi iz)} 3516:is zero, it can be shown using 3357: 2135: 2015: 1386:moduli stack of elliptic curves 1137:can be defined as an element of 7397:Gonality of an algebraic curve 7308:Differential of the first kind 6717:{\displaystyle \Gamma _{1}(N)} 6711: 6705: 6623: 6570: 6544: 6529: 6504: 6492:Van Wyk, Gerhard (July 2023). 6401: 6372: 6327: 6150: 6126: 6097: 6091: 6079: 6063: 6060: 6036: 5958: 5942: 5939: 5915: 5744: 5741: 5735: 5722: 5706: 5703: 5697: 5684: 5654: 5648: 5632: 5626: 5458: 5452: 5420: 5414: 5320:, and on the other, if we let 5048: 5038: 4985: 4971: 4712:can be understood by studying 4598: 4588: 4547: 4533: 4474: 4468: 4452: 4442: 4425: 4411: 4352: 4346: 4171: 3883: 3877: 3845: 3830: 3731: 3725: 3685: 3679: 3351: 3332: 3287: 3281: 3173: 3167: 3144: 3138: 2970: 2964: 2898:there is cancellation between 2860: 2854: 2834: 2822: 2802: 2796: 2694: 2678: 2652: 2640: 2634: 2622: 2611: 2605: 2589: 2583: 2481: 2475: 2166: 2160: 2151: 2139: 2129: 2123: 1911: 1907: 1901: 1894: 1889: 1879: 1873: 1761: 1755: 1743: 1727: 1464: 1450: 1371: 1363: 1318: 1315: 1307: 1282: 1214: 1208: 1192: 1163: 1084: 1076: 1019: 1016: 1010: 982: 979: 976: 970: 964: 949: 933: 913: 905: 855: 847: 783:is identified with the matrix 750: 735: 727: 712: 706: 700: 671: 668: 662: 637: 634: 628: 622: 607: 591: 571: 563: 523: 517: 505: 489: 483: 480: 474: 468: 432:Automorphy condition: For any 406: 319: 311: 251: 243: 222: 214: 13: 1: 7540:Birkhoff–Grothendieck theorem 7250:Nagata's conjecture on curves 7121:Schoof–Elkies–Atkin algorithm 6995:Five points determine a conic 6744: 5894:fail to be modular of weight 5760: 5579:. The other forms are called 4732:intersects each orbit of the 3254:III. The modular discriminant 1785:is required to be bounded as 286:In general, given a subgroup 281: 7111:Supersingular elliptic curve 6551:Chandrasekharan, K. (1985). 6475: 6289:used modular forms to prove 5888:Modular integrals of weight 5505: 4129:is the order of the zero of 2545:is a modular form of weight 1039:As sections of a line bundle 880:Cuspidal condition: For any 7: 7318:Riemann's existence theorem 7245:Hilbert's sixteenth problem 7137:Elliptic curve cryptography 7050:Fundamental pair of periods 6854:Modular forms and functions 6630:Gunning, Robert C. (1962), 6308: 3248:Hearing the shape of a drum 2410: 2270:If we consider the lattice 10: 7601: 7448:Moduli of algebraic curves 6858:Cambridge University Press 6852:Rankin, Robert A. (1977), 6846:Vandenhoeck & Ruprecht 6818:Princeton University Press 6636:Princeton University Press 6170: 5905:are functions of the form 5764: 5509: 5361: 5183:is equal to the number of 4265:quotient topological space 3257: 2933:is a lattice generated by 2447:over all non-zero vectors 1419:Modular forms for SL(2, Z) 538:Growth condition: For any 29: 7530: 7492: 7461: 7425: 7374: 7367: 7341: 7273: 7190: 7154: 7129: 7063: 7032: 7023: 6985: 6632:Lectures on modular forms 5848:are associated to larger 5840:totally real number field 5261:and satisfy the equation 5175:). If a modular function 4780:, that is holomorphic on 4043:; two lattices determine 3192:even though the lattices 3039:Poisson summation formula 1428:A modular form of weight 7215:Cayley–Bacharach theorem 7142:Elliptic curve primality 6911:Inventiones Mathematicae 6688:"Atkin-Lehner Theory of 6320: 6305:of integers down to −5. 5899:by a rational function. 5500: 5339:answer is that they are 2424:. For each even integer 2287:generated by a constant 1954:The second condition for 1853:{\displaystyle M,D>0} 1097:a modular form of level 7474:Riemann–Hurwitz formula 7438:Gromov–Witten invariant 7298:Compact Riemann surface 7086:Mazur's torsion theorem 6390: = 0, not an 6346:{\displaystyle \gamma } 5602:{\displaystyle M\mid N} 3432:A celebrated conjecture 2922:even unimodular lattice 2376:is bounded away from 0. 1243:{\displaystyle \omega } 1110:{\displaystyle \Gamma } 355:{\displaystyle \Gamma } 153:and a growth condition. 18:Level of a modular form 7580:Analytic number theory 7091:Modular elliptic curve 6889:A Course in Arithmetic 6874:Ribet, K.; Stein, W., 6718: 6649:Shimura, Goro (1971), 6454: 6347: 6157: 6107: 5971: 5866:elliptic modular forms 5751: 5661: 5603: 5573: 5553: 5533: 5465: 5358:Rings of modular forms 5347:(one could also say a 5154: 5130: 5101: 4618: 4210: 4090:, also paraphrased as 4014: = 0.  3984: 3940: 3912: 3852: 3800: 3760: 3692: 3610: 3390: 3331: 3183: 3028: 2874: 2713: 2529: 2173: 2062: 1945: 1925: 1854: 1768: 1583: 1378: 1332: 1325: 1244: 1228: 1221: 1131: 1111: 1091: 1029: 992: 920: 866: 777: 757: 681: 644: 578: 530: 452: 418: 376: 356: 342:modular form of level 326: 258: 128: 7005:Rational normal curve 6719: 6665:Milne, James (2010), 6455: 6392:essential singularity 6348: 6291:Fermat’s Last Theorem 6165:Dedekind eta function 6158: 6108: 5972: 5832:Hilbert modular forms 5752: 5662: 5604: 5574: 5554: 5534: 5466: 5388:. In other words, if 5364:Ring of modular forms 5155: 5131: 5102: 4619: 4274:can be shown to be a 4211: 3985: 3983:{\displaystyle a_{n}} 3961:q-expansion principle 3941: 3889: 3853: 3801: 3737: 3693: 3611: 3502:representation theory 3403:is the square of the 3391: 3311: 3266:Dedekind eta function 3258:Further information: 3225:obtained by dividing 3184: 3029: 2875: 2714: 2530: 2174: 2063: 1946: 1926: 1855: 1769: 1584: 1379: 1326: 1255: 1245: 1222: 1139: 1132: 1112: 1092: 1030: 993: 921: 867: 778: 758: 682: 645: 579: 531: 458:there is the equality 453: 419: 377: 357: 327: 276:Galois representation 259: 129: 7545:Stable vector bundle 7417:Weil reciprocity law 7407:Riemann–Roch theorem 7387:Brill–Noether theory 7323:Riemann–Roch theorem 7240:Genus–degree formula 7101:Mordell–Weil theorem 7076:Division polynomials 6692: 6411: 6337: 6203:improve this section 6120: 5984: 5909: 5846:Siegel modular forms 5818:mock theta functions 5671: 5613: 5587: 5563: 5543: 5523: 5408: 5285:be the ratio of two 5249:on the vector space 5169:transcendence degree 5144: 5114: 4933: 4916:Riemann–Roch theorem 4784:and at all cusps of 4329: 4321:congruence subgroups 4319:, either one of the 4220:The Riemann surface 4165: 3967: 3963:). The coefficients 3871: 3815: 3719: 3627: 3567: 3409:modular discriminant 3275: 3236:Riemannian manifolds 3105: 2951: 2729: 2570: 2462: 2416:I. Eisenstein series 2227:, modular forms are 2183:respectively. Since 2078: 1964: 1935: 1864: 1832: 1678: 1643:holomorphic function 1442: 1342: 1336:Riemann–Roch theorem 1260: 1234: 1144: 1121: 1101: 1055: 1002: 930: 884: 787: 776:{\textstyle \gamma } 767: 694: 654: 588: 542: 462: 436: 390: 385:holomorphic function 366: 346: 290: 196: 142:with respect to the 112: 7368:Structure of curves 7260:Quartic plane curve 7182:Hyperelliptic curve 7162:De Franchis theorem 7106:Nagell–Lutz theorem 6928:1988InMat..94..113S 6842:Mathematische Werke 6810:Gelbart, Stephen S. 6555:. Springer-Verlag. 