Knowledge

Arithmetic group

Source 📝

38: 923:
as the study of classical modular forms and their generalisations developed. Of course the two topics were related, as can be seen for example in Langlands' computation of the volume of certain fundamental domains using analytic methods. This classical theory culminated with the work of Siegel, who
4713:
is (roughly) a subgroup of an arithmetic group defined by taking all matrices satisfying certain equations modulo an integer, for example the group of 2 by 2 integer matrices with diagonal (respectively off-diagonal) coefficients congruent to 1 (respectively 0) modulo a positive integer. These are
3143:
in a Lie group is usually defined as a discrete subgroup with finite covolume. The terminology introduced above is coherent with this, as a theorem due to Borel and Harish-Chandra states that an arithmetic subgroup in a semisimple Lie group is of finite covolume (the discreteness is obvious).
966:
In the seventies Margulis revolutionised the topic by proving that in "most" cases the arithmetic constructions account for all lattices in a given Lie group. Some limited results in this direction had been obtained earlier by Selberg, but Margulis' methods (the use of
4718:) is that this is true for (irreducible) arithmetic lattices in higher-rank groups and false in rank-one groups. It is still open in this generality but there are many results establishing it for specific lattices (in both its positive and negative cases). 971:
tools for actions on homogeneous spaces) were completely new in this context and were to be extremely influential on later developments, effectively renewing the old subject of geometry of numbers and allowing Margulis himself to prove the
5574:. The possible lattices have been classified by Prasad and Yeung and the classification was completed by Cartwright and Steger who determined, by computer assisted computations, all the fake projective planes in each Prasad-Yeung class. 5399: 4983: 1218: 3677: 3605: 4673: 1744: 2059: 1923: 1294: 5140: 4901: 4834: 4325: 1647: 5534:
but is not biholomorphic to it; the first example was discovered by Mumford. By work of Klingler (also proved independently by Yeung) all such are quotients of the 2-ball by arithmetic lattices in
3023: 4197: 4548: 4371: 2679: 2417: 2317: 2245: 2156: 854: 5073: 4459: 3533: 3351: 3296: 3129: 3086: 2830: 2360: 2199: 2110: 1433: 1094: 5532: 4726:
Instead of taking integral points in the definition of an arithmetic lattice one can take points which are only integral away from a finite number of primes. This leads to the notion of an
1393: 2922: 2574: 5475:
and numerous variations on her construction have appeared since. The isospectrality problem is in fact particularly amenable to study in the restricted setting of arithmetic manifolds.
2863: 2477: 1329: 1147: 4155: 2625: 4235: 3450: 5572: 4270: 3965: 3887: 3821: 3720: 1774: 2974: 1485: 4101: 4416: 5292: 5270: 3991: 3847: 3746: 3255: 3213: 3191: 2791: 2769: 1864: 1842: 1796: 1581: 1507: 1240: 1051: 483: 458: 421: 3781: 5443:(Lubotzky-Phillips-Sarnak). Such graphs are known to exist in abundance by probabilistic results but the explicit nature of these constructions makes them interesting. 987:
In another direction the classical topic of modular forms has blossomed into the modern theory of automorphic forms. The driving force behind this effort is mainly the
1349: 5323: 5312: 5228: 3925: 3377: 1453: 4714:
always finite-index subgroups and the congruence subgroup problem roughly asks whether all subgroups are obtained in this way. The conjecture (usually attributed to
2533: 2503: 5437: 3477: 1943: 1749:
On the other hand, the class of groups thus obtained is not larger than the class of arithmetic groups as defined above. Indeed, if we consider the algebraic group
2271: 888:
One of the origins of the mathematical theory of arithmetic groups is algebraic number theory. The classical reduction theory of quadratic and Hermitian forms by
1983: 5248: 5208: 5180: 5160: 5030: 5010: 4906: 4767: 4745: 4693: 4595: 4575: 4502: 4482: 4391: 4121: 4077: 4057: 4034: 3404: 3233: 3169: 3043: 2942: 2883: 2747: 2727: 1820: 1667: 1601: 1559: 1535: 1114: 1152: 3610: 3538: 3310:
lattice is arithmetic. This result is true for all irreducible lattice in semisimple Lie groups of real rank larger than two. For example, all lattices in
4600: 2630:
Another classical example is given by the integral elements in the orthogonal group of a quadratic form defined over a number field, for example
6227: 785: 1672: 1245: 5078: 4839: 4772: 1988: 909: 3406:
has a factor of real rank one (otherwise the theorem always holds) and is not simple: it means that for any product decomposition
3306:
The spectacular result that Margulis obtained is a partial converse to the Borel—Harish-Chandra theorem: for certain Lie groups
1869: 6159:
Prasad, Gopal; Rapinchuk, Andrei S. (2009). "Weakly commensurable arithmetic groups and isospectral locally symmetric spaces".
4275: 343: 5459:. It is in fact known that the Ramanujan property itself implies that the local girths of the graph are almost always large. 4675:
explained above. This amounts to classifying the algebraic groups whose real points are isomorphic up to a compact factor to
1606: 2979: 293: 4160: 939:
and others on algebraic groups. Shortly afterwards the finiteness of covolume was proven in full generality by Borel and
5782:"Harmonic analysis ans discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series" 3257:
will be co-compact in the associated orthogonal group if and only if the quadratic form does not vanish at any point in
963:
and others. The state of the art after this period was essentially fixed in Raghunathan's treatise, published in 1972.
