Knowledge

Modular curve

Source 📝

296: 1070: 939: 531: 445: 2066: 161: 3000:-expansions of their Hauptmoduln were computed already in the 19th century, but it came as a shock that the same large integers show up as dimensions of representations of the largest sporadic simple group Monster. 2238: 1847: 593: 1455: 1968: 1884: 958: 2024: 2930: 2672: 2469: 1322: 791:– the cusps are the points lying over ∞ (red dots), while the vertices and centers of the edges (black and white dots) are the points lying over 0 and 1. The Galois group of the covering 2782: 2727: 2524: 783:
of genus 3 with 24 cusps. It can be interpreted as a surface with three handles tiled by 24 heptagons, with a cusp at the center of each face. These tilings can be understood via
2062: 1672: 2872: 2614: 2569: 2411: 96:, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to 2975: 2827: 1720: 1694: 2107: 2368: 1904: 854: 2261: 2347: 467: 381: 3305: 1598:-rational point, it follows that there are infinitely many rational points on each such curve, and hence infinitely many elliptic curves defined over 291:{\displaystyle \Gamma (N)=\left\{{\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}:\ a\equiv d\equiv 1\mod N{\text{ and }}b,c\equiv 0\mod N\right\}.} 3087:, that are holomorphic everywhere, including the cusps, and had been the main objects of study for the better part of the 20th century. 2116: 1725: 341:(Γ) is obtained by adding finitely many points called the cusps of Γ. Specifically, this is done by considering the action of Γ on the 3058:
in the 1970s, and the subsequent observation relating it to the monster group is due to Ogg, who wrote up a paper offering a bottle of
542: 1484:), and the fact that PSL(2, 2) has order 6, rather than 3. There is a more complicated formula for the genus of the modular curve 1513: 3240: 3034:
is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 or 71, and these are precisely the prime factors of the order of the
1085: 1174: 1377: 1065:{\displaystyle \left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}:\ a\equiv d\equiv 1\mod N,c\equiv 0\mod N\right\}.} 1913: 1852: 3292: 3156: 3070: 1973: 137: 2890: 2632: 2429: 1258: 3101: 3062:
whiskey to anyone who could explain this fact, which was a starting point for the theory of monstrous moonshine.
2745: 2690: 2487: 3267: 77: 1906:
is minimal among all integral Weierstrass models for the same curve. The following table contains the unique
145: 2992:
Modular curves of genus 0, which are quite rare, turned out to be of major importance in relation with the
829:) can be restated as follows: it is the subgroup of the modular group which is the kernel of the reduction 661: 2029: 1639: 1229: 2845: 2587: 2542: 2384: 140:. The analytic definition of a modular curve involves a choice of a congruence subgroup Γ of SL(2,  3232: 3096: 2948: 2800: 1615: 54: 43: 3347: 3337: 1476:= 2 or 3, one must additionally take into account the ramification, that is, the presence of order 1233: 1703: 1677: 1549: 2026:. The last column of this table refers to the home page of the respective elliptic modular curve 1529: 818: 3151:. Lecture Notes in Mathematics. Vol. 476. Berlin, Heidelberg: Springer-Verlag. p. 79. 934:{\displaystyle \left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}:\ c\equiv 0\mod N\right\},} 3342: 2076: 2353: 1889: 749:(5) has genus 0: it is the Riemann sphere with 12 cusps located at the vertices of a regular 3313:
Seminaire Delange-Pisot-Poitou. Theorie des nombres, tome 16, no. 1 (1974–1975), exp. no. 7