5903:Automorphic factors 5828:can be considered. 5787:, it is a function 5512:Atkin–Lehner theory 5404:is the graded ring 5277:) for all non-zero 4764:A modular form for 4714:fundamental domains 4255:in the same way as 3858:(the square of the 3518:Liouville's theorem 3454:has absolute value 3438:asserted that when 3430:has 24 dimensions. 1672:as above, we have: 1424:Standard definition 140:functional equation 7375:Divisors on curves 7167:Faltings's theorem 7116:Schoof's algorithm 7096:Modularity theorem 6936:10.1007/BF01394347 6885:Serre, Jean-Pierre 6802:modularity theorem 6714: 6553:Elliptic functions 6450: 6444: 6343: 6268:modularity theorem 6247:elliptic functions 6153: 6103: 5967: 5747: 5657: 5599: 5569: 5549: 5529: 5461: 5441: 5257: ≠ 0 in 5197:fundamental region 5165:field of functions 5150: 5126: 5097: 5092: 4614: 4612: 4519: 4397: 4240:that is of finite 4206: 3980: 3936: 3848: 3796: 3688: 3606: 3600: 3560:For every integer 3494:partition function 3386: 3179: 3024: 2991: 2870: 2868: 2709: 2671: 2525: 2508: 2235:, and thus have a 2229:periodic functions 2194:the modular group 2169: 2058: 2052: 2006: 1941: 1921: 1850: 1764: 1664:and any matrix in 1579: 1508: 1374: 1321: 1240: 1217: 1127: 1107: 1087: 1025: 988: 916: 862: 826: 773: 753: 677: 640: 574: 526: 448: 414: 372: 352: 322: 254: 190:discrete subgroups 167:algebraic topology 134:, that satisfies: 124: 7585:Special functions 7562: 7561: 7558: 7557: 7469:Hasse–Witt matrix 7412:Weierstrass point 7359:Smooth completion 7328:Teichmüller space 7230:Cubic plane curve 7150: 7149: 7064:Arithmetic theory 7045:Elliptic integral 7040:Elliptic function 6904:Skoruppa, N. P.; 6686:Mocanu, Andreea. 6601:978-0-387-90517-4 6578:Kubert, Daniel S. 6280:Langlands program 6239: 6238: 6231: 6024: 5879:Automorphic forms 5862:abelian varieties 5850:symplectic groups 5834:are functions in 5572:{\displaystyle N} 5552:{\displaystyle M} 5532:{\displaystyle N} 5426: 5337:algebro-geometric 5153:{\displaystyle k} 5088: 4969: 4772:is a function on 4756:can be computed. 4701:), respectively. 4531: 4409: 4232:be a subgroup of 4204: 4073:that vanishes at 3994:, and the number 3667: 3526:modular functions 3508:Modular functions 3217:are not similar. 2976: 2762: 2704: 2617: 2487: 2441:to be the sum of 2422:Eisenstein series 2304:analytic function 2100: 1944:{\displaystyle f} 1718: 1552: 1448: 1355: 1130:{\displaystyle k} 1068: 1049:modular varieties 1008: 897: 839: 763:and the function 660: 555: 375:{\displaystyle k} 303: 182:automorphic forms 102:analytic function 90: 89: 82: 16:(Redirected from 7592: 7402:Jacobian variety 7372: 7371: 7275:Riemann surfaces 7265:Real plane curve 7225:Cramer's paradox 7205:Bézout's theorem 7030: 7029: 6979:algebraic curves 6971: 6964: 6957: 6948: 6947: 6938: 6895: 6880: 6870: 6848: 6828: 6798: 6776: 6761: 6738: 6737: 6735: 6728: 6723: 6721: 6720: 6715: 6704: 6703: 6683: 6677: 6675: 6673: 6662: 6656: 6654: 6646: 6640: 6638: 6627: 6621: 6620: 6574: 6568: 6566: 6548: 6542: 6541: 6533: 6527: 6526: 6524: 6517: 6508: 6502: 6501: 6489: 6469: 6459: 6457: 6456: 6451: 6449: 6448: 6405: 6399: 6376: 6370: 6369: 6367: 6366: 6352: 6350: 6349: 6344: 6331: 6299:rational numbers 6295:quadratic fields 6276:Robert Langlands 6234: 6227: 6223: 6220: 6214: 6183: 6175: 6162: 6160: 6159: 6154: 6112: 6110: 6109: 6104: 6087: 6086: 6029: 6025: 6023: 6009: 5995: 5976: 5974: 5973: 5968: 5966: 5965: 5897: 5891: 5859: 5827: 5812:but need not be 5794: 5756: 5754: 5753: 5748: 5734: 5733: 5721: 5720: 5696: 5695: 5683: 5682: 5666: 5664: 5663: 5658: 5647: 5646: 5625: 5624: 5608: 5606: 5605: 5600: 5578: 5576: 5575: 5570: 5558: 5556: 5555: 5550: 5538: 5536: 5535: 5530: 5488:Michael Rapoport 5481: 5470: 5468: 5467: 5462: 5451: 5450: 5440: 5403: 5399: 5395: 5387: 5379: 5371: 5315: 5239:projective space 5159: 5157: 5156: 5151: 5135: 5133: 5132: 5127: 5106: 5104: 5103: 5098: 5096: 5095: 5089: 5086: 5076: 5072: 5068: 5051: 5024: 5020: 5016: 4992: 4988: 4984: 4970: 4967: 4960: 4959: 4947: 4946: 4945: 4921: 4913: 4899: 4869: 4839: 4827: 4813: 4791: 4787: 4779: 4767: 4735: 4704:The geometry of 4646: 4623: 4621: 4620: 4615: 4613: 4606: 4602: 4601: 4546: 4532: 4529: 4524: 4523: 4460: 4456: 4455: 4424: 4410: 4407: 4402: 4401: 4345: 4344: 4295: 4262: 4247: 4239: 4231: 4215: 4213: 4212: 4207: 4205: 4203: 4189: 4175: 4161:with respect to 4139: 4128: 4115:). The smallest 4100: 4089: 4079: 4050: 3989: 3987: 3986: 3981: 3979: 3978: 3945: 3943: 3942: 3937: 3932: 3931: 3922: 3921: 3911: 3906: 3857: 3855: 3854: 3849: 3805: 3803: 3802: 3797: 3792: 3791: 3770: 3769: 3759: 3754: 3697: 3695: 3694: 3689: 3672: 3668: 3666: 3652: 3638: 3621: 3615: 3613: 3612: 3607: 3605: 3604: 3553:upper half-plane 3512:When the weight 3483:Weil conjectures 3460: 3453: 3449: 3445: 3425: 3395: 3393: 3392: 3387: 3382: 3381: 3350: 3349: 3330: 3325: 3310: 3309: 3305: 3230: 3216: 3207: 3188: 3186: 3185: 3180: 3166: 3165: 3164: 3163: 3137: 3136: 3135: 3134: 3122: 3121: 3086: 3079: 3072: 3068: 3061: 3055: 3051: 3047: 3033: 3031: 3030: 3025: 3023: 3022: 3018: 3017: 2990: 2963: 2962: 2940: 2936: 2932: 2926: 2911: 2903: 2897: 2889: 2879: 2877: 2876: 2871: 2869: 2853: 2852: 2821: 2820: 2795: 2794: 2785: 2784: 2768: 2764: 2763: 2755: 2745: 2744: 2718: 2716: 2715: 2710: 2705: 2703: 2702: 2701: 2673: 2670: 2669: 2668: 2663: 2604: 2603: 2582: 2581: 2562: 2548: 2544: 2534: 2532: 2531: 2526: 2521: 2520: 2507: 2474: 2473: 2454: 2450: 2446: 2440: 2430: 2406: 2396: 2383: 2375: 2371: 2353: 2349: 2331: 2327: 2323: 2316: 2309: 2301: 2294: 2290: 2286: 2261: 2252:from the set of 2234: 2226: 2201: 2190: 2186: 2178: 2176: 2175: 2170: 2119: 2118: 2106: 2102: 2101: 2093: 