778: 288: 4507: 4330: 2633: 2376: 2276: 2204: 2115: 813: 5625:
Langlands, R. P. (1966), "The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups",
5035: 4421: 3482: 3313: 3260: 3091: 3048: 2796: 2322: 2161: 2072: 1398: 1056: 5497: 1358: 4008: 1011: 2888: 2538: 1352: 2835: 2428: 1301: 1119: 6262: 4126: 704: 2582: 771: 4504:
to be the Hamilton quaternions at all real places. They exhaust all arithmetic commensurability classes in
1000: 4202: 3409: 3140: 913: 388: 202: 5537: 4244: 3930: 3852: 3786: 3685: 6071:
Abért, Miklós; Glasner, Yair; Virág, Bálint (2014). "Kesten's theorem for invariant random subgroups".
2947: 1458: 996: 120: 6247: 5416: 4014: 4002: 4082: 4396: 3682:
The Margulis arithmeticity (and superrigidity) theorem holds for certain rank 1 Lie groups, namely
2690: 1752: 586: 320: 197: 85: 5472: 5275: 5253: 3970: 3826: 3725: 3238: 3196: 3174: 2774: 2752: 1847: 1825: 1779: 1564: 1490: 1223: 1034: 466: 441: 404: 3751: 1220:
In general it is not so obvious how to make precise sense of the notion of "integer points" of a
1007: 5887:"Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one" 5394:{\displaystyle G=\mathrm {G} (\mathbb {R} )\times \prod _{p\in S}\mathrm {G} (\mathbb {Q} _{p})} 6257: 920: 736: 526: 6016: 5765:
Margulis, Grigori (1975). "Discrete groups of motions of manifolds of nonpositive curvature".
1334: 6252: 5315: 5297: 5213: 3892: 3356: 1438: 927:
For the modern theory to begin foundational work was needed, and was provided by the work of
869: 610: 2508: 2482: 908:
and the early development of the study of arithmetic invariant of number fields such as the
6190: 6124:
Vignéras, Marie-France (1980). "Variétés riemanniennes isospectrales et non isométriques".
6102: 6050: 5767:
Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2
5695: 5634: 5468: 5456: 5422: 4238: 3455: 2698: 2577: 1928: 977: 973: 550: 538: 156: 90: 4978:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} )\times \mathrm {SL} _{2}(\mathbb {Q} _{p}).} 8: 6017:"Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups" 4710: 4704: 4577:
it is in theory possible to classify (up to commensurability) all arithmetic lattices in
2682: 2371: 2250: 905: 865: 125: 20: 3215:) is anisotropic. For example, the arithmetic lattice associated to a quadratic form in 1948: 6194: 6168: 6141: 6106: 6080: 6054: 6028: 5941: 5906: 5730: 5668: 5452: 5451:
Congruence covers of arithmetic surfaces are known to give rise to surfaces with large
5233: 5193: 5165: 5145: 5015: 4995: 4752: 4730: 4678: 4580: 4560: 4487: 4467: 4376: 4106: 4062: 4042: 4037: 4019: 3389: 3218: 3154: 3028: 2927: 2868: 2732: 2712: 2686: 1805: 1652: 1586: 1544: 1520: 1213:{\displaystyle \Gamma =\mathrm {GL} _{n}(\mathbb {Z} )\cap \mathrm {G} (\mathbb {Q} ).} 1099: 897: 110: 82: 5439:) of Lubotzky and Zimmer can be used to construct expander graphs (Margulis), or even 6221: 5910: 5886: 5672: 4715: 3672:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )\times \mathrm {SL} _{2}(\mathbb {Z} )} 3600:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} )\times \mathrm {SL} _{2}(\mathbb {R} )} 3148: 988: 960: 893: 515: 358: 252: 6110: 6058: 5836: 5609: 1509:
is associated a collection of "discrete" subgroups all commensurable to each other.
1242:-group, and the subgroup defined above can change when we take different embeddings 681: 6198: 6178: 6133: 6090: 6038: 5933: 5898: 5831: 5819: 5749: 5722: 5710: 5660: 5648: 5592: 5492: 5455:. Likewise the Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak have large 5440: 1799: 1015: 992: 952: 877: 666: 658: 650: 642: 634: 622: 562: 502: 334: 276: 151: 5781: 5629:, Proc. Sympos. Pure Math., Providence, R.I.: Amer. Math. Soc., pp. 143–148, 6186: 6098: 6046: 5691: 5630: 5484: 4668:{\displaystyle G=\mathrm {SL} _{2}(\mathbb {R} ),\mathrm {SL} _{2}(\mathbb {C} )} 3452:
the lattice is not commensurable to a product of lattices in each of the factors
901: 889: 807: 750: 743: 729: 686: 574: 497: 327: 241: 181: 61: 2694: 968: 940: 857: 757: 693: 383: 363: 300: 265: 186: 176: 161: 146: 100: 77: 6182: 4836:. They are also naturally lattices in certain topological groups, for example 1006:
Finally arithmetic groups are often used to construct interesting examples of
6241: 6094: 6042: 5924:
Corlette, Kevin (1992). "Archimedean superrigidity and hyperbolic geometry".
3380: 2423: 2367: 2363: 981: 956: 861: 676: 598: 432: 305: 171: 3045:(but there are many more, corresponding to other embeddings); for instance, 1298:
Thus a better notion is to take for definition of an arithmetic subgroup of
932: 6008: 5488: 1538: 999:
originating in Selberg's work and developed in the most general setting by
948: 936: 928: 924:
showed the finiteness of the volume of a fundamental domain in many cases.