3320: 3250: 3016: 1332: 784: 762: 642: 124:). The latter fact and its generalizations are of fundamental importance in number theory. 8: 2993: 1525: 1521: 1090: 101: 58: 3173: 3106: 2246: 1193: 830: 24: 3215: 2267: 1143:. These curves have been studied in great detail, and in particular, it is known that 3288: 3261: 3236: 3152: 3066: 3047: 1364: 1166: 1110: 526:{\displaystyle \{\infty \}\cup \{\tau \in \mathbf {H} \mid {\text{Im}}(\tau )>r\}} 440:{\displaystyle \{\infty \}\cup \{\tau \in \mathbf {H} \mid {\text{Im}}(\tau )>r\}} 3074: 3059: 3055: 1162: 450: 310: 112: 47: 3316: 3246: 3111: 105: 39: 35: 3136:, Le Mathématicien, vol. 2 (2nd ed.), Presses Universitaires de France 3280: 1697: 1189: 1170: 1080: 788: 624: 97: 93: 89: 2979: 2934: 2876: 2831: 2786: 2731: 2676: 2618: 2573: 2528: 2473: 2415: 1192:Γ other than subgroups of the modular group; a class of them constructed from 765:
on the Riemann sphere. This group is a simple group of order 60 isomorphic to
3331: 3035: 780: 677: 62: 20: 3276: 3224: 3081: 1517: 1245: 1076: 1533: 1165:. The "best models" can be very different from those taken directly from 750: 3301: 3051: 3004: 1548:*. The traditional name for such a generator, which is unique up to a 844:) is the larger subgroup of matrices which are upper triangular modulo 318: 1161:
The equations defining modular curves are the best-known examples of
3080:
that are meromorphic and can have poles at the cusps, as opposed to
1135:), the level structure is, respectively, a cyclic subgroup of order 3231:, Publications of the Mathematical Society of Japan, vol. 11, 800: 3003:
Another connection is that the modular curve corresponding to the
2233:{\displaystyle y^{2}+a_{1}xy+a_{3}y=x^{3}+a_{2}x^{2}+a_{4}x+a_{6}} 1842:{\displaystyle y^{2}+a_{1}xy+a_{3}y=x^{3}+a_{2}x^{2}+a_{4}x+a_{6}} 1105:) is the moduli space for elliptic curves with a basis for the 668:. Once again, a complex structure can be put on the quotient Γ\ 588:{\displaystyle {\begin{pmatrix}a&-m\\c&n\end{pmatrix}}} 3229:
Introduction to the arithmetic theory of automorphic functions
1696:
equals one of the 12 values listed in the following table. As
69:). The term modular curve can also be used to refer to the 3114:, a generalization of modular curves to higher dimensions 2952: 2894: 2849: 2804: 2749: 2694: 2636: 2591: 2546: 2491: 2433: 2388: 2033: 1977: 1917: 1856: 1681: 1643: 1388: 972: 868: 551: 190: 2951: 2893: 2848: 2803: 2748: 2693: 2635: 2590: 2545: 2490: 2432: 2387: 2356: 2270: 2249: 2119: 2079: 2032: 1976: 1916: 1892: 1855: 1728: 1706: 1680: 1642: 1610:. The converse statement, that only these values of 1380: 1261: 961: 857: 545: 470: 384: 164: 3065:
The relation runs very deep and, as demonstrated by
1910:, minimal, integral Weierstrass models, which means 1516:
of a modular curve (or, occasionally, of some other
623:* into a topological space which is a subset of the 80:
obtained by adding finitely many points (called the
1089:and for this reason they play an important role in 2987: 2969: 2924: 2866: 2821: 2776: 2721: 2666: 2608: 2563: 2518: 2463: 2405: 2362: 2341: 2255: 2232: 2101: 2067:The L-functions and modular forms database (LMFDB) 2056: 2018: 1962: 1898: 1878: 1841: 1714: 1688: 1666: 1590:= 12. Since each of these curves is defined over 1450:{\displaystyle g={\tfrac {1}{24}}(p+2)(p-3)(p-5).} 1449: 1316: 1064: 933: 587: 525: 439: 290: 3073:. Work in this area underlined the importance of 1963:{\displaystyle \textstyle a_{1},a_{3}\in \{0,1\}} 1722:, they have minimal, integral Weierstrass models 799:(1) is a simple group of order 168 isomorphic to 3329: 1879:{\displaystyle \textstyle a_{j}\in \mathbb {Z} } 100:, and, moreover, prove that modular curves are 3274: 2019:{\displaystyle \textstyle a_{2}\in \{-1,0,1\}} 1528:zero means such a function field has a single 332: 3181:Bulletin de la Société Mathématique de France 1075:These curves have a direct interpretation as 2996:conjectures. First several coefficients of 2925:{\displaystyle \textstyle -2^{4}\cdot 3^{3}} 2667:{\displaystyle \textstyle -2^{8}\cdot 5^{2}} 2464:{\displaystyle \textstyle -2^{6}\cdot 7^{3}} 2012: 1991: 1956: 1944: 1317:{\displaystyle -\pi \chi (X(p))=|G|\cdot D,} 672:* turning it into a Riemann surface denoted 520: 483: 477: 471: 434: 397: 391: 385: 2777:{\displaystyle \textstyle 2^{8}\cdot 3^{2}} 2722:{\displaystyle \textstyle 3^{4}\cdot 7^{2}} 2519:{\displaystyle \textstyle 3^{4}\cdot 5^{4}} 1886:and the absolute value of the discriminant 1552:and can be appropriately normalized, is a 3147:Birch, Bryan; Kuyk, Willem, eds. (1975). 