2067: 2065: 2064: 2059: 2057: 2056: 2011: 2010: 1950: 1948: 1947: 1942: 1930: 1928: 1927: 1922: 1914: 1897: 1859: 1857: 1856: 1851: 1827: 1816: 1809: 1797: 1784: 1773: 1771: 1770: 1765: 1751: 1750: 1723: 1719: 1717: 1703: 1689: 1671: 1663: 1650: 1640: 1629: 1606:upper half-plane 1603: 1588: 1586: 1585: 1580: 1578: 1574: 1550: 1546: 1517: 1513: 1512: 1463: 1449: 1446: 1431: 1406: 1392:Modular function 1383: 1381: 1380: 1375: 1370: 1362: 1361: 1356: 1353: 1330: 1328: 1327: 1322: 1314: 1306: 1305: 1300: 1291: 1290: 1272: 1271: 1249: 1247: 1246: 1241: 1226: 1224: 1223: 1218: 1207: 1206: 1191: 1190: 1175: 1174: 1162: 1161: 1136: 1134: 1133: 1128: 1116: 1114: 1113: 1108: 1096: 1094: 1093: 1088: 1083: 1075: 1074: 1069: 1066: 1034: 1032: 1031: 1026: 1009: 1006: 997: 995: 994: 989: 960: 959: 925: 923: 922: 917: 912: 904: 903: 898: 895: 871: 869: 868: 863: 854: 846: 845: 840: 837: 831: 830: 782: 780: 779: 774: 762: 760: 759: 754: 734: 686: 684: 683: 678: 661: 658: 649: 647: 646: 641: 618: 617: 583: 581: 580: 575: 570: 562: 561: 556: 553: 535: 533: 532: 527: 513: 512: 457: 455: 454: 449: 426:upper half-plane 423: 421: 420: 415: 413: 405: 404: 381: 379: 378: 373: 361: 359: 358: 353: 338:arithmetic group 331: 329: 328: 323: 318: 310: 309: 304: 301: 263: 261: 260: 255: 250: 242: 241: 236: 221: 213: 212: 207: 159:complex analysis 133: 131: 130: 125: 122: 121: 106:upper half-plane 85: 78: 74: 71: 65: 45: 44: 37: 21: 7600: 7599: 7595: 7594: 7593: 7591: 7590: 7589: 7565: 7564: 7563: 7554: 7526: 7517:Delta invariant 7488: 7457: 7421: 7382:Abel–Jacobi map 7363: 7337: 7333:Torelli theorem 7303:Dessin d'enfant 7283:Belyi's theorem 7269: 7255:Plücker formula 7186: 7177:Hurwitz surface 7146: 7125: 7059: 7033:Analytic theory 7025:Elliptic curves 7019: 7000:Projective line 6987:Rational curves 6981: 6975: 6893:Springer-Verlag 6868: 6796: 6786:Springer-Verlag 6774: 6764:Springer-Verlag 6752:Apostol, Tom M. 6747: 6742: 6741: 6733: 6726: 6724:-Modular Forms" 6699: 6695: 6693: 6690: 6689: 6684: 6680: 6671: 6663: 6659: 6647: 6643: 6628: 6624: 6602: 6592:Springer-Verlag 6575: 6571: 6563: 6549: 6545: 6534: 6530: 6522: 6515: 6509: 6505: 6490: 6483: 6478: 6473: 6472: 6443: 6442: 6437: 6431: 6430: 6425: 6415: 6414: 6412: 6409: 6408: 6407:Here, a matrix 6406: 6402: 6377: 6373: 6364: 6362: 6354: 6338: 6335: 6334: 6332: 6328: 6323: 6311: 6263:from about 1925 6235: 6224: 6218: 6215: 6200: 6184: 6173: 6121: 6118: 6117: 6082: 6078: 6010: 5996: 5994: 5990: 5985: 5982: 5981: 5961: 5957: 5910: 5907: 5906: 5895: 5889: 5853: 5821: 5788: 5781: 5779:Generalizations 5769: 5763: 5729: 5725: 5716: 5712: 5691: 5687: 5678: 5674: 5672: 5669: 5668: 5642: 5638: 5620: 5616: 5614: 5611: 5610: 5588: 5585: 5584: 5564: 5561: 5560: 5544: 5541: 5540: 5524: 5521: 5520: 5514: 5508: 5503: 5495:Fuchsian groups 5475: 5446: 5442: 5430: 5409: 5406: 5405: 5401: 5397: 5393: 5389: 5385: 5373: 5369: 5368:For a subgroup 5366: 5360: 5313: 5235: 5204: 5145: 5142: 5141: 5115: 5112: 5111: 5091: 5090: 5085: 5083: 5064: 5060: 5056: 5053: 5052: 5036: 5025: 5012: 5008: 5004: 4997: 4996: 4980: 4966: 4965: 4961: 4955: 4951: 4941: 4940: 4936: 4934: 4931: 4930: 4926:. For example, 4919: 4906: 4901: 4892: 4887: 4876: 4864:= Γ(1) = SL(2, 4860: 4847: 4837: 4820: 4815: 4806: 4801: 4789: 4785: 4777: 4765: 4762: 4733: 4720:, i.e. subsets 4680: 4669: 4640: 4634: 4611: 4610: 4586: 4542: 4528: 4518: 4517: 4512: 4506: 4505: 4500: 4490: 4489: 4488: 4484: 4477: 4462: 4461: 4440: 4420: 4406: 4396: 4395: 4390: 4384: 4383: 4378: 4368: 4367: 4366: 4362: 4355: 4340: 4336: 4332: 4330: 4327: 4326: 4310:Riemann surface 4296:(a matrix with 4293: 4276:Hausdorff space 4256: 4245: 4244:. Such a group 4233: 4229: 4226: 4190: 4176: 4174: 4166: 4163: 4162: 4155: 4134: 4125: 4120: 4091: 4087: 4081: 4080:(equivalently, 4074: 4069:A modular form 4048: 4030:elliptic curves 3974: 3970: 3968: 3965: 3964: 3927: 3923: 3917: 3913: 3907: 3893: 3872: 3869: 3868: 3816: 3813: 3812: 3775: 3771: 3765: 3761: 3755: 3741: 3720: 3717: 3716: 3653: 3639: 3637: 3633: 3628: 3625: 3624: 3619: 3599: 3598: 3593: 3587: 3586: 3581: 3571: 3570: 3568: 3565: 3564: 3510: 3498:Hecke operators 3490:quadratic forms 3455: 3451: 3447: 3439: 3411: 3368: 3364: 3345: 3341: 3326: 3315: 3301: 3297: 3293: 3276: 3273: 3272: 3262: 3226: 3215: 3209: 3206: 3199: 3193: 3159: 3155: 3154: 3150: 3130: 3126: 3117: 3113: 3112: 3108: 3106: 3103: 3102: 3096: 3081: 3078: 3074: 3070: 3063: 3057: 3053: 3049: 3042: 3013: 3009: 2996: 2992: 2980: 2958: 2954: 2952: 2949: 2948: 2938: 2934: 2928: 2924: 2905: 2899: 2895: 2884: 2867: 2866: 2848: 2844: 2837: 2816: 2812: 2809: 2808: 2790: 2786: 2780: 2776: 2769: 2754: 2750: 2746: 2740: 2736: 2732: 2730: 2727: 2726: 2697: 2693: 2677: 2672: 2664: 2659: 2658: 2621: 2599: 2595: 2577: 2573: 2571: 2568: 2567: 2550: 2546: 2543: 2539: 2513: 2509: 2491: 2469: 2465: 2463: 2460: 2459: 2452: 2448: 2442: 2437: 2432: 2425: 2413: 2398: 2385: 2381: 2373: 2366: 2351: 2333: 2329: 2325: 2318: 2314: 2307: 2296: 2292: 2291:and a variable 2288: 2271: 2264:complex numbers 2257: 2246: 2232: 2208: 2195: 2188: 2184: 2114: 2110: 2092: 2088: 2084: 2079: 2076: 2075: 2051: 2050: 2045: 2039: 2038: 2033: 2023: 2022: 2005: 2004: 1999: 1993: 1992: 1984: 1974: 1973: 1965: 1962: 1961: 1936: 1933: 1932: 1910: 1893: 1865: 1862: 1861: 1833: 1830: 1829: 1821: 1814: 1807: 1786: 1778: 1746: 1742: 1704: 1690: 1688: 1684: 1679: 1676: 1675: 1665: 1655: 1646: 1634: 1608: 1597: 1542: 1507: 1506: 1501: 1495: 1494: 1489: 1479: 1478: 1475: 1474: 1470: 1459: 1445: 1443: 1440: 1439: 1429: 1426: 1421: 1397: 1394: 1366: 1357: 1352: 1351: 1343: 1340: 1339: 1310: 1301: 1296: 1295: 1286: 1285: 1267: 1263: 1261: 1258: 1257: 1235: 1232: 1231: 1202: 1198: 1183: 1179: 1170: 1166: 1157: 1153: 1145: 1142: 1141: 1122: 1119: 1118: 1102: 1099: 1098: 1079: 1070: 1065: 1064: 1056: 1053: 1052: 1041: 1005: 1003: 1000: 999: 952: 948: 931: 928: 927: 908: 899: 894: 893: 885: 882: 881: 850: 841: 836: 835: 825: 824: 819: 813: 812: 807: 797: 796: 788: 785: 784: 768: 765: 764: 730: 695: 692: 691: 657: 655: 652: 651: 650:is bounded for 610: 606: 589: 586: 585: 566: 557: 552: 551: 543: 540: 539: 508: 504: 463: 460: 459: 437: 434: 433: 409: 400: 399: 391: 388: 387: 367: 364: 363: 347: 344: 343: 314: 305: 300: 299: 291: 