531: 230: 219: 166: 141: 136: 95: 66: 29: 3379:. The main new ingredient that Margulis used to prove his theorem was the 799: 6033: 5032:
a finite set of prime numbers is the same as for arithmetic groups with
6145: 6012: 5945: 5902: 5734: 5664: 4013:
An arithmetic Fuchsian group is constructed from the following data: a
1739:{\displaystyle \rho ^{-1}(\mathrm {GL} _{n}(O))\subset \mathrm {G} (F)} 698: 426: 5820:"Three-dimensional manifolds, Kleinian groups and hyperbolic geometry" 1517:
A natural generalisation of the construction above is as follows: let
912:. Arithmetic groups can be thought of as a vast generalisation of the 944: 943:. Meanwhile, there was progress on the general theory of lattices in 519: 6137: 5937: 5726: 4769:
stands for the set of primes inverted). The prototypical example is
3147:
The theorem is more precise: it says that the arithmetic lattice is
1010:
Riemannian manifolds. A particularly active research topic has been
3383:
of lattices in higher-rank groups that he proved for this purpose.
873: 56: 6173: 6085: 4464:
Arithmetic Kleinian groups are constructed similarly except that
2693:). Similar constructions can be performed with unitary groups of 398: 312: 1289:{\displaystyle \mathrm {G} \to \mathrm {GL} _{n}(\mathbb {Q} ).} 5135:{\displaystyle \mathrm {GL} _{n}\left(\mathbb {Z} \left\right)} 4896:{\displaystyle \mathrm {SL} _{2}\left(\mathbb {Z} \left\right)} 4829:{\displaystyle \mathrm {SL} _{2}\left(\mathbb {Z} \left\right)} 2704: 2054:{\displaystyle (\rho ')^{-1}(\mathrm {GL} _{nd}(\mathbb {Z} ))} 37: 6214:
COVOLUME DES GROUPES S-ARITHMÉTIQUES ET FAUX PLANS PROJECTIFS
5803:
Arthur, James (2005). "An introduction to the trace formula".
856:
They arise naturally in the study of arithmetic properties of
5960: 5867: 2832:
with compact kernel, the image of an arithmetic subgroup in
900:
for the action of certain arithmetic groups on the relevant
5805:
Harmonic analysis, the trace formula, and Shimura varieties
5185: 3927:. There are no known non-arithmetic lattices in the groups 3996: 1918:{\displaystyle \rho ':\mathrm {G} '\to \mathrm {GL} _{dn}} 4320:{\displaystyle (A^{\sigma }\otimes _{F}\mathbb {R} )^{1}} 2681:. A related construction is by taking the unit groups of 5980:
Discrete groups, expanding graphs and invariant measures
2729:
is a Lie group one can define an arithmetic lattice in
1642:{\displaystyle \rho :\mathrm {G} \to \mathrm {GL} _{n}} 5112: 4873: 4806: 864:. They also give rise to very interesting examples of 5540: 5500: 5425: 5326: 5300: 5278: 5256: 5236: 5216: 5196: 5168: 5148: 5081: 5038: 5018: 4998: 4909: 4842: 4775: 4755: 4733: 4681: 4603: 4583: 4563: 4510: 4490: 4470: 4424: 4399: 4379: 4333: 4278: 4247: 4205: 4163: 4129: 4109: 4085: 4065: 4045: 4022: 3973: 3933: 3895: 3855: 3829: 3789: 3754: 3728: 3688: 3613: 3541: 3485: 3458: 3412: 3392: 3359: 3316: 3263: 3241: 3221: 3199: 3177: 3157: 3094: 3051: 3031: 3018:{\displaystyle G\cap \mathrm {GL} _{n}(\mathbb {Z} )} 2982: 2950: 2930: 2891: 2871: 2838: 2799: 2777: 2755: 2735: 2715: 2636: 2585: 2541: 2511: 2485: 2431: 2379: 2325: 2279: 2253: 2207: 2164: 2118: 2075: 1991: 1951: 1931: 1872: 1850: 1828: 1808: 1782: 1755: 1675: 1655: 1609: 1589: 1567: 1547: 1523: 1493: 1461: 1455:
defined as above (with respect to any embedding into