3146: 1871: 1708: 1220:)/{1, −1}, which is equal to PSL(2,  1050: 1049: 1029: 1028: 919: 918: 806:There is an explicit classical model for 276: 275: 247: 246: 84:) to this quotient (via an action on the 952:) is the intermediate group defined by: 692:The most common examples are the curves 3223: 3171: 1351:−1)/2 is the order of the group PSL(2, 1216:(1) is Galois, with Galois group SL(2, 146:principal congruence subgroup of level 3330: 3306:"Automorphismes de courbes modulaires" 1371:) triangle. This results in a formula 1196:is also of interest in number theory. 680:. This space is a compactification of 127: 3131: 1621: 761:(1) is realized by the action of the 641:}, breaking it up into finitely many 3149:Modular functions of one variable IV 1177:connecting pairs of modular curves. 65:of integral 2×2 matrices SL(2,  3300: 3204: 2057:{\displaystyle \textstyle X_{0}(N)} 1667:{\displaystyle \textstyle X_{0}(N)} 825:modular curve. The definition of Γ( 13: 2867:{\displaystyle \textstyle -2^{12}} 2609:{\displaystyle \textstyle -19^{3}} 2564:{\displaystyle \textstyle -17^{4}} 2406:{\displaystyle \textstyle -11^{5}} 2357: 1893: 722:) associated with the subgroups Γ( 634:). The group Γ acts on the subset 474: 388: 165: 144:), i.e. a subgroup containing the 136:) acts on the upper half-plane by 14: 3359: 2970:{\displaystyle \textstyle -7^{3}} 2822:{\displaystyle \textstyle -3^{9}} 1236:, one can calculate the genus of 1173:may be studied geometrically, as 343:extended complex upper-half plane 138:fractional linear transformations 88:). The points of a modular curve 86:extended complex upper-half plane 3030:) has genus zero if and only if 1674:are of genus one if and only if 1536:generates the function field of 493: 407: 3174:"Courbes modulaires de genre 1" 3102:Moduli stack of elliptic curves 2988:Relation with the Monster group 1045: 1024: 914: 271: 242: 3198: 3165: 3140: 3125: 3071:generalized Kac–Moody algebras 2336: 2271: 2096: 2090: 2050: 2044: 1660: 1654: 1532:as generator: for example the 1441: 1429: 1426: 1414: 1411: 1399: 1301: 1293: 1286: 1283: 1277: 1271: 511: 505: 425: 419: 359:}. We introduce a topology on 174: 168: 1: 3118: 1606:-torsion for these values of 1503: 337:A common compactification of 313:can be put on the quotient Γ\ 132:The modular group SL(2,  3285:Encyclopaedia of Mathematics 3216:Equations For Modular Curves 1715:{\displaystyle \mathbb {Q} } 1689:{\displaystyle \textstyle N} 1586: = 1, ..., 10 and 662:Alexandroff compactification 649:. If Γ acts transitively on 7: 3132:Serre, Jean-Pierre (1977), 3090: 821:; this is sometimes called 687: 333:Compactified modular curves 71:compactified modular curves 10: 3364: 3266:: CS1 maint: postscript ( 3253:, Kanô Memorial Lectures, 3233:Princeton University Press 1562:principal modular function 1496:that involves divisors of 151:for some positive integer 2113: 321:Riemann surface called a 155:, which is defined to be 104:either over the field of 3172:Ligozat, Gerard (1975). 2102:{\displaystyle X_{0}(N)} 1520:that turns out to be an 1199: 363:* by taking as a basis: 2363:{\displaystyle \Delta } 1899:{\displaystyle \Delta } 1616:Mazur's torsion theorem 1530:transcendental function 1472:(11) has genus 26. For 1230:Riemann–Hurwitz formula 1228:is prime. Applying the 819:classical modular curve 607:are integers such that 325:, and commonly denoted 92:isomorphism classes of 38:, or the corresponding 3214:Steven D. Galbraith - 3097:Manin–Drinfeld theorem 2971: 2926: 2868: 2823: 2778: 2723: 2668: 2610: 2565: 2520: 2465: 2407: 2364: 2343: 2257: 2234: 2103: 2058: 2020: 1964: 