288: 287: 284: 246: 237: 229: 228: 217: 208: 200: 199: 197: 194: 193: 117: 116: 113: 110: 109: 100:is a (complex) 86: 75: 69: 66: 58:help improve it 55: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 7598: 7588: 7587: 7582: 7577: 7560: 7559: 7556: 7555: 7553: 7552: 7547: 7542: 7536: 7534: 7532:Vector bundles 7528: 7527: 7525: 7524: 7519: 7514: 7509: 7504: 7498: 7496: 7490: 7489: 7487: 7486: 7481: 7476: 7471: 7465: 7463: 7459: 7458: 7456: 7455: 7450: 7445: 7440: 7435: 7429: 7427: 7423: 7422: 7420: 7419: 7414: 7409: 7404: 7399: 7394: 7389: 7384: 7378: 7376: 7369: 7365: 7364: 7362: 7361: 7356: 7351: 7345: 7343: 7339: 7338: 7336: 7335: 7330: 7325: 7320: 7315: 7310: 7305: 7300: 7295: 7290: 7285: 7279: 7277: 7271: 7270: 7268: 7267: 7262: 7257: 7252: 7247: 7242: 7237: 7232: 7227: 7222: 7217: 7212: 7207: 7202: 7196: 7194: 7188: 7187: 7185: 7184: 7179: 7174: 7169: 7164: 7158: 7156: 7152: 7151: 7148: 7147: 7145: 7144: 7139: 7133: 7131: 7127: 7126: 7124: 7123: 7118: 7113: 7108: 7103: 7098: 7093: 7088: 7083: 7078: 7073: 7067: 7065: 7061: 7060: 7058: 7057: 7052: 7047: 7042: 7036: 7034: 7027: 7021: 7020: 7018: 7017: 7012: 7010:Riemann sphere 7007: 7002: 6997: 6991: 6989: 6983: 6982: 6974: 6973: 6966: 6959: 6951: 6945: 6944: 6939: 6901: 6881: 6871: 6866: 6849: 6834: 6806: 6795:978-0387232294 6794: 6777: 6772: 6746: 6743: 6740: 6739: 6713: 6710: 6707: 6702: 6698: 6678: 6676:, Theorem 6.1. 6657: 6641: 6622: 6600: 6594:, p. 24, 6569: 6561: 6543: 6528: 6511:Lan, Kai-Wen. 6503: 6480: 6479: 6477: 6474: 6471: 6470: 6447: 6441: 6438: 6436: 6433: 6432: 6429: 6426: 6424: 6421: 6420: 6418: 6400: 6371: 6342: 6325: 6324: 6322: 6319: 6318: 6317: 6310: 6307: 6272: 6271: 6264: 6257: 6250: 6237: 6236: 6187: 6185: 6178: 6172: 6169: 6152: 6149: 6146: 6143: 6140: 6137: 6134: 6131: 6128: 6125: 6114: 6113: 6102: 6099: 6096: 6093: 6090: 6085: 6081: 6077: 6074: 6071: 6068: 6065: 6062: 6059: 6056: 6053: 6050: 6047: 6044: 6041: 6038: 6035: 6032: 6028: 6022: 6019: 6016: 6013: 6008: 6005: 6002: 5999: 5993: 5989: 5964: 5960: 5956: 5953: 5950: 5947: 5944: 5941: 5938: 5935: 5932: 5929: 5926: 5923: 5920: 5917: 5914: 5806:eigenfunctions 5780: 5777: 5765:Main article: 5762: 5759: 5746: 5743: 5740: 5737: 5732: 5728: 5724: 5719: 5715: 5711: 5708: 5705: 5702: 5699: 5694: 5690: 5686: 5681: 5677: 5656: 5653: 5650: 5645: 5641: 5637: 5634: 5631: 5628: 5623: 5619: 5598: 5595: 5592: 5568: 5548: 5528: 5510:Main article: 5507: 5504: 5502: 5499: 5484:Pierre Deligne 5460: 5457: 5454: 5449: 5445: 5439: 5436: 5433: 5429: 5425: 5422: 5419: 5416: 5413: 5391: 5362:Main article: 5359: 5356: 5301:) =  5269:) =  5234: 5231: 5202: 5149: 5138:floor function 5125: 5122: 5119: 5108: 5107: 5094: 5084: 5082: 5079: 5075: 5071: 5067: 5063: 5059: 5055: 5054: 5050: 5047: 5043: 5040: 5035: 5032: 5029: 5026: 5023: 5019: 5015: 5011: 5007: 5003: 5002: 5000: 4995: 4991: 4987: 4983: 4979: 4976: 4973: 4964: 4958: 4954: 4950: 4944: 4939: 4904: 4890: 4875: 4872: 4845: 4818: 4804: 4761: 4758: 4678: 4667: 4632: 4625: 4624: 4609: 4605: 4600: 4597: 4593: 4590: 4585: 4582: 4579: 4576: 4573: 4570: 4567: 4564: 4561: 4558: 4555: 4552: 4549: 4545: 4541: 4538: 4535: 4527: 4522: 4516: 4513: 4511: 4508: 4507: 4504: 4501: 4499: 4496: 4495: 4493: 4487: 4483: 4480: 4478: 4476: 4473: 4470: 4467: 4464: 4463: 4459: 4454: 4451: 4447: 4444: 4439: 4436: 4433: 4430: 4427: 4423: 4419: 4416: 4413: 4405: 4400: 4394: 4391: 4389: 4386: 4385: 4382: 4379: 4377: 4374: 4373: 4371: 4365: 4361: 4358: 4356: 4354: 4351: 4348: 4343: 4339: 4335: 4334: 4225: 4218: 4202: 4199: 4196: 4193: 4188: 4185: 4182: 4179: 4173: 4170: 4154: 4151: 4123: 4101:) is called a 4085: 4034:elliptic curve 3977: 3973: 3955:-expansion of 3949: 3948: 3947: 3946: 3935: 3930: 3926: 3920: 3916: 3910: 3905: 3902: 3899: 3896: 3892: 3888: 3885: 3882: 3879: 3876: 3847: 3844: 3841: 3838: 3835: 3832: 3829: 3826: 3823: 3820: 3809: 3808: 3807: 3806: 3795: 3790: 3787: 3784: 3781: 3778: 3774: 3768: 3764: 3758: 3753: 3750: 3747: 3744: 3740: 3736: 3733: 3730: 3727: 3724: 3711: 3710: 3707:Fourier series 3699: 3687: 3684: 3681: 3678: 3675: 3671: 3665: 3662: 3659: 3656: 3651: 3648: 3645: 3642: 3636: 3632: 3618:modular group 3603: 3597: 3594: 3592: 3589: 3588: 3585: 3582: 3580: 3577: 3576: 3574: 3558: 3509: 3506: 3479:Pierre Deligne 3450:for any prime 3397: 3396: 3385: 3380: 3377: 3374: 3371: 3367: 3363: 3360: 3356: 3353: 3348: 3344: 3340: 3337: 3334: 3329: 3324: 3321: 3318: 3314: 3308: 3304: 3300: 3296: 3292: 3289: 3286: 3283: 3280: 3268:is defined as 3213: 3204: 3197: 3190: 3189: 3178: 3175: 3172: 3169: 3162: 3158: 3153: 3149: 3146: 3143: 3140: 3133: 3129: 3125: 3120: 3116: 3111: 3094: 3076: 3035: 3034: 3021: 3016: 3012: 3008: 3005: 3002: 2999: 2995: 2989: 2986: 2983: 2979: 2975: 2972: 2969: 2966: 2961: 2957: 2943:theta function 2890:is needed for 2883:The condition 2881: 2880: 2865: 2862: 2859: 2856: 2851: 2847: 2843: 2840: 2838: 2836: 2833: 2830: 2827: 2824: 2819: 2815: 2811: 2810: 2807: 2804: 2801: 2798: 2793: 2789: 2783: 2779: 2775: 2772: 2770: 2767: 2761: 2758: 2753: 2749: 2743: 2739: 2735: 2734: 2720: 2719: 2708: 2700: 2696: 2692: 2689: 2686: 2683: 2680: 2676: 2667: 2662: 2657: 2654: 2651: 2648: 2645: 2642: 2639: 2636: 2633: 2630: 2627: 2624: 2620: 2616: 2613: 2610: 2607: 2602: 2598: 2594: 2591: 2588: 2585: 2580: 2576: 2541: 2536: 2535: 2524: 2519: 2516: 2512: 2506: 2503: 2500: 2497: 2494: 2490: 2486: 2483: 2480: 2477: 2472: 2468: 2435: 2412: 2409: 2378: 2377: 2363:absolute value 2359: 2311: 2262:to the set of 2245: 2242: 2241: 2240: 2237:Fourier series 2231:, with period 2217:+ 1) =   2204: 2203: 2181: 2180: 2179: 2168: 2165: 2162: 2159: 2156: 2153: 2150: 2147: 2144: 2141: 2138: 2134: 2131: 2128: 2125: 2122: 2117: 2113: 2109: 2105: 2099: 2096: 2091: 2087: 2083: 2070: 2069: 2068: 2055: 2049: 2046: 2044: 2041: 2040: 2037: 2034: 2032: 2029: 2028: 2026: 2021: 2018: 2014: 2009: 2003: 2000: 1998: 1995: 1994: 1991: 1988: 1985: 1983: 1980: 1979: 1977: 1972: 1969: 1956: 1955: 1952: 1940: 1920: 1917: 1913: 1909: 1906: 1903: 1900: 1896: 1891: 1887: 1884: 1881: 1878: 1875: 1872: 1869: 1849: 1846: 1843: 1840: 1837: 1818: 1811: 1800: 1799: 1776: 1775: 1774: 1763: 1760: 1757: 1754: 1749: 1745: 1741: 1738: 1735: 1732: 1729: 1726: 1722: 1716: 1713: 1710: 1707: 1702: 1699: 