1441: 1401: 1361: 1337: 1304: 1248: 1226: 1155: 1122: 1102: 1059: 1037: 816: 469: 444: 407: 5769:(in Russian). Canad. Math. Congress. pp. 21–34. 5708: 4461:are obtained in this way (up to commensurability). 4192:{\displaystyle A^{\sigma }\otimes _{F}\mathbb {R} } 3134: 5566: 5526: 5431: 5393: 5306: 5286: 5264: 5242: 5222: 5202: 5174: 5154: 5134: 5067: 5024: 5004: 4977: 4895: 4828: 4761: 4739: 4698: 4687: 4667: 4589: 4569: 4542: 4496: 4484:is required to have exactly one complex place and 4476: 4453: 4410: 4385: 4365: 4319: 4264: 4229: 4191: 4149: 4115: 4095: 4071: 4051: 4028: 3985: 3959: 3919: 3881: 3841: 3815: 3775: 3740: 3714: 3671: 3599: 3527: 3471: 3444: 3398: 3371: 3345: 3290: 3249: 3227: 3207: 3185: 3163: 3123: 3080: 3037: 3017: 2968: 2936: 2916: 2877: 2857: 2824: 2785: 2763: 2741: 2721: 2673: 2619: 2568: 2527: 2497: 2471: 2422:Other well-known and studied examples include the 2411: 2354: 2311: 2265: 2239: 2193: 2150: 2104: 2053: 1977: 1937: 1917: 1858: 1836: 1814: 1790: 1768: 1738: 1661: 1641: 1595: 1575: 1553: 1529: 1501: 1479: 1447: 1427: 1387: 1343: 1323: 1288: 1234: 1212: 1141: 1108: 1088: 1045: 876:. Finally, these two topics join in the theory of 848: 477: 452: 415: 6070: 3301: 6239: 6007: 5190:The Borel–Harish-Chandra theorem generalizes to 4543:{\displaystyle \mathrm {SL} _{2}(\mathbb {C} ).} 4366:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} ),} 2674:{\displaystyle \mathrm {SO} (n,1)(\mathbb {Z} )} 2412:{\displaystyle \mathrm {Sp} _{2g}(\mathbb {Z} )} 2312:{\displaystyle \mathrm {PSL} _{2}(\mathbb {Z} )} 2240:{\displaystyle \mathrm {PGL} _{n}(\mathbb {Z} )} 2151:{\displaystyle \mathrm {PSL} _{n}(\mathbb {Z} )} 2069:The classical example of an arithmetic group is 1746:can legitimately be called an arithmetic group. 1487:). With this definition, to the algebraic group 849:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} ).} 806:is a group obtained as the integer points of an 6158: 5446: 5068:{\displaystyle \mathrm {GL} _{n}(\mathbb {Z} )} 4454:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} )} 3528:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )} 3346:{\displaystyle \mathrm {SL} _{n}(\mathbb {R} )} 3291:{\displaystyle \mathbb {Q} ^{n}\setminus \{0\}} 3124:{\displaystyle \mathrm {SL} _{n}(\mathbb {R} )} 3081:{\displaystyle \mathrm {SL} _{n}(\mathbb {Z} )} 2825:{\displaystyle \mathrm {G} (\mathbb {R} )\to G} 2355:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )} 2194:{\displaystyle \mathrm {GL} _{n}(\mathbb {Z} )} 2105:{\displaystyle \mathrm {SL} _{n}(\mathbb {Z} )} 1985:) then the group constructed above is equal to 1428:{\displaystyle \Lambda /(\Gamma \cap \Lambda )} 1089:{\displaystyle \mathrm {GL} _{n}(\mathbb {Q} )} 1018:wrote, "...often seem to have special beauty." 5527:{\displaystyle \mathbb {P} ^{2}(\mathbb {C} )} 4373:and it is co-compact in all cases except when 1388:{\displaystyle \Gamma /(\Gamma \cap \Lambda )} 1021: 916:of number fields to a noncommutative setting. 880:which is fundamental in modern number theory. 1116:then we can define an arithmetic subgroup of 779: 5958: 5884: 5865: 5627:Algebraic Groups and Discontinuous Subgroups 3285: 3279: 2917:{\displaystyle G=\mathrm {G} (\mathbb {R} )} 2705:Arithmetic lattices in semisimple Lie groups 5853:Discrete subgroups of semisimple Lie groups 5747: 5467:Arithmetic groups can be used to construct 5410: 2569:{\displaystyle \mathbb {Q} ({\sqrt {-m}}),} 6226:: CS1 maint: location missing publisher ( 5711:"Arithmetic subgroups of algebraic groups" 2858:{\displaystyle \mathrm {G} (\mathbb {Q} )} 2472:{\displaystyle \mathrm {SL} _{2}(O_{-m}),} 1324:{\displaystyle \mathrm {G} (\mathbb {Q} )} 1142:{\displaystyle \mathrm {G} (\mathbb {Q} )} 786: 772: 6211: 6172: 6084: 6032: 5885:Gromov, Mikhail; Schoen, Richard (1992). 5835: 5646: 5624: 5517: 5503: 5478: 5378: 5342: 5258: 5103: 5058: 4959: 4929: 4864: 4797: 4658: 4629: 4530: 4444: 4401: 4353: 4303: 4220: 4185: 4150:{\displaystyle \sigma :F\to \mathbb {R} } 4143: 3662: 3633: 3590: 3561: 3505: 3336: 3266: 3243: 3179: 3114: 3071: 3008: 2907: 2848: 2809: 2779: 2664: 2543: 2402: 2345: 2302: 2230: 2184: 2141: 2095: 2041: 1968: 1852: 1830: 1784: 1314: 1276: 1228: 1200: 1181: 1132: 1079: 995:. One of the main tool used there is the 836: 471: 446: 409: 6123: 5977: 5923: 5850: 5817: 5764: 5462: 5186:Lattices in Lie groups over local fields 3783:. It is known not to hold in all groups 2620:{\displaystyle \mathrm {SL} _{2}(O_{m})} 5779: 3997:Arithmetic Fuchsian and Kleinian groups 904:. The topic was related to Minkowski's 6240: 5992: 5802: 5709:Borel, Armand; Harish-Chandra (1962). 