1900: 1880: 1843: 1716: 1690: 1668: 1582:) have genus zero for 1510:modular function field 1451: 1367:of the spherical (2,3, 1318: 1154:) can be defined over 1066: 935: 589: 527: 441: 292: 2972: 2927: 2869: 2824: 2779: 2724: 2669: 2611: 2566: 2521: 2466: 2408: 2365: 2344: 2258: 2235: 2104: 2059: 2021: 1965: 1901: 1881: 1844: 1717: 1691: 1669: 1550:Möbius transformation 1468:(7) has genus 3, and 1452: 1319: 1188:compact do occur for 1139:and a point of order 1067: 936: 590: 528: 464:> 0, the image of 442: 293: 3134:Cours d'arithmétique 3038:. The result about Γ 2949: 2891: 2846: 2801: 2746: 2691: 2633: 2588: 2543: 2488: 2430: 2385: 2354: 2268: 2247: 2117: 2077: 2030: 1974: 1914: 1890: 1853: 1726: 1704: 1678: 1640: 1378: 1359:= π − π/2 − π/3 − π/ 1333:Euler characteristic 1259: 1234:Gauss–Bonnet theorem 959: 855: 772:and PSL(2, 5). 543: 468: 382: 162: 3275:Panchishkin, A.A.; 3069:, it also involves 2994:monstrous moonshine 2110: 1636:The modular curves 1522:irreducible variety 1480:elements in PSL(2, 1194:quaternion algebras 1091:arithmetic geometry 533:under the action of 367:any open subset of 128:Analytic definition 59:congruence subgroup 42:, constructed as a 3107:Modularity theorem 2967: 2966: 2922: 2921: 2864: 2863: 2819: 2818: 2774: 2773: 2719: 2718: 2664: 2663: 2606: 2605: 2561: 2560: 2516: 2515: 2461: 2460: 2403: 2402: 2360: 2339: 2253: 2230: 2099: 2073: 2054: 2053: 2016: 2015: 1960: 1959: 1896: 1876: 1875: 1839: 1712: 1686: 1685: 1664: 1663: 1447: 1397: 1314: 1062: 997: 931: 893: 775:The modular curve 745:The modular curve 585: 579: 523: 437: 288: 215: 25:algebraic geometry 3242:978-0-691-08092-5 3067:Richard Borcherds 3048:Jean-Pierre Serre 2985: 2984: 2256:{\displaystyle N} 1464:(5) has genus 0, 1396: 1167:elliptic function 1163:modular equations 1008: 904: 785:dessins d'enfants 763:icosahedral group 676:(Γ) which is now 503: 417: 311:complex structure 301:The minimal such 254: 226: 78:compactifications 16:Algebraic variety 3355: 3348:Riemann surfaces 3338:Algebraic curves 3323: 3310: 3297: 3271: 3265: 3257: 3207: 3202: 3196: 3195: 3193: 3192: 3178: 3169: 3163: 3162: 3144: 3138: 3137: 3129: 3056:John G. Thompson 2976: 2974: 2973: 2968: 2965: 2964: 2931: 2929: 2928: 2923: 2920: 2919: 2907: 2906: 2873: 2871: 2870: 2865: 2862: 2861: 2828: 2826: 2825: 2820: 2817: 2816: 2783: 2781: 2780: 2775: 2772: 2771: 2759: 2758: 2728: 2726: 2725: 2720: 2717: 2716: 2704: 2703: 2673: 2671: 2670: 2665: 2662: 2661: 2649: 2648: 2615: 2613: 2612: 2607: 2604: 2603: 2570: 2568: 2567: 2562: 2559: 2558: 2525: 2523: 2522: 2517: 2514: 2513: 2501: 2500: 2470: 2468: 2467: 2462: 2459: 2458: 2446: 2445: 2412: 2410: 2409: 2404: 2401: 2400: 2369: 2367: 2366: 2361: 2348: 2346: 2345: 2342:{\displaystyle } 2340: 2335: 2334: 2322: 2321: 2309: 2308: 2296: 2295: 2283: 2282: 2262: 2260: 2259: 2254: 2239: 2237: 2236: 2231: 2229: 2228: 2213: 2212: 2200: 2199: 2190: 2189: 2177: 2176: 2161: 2160: 2142: 2141: 2129: 2128: 2111: 2108: 2106: 2105: 2100: 2089: 2088: 2072: 2063: 2061: 2060: 2055: 2043: 2042: 2025: 2023: 2022: 2017: 1987: 1986: 1969: 1967: 1966: 1961: 1940: 1939: 1927: 1926: 1905: 1903: 1902: 1897: 1885: 1883: 1882: 1877: 1874: 1866: 1865: 1848: 1846: 1845: 1840: 1838: 1837: 1822: 1821: 1809: 1808: 1799: 1798: 1786: 1785: 1770: 1769: 1751: 1750: 1738: 1737: 1721: 1719: 1718: 1713: 1711: 1695: 1693: 1692: 1687: 1673: 1671: 1670: 1665: 1653: 1652: 1456: 1454: 1453: 1448: 1398: 1389: 1323: 1321: 1320: 1315: 1304: 1296: 1071: 1069: 1068: 1063: 1058: 1054: 1006: 1002: 1001: 940: 938: 937: 932: 927: 923: 902: 898: 897: 795:(7) →  655: 640: 594: 592: 591: 586: 584: 583: 532: 530: 529: 524: 504: 501: 496: 451:coprime integers 446: 444: 443: 438: 418: 415: 410: 378:> 0, the set 358: 297: 295: 294: 289: 284: 280: 255: 252: 224: 220: 219: 113:cyclotomic field 106:rational numbers 48:upper half-plane 3363: 3362: 3358: 3357: 3356: 3354: 3353: 3352: 3328: 