1696: 1693: 1687: 1683: 1652: 1594:complex-valued 1590: 1589: 1577: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1549: 1545: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1516: 1511: 1505: 1502: 1500: 1497: 1496: 1493: 1490: 1488: 1485: 1484: 1482: 1477: 1473: 1469: 1466: 1462: 1458: 1455: 1452: 1425: 1422: 1420: 1417: 1393: 1390: 1373: 1369: 1365: 1360: 1350: 1347: 1320: 1317: 1313: 1309: 1304: 1299: 1294: 1289: 1284: 1281: 1278: 1275: 1270: 1266: 1239: 1216: 1213: 1210: 1205: 1201: 1197: 1194: 1189: 1186: 1182: 1178: 1173: 1169: 1165: 1160: 1156: 1152: 1149: 1126: 1106: 1086: 1082: 1078: 1073: 1063: 1060: 1040: 1037: 1036: 1035: 1024: 1021: 1018: 1015: 1012: 987: 984: 981: 978: 975: 972: 969: 966: 963: 958: 955: 951: 947: 944: 941: 938: 935: 915: 911: 907: 902: 892: 889: 860: 857: 853: 849: 844: 834: 829: 823: 820: 818: 815: 814: 811: 808: 806: 803: 802: 800: 795: 792: 772: 752: 749: 746: 743: 740: 737: 733: 729: 726: 723: 720: 717: 714: 711: 708: 705: 702: 699: 688: 687: 676: 673: 670: 667: 664: 639: 636: 633: 630: 627: 624: 621: 616: 613: 609: 605: 602: 599: 596: 593: 573: 569: 565: 560: 550: 547: 536: 525: 522: 519: 516: 511: 507: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 470: 467: 447: 444: 441: 412: 408: 403: 398: 395: 371: 351: 321: 317: 313: 308: 298: 295: 283: 280: 253: 249: 245: 240: 235: 232: 227: 224: 220: 216: 211: 206: 203: 171:sphere packing 155: 154: 151: 120: 88: 87: 49: 47: 40: 26: 9: 6: 4: 3: 2: 7597: 7586: 7583: 7581: 7578: 7576: 7575:Modular forms 7573: 7572: 7570: 7551: 7548: 7546: 7543: 7541: 7538: 7537: 7535: 7533: 7529: 7523: 7520: 7518: 7515: 7513: 7510: 7508: 7505: 7503: 7500: 7499: 7497: 7495: 7494:Singularities 7491: 7485: 7482: 7480: 7477: 7475: 7472: 7470: 7467: 7466: 7464: 7460: 7454: 7451: 7449: 7446: 7444: 7441: 7439: 7436: 7434: 7431: 7430: 7428: 7424: 7418: 7415: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7393: 7390: 7388: 7385: 7383: 7380: 7379: 7377: 7373: 7370: 7366: 7360: 7357: 7355: 7352: 7350: 7347: 7346: 7344: 7342:Constructions 7340: 7334: 7331: 7329: 7326: 7324: 7321: 7319: 7316: 7314: 7313:Klein quartic 7311: 7309: 7306: 7304: 7301: 7299: 7296: 7294: 7293:Bolza surface 7291: 7289: 7288:Bring's curve 7286: 7284: 7281: 7280: 7278: 7276: 7272: 7266: 7263: 7261: 7258: 7256: 7253: 7251: 7248: 7246: 7243: 7241: 7238: 7236: 7233: 7231: 7228: 7226: 7223: 7221: 7220:Conic section 7218: 7216: 7213: 7211: 7208: 7206: 7203: 7201: 7200:AF+BG theorem 7198: 7197: 7195: 7193: 7189: 7183: 7180: 7178: 7175: 7173: 7170: 7168: 7165: 7163: 7160: 7159: 7157: 7153: 7143: 7140: 7138: 7135: 7134: 7132: 7128: 7122: 7119: 7117: 7114: 7112: 7109: 7107: 7104: 7102: 7099: 7097: 7094: 7092: 7089: 7087: 7084: 7082: 7079: 7077: 7074: 7072: 7069: 7068: 7066: 7062: 7056: 7053: 7051: 7048: 7046: 7043: 7041: 7038: 7037: 7035: 7031: 7028: 7026: 7022: 7016: 7015:Twisted cubic 7013: 7011: 7008: 7006: 7003: 7001: 6998: 6996: 6993: 6992: 6990: 6988: 6984: 6980: 6972: 6967: 6965: 6960: 6958: 6953: 6952: 6949: 6943: 6940: 6937: 6933: 6929: 6925: 6921: 6917: 6913: 6912: 6907: 6902: 6899: 6894: 6890: 6886: 6882: 6879: 6878: 6872: 6869: 6867:0-521-21212-X 6863: 6859: 6856:, Cambridge: 6855: 6850: 6847: 6844:, Göttingen: 6843: 6839: 6835: 6832: 6827: 6823: 6819: 6815: 6811: 6807: 6804: 6803: 6797: 6791: 6787: 6783: 6778: 6775: 6773:0-387-97127-0 6769: 6765: 6760: 6759: 6753: 6749: 6748: 6732: 6725: 6708: 6700: 6682: 6670: 6669: 6661: 6652: 6645: 6637: 6633: 6626: 6619: 6615: 6611: 6607: 6603: 6597: 6593: 6589: 6588: 6587:Modular units 6583: 6579: 6573: 6564: 6562:3-540-15295-4 6558: 6554: 6547: 6540:. p. 51. 6539: 6532: 6521: 6514: 6507: 6499: 6495: 6488: 6486: 6481: 6467: 6463: 6445: 6439: 6434: 6427: 6422: 6416: 6404: 6397: 6393: 6389: 6385: 6381: 6375: 6361: 6360:dlmf.nist.gov 6357: 6340: 6330: 6326: 6316: 6313: 6312: 6306: 6304: 6300: 6296: 6292: 6288: 6283: 6281: 6277: 6269: 6265: 6262: 6258: 6255: 6251: 6248: 6244: 6243: 6242: 6233: 6230: 6222: 6212: 6208: 6204: 6198: 6197: 6193: 6188:This section 6186: 6182: 6177: 6176: 6168: 6166: 6147: 6144: 6141: 6138: 6135: 6132: 6129: 6123: 6116:The function 6100: 6094: 6088: 6083: 6075: 6072: 6069: 6066: 6057: 6054: 6051: 6048: 6045: 6042: 6039: 6033: 6030: 6026: 6020: 6017: 6014: 6011: 6006: 6003: 6000: 5997: 5991: 5987: 5980: 5979: 5978: 5962: 5954: 5951: 5948: 5945: 5936: 5933: 5930: 5927: 5924: 5921: 5918: 5912: 5904: 5900: 5898: 5886: 5884: 5880: 5876: 5873: 5869: 5867: 5863: 5857: 5851: 5847: 5843: 5841: 5837: 5833: 5829: 5825: 5819: 5815: 5811: 5807: 5804: 5803:real-analytic 5800: 5796: 5792: 5786: 5785:Haar measures 5776: 5774: 5768: 5758: 5738: 5730: 5717: 5713: 5709: 5700: 5692: 5679: 5675: 5651: 5643: 5635: 5629: 5621: 5596: 5593: 5590: 5582: 5566: 5546: 5526: 5518: 5513: 5498: 5496: 5491: 5489: 5485: 5479: 5472: 5447: 5443: 5437: 5434: 5431: 5427: 5423: 5411: 5383: 5377: 5365: 5355: 5352: 5350: 5346: 5342: 5338: 5334: 5329: 5327: 5323: 5319: 5311: 5307: 5304: 5300: 5296: 5292: 5288: 5284: 5280: 5276: 5272: 5268: 5264: 5260: 5256: 5252: 5248: 5244: 5240: 5230: 5228: 5224: 5220: 5216: 5212: 5208: 5201: 5198: 5194: 5190: 5186: 5182: 5178: 5174: 5170: 5166: 5161: 5147: 5139: 5120: 5080: 5077: 5073: 5069: 5065: 5061: 5057: 5045: 5041: 5033: 5030: 5027: 5021: 5017: 5013: 5009: 5005: 4998: 4993: 4989: 4977: 4974: 4962: 4956: 4952: 4948: 4937: 4929: 4928: 4927: 4925: 4917: 4911: 4907: 4897: 4893: 4885: 4881: 4871: 4867: 4863: 4858: 4855: 4851: 4843: 4835: 4831: 4825: 4821: 4811: 4807: 4799: 4795: 4783: 4775: 4771: 4757: 4755: 4751: 4747: 4743: 4739: 4731: 4727: 4723: 4719: 4715: 4711: 4707: 4702: 4700: 4696: 4692: 4688: 4684: 4677: 4673: 4666: 4662: 4658: 4654: 4650: 4647:, the spaces 4644: 4638: 4630: 4607: 4603: 4595: 4591: 4583: 4580: 4577: 4574: 4571: 4568: 4565: 4562: 4559: 4556: 4553: 4550: 4539: 4536: 4525: 4520: 4514: 4509: 4502: 4497: 4491: 4485: 4481: 4479: 4471: 4457: 4449: 4445: 4437: 4434: 4431: 4428: 4417: 4414: 4403: 4398: 4392: 4387: 4380: 4375: 4369: 4363: 4359: 4357: 4349: 4341: 4325: 4324: 4323: 4322: 4318: 4313: 4311: 4307: 4303: 4299: 4291: 4290: 4285: 4281: 4277: 4273: 4269: 4266: 4260: 4254: 4250: 4243: 4237: 4223: 4217: 4200: 4197: 4194: 4191: 4186: 4183: 4180: 4177: 4168: 4160: 4150: 4148: 4147: 4141: 4137: 