5607: 5594:Introduction aux groupes arithmétiques 4721: 3386:Irreducibility only plays a role when 1512: 344:Classification of finite simple groups 5647:Borel, Armand; Tits, Jacques (1965). 5590: 4123:. It is asked that for one embedding 2535:is the ring of integers in the field 868:and hence are objects of interest in 5685: 5405: 4199:be isomorphic to the matrix algebra 2749:as follows: for any algebraic group 2689:over number fields (for example the 1026: 896:and others can be seen as computing 6161:Publ. Math. Inst. Hautes Études Sci 5891:Inst. Hautes Études Sci. Publ. Math 5653:Inst. Hautes Études Sci. Publ. Math 5611:Lectures on the geometry of numbers 4597:, in a manner similar to the cases 4230:{\displaystyle M_{2}(\mathbb {R} )} 3445:{\displaystyle G=G_{1}\times G_{2}} 13: 5995:Some applications of modular forms 5807:. Amer. Math. soc. pp. 1–263. 5567:{\displaystyle \mathrm {PU} (2,1)} 5545: 5542: 5369: 5334: 5301: 5280: 5217: 5210:-arithmetic groups as follows: if 5087: 5084: 5044: 5041: 4944: 4941: 4915: 4912: 4848: 4845: 4781: 4778: 4644: 4641: 4615: 4612: 4516: 4513: 4430: 4427: 4339: 4336: 4265:{\displaystyle {\mathcal {O}}^{1}} 4251: 4088: 3960:{\displaystyle \mathrm {SU} (n,1)} 3938: 3935: 3882:{\displaystyle \mathrm {SU} (n,1)} 3860: 3857: 3816:{\displaystyle \mathrm {SO} (n,1)} 3794: 3791: 3715:{\displaystyle \mathrm {Sp} (n,1)} 3693: 3690: 3648: 3645: 3619: 3616: 3576: 3573: 3547: 3544: 3491: 3488: 3322: 3319: 3201: 3100: 3097: 3057: 3054: 2994: 2991: 2956: 2953: 2899: 2840: 2801: 2757: 2641: 2638: 2591: 2588: 2437: 2434: 2385: 2382: 2331: 2328: 2288: 2285: 2282: 2216: 2213: 2210: 2170: 2167: 2127: 2124: 2121: 2081: 2078: 2024: 2021: 1902: 1899: 1886: 1758: 1723: 1697: 1694: 1629: 1626: 1617: 1569: 1495: 1467: 1464: 1442: 1419: 1413: 1402: 1379: 1373: 1362: 1338: 1306: 1262: 1259: 1250: 1192: 1167: 1164: 1156: 1124: 1065: 1062: 1039: 822: 819: 14: 6274: 5965:Introduction to arithmetic groups 5872:Introduction to arithmetic groups 4552: 3276: 2969:{\displaystyle \mathrm {GL} _{n}} 2578:Hilbert–Blumenthal modular groups 1480:{\displaystyle \mathrm {GL} _{n}} 1012:arithmetic hyperbolic 3-manifolds 919:The same groups also appeared in 6021:Journal of Differential Geometry 5751:Discrete subgroups of Lie groups 5162:is the product of the primes in 4009:Arithmetic hyperbolic 3-manifold 3135:The Borel–Harish-Chandra theorem 2112:, or the closely related groups 36: 6205: 6152: 6117: 6064: 6001: 5986: 5971: 5952: 5917: 5878: 5859: 5844: 5837:10.1090/s0273-0979-1982-15003-0 5811: 5796: 5690:. Birkhäuser. p. iii+126. 4699:The congruence subgroup problem 4557:For every semisimple Lie group 1603:. If we are given an embedding 1149:as the group of integer points 5773: 5758: 5741: 5702: 5679: 5640: 5618: 5601: 5584: 5561: 5549: 5521: 5513: 5388: 5373: 5346: 5338: 5062: 5054: 4969: 4954: 4933: 4925: 4662: 4654: 4633: 4625: 4534: 4526: 4448: 4440: 4357: 4349: 4308: 4279: 4224: 4216: 4139: 4096:{\displaystyle {\mathcal {O}}} 3954: 3942: 3876: 3864: 3810: 3798: 3709: 3697: 3666: 3658: 3637: 3629: 3594: 3586: 3565: 3557: 3522: 3519: 3509: 3501: 3340: 3332: 3302:Margulis arithmeticity theorem 3118: 3110: 3075: 3067: 3012: 3004: 2911: 2903: 2852: 2844: 2816: 2813: 2805: 2793:such that there is a morphism 2697:, a well-known example is the 2668: 2660: 2657: 2645: 2614: 2601: 2560: 2547: 2463: 2447: 2406: 2398: 2349: 2341: 2306: 2298: 2234: 2226: 2188: 2180: 2145: 2137: 2099: 2091: 2048: 2045: 2037: 2016: 2004: 1992: 1972: 1958: 1894: 1733: 1727: 1716: 1713: 1707: 1689: 1621: 1435:are finite sets) with a group 1422: 1410: 1382: 1370: 1318: 1310: 1280: 1272: 1254: 1204: 1196: 1185: 1177: 1136: 1128: 1083: 1075: 860:and other classical topics in 840: 832: 705:Infinite dimensional Lie group 1: 5997:. Cambridge University Press. 