3327: 3326: 3308: 3295: 3281:"Modular curve" 3259: 3258: 3243: 3211: 3210: 3203: 3199: 3190: 3188: 3176: 3170: 3166: 3159: 3145: 3141: 3130: 3126: 3121: 3112:Shimura variety 3093: 3041: 3020: 3010: 2990: 2960: 2956: 2950: 2947: 2946: 2915: 2911: 2902: 2898: 2892: 2889: 2888: 2857: 2853: 2847: 2844: 2843: 2812: 2808: 2802: 2799: 2798: 2767: 2763: 2754: 2750: 2747: 2744: 2743: 2712: 2708: 2699: 2695: 2692: 2689: 2688: 2657: 2653: 2644: 2640: 2634: 2631: 2630: 2599: 2595: 2589: 2586: 2585: 2554: 2550: 2544: 2541: 2540: 2509: 2505: 2496: 2492: 2489: 2486: 2485: 2454: 2450: 2441: 2437: 2431: 2428: 2427: 2396: 2392: 2386: 2383: 2382: 2355: 2352: 2351: 2330: 2326: 2317: 2313: 2304: 2300: 2291: 2287: 2278: 2274: 2269: 2266: 2265: 2248: 2245: 2244: 2224: 2220: 2208: 2204: 2195: 2191: 2185: 2181: 2172: 2168: 2156: 2152: 2137: 2133: 2124: 2120: 2118: 2115: 2114: 2084: 2080: 2078: 2075: 2074: 2038: 2034: 2031: 2028: 2027: 1982: 1978: 1975: 1972: 1971: 1935: 1931: 1922: 1918: 1915: 1912: 1911: 1891: 1888: 1887: 1870: 1861: 1857: 1854: 1851: 1850: 1833: 1829: 1817: 1813: 1804: 1800: 1794: 1790: 1781: 1777: 1765: 1761: 1746: 1742: 1733: 1729: 1727: 1724: 1723: 1707: 1705: 1702: 1701: 1698:elliptic curves 1679: 1676: 1675: 1648: 1644: 1641: 1638: 1637: 1634: 1627: 1577: 1506: 1492:) of any level 1387: 1379: 1376: 1375: 1327:where χ = 2 − 2 1300: 1292: 1260: 1257: 1256: 1202: 1190:Fuchsian groups 1175:correspondences 1171:Hecke operators 1149: 1130: 1119: 1086:level structure 1081:elliptic curves 996: 995: 990: 984: 983: 978: 968: 967: 966: 962: 960: 957: 956: 947: 892: 891: 886: 880: 879: 874: 864: 863: 862: 858: 856: 853: 852: 839: 812: 789:Belyi functions 771: 753:. The covering 737: 729: 717: 706: 690: 656:}, the space Γ\ 650: 635: 578: 577: 572: 566: 565: 557: 547: 546: 544: 541: 540: 500: 492: 469: 466: 465: 414: 406: 383: 380: 379: 349: 335: 253: and  251: 214: 213: 208: 202: 201: 196: 186: 185: 184: 180: 163: 160: 159: 130: 123: 98:complex numbers 94:elliptic curves 46:of the complex 40:algebraic curve 36:Riemann surface 17: 12: 11: 5: 3361: 3351: 3350: 3345: 3340: 3325: 3324: 3302:Ogg, Andrew P. 3298: 3293: 3272: 3241: 3220: 3219: 3218: 3209: 3208: 3197: 3164: 3157: 3139: 3123: 3122: 3120: 3117: 3116: 3115: 3109: 3104: 3099: 3092: 3089: 3039: 3018: 3008: 2989: 2986: 2983: 2982: 2977: 2963: 2959: 2955: 2944: 2942: 2938: 2937: 2932: 2918: 2914: 2910: 2905: 2901: 2897: 2886: 2884: 2880: 2879: 2874: 2860: 2856: 2852: 2841: 2839: 2835: 2834: 2829: 2815: 2811: 2807: 2796: 2794: 2790: 2789: 2784: 2770: 2766: 2762: 2757: 2753: 2741: 2739: 2735: 2734: 2729: 2715: 2711: 2707: 2702: 2698: 2686: 2684: 2680: 2679: 2674: 2660: 2656: 2652: 2647: 2643: 2639: 2628: 2626: 2622: 2621: 2616: 2602: 2598: 2594: 2583: 2581: 2577: 2576: 2571: 2557: 2553: 2549: 2538: 2536: 2532: 2531: 2526: 2512: 2508: 2504: 2499: 2495: 2483: 2481: 2477: 2476: 2471: 2457: 2453: 2449: 2444: 2440: 2436: 2425: 2423: 2419: 2418: 2413: 2399: 2395: 2391: 2380: 2378: 2374: 2373: 2370: 2359: 2349: 2338: 2333: 2329: 2325: 2320: 2316: 2312: 2307: 2303: 2299: 2294: 2290: 2286: 2281: 2277: 2273: 2263: 2252: 2241: 2240: 2227: 2223: 2219: 2216: 2211: 2207: 2203: 2198: 2194: 2188: 2184: 2180: 2175: 2171: 2167: 2164: 2159: 2155: 2151: 2148: 2145: 2140: 2136: 2132: 2127: 2123: 2098: 2095: 2092: 2087: 2083: 2052: 2049: 2046: 2041: 2037: 2014: 2011: 2008: 2005: 2002: 1999: 1996: 1993: 1990: 1985: 1981: 1958: 1955: 1952: 1949: 1946: 1943: 1938: 1934: 1930: 1925: 1921: 1895: 1873: 1869: 1864: 1860: 1836: 1832: 1828: 1825: 1820: 1816: 1812: 1807: 1803: 1797: 1793: 1789: 1784: 1780: 1776: 1773: 1768: 1764: 1760: 1757: 1754: 1749: 1745: 1741: 1736: 1732: 1710: 1684: 1662: 1659: 1656: 1651: 1647: 1633: 1632:) of genus one 1625: 1620: 1614:can occur, is 1575: 1514:function field 1505: 1502: 1458: 1457: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1401: 1395: 1392: 1386: 1383: 1365:angular