4132: 4126: 4118: 4114: 4110: 4106: 4105: 4098: 4094: 4084: 4077: 4072: 4067: 4065: 4061: 4057: 4054: 4046: 4042: 4038: 4035: 4031: 4026: 4024: 4020: 4015: 4013: 4009: 4005: 4001: 3997: 3993: 3975: 3971: 3962: 3958: 3954: 3933: 3928: 3924: 3918: 3914: 3903: 3900: 3897: 3894: 3890: 3886: 3880: 3874: 3867: 3866: 3865: 3864: 3863: 3861: 3842: 3839: 3836: 3833: 3827: 3824: 3821: 3818: 3793: 3788: 3785: 3782: 3779: 3776: 3772: 3766: 3762: 3751: 3748: 3745: 3742: 3738: 3734: 3728: 3722: 3715: 3714: 3713: 3712: 3708: 3704: 3700: 3682: 3676: 3673: 3669: 3663: 3660: 3657: 3654: 3649: 3646: 3643: 3640: 3634: 3630: 3622: 3601: 3595: 3590: 3583: 3578: 3572: 3563: 3559: 3557: 3554: 3550: 3546: 3543: 3542: 3541: 3539: 3535: 3531: 3528:. A function 3527: 3523: 3519: 3515: 3505: 3503: 3499: 3495: 3491: 3486: 3484: 3480: 3476: 3472: 3468: 3464: 3459: 3443: 3437: 3433: 3429: 3428:Leech lattice 3423: 3419: 3415: 3410: 3406: 3402: 3383: 3378: 3375: 3372: 3369: 3365: 3361: 3358: 3354: 3346: 3342: 3338: 3335: 3322: 3319: 3316: 3312: 3306: 3302: 3298: 3294: 3290: 3284: 3278: 3271: 3270: 3269: 3267: 3261: 3256: 3255: 3251: 3249: 3245: 3241: 3237: 3234: 3229: 3224: 3220: 3212: 3203: 3196: 3176: 3170: 3160: 3156: 3151: 3147: 3141: 3131: 3127: 3123: 3118: 3114: 3109: 3101: 3100: 3099: 3097: 3090: 3084: 3067: 3060: 3045: 3040: 3019: 3014: 3006: 3000: 2997: 2993: 2987: 2984: 2981: 2977: 2973: 2967: 2959: 2955: 2947: 2946: 2945: 2944: 2931: 2923: 2918: 2917: 2913: 2909: 2902: 2893: 2887: 2863: 2857: 2849: 2845: 2841: 2839: 2831: 2828: 2825: 2817: 2813: 2805: 2799: 2791: 2787: 2781: 2777: 2773: 2771: 2765: 2759: 2756: 2751: 2747: 2741: 2737: 2725: 2724: 2723: 2706: 2698: 2690: 2687: 2684: 2681: 2674: 2665: 2655: 2649: 2646: 2643: 2637: 2631: 2628: 2625: 2618: 2614: 2608: 2600: 2596: 2592: 2578: 2574: 2566: 2565: 2564: 2561: 2558: 2554: 2522: 2517: 2514: 2510: 2501: 2498: 2495: 2492: 2488: 2484: 2470: 2466: 2458: 2457: 2456: 2445: 2438: 2428: 2423: 2418: 2417: 2408: 2405: 2401: 2395: 2392: 2388: 2369: 2364: 2360: 2357: 2347: 2344: 2340: 2336: 2321: 2312: 2305: 2299: 2285: 2282: 2278: 2275: 2269: 2268: 2267: 2265: 2260: 2255: 2251: 2238: 2230: 2224: 2220: 2216: 2212: 2206: 2205: 2199: 2193: 2182: 2163: 2157: 2154: 2148: 2145: 2142: 2136: 2132: 2126: 2120: 2115: 2111: 2107: 2103: 2097: 2094: 2089: 2085: 2081: 2074: 2073: 2071: 2053: 2047: 2042: 2035: 2030: 2024: 2019: 2016: 2012: 2007: 2001: 1996: 1989: 1986: 1981: 1975: 1970: 1967: 1960: 1959: 1958: 1957: 1953: 1938: 1918: 1915: 1904: 1898: 1885: 1882: 1876: 1870: 1867: 1847: 1844: 1841: 1838: 1835: 1825: 1819: 1812: 1805: 1804: 1803: 1795: 1794: 1789: 1782: 1777: 1758: 1752: 1747: 1739: 1736: 1733: 1730: 1724: 1720: 1714: 1711: 1708: 1705: 1700: 1697: 1694: 1691: 1685: 1681: 1674: 1673: 1669: 1662: 1658: 1653: 1649: 1644: 1638: 1633: 1632: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1601: 1595: 1575: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1547: 1539: 1536: 1533: 1530: 1527: 1524: 1521: 1518: 1514: 1509: 1503: 1498: 1491: 1486: 1480: 1471: 1467: 1456: 1453: 1438: 1437: 1436: 1435: 1434:modular group 1416: 1414: 1410: 1404: 1400: 1389: 1387: 1358: 1348: 1337: 1331: 1302: 1292: 1273: 1264: 1254: 1253: 1252:modular curve 1237: 1227: 1203: 1199: 1195: 1187: 1184: 1180: 1176: 1167: 1158: 1154: 1150: 1147: 1138: 1124: 1071: 1061: 1050: 1046: 1013: 985: 973: 967: 961: 956: 953: 945: 942: 939: 936: 926:the function 900: 890: 887: 879: 878: 877: 875: 858: 842: 832: 827: 821: 816: 809: 804: 798: 793: 790: 770: 747: 744: 741: 738: 731: 724: 721: 718: 715: 709: 703: 697: 665: 631: 625: 619: 614: 611: 603: 600: 597: 594: 584:the function 558: 548: 545: 537: 520: 514: 509: 501: 498: 495: 492: 486: 477: 471: 465: 442: 439: 431: 430: 429: 427: 396: 393: 386: 382: 369: 339: 335: 306: 296: 279: 277: 272: 270: 265: 238: 225: 209: 191: 187: 183: 178: 176: 175:string theory 172: 168: 164: 163:number theory 160: 152: 149: 148:modular group 145: 141: 137: 136: 135: 107: 103: 99: 95: 84: 81: 73: 70:February 2024 63: 59: 53: 50:This article 48: 39: 38: 33: 19: 7479:Prym variety 7453:Stable curve 7443:Hodge bundle 7433:ELSV formula 7235:Fermat curve 7192:Plane curves 7155:Higher genus 7130:Applications 7055:Modular form 7054: 6915: 6909: 6897: 6888: 6876: 6853: 6841: 6838:Hecke, Erich 6830: 6813: 6799: 6781: 6762:, New York: 6757: 6681: 6674:, p. 88 6667: 6660: 6650: 6644: 6631: 6625: 6586: 6572: 6552: 6546: 6531: 6506: 6497: 6465: 6461: 6403: 6395: 6387: 6374: 6363:. Retrieved 6359: 6329: 6287:Andrew Wiles 6284: 6273: 6240: 6225: 6219:October 2019 6216: 6201:Please help 6189: 6115: 5901: 5893: 5887: 5877: 5872:Jacobi forms 5870: 5865: 5855: 5844: 5835: 5830: 5823: 5797: 5790: 5782: 5770: 5580: 5515: 5492: 5477: 5473: 5375: 5367: 5353: 5340: 5332: 5330: 5325: 5321: 5317: 5309: 5305: 5302: 5298: 5294: 5290: 5282: 5278: 5274: 5270: 5266: 5262: 5258: 5254: 5250: 5246: 5242: 5236: 5233:Line bundles 5226: 5222: 5218: 5214: 5210: 5206: 5199: 5188: 5180: 5176: 5172: 5162: 5136:denotes the 5109: 4923: 4909: 4902: 4895: 4888: 4883: 4879: 4877: 4874:Consequences 4865: 4861: 4856: 4853: 4849: 4841: 4833: 4829: 4823: 4816: 4809: 4802: 4800:are denoted 4797: 4793: 4781: 4773: 4769: 4763: 4753: 4749: 4741: 4737: 4729: 4725: 4721: 4717: 4709: 4705: 4703: 4698: 4694: 4690: 4686: 4682: 4675: 4671: 4664: 4663:are denoted 4660: 4656: 4652: 4648: 4642: 4636: 4628: 4626: 4316: 4314: 4305: 4301: 4287: 4283: 4279: 4271: 4267: 4258: 4252: 4235: 4227: 4221: 4158: 4156: 4146:modular unit 4144: 4142: 4135: 4130: 4121: 4116: 4108: 4102: 4096: 4092: 4082: 4075: 4070: 4068: 4064:moduli space 4059: 4055: 4040: 4036: 4027: 4022: 4018: 4016: 4011: 4007: 4003: 3999: 3995: 3991: 3956: 3952: 3950: 3810: 3702: 3555: 3551:in the open 3544: 3537: 3533: 3529: 3525: 3521: 3513: 3511: 3487: 3457: 3441: 3421: 3417: 3413: 3400: 3398: 3263: 3253: 3252: 3227: 3210: 3201: 3194: 3191: 3082: 3065: 3058: 3043: 3036: 2929: 2919: 2915: 2914: 2907: 2900: 2885: 2882: 2721: 2559: 2556: 2552: 2537: 2443: 2433: 2431:, we define 2426: 2419: 2415: 2414: 2403: 2399: 2393: 2390: 2386: 2379: 2367: 2358:of the form. 2355: 2345: 2342: 2338: 2334: 2319: 2297: 2283: 2280: 2276: 2273: 2258: 2249: 2247: 2222: 2218: 2214: 2210: 2197: 1823: 1801: 1792: 1787: 1780: 