5824:Bull. Amer. Math. Soc. (N.S.) 5577: 5483:A fake projective plane is a 5471:. This was first realised by 4987: 4411:{\displaystyle \mathbb {Q} .} 3151:if and only if the "form" of 2505:is a square-free integer and 1769:{\displaystyle \mathrm {G} '} 6212:Rémy, Bertrand (2007–2008), 5978:Lubotzky, Alexander (1994). 5608:Siegel, Carl Ludwig (1989). 5447:Extremal surfaces and graphs 5287:{\displaystyle \mathrm {G} } 5265:{\displaystyle \mathbb {Q} } 4992:The formal definition of an 3986:{\displaystyle n\geqslant 4} 3842:{\displaystyle n\geqslant 2} 3741:{\displaystyle n\geqslant 1} 3250:{\displaystyle \mathbb {Q} } 3208:{\displaystyle \mathrm {G} } 3186:{\displaystyle \mathbb {Q} } 3171:used to define it (i.e. the 3088:is an arithmetic lattice in 3025:is an arithmetic lattice in 2865:is an arithmetic lattice in 2786:{\displaystyle \mathbb {Q} } 2764:{\displaystyle \mathrm {G} } 1859:{\displaystyle \mathbb {Q} } 1837:{\displaystyle \mathbb {Q} } 1791:{\displaystyle \mathbb {Q} } 1576:{\displaystyle \mathrm {G} } 1502:{\displaystyle \mathrm {G} } 1235:{\displaystyle \mathbb {Q} } 1053:is an algebraic subgroup of 1046:{\displaystyle \mathrm {G} } 478:{\displaystyle \mathbb {Z} } 453:{\displaystyle \mathbb {Z} } 416:{\displaystyle \mathbb {Z} } 7: 5959:Witte-Morris, Dave (2015). 5866:Witte-Morris, Dave (2015). 5688:Adèles and algebraic groups 4418:All arithmetic lattices in 4393:is the matrix algebra over 3776:{\displaystyle F_{4}^{-20}} 3479:. For example, the lattice 2370:. Similar examples are the 2064: 1022:Definition and construction 203:List of group theory topics 10: 6279: 5851:Margulis, Girgori (1991). 5818:Thurston, William (1982). 5748:Raghunathan, M.S. (1972). 4702: 4241:. Then the group of units 4237:and for all others to the 4006: 4000: 3748:and the exceptional group 883: 6183:10.1007/s10240-009-0019-6 4015:totally real number field 4003:Arithmetic Fuchsian group 980:) were later obtained by 6095:10.1215/00127094-2410064 5419:or the weaker property ( 5411:Explicit expander graphs 2885:. Thus, for example, if 2691:Hurwitz quaternion order 2366:as it is related to the 1583:an algebraic group over 1344:{\displaystyle \Lambda } 321:Elementary abelian group 198:Glossary of group theory 5415:Arithmetic groups with 5307:{\displaystyle \Gamma } 5250:-arithmetic group in a 5223:{\displaystyle \Gamma } 4327:which is isomorphic to 3920:{\displaystyle n=1,2,3} 3372:{\displaystyle n\geq 3} 1448:{\displaystyle \Gamma } 6043:10.4310/jdg/1180135693 5993:Sarnak, Peter (1990). 5780:Selberg, Atle (1956). 5591:Borel, Armand (1969). 5568: 5528: 5479:Fake projective planes 5433: 5417:Kazhdan's property (T) 5395: 5308: 5288: 5266: 5244: 5224: 5204: 5176: 5156: 5136: 5069: 5026: 5012:-arithmetic group for 5006: 4979: 4897: 4830: 4763: 4741: 4689: 4669: 4591: 4571: 4544: 4498: 4478: 4455: 4412: 4387: 4367: 4321: 4266: 4231: 4193: 4151: 4117: 4097: 4073: 4053: 4030: 3987: 3961: 3921: 3883: 3843: 3817: 3777: 3742: 3716: 3673: 3607:is irreducible, while 3601: 3529: 3473: 3446: 3400: 3373: 3347: 3292: 3251: 3229: 3209: 3187: 3165: 3125: 3082: 3039: 3019: 2970: 2938: 2918: 2879: 2859: 2826: 2787: 2765: 2743: 2723: 2675: 2621: 2570: 2529: 2528:{\displaystyle O_{-m}} 2499: 2498:{\displaystyle m>0} 2473: 2413: 2356: 2313: 2267: 2241: 2195: 2152: 2106: 2055: 1979: 1939: 1919: 1860: 1838: 1816: 1792: 1770: 1740: 1663: 1643: 1597: 1577: 1555: 1541:with ring of integers 1531: 1503: 1481: 1449: 1429: 1389: 1355:(this means that both 1345: 1325: 1290: 1236: 1214: 1143: 1110: 1090: 1047: 921:analytic number theory 850: 737:Linear algebraic group 479: 454: 417: 6263:Differential geometry 5715:Annals of Mathematics 5569: 5529: 5473:Marie-France Vignéras 5469:isospectral