defect 1325: 1324: 1313: 1310: 1307: 1303: 1299: 1295: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1201: 1198: 1147: 1128: 1117: 1097:modular curve 1073: 1072: 1061: 1057: 1053: 1048: 1044: 1041: 1038: 1035: 1032: 1027: 1023: 1020: 1017: 1014: 1011: 1005: 1000: 994: 991: 989: 986: 985: 982: 979: 977: 974: 973: 971: 965: 945: 942: 941: 930: 926: 922: 917: 913: 910: 907: 901: 896: 890: 887: 885: 882: 881: 878: 875: 873: 870: 869: 867: 861: 837: 810: 801:PSL(2, 7) 769: 735: 727: 715: 704: 689: 686: 660:* becomes the 625:Riemann sphere 617: 616: 597: 596: 595: 582: 576: 573: 571: 568: 567: 564: 561: 558: 556: 553: 552: 550: 535: 534: 522: 519: 516: 513: 510: 507: 499: 495: 491: 488: 485: 482: 479: 476: 473: 447: 436: 433: 430: 427: 424: 421: 413: 409: 405: 402: 399: 396: 393: 390: 387: 372: 348:* =  334: 331: 305:is called the 299: 298: 287: 283: 279: 274: 270: 267: 264: 261: 258: 250: 245: 241: 238: 235: 232: 229: 223: 218: 212: 209: 207: 204: 203: 200: 197: 195: 192: 191: 189: 183: 179: 176: 173: 170: 167: 129: 126: 119: 76:(Γ) which are 15: 9: 6: 4: 3: 2: 3360: 3349: 3346: 3344: 3343:Modular forms 3341: 3339: 3336: 3335: 3333: 3322: 3318: 3315:(in French), 3314: 3307: 3303: 3299: 3296: 3294:1-4020-0609-8 3290: 3286: 3282: 3278: 3277:Parshin, A.N. 3273: 3269: 3263: 3256: 3252: 3248: 3244: 3238: 3234: 3230: 3226: 3225:Shimura, Goro 3222: 3221: 3217: 3213: 3212: 3206: 3201: 3186: 3182: 3175: 3168: 3160: 3158:3-540-07392-2 3154: 3150: 3143: 3135: 3128: 3124: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3094: 3088: 3086: 3085: 3079: 3078: 3072: 3068: 3063: 3061: 3060:Jack Daniel's 3057: 3053: 3049: 3045: 3037: 3036:monster group 3033: 3029: 3025: 3021: 3014: 3006: 3001: 2999: 2995: 2981: 2978: 2961: 2957: 2953: 2945: 2943: 2940: 2939: 2936: 2933: 2916: 2912: 2908: 2903: 2899: 2895: 2887: 2885: 2882: 2881: 2878: 2875: 2858: 2854: 2850: 2842: 2840: 2837: 2836: 2833: 2830: 2813: 2809: 2805: 2797: 2795: 2792: 2791: 2788: 2785: 2768: 2764: 2760: 2755: 2751: 2742: 2740: 2737: 2736: 2733: 2730: 2713: 2709: 2705: 2700: 2696: 2687: 2685: 2682: 2681: 2678: 2675: 2658: 2654: 2650: 2645: 2641: 2637: 2629: 2627: 2624: 2623: 2620: 2617: 2600: 2596: 2592: 2584: 2582: 2579: 2578: 2575: 2572: 2555: 2551: 2547: 2539: 2537: 2534: 2533: 2530: 2527: 2510: 2506: 2502: 2497: 2493: 2484: 2482: 2479: 2478: 2475: 2472: 2455: 2451: 2447: 2442: 2438: 2434: 2426: 2424: 2421: 2420: 2417: 2414: 2397: 2393: 2389: 2381: 2379: 2376: 2375: 2371: 2350: 2331: 2327: 2323: 2318: 2314: 2310: 2305: 2301: 2297: 2292: 2288: 2284: 2279: 2275: 2264: 2250: 2243: 2242: 2225: 2221: 2217: 2214: 2209: 2205: 2201: 2196: 2192: 2186: 2182: 2178: 2173: 2169: 2165: 2162: 2157: 2153: 2149: 2146: 2143: 2138: 2134: 2130: 2125: 2121: 2112: 2093: 2085: 2081: 2071: 2069: 2068: 2047: 2039: 2035: 2009: 2006: 2003: 2000: 1997: 1994: 1988: 1983: 1979: 1953: 1950: 1947: 1941: 1936: 1932: 1928: 1923: 1919: 1909: 1867: 1862: 1858: 1834: 1830: 1826: 1823: 1818: 1814: 1810: 1805: 1801: 1795: 1791: 1787: 1782: 1778: 1774: 1771: 1766: 1762: 1758: 1755: 1752: 1747: 1743: 1739: 1734: 1730: 1699: 1682: 1657: 1649: 1645: 1631: 1624: 1619: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1574: 1569: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1540:(1) = PSL(2, 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1508:In general a 1501: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1444: 1438: 1435: 1432: 1423: 1420: 1417: 1408: 1405: 1402: 1393: 1390: 1384: 1381: 1374: 1373: 1372: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1311: 1308: 1305: 1297: 1289: 1280: 1274: 1268: 1265: 1262: 1255: 1254: 1253: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1204:The covering 1197: 1195: 1191: 1187: 1183: 1180:Quotients of 1178: 1176: 1172: 1168: 1164: 1159: 1157: 1153: 1146: 1142: 1138: 1134: 1127: 1123: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1087: 1082: 