1667: 1660: 1656: 1647: 1636: 1625: 1617: 1613: 1609: 1599: 1591: 1427: 1402: 1398: 1395: 1333: 1256: 1229: 1140: 1042: 873: 689: 341: 336:, called an 334:finite index 285: 273: 266: 179: 156: 144:group action 98:modular form 97: 91: 76: 67: 51: 32:Haar measure 7354:Polar curve 6582:Lang, Serge 6460:sends ∞ to 6380:meromorphic 6353:, see e.g. 6303:square root 6261:Erich Hecke 6254:Felix Klein 5814:holomorphic 5799:Maass forms 5382:graded ring 5349:line bundle 5287:homogeneous 4922:-action on 4736:-action on 4109:Spitzenform 4053:j-invariant 3549:meromorphic 3407:. Then the 3240:isospectral 3219:John Milnor 3089:root system 2892:convergence 1806:The weight 1413:meromorphic 1409:holomorphic 1117:and weight 1045:line bundle 362:and weight 269:Erich Hecke 94:mathematics 7569:Categories 7349:Dual curve 6977:Topics in 6906:Zagier, D. 6745:References 6618:0492.12002 6365:2023-07-07 5883:Lie groups 5761:Cusp forms 5293:, letting 5171:one (over 4840:. In case 4768:of weight 4760:Definition 4728:such that 4286:, i.e. in 4119:such that 4045:isomorphic 3238:which are 3062:such that 2894:; for odd 1931:, meaning 1860:such that 1802:Remarks: 1628:) > 0}, 282:Definition 186:Lie groups 138:a kind of 7462:Morphisms 7210:Bitangent 6697:Γ 6476:Citations 6394:as exp(1/ 6341:γ 6301:with the 6190:does not 6124:ε 6034:ε 5913:ε 5810:Laplacian 5773:cusp form 5767:Cusp form 5727:Γ 5710:⊆ 5689:Γ 5640:Γ 5636:⊆ 5618:Γ 5594:∣ 5581:old forms 5559:dividing 5517:New forms 5506:New forms 5456:Γ 5428:⨁ 5418:Γ 5160:is even. 5124:⌋ 5121:⋅ 5118:⌊ 5087:otherwise 5031:≡ 4949:⁡ 4581:≡ 4575:≡ 4563:≡ 4557:≡ 4526:∈ 4466:Γ 4435:≡ 4404:∈ 4338:Γ 4172:↦ 4104:cusp form 3909:∞ 3901:− 3891:∑ 3837:π 3828:⁡ 3783:π 3757:∞ 3749:− 3739:∑ 3436:Ramanujan 3416:) = (2π) 3373:π 3339:− 3328:∞ 3313:∏ 3279:η 3244:isometric 3152:ϑ 3124:× 3110:ϑ 3011:‖ 3007:λ 3004:‖ 2998:π 2985:∈ 2982:λ 2978:∑ 2956:ϑ 2858:τ 2826:τ 2800:τ 2778:τ 2760:τ 2752:− 2691:τ 2656:∈ 2638:≠ 2619:∑ 2609:τ 2587:Λ 2515:− 2511:λ 2505:Λ 2502:∈ 2499:λ 2496:≠ 2489:∑ 2479:Λ 2090:− 1987:− 1890:⟹ 1871:⁡ 1596:function 1560:− 1540:∈ 1346:Γ 1293:∪ 1280:∖ 1277:Γ 1269:Γ 1238:ω 1212:Γ 1185:⊗ 1181:ω 1172:Γ 1151:∈ 1105:Γ 1062:⊂ 1059:Γ 1023:∞ 1020:→ 983:→ 968:γ 954:− 891:∈ 888:γ 874:cusp form 833:∈ 791:γ 771:γ 698:γ 675:∞ 672:→ 626:γ 612:− 549:∈ 546:γ 472:γ 446:Γ 443:∈ 440:γ 424:from the 407:→ 350:Γ 297:⊂ 294:Γ 226:⊂ 6920:Springer 6887:(1973), 6840:(1970), 6812:(1975), 6754:(1990), 6731:Archived 6584:(1981), 6520:Archived 6309:See also 6285:In 1994 5341:sections 5074:⌋ 5058:⌊ 5022:⌋ 5006:⌊ 4039:/Λ over 3532: : 3492:and the 3242:but not 2563:we have 2411:Examples 2397:, where 2254:lattices 2221: ( 2213: ( 2192:generate 1813:For odd 1654:For any 1432:for the 1401: ( 7522:Tacnode 7507:Crunode 6924:Bibcode 6922:: 113, 6826:0379375 6639:, p. 13 6610:0648603 6536:Milne. 6211:removed 6196:sources 6171:History 5808:of the 5372:of the 5195:of the 5193:closure 5191:in the 3862:), as: 3616:in the 3467:Shimura 3463:Eichler 3233:compact 3091:called 3080:. When 2332:, then 2295:, then 2209:  1826:  1822:  1783:  1779:  1639:  1635:  1604:on the 1602:  1598:  146:of the 104:on the 56:Please 7502:Acnode 7426:Moduli 6864:  6824:  6792:  6770:  6616:  6608:  6598:  6559:  6498:Quanta 6398:) has. 5854:SL(2, 5822:SL(2, 5476:SL(2, 5374:SL(2, 5221:) and 5110:where 4859:. For 4792:. The 4685:) and 4674:) and 4263:. The 4257:SL(2, 4234:SL(2, 4113:German 3562:matrix 3477:, and 3399:where 2888:> 2 2549:. For 2429:> 2 2356:weight 2350:where 2302:is an 2207:Since 2196:SL(2, 2072:reads 1666:SL(2, 1551:  1230:where 1051:. For 690:where 173:, and 6734:(PDF) 6727:(PDF) 6672:(PDF) 6567:p. 15 6523:(PDF) 6516:(PDF) 6321:Notes 5609:then 5501:Types 5345:sheaf 5343:of a 5185:poles 4854:level 4746:genus 4639:) or 4298:trace 4280:cusps 4242:index 3475:Ihara 3246:(see 2538:Then 2341:Λ) = 1641:is a 1592:is a 383:is a 7512:Cusp 6862:ISBN 6790:ISBN 6768:ISBN 6596:ISBN 6557:ISBN 6384:pole 6194:any 6192:cite 5801:are 5486:and 5435:> 5140:and 4900:and 4814:and 4716:for 4655:and 4627:For 4249:acts 4228:Let 3860:nome 3471:Kuga 3405:nome 3264:The 3223:tori 3208:and 2904:and 2722:and 2551:Λ = 2361:The 2272:Λ = 2187:and 1916:< 1883:> 1845:> 340:, a 96:, a 6932:doi 6614:Zbl 6386:at 6259:By 6252:By 6205:by 5394:(Γ) 5328:). 5229:). 5187:of 5042:mod 4938:dim 4844:= Γ 4748:of 4693:), 4631:= Γ 4592:mod 4446:mod 4251:on 4133:at 4127:≠ 0 4111:in 4088:= 0 4078:= 0 3825:exp 3547:is 3456:≤ 2 3434:of 3250:.) 3085:= 8 3056:in 2927:in 2920:An 2451:of 2439:(Λ) 2370:(Λ) 2365:of 2348:(Λ) 2328:by 2313:If 2306:of 2300:(Λ) 2256:in 1645:on 1612:= { 1407:be 1047:on 998:as 332:of 92:In 60:to 7571:: 6930:, 6918:, 6916:94 6914:, 6896:. 6860:, 6829:. 6822:MR 6820:, 6788:, 6766:, 6729:. 6612:, 6606:MR 6604:, 6580:; 6518:. 6496:. 6484:^ 6378:A 6358:. 5885:. 5842:. 5789:Δ( 5771:A 5757:. 5497:. 5471:. 5299:cv 5267:cv 5241:P( 5227:Nz 5070:12 5046:12 5018:12 4968:SL 4724:⊂ 4641:Γ( 4530:SL 4408:SL 4224:\H 4143:A 4140:. 4095:= 3623:, 3536:→ 3504:. 3473:, 3469:, 3465:, 3440:Δ( 3412:Δ( 3307:24 3214:16 3200:× 3161:16 3046:/2 2906:(− 2555:+ 2455:: 2407:. 2402:∈ 2389:+ 2279:+ 1868:Im 1790:→ 1659:∈ 1622:Im 1620:, 1616:∈ 1447:SL 1388:. 1354:SL 1067:SL 1007:im 896:SL 838:SL 659:im 554:SL 302:SL 278:. 271:. 264:. 177:. 169:, 108:, 6970:e 6963:t 6956:v 6934:: 6926:: 6900:. 6833:. 6805:. 6712:) 6709:N 6706:( 6701:1 6565:. 6500:. 6468:. 6466:c 6464:/ 6462:a 6446:) 6440:d 6435:c 6428:b 6423:a 6417:( 6396:q 6388:q 6368:. 6232:) 6226:( 6221:) 6217:( 6213:. 6199:. 6151:) 6148:d 6145:, 6142:c 6139:, 6136:b 6133:, 6130:a 6127:( 6101:. 