manifolds 5463:Isospectral manifolds 5434: 5432:{\displaystyle \tau } 5396: 5316:locally compact group 5309: 5289: 5267: 5245: 5225: 5205: 5177: 5157: 5137: 5070: 5027: 5007: 4980: 4898: 4831: 4764: 4742: 4690: 4670: 4592: 4572: 4545: 4499: 4479: 4456: 4413: 4388: 4368: 4322: 4267: 4232: 4194: 4152: 4118: 4098: 4074: 4054: 4031: 3988: 3962: 3922: 3884: 3849:(ref to GPS) and for 3844: 3818: 3778: 3743: 3717: 3674: 3602: 3530: 3474: 3472:{\displaystyle G_{i}} 3447: 3401: 3374: 3348: 3293: 3252: 3230: 3210: 3188: 3166: 3126: 3083: 3040: 3020: 2971: 2939: 2919: 2880: 2860: 2827: 2788: 2766: 2744: 2724: 2676: 2622: 2571: 2530: 2500: 2474: 2414: 2372:Siegel modular groups 2357: 2314: 2268: 2242: 2196: 2153: 2107: 2056: 1980: 1940: 1938:{\displaystyle \rho } 1920: 1861: 1839: 1817: 1793: 1771: 1741: 1664: 1644: 1598: 1578: 1556: 1532: 1504: 1482: 1450: 1430: 1390: 1346: 1326: 1291: 1237: 1215: 1144: 1111: 1091: 1048: 870:differential geometry 851: 480: 455: 418: 6216:, séminaire Bourbaki 5686:Weil, André (1982). 5538: 5498: 5423: 5324: 5314:is a lattice in the 5298: 5276: 5254: 5234: 5214: 5194: 5166: 5146: 5079: 5036: 5016: 4996: 4907: 4840: 4773: 4753: 4731: 4679: 4601: 4581: 4561: 4508: 4488: 4468: 4422: 4397: 4377: 4331: 4276: 4245: 4239:Hamilton quaternions 4203: 4161: 4127: 4107: 4083: 4063: 4043: 4020: 3971: 3931: 3893: 3853: 3827: 3787: 3752: 3726: 3686: 3611: 3539: 3483: 3456: 3410: 3390: 3357: 3353:are arithmetic when 3314: 3261: 3239: 3219: 3197: 3175: 3155: 3092: 3049: 3029: 2980: 2948: 2928: 2889: 2869: 2836: 2797: 2775: 2753: 2733: 2713: 2699:Picard modular group 2634: 2583: 2539: 2509: 2483: 2429: 2377: 2323: 2277: 2251: 2205: 2162: 2116: 2073: 1989: 1949: 1929: 1870: 1848: 1826: 1806: 1780: 1753: 1673: 1653: 1607: 1587: 1565: 1545: 1521: 1491: 1459: 1439: 1399: 1359: 1335: 1302: 1246: 1224: 1153: 1120: 1100: 1057: 1035: 976:; stronger results ( 974:Oppenheim conjecture 866:Riemannian manifolds 814: 467: 442: 405: 5786:J. Indian Math. Soc 5649:"Groupes réductifs" 5487:which has the same 4747:-arithmetic lattice 4722:S-arithmetic groups 4711:congruence subgroup 4705:Congruence subgroup 3772: 2687:quaternion algebras 2266:{\displaystyle n=2} 1800:restricting scalars 1513:Using number fields 969:ergodic-theoretical 906:geometry of numbers 898:fundamental domains 111:Group homomorphisms 21:Algebraic structure 5903:10.1007/bf02699433 5855:. Springer-Verlag. 5754:. Springer-Verlag. 5665:10.1007/bf02684375 5614:. Springer-Verlag. 5564: 5524: 5453:injectivity radius 5429: 5391: 5367: 5304: 5284: 5262: 5240: 5220: 5200: 5172: 5152: 5132: 5121: 5065: 5022: 5002: 4975: 4893: 4882: 4826: 4815: 4759: 4737: 4685: 4665: 4587: 4567: 4540: 4494: 4474: 4451: 4408: 4383: 4363: 4317: 4262: 4227: 4189: 4147: 4113: 4093: 4069: 4049: 4038:quaternion algebra 4026: 3983: 3957: 3917: 3879: 3839: 3813: 3773: 3755: 3738: 3712: 3669: 3597: 3525: 3469: 3442: 3396: 3369: 3343: 3288: 3247: 3225: 3205: 3183: 3161: 3121: 3078: 3035: 3015: 2966: 2934: 2914: 2875: 2855: 2822: 2783: 2761: 2739: 2719: 2671: 2617: 2566: 2525: 2495: 2469: 2409: 2352: 2309: 2263: 2237: 2191: 2148: 2102: 2051: 1978:{\displaystyle d=} 1975: 1935: 1915: 1856: 1834: 1812: 1788: 1766: 1736: 1669:then the subgroup 1659: 1639: 1593: 1573: 1551: 1527: 1499: 1477: 1445: 1425: 1385: 1341: 1321: 1286: 1232: 1210: 1139: 1106: 1086: 1043: 846: 587:Special orthogonal 475: 450: 413: 294:Lagrange's theorem 5406:Some applications 5352: 5272:-algebraic group 5243:{\displaystyle S} 5203:{\displaystyle S} 5175:{\displaystyle S} 5155:{\displaystyle N} 5120: 5025:{\displaystyle S} 5005:{\displaystyle S} 4881: 4814: 4762:{\displaystyle S} 4740:{\displaystyle S} 4716:Jean-Pierre Serre 4688:{\displaystyle G} 4590:{\displaystyle G} 4570:{\displaystyle G} 4497:{\displaystyle A} 4477:{\displaystyle F} 4386:{\displaystyle A} 4116:{\displaystyle