1078: 1077:moduli spaces 1059: 1055: 1051: 1046: 1042: 1039: 1036: 1033: 1030: 1025: 1021: 1018: 1015: 1012: 1009: 1003: 998: 992: 987: 980: 975: 969: 963: 955: 954: 953: 951: 928: 924: 920: 915: 911: 908: 905: 899: 894: 888: 883: 876: 871: 865: 859: 851: 850: 849: 847: 843: 835: 832: 828: 824: 820: 816: 809: 804: 802: 798: 794: 790: 786: 782: 781:Klein quartic 778: 773: 768: 764: 760: 756: 752: 748: 743: 741: 733: 725: 721: 714: 710: 703: 699: 695: 685: 683: 679: 675: 671: 667: 663: 659: 653: 648: 644: 638: 633: 629: 626: 622: 614: 610: 606: 602: 598: 580: 574: 569: 562: 559: 554: 548: 539: 538: 537: 536: 517: 514: 508: 497: 489: 486: 480: 463: 459: 455: 452: 448: 431: 428: 422: 411: 403: 400: 394: 377: 373: 370: 366: 365: 364: 362: 356: 352: 347: 344: 340: 330: 328: 324: 323:modular curve 320: 316: 312: 308: 304: 285: 281: 277: 272: 268: 265: 262: 259: 256: 248: 243: 239: 236: 233: 230: 227: 221: 216: 210: 205: 198: 193: 187: 181: 177: 171: 158: 157: 156: 154: 150: 149: 143: 139: 135: 125: 122: 117: 114: 110: 107: 103: 99: 95: 91: 87: 83: 79: 75: 72: 68: 64: 63:modular group 60: 56: 52: 49: 45: 41: 37: 33: 30: 29:modular curve 26: 22: 21:number theory 3312: 3284: 3254: 3228: 3200: 3189:. Retrieved 3184: 3180: 3167: 3148: 3142: 3133: 3127: 3083: 3076: 3064: 3046:) is due to 3043: 3031: 3027: 3023: 3012: 3002: 2997: 2991: 2065: 1907: 1635: 1629: 1622: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1570: 1565: 1561: 1557: 1553: 1545: 1541: 1537: 1518:moduli space 1509: 1507: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1459: 1368: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1328: 1326: 1249: 1241: 1237: 1225: 1221: 1217: 1213: 1209: 1205: 1203: 1185: 1181: 1179: 1160: 1155: 1151: 1144: 1140: 1136: 1132: 1125: 1121: 1114: 1106: 1102: 1098: 1094: 1093:. The level 1084: 1074: 949: 943: 845: 841: 833: 826: 822: 814: 807: 805: 796: 792: 776: 774: 766: 758: 754: 746: 744: 739: 731: 723: 719: 712: 708: 701: 697: 693: 691: 681: 673: 669: 665: 657: 651: 646: 636: 631: 627: 620: 618: 612: 608: 604: 600: 461: 457: 453: 375: 368: 360: 354: 350: 345: 342: 338: 336: 326: 322: 317:to obtain a 314: 306: 302: 300: 152: 147: 141: 133: 131: 120: 115: 108: 85: 81: 73: 70: 66: 50: 31: 28: 18: 3026:) in SL(2, 2109:of genus 1 1849:. This is, 1571:The spaces 1566:Hauptmoduln 779:(7) is the 751:icosahedron 645:called the 619:This turns 90:parametrize 3332:Categories 3205:Ogg (1974) 3191:2022-11-06 3119:References 3052:Andrew Ogg 3005:normalizer 1594:and has a 1554:Hauptmodul 1534:j-function 1504:Genus zero 647:cusps of Γ 319:noncompact 307:level of Γ 82:cusps of Γ 3227:(1994) , 3077:functions 2954:− 2909:⋅ 2896:− 2851:− 2806:− 2761:⋅ 2706:⋅ 2651:⋅ 2638:− 2593:− 2548:− 2503:⋅ 2448:⋅ 2435:− 2390:− 2358:Δ 1995:− 1989:∈ 1942:∈ 1894:Δ 1868:∈ 1564:, plural 1436:− 1421:− 1306:⋅ 1269:χ 1266:π 1263:− 1244:). For a 1040:≡ 1019:≡ 1013:≡ 909:≡ 560:− 509:τ 498:∣ 490:∈ 487:τ 481:∪ 475:∞ 423:τ 412:∣ 404:∈ 401:τ 395:∪ 389:∞ 266:≡ 237:≡ 231:≡ 166:Γ 61:Γ of the 34:(Γ) is a 3304:(1974), 3262:citation 3091:See also 3082:modular 3075:modular 1169:theory. 836:. Then Γ 734:), and Γ 688:Examples 460:and all 449:for all 374:for all 44:quotient 3321:0417184 3251:1291394 3187:: 44–45 1908:reduced 1363:is the 1355:), and 1331:is the 1111:torsion 817:), the 711:), and 678:compact 102:defined 53:by the 3319:  3291:  3249:  3239:  3155:  2372:LMFDB 1248:level 1124:) and 1113:. For 1007:  903:  831:modulo 757:(5) → 643:orbits 599:where 225:  55:action 3309:(PDF) 3177:(PDF) 3084:forms 3015:) of 1700:over 1602:with 1526:Genus 1512:is a 1460:Thus 1339:| = ( 1252:≥ 5, 1246:prime 1224:) if 1200:Genus 1184:that 1083:with 944:and Γ 684:(Γ). 664:of Γ\ 329:(Γ). 111:or a 57:of a 3289:ISBN 3268:link 3237:ISBN 3153:ISBN 3054:and 2980:link 2935:link 2877:link 2832:link 2787:link 2732:link 2677:link 2619:link 2574:link 2529:link 2474:link 2416:link 1970:and 1558:main 1524:). 