6098:) 6095:z 6092:( 6089:f 6084:k 6080:) 6076:d 6073:+ 6070:z 6067:c 6064:( 6061:) 6058:d 6055:, 6052:c 6049:, 6046:b 6043:, 6040:a 6037:( 6031:= 6027:) 6021:d 6018:+ 6015:z 6012:c 6007:b 6004:+ 6001:z 5998:a 5992:( 5988:f 5963:k 5959:) 5955:d 5952:+ 5949:z 5946:c 5943:( 5940:) 5937:d 5934:, 5931:c 5928:, 5925:b 5922:, 5919:a 5916:( 5896:k 5890:k 5858:) 5856:R 5836:n 5826:) 5824:Z 5793:) 5791:g 5745:) 5742:) 5739:N 5736:( 5731:1 5723:( 5718:k 5714:M 5707:) 5704:) 5701:M 5698:( 5693:1 5685:( 5680:k 5676:M 5655:) 5652:M 5649:( 5644:1 5633:) 5630:N 5627:( 5622:1 5597:N 5591:M 5567:N 5547:M 5527:N 5480:) 5478:Z 5459:) 5453:( 5448:k 5444:M 5438:0 5432:k 5424:= 5421:) 5415:( 5412:M 5402:Γ 5398:k 5392:k 5390:M 5386:Γ 5378:) 5376:Z 5370:Γ 5333:V 5326:V 5322:k 5318:k 5314:k 5310:v 5308:( 5306:F 5303:c 5297:( 5295:F 5291:c 5283:F 5279:c 5275:v 5273:( 5271:F 5265:( 5263:F 5259:V 5255:v 5251:V 5247:F 5243:V 5225:( 5223:j 5219:z 5217:( 5215:j 5211:N 5209:( 5207:N 5203:Γ 5200:R 5189:f 5181:f 5177:f 5173:C 5148:k 5081:1 5078:+ 5066:/ 5062:k 5049:) 5039:( 5034:2 5028:k 5014:/ 5010:k 4999:{ 4994:= 4990:) 4986:) 4982:Z 4978:, 4975:2 4972:( 4963:( 4957:k 4953:M 4943:C 4924:H 4920:G 4912:) 4910:G 4908:( 4905:k 4903:S 4898:) 4896:G 4894:( 4891:k 4889:M 4884:H 4882:\ 4880:G 4868:) 4866:Z 4862:G 4857:N 4850:N 4848:( 4846:0 4842:G 4838:G 4834:H 4832:\ 4830:G 4826:) 4824:G 4822:( 4819:k 4817:S 4812:) 4810:G 4808:( 4805:k 4803:M 4798:k 4794:C 4790:G 4786:G 4782:H 4778:G 4774:H 4770:k 4766:G 4754:H 4752:\ 4750:G 4742:D 4738:H 4734:G 4730:D 4726:H 4722:D 4718:G 4710:H 4708:\ 4706:G 4699:N 4697:( 4695:X 4691:N 4689:( 4687:Y 4683:N 4681:( 4679:0 4676:X 4672:N 4670:( 4668:0 4665:Y 4661:H 4659:\ 4657:G 4653:H 4651:\ 4649:G 4645:) 4643:N 4637:N 4635:( 4633:0 4629:G 4608:. 4604:} 4599:) 4596:N 4589:( 4584:1 4578:d 4572:a 4569:, 4566:0 4560:b 4554:c 4551:: 4548:) 4544:Z 4540:, 4537:2 4534:( 4521:) 4515:d 4510:c 4503:b 4498:a 4492:( 4486:{ 4482:= 4475:) 4472:N 4469:( 4458:} 4453:) 4450:N 4443:( 4438:0 4432:c 4429:: 4426:) 4422:Z 4418:, 4415:2 4412:( 4399:) 4393:d 4388:c 4381:b 4376:a 4370:( 4364:{ 4360:= 4353:) 4350:N 4347:( 4342:0 4317:N 4306:H 4304:\ 4302:G 4294:G 4289:Q 4284:H 4272:H 4270:\ 4268:G 4261:) 4259:Z 4253:H 4246:G 4238:) 4236:Z 4230:G 4222:G 4201:d 4198:+ 4195:z 4192:c 4187:b 4184:+ 4181:z 4178:a 4169:z 4159:f 4138:∞ 4136:i 4131:f 4124:n 4122:a 4117:n 4107:( 4099:∞ 4097:i 4093:z 4086:0 4083:a 4076:q 4071:f 4060:z 4058:( 4056:j 4049:α 4041:C 4037:C 4023:f 4019:f 4012:q 4008:q 4004:n 4000:f 3996:m 3992:f 3976:n 3972:a 3959:( 3957:f 3953:q 3934:. 3929:n 3925:q 3919:n 3915:a 3904:m 3898:= 3895:n 3887:= 3884:) 3881:z 3878:( 3875:f 3846:) 3843:z 3840:i 3834:2 3831:( 3822:= 3819:q 3794:. 3789:z 3786:n 3780:i 3777:2 3773:e 3767:n 3763:a 3752:m 3746:= 3743:n 3735:= 3732:) 3729:z 3726:( 3723:f 3703:f 3698:. 3686:) 3683:z 3680:( 3677:f 3674:= 3670:) 3664:d 3661:+ 3658:z 3655:c 3650:b 3647:+ 3644:z 3641:a 3635:( 3631:f 3620:Γ 3602:) 3596:d 3591:c 3584:b 3579:a 3573:( 3556:H 3545:f 3538:C 3534:H 3530:f 3522:f 3514:k 3458:p 3452:p 3448:q 3444:) 3442:z 3424:) 3422:z 3420:( 3418:η 3414:z 3401:q 3384:. 3379:z 3376:i 3370:2 3366:e 3362:= 3359:q 3355:, 3352:) 3347:n 3343:q 3336:1 3333:( 3323:1 3320:= 3317:n 3303:/ 3299:1 3295:q 3291:= 3288:) 3285:z 3282:( 3228:R 3211:L 3205:8 3202:L 3198:8 3195:L 3177:, 3174:) 3171:z 3168:( 3157:L 3148:= 3145:) 3142:z 3139:( 3132:8 3128:L 3119:8 3115:L 3095:8 3093:E 3083:n 3077:n 3075:L 3071:v 3066:v 3064:2 3059:R 3054:v 3050:n 3044:n 3020:z 3015:2 3001:i 2994:e 2988:L 2974:= 2971:) 2968:z 2965:( 2960:L 2939:L 2935:n 2930:R 2925:L 2910:) 2908:λ 2901:λ 2896:k 2886:k 2864:. 2861:) 2855:( 2850:k 2846:G 2842:= 2835:) 2832:1 2829:+ 2823:( 2818:k 2814:G 2806:, 2803:) 2797:( 2792:k 2788:G 2782:k 2774:= 2766:) 2757:1 2748:( 2742:k 2738:G 2707:, 2699:k 2695:) 2688:n 2685:+ 2682:m 2679:( 2675:1 2666:2 2661:Z 2653:) 2650:n 2647:, 2644:m 2641:( 2635:) 2632:0 2629:, 2626:0 2623:( 2615:= 2612:) 2606:( 2601:k 2597:G 2593:= 2590:) 2584:( 2579:k 2575:G 2560:τ 2557:Z 2553:Z 2547:k 2542:k 2540:G 2523:. 2518:k 2493:0 2485:= 2482:) 2476:( 2471:k 2467:G 2453:Λ 2449:λ 2444:λ 2436:k 2434:G 2427:k 2404:H 2400:τ 2394:τ 2391:Z 2387:Z 2382:F 2374:Λ 2368:F 2352:k 2346:F 2343:α 2339:α 2337:( 2335:F 2330:α 2326:Λ 2322:Λ 2320:α 2315:α 2310:. 2308:z 2298:F 2293:z 2289:α 2284:z 2281:Z 2277:α 2274:Z 2259:C 2250:F 2239:. 2233:1 2225:) 2223:z 2219:f 2215:z 2211:f 2200:) 2198:Z 2189:T 2185:S 2167:) 2164:z 2161:( 2158:f 2155:= 2152:) 2149:1 2146:+ 2143:z 2140:( 2137:f 2133:, 2130:) 2127:z 2124:( 2121:f 2116:k 2112:z 2108:= 2104:) 2098:z 2095:1 2086:( 2082:f 2054:) 2048:1 2043:0 2036:1 2031:1 2025:( 2020:= 2017:T 2013:, 2008:) 2002:0 1997:1 1990:1 1982:0 1976:( 1971:= 1968:S 1939:f 1919:D 1912:| 1908:) 1905:z 1902:( 1899:f 1895:| 1886:M 1880:) 1877:z 1874:( 1848:0 1842:D 1839:, 1836:M 1824:f 1815:k 1808:k 1798:. 1796:∞ 1793:i 1788:z 1781:f 1762:) 1759:z 1756:( 1753:f 1748:k 1744:) 1740:d 1737:+ 1734:z 1731:c 1728:( 1725:= 1721:) 1715:d 1712:+ 1709:z 1706:c 1701:b 1698:+ 1695:z 1692:a 1686:( 1682:f 1670:) 1668:Z 1661:H 1657:z 1651:. 1648:H 1637:f 1626:z 1624:( 1618:C 1614:z 1610:H 1600:f 1576:} 1572:1 1569:= 1566:c 1563:b 1557:d 1554:a 1548:, 1544:Z 1537:d 1534:, 1531:c 1528:, 1525:b 1522:, 1519:a 1515:| 1510:) 1504:d 1499:c 1492:b 1487:a 1481:( 1472:{ 1468:= 1465:) 1461:Z 1457:, 1454:2 1451:( 1430:k 1405:) 1403:z 1399:f 1372:) 1368:Z 1364:( 1359:2 1349:= 1319:) 1316:) 1312:Q 1308:( 1303:1 1298:P 1288:H 1283:( 1274:= 1265:X 1215:) 1209:( 1204:k 1200:M 1196:= 1193:) 1188:k 1177:, 1168:X 1164:( 1159:0 1155:H 1148:f 1125:k 1085:) 1081:Z 1077:( 1072:2 1017:) 1014:z 1011:( 986:0 980:) 977:) 974:z 971:( 965:( 962:f 957:k 950:) 946:d 943:+ 940:z 937:c 934:( 914:) 910:Z 906:( 901:2 859:. 856:) 852:Z 848:( 843:2 828:) 822:d 817:c 810:b 805:a 799:( 794:= 751:) 748:d 745:+ 742:z 739:c 736:( 732:/ 728:) 725:b 722:+ 719:z 716:a 713:( 710:= 707:) 704:z 701:( 669:) 666:z 663:( 638:) 635:) 632:z 629:( 623:( 620:f 615:k 608:) 604:d 601:+ 598:z 595:c 592:( 572:) 568:Z 564:( 559:2 524:) 521:z 518:( 515:f 510:k 506:) 502:d 499:+ 496:z 493:c 490:( 487:= 484:) 481:) 478:z 475:( 469:( 466:f 411:C 402:H 397:: 394:f 370:k 320:) 316:Z 312:( 307:2 252:) 248:R 244:( 239:2 234:L 231:S 223:) 219:Z 215:( 210:2 205:L 202:S 150:, 119:H 83:) 77:( 72:) 68:( 54:. 34:. 20:)

Index

Level of a modular form
Haar measure
help improve it
make it understandable to non-experts
Learn how and when to remove this message
mathematics
analytic function
upper half-plane
functional equation
group action
modular group
complex analysis
number theory
algebraic topology
sphere packing
string theory
automorphic forms
Lie groups
discrete subgroups
Erich Hecke
Galois representation
finite index
arithmetic group
holomorphic function
upper half-plane
line bundle
modular varieties
modular curve
Riemann–Roch theorem
moduli stack of elliptic curves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.