1232:and 1212:) → 1079:for 787:and 726:), Γ 654:∪ {∞ 639:∪ {∞ 615:= 1. 515:> 429:> 357:∪ {∞ 309:. A 27:, a 23:and 2070:. 2064:on 1568:). 1560:or 1343:+1) 1335:, | 1186:are 1047:mod 1026:mod 916:mod 823:the 742:). 700:), 273:mod 244:mod 19:In 3334:: 3317:MR 3311:, 3287:, 3283:, 3279:, 3264:}} 3260:{{ 3247:MR 3245:, 3235:, 3185:43 3183:. 3179:. 3050:, 2941:49 2883:36 2859:12 2838:32 2793:27 2738:24 2683:21 2625:20 2597:19 2580:19 2552:17 2535:17 2480:15 2422:14 2394:11 2377:11 1618:. 1544:)\ 1500:. 1394:24 1158:. 848:: 803:. 613:cm 611:+ 609:an 603:, 502:Im 456:, 416:Im 353:∪ 118:(ζ 3270:) 3255:1 3194:. 3161:. 3044:p 3042:( 3040:0 3032:p 3028:R 3024:p 3022:( 3019:0 3017:Γ 3013:p 3011:( 3009:0 3007:Γ 2998:q 2962:3 2958:7 2917:3 2913:3 2904:4 2900:2 2855:2 2814:9 2810:3 2769:2 2765:3 2756:8 2752:2 2714:2 2710:7 2701:4 2697:3 2659:2 2655:5 2646:8 2642:2 2601:3 2556:4 2511:4 2507:5 2498:4 2494:3 2456:3 2452:7 2443:6 2439:2 2398:5 2337:] 2332:6 2328:a 2324:, 2319:4 2315:a 2311:, 2306:3 2302:a 2298:, 2293:2 2289:a 2285:, 2280:1 2276:a 2272:[ 2251:N 2226:6 2222:a 2218:+ 2215:x 2210:4 2206:a 2202:+ 2197:2 2193:x 2187:2 2183:a 2179:+ 2174:3 2170:x 2166:= 2163:y 2158:3 2154:a 2150:+ 2147:y 2144:x 2139:1 2135:a 2131:+ 2126:2 2122:y 2097:) 2094:N 2091:( 2086:0 2082:X 2051:) 2048:N 2045:( 2040:0 2036:X 2013:} 2010:1 2007:, 2004:0 2001:, 1998:1 1992:{ 1984:2 1980:a 1957:} 1954:1 1951:, 1948:0 1945:{ 1937:3 1933:a 1929:, 1924:1 1920:a 1872:Z 1863:j 1859:a 1835:6 1831:a 1827:+ 1824:x 1819:4 1815:a 1811:+ 1806:2 1802:x 1796:2 1792:a 1788:+ 1783:3 1779:x 1775:= 1772:y 1767:3 1763:a 1759:+ 1756:y 1753:x 1748:1 1744:a 1740:+ 1735:2 1731:y 1709:Q 1683:N 1661:) 1658:N 1655:( 1650:0 1646:X 1630:N 1628:( 1626:0 1623:X 1612:n 1608:n 1604:n 1600:Q 1596:Q 1592:Q 1588:n 1584:n 1580:n 1578:( 1576:1 1573:X 1556:( 1546:H 1542:Z 1538:X 1498:N 1494:N 1490:N 1488:( 1486:X 1482:Z 1478:p 1474:p 1470:X 1466:X 1462:X 1445:. 1442:) 1439:5 1433:p 1430:( 1427:) 1424:3 1418:p 1415:( 1412:) 1409:2 1406:+ 1403:p 1400:( 1391:1 1385:= 1382:g 1369:p 1361:p 1357:D 1353:p 1349:p 1347:( 1345:p 1341:p 1337:G 1329:g 1312:, 1309:D 1302:| 1298:G 1294:| 1290:= 1287:) 1284:) 1281:p 1278:( 1275:X 1272:( 1250:p 1242:N 1240:( 1238:X 1226:N 1222:N 1218:N 1214:X 1210:N 1208:( 1206:X 1182:H 1156:Q 1152:N 1150:( 1148:0 1145:X 1141:N 1137:N 1133:N 1131:( 1129:1 1126:X 1122:N 1120:( 1118:0 1115:X 1109:- 1107:N 1103:N 1101:( 1099:X 1095:N 1060:. 1056:} 1052:N 1043:0 1037:c 1034:, 1031:N 1022:1 1016:d 1010:a 1004:: 999:) 993:d 988:c 981:b 976:a 970:( 964:{ 950:N 948:( 946:1 929:, 925:} 921:N 912:0 906:c 900:: 895:) 889:d 884:c 877:b 872:a 866:( 860:{ 846:N 842:N 840:( 838:0 834:N 827:N 815:N 813:( 811:0 808:X 797:X 793:X 777:X 770:5 767:A 759:X 755:X 747:X 740:N 738:( 736:1 732:N 730:( 728:0 724:N 720:N 718:( 716:1 713:X 709:N 707:( 705:0 702:X 698:N 696:( 694:X 682:Y 674:X 670:H 666:H 658:H 652:Q 637:Q 632:C 630:( 628:P 621:H 605:n 601:m 581:) 575:n 570:c 563:m 555:a 549:( 521:} 518:r 512:) 506:( 494:H 484:{ 478:} 472:{ 462:r 458:c 454:a 435:} 432:r 426:) 420:( 408:H 398:{ 392:} 386:{ 376:r 371:, 369:H 361:H 355:Q 351:H 346:H 339:Y 327:Y 315:H 303:N 286:. 282:} 278:N 269:0 263:c 260:, 257:b 249:N 240:1 234:d 228:a 222:: 217:) 211:d 206:c 199:b 194:a 188:( 182:{ 178:= 175:) 172:N 169:( 153:N 148:N 142:Z 134:Z 121:n 116:Q 109:Q 74:X 67:Z 51:H 32:Y

Index

number theory
algebraic geometry
Riemann surface
algebraic curve
quotient
upper half-plane
action
congruence subgroup
modular group
compactifications
parametrize
elliptic curves
complex numbers
defined
rational numbers
cyclotomic field
fractional linear transformations
principal congruence subgroup of level N
complex structure
noncompact
coprime integers
Riemann sphere
orbits
Alexandroff compactification
compact
icosahedron
icosahedral group
Klein quartic
dessins d'enfants
Belyi functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.