A} 4072:{\displaystyle F} 4052:{\displaystyle A} 4029:{\displaystyle F} 3517: 3399:{\displaystyle G} 3228:{\displaystyle n} 3164:{\displaystyle G} 3038:{\displaystyle G} 2944:is a subgroup of 2937:{\displaystyle G} 2878:{\displaystyle G} 2742:{\displaystyle G} 2722:{\displaystyle G} 2558: 1815:{\displaystyle F} 1662:{\displaystyle F} 1596:{\displaystyle F} 1554:{\displaystyle O} 1530:{\displaystyle F} 1109:{\displaystyle n} 1027:Arithmetic groups 1008:locally symmetric 989:Langlands program 978:Ratner's theorems 961:M. S. Raghunathan 894:Hermann Minkowski 878:automorphic forms 796: 795: 371: 370: 253:Alternating group 210: 209: 6270: 6248:Algebraic groups 6232: 6231: 6225: 6217: 6209: 6203: 6202: 6176: 6156: 6150: 6149: 6121: 6115: 6114: 6088: 6068: 6062: 6061: 6036: 6011:; Schaps, Mary; 6009:Katz, Mikhail G. 6005: 5999: 5998: 5990: 5984: 5983: 5975: 5969: 5968: 5956: 5950: 5949: 5921: 5915: 5914: 5882: 5876: 5875: 5863: 5857: 5856: 5848: 5842: 5841: 5839: 5815: 5809: 5808: 5800: 5794: 5793: 5777: 5771: 5770: 5762: 5756: 5755: 5745: 5739: 5738: 5706: 5700: 5699: 5683: 5677: 5676: 5644: 5638: 5637: 5622: 5616: 5615: 5605: 5599: 5598: 5588: 5573: 5571: 5570: 5565: 5548: 5533: 5531: 5530: 5525: 5520: 5512: 5511: 5506: 5493:projective plane 5441:Ramanujan graphs 5438: 5436: 5435: 5430: 5400: 5398: 5397: 5392: 5387: 5386: 5381: 5372: 5366: 5345: 5337: 5313: 5311: 5310: 5305: 5293: 5291: 5290: 5285: 5283: 5271: 5269: 5268: 5263: 5261: 5249: 5247: 5246: 5241: 5229: 5227: 5226: 5221: 5209: 5207: 5206: 5201: 5181: 5179: 5178: 5173: 5161: 5159: 5158: 5153: 5141: 5139: 5138: 5133: 5131: 5127: 5126: 5122: 5113: 5106: 5096: 5095: 5090: 5074: 5072: 5071: 5066: 5061: 5053: 5052: 5047: 5031: 5029: 5028: 5023: 5011: 5009: 5008: 5003: 4984: 4982: 4981: 4976: 4968: 4967: 4962: 4953: 4952: 4947: 4932: 4924: 4923: 4918: 4903:is a lattice in 4902: 4900: 4899: 4894: 4892: 4888: 4887: 4883: 4874: 4867: 4857: 4856: 4851: 4835: 4833: 4832: 4827: 4825: 4821: 4820: 4816: 4807: 4800: 4790: 4789: 4784: 4768: 4766: 4765: 4760: 4746: 4744: 4743: 4738: 4694: 4692: 4691: 4686: 4674: 4672: 4671: 4666: 4661: 4653: 4652: 4647: 4632: 4624: 4623: 4618: 4596: 4594: 4593: 4588: 4576: 4574: 4573: 4568: 4549: 4547: 4546: 4541: 4533: 4525: 4524: 4519: 4503: 4501: 4500: 4495: 4483: 4481: 4480: 4475: 4460: 4458: 4457: 4452: 4447: 4439: 4438: 4433: 4417: 4415: 4414: 4409: 4404: 4392: 4390: 4389: 4384: 4372: 4370: 4369: 4364: 4356: 4348: 4347: 4342: 4326: 4324: 4323: 4318: 4316: 4315: 4306: 4301: 4300: 4291: 4290: 4272:is a lattice in 4271: 4269: 4268: 4263: 4261: 4260: 4255: 4254: 4236: 4234: 4233: 4228: 4223: 4215: 4214: 4198: 4196: 4195: 4190: 4188: 4183: 4182: 4173: 4172: 4156: 4154: 4153: 4148: 4146: 4122: 4120: 4119: 4114: 4102: 4100: 4099: 4094: 4092: 4091: 4078: 4076: 4075: 4070: 4058: 4056: 4055: 4050: 4035: 4033: 4032: 4027: 3992: 3990: 3989: 3984: 3966: 3964: 3963: 3958: 3941: 3926: 3924: 3923: 3918: 3888: 3886: 3885: 3880: 3863: 3848: 3846: 3845: 3840: 3822: 3820: 3819: 3814: 3797: 3782: 3780: 3779: 3774: 3771: 3763: 3747: 3745: 3744: 3739: 3721: 3719: 3718: 3713: 3696: 3678: 3676: 3675: 3670: 3665: 3657: 3656: 3651: 3636: 3628: 3627: 3622: 3606: 3604: 3603: 3598: 3593: 3585: 3584: 3579: 3564: 3556: 3555: 3550: 3534: 3532: 3531: 3526: 3518: 3513: 3508: 3500: 3499: 3494: 3478: 3476: 3475: 3470: 3468: 3467: 3451: 3449: 3448: 3443: 3441: 3440: 3428: 3427: 3405: 3403: 3402: 3397: 3378: 3376: 3375: 3370: 3352: 3350: 3349: 3344: 3339: 3331: 3330: 3325: 3297: 3295: 3294: 3289: 3275: 3274: 3269: 3256: 3254: 3253: 3248: 3246: 3234: 3232: 3231: 3226: 3214: 3212: 3211: 3206: 3204: 3192: 3190: 3189: 3184: 3182: 3170: 3168: 3167: 3162: 3130: 3128: 3127: 3122: 3117: 3109: 3108: 3103: 3087: 3085: 3084: 3079: 3074: 3066: 3065: 3060: 3044: 3042: 3041: 3036: 3024: 3022: 3021: 3016: 3011: 3003: 3002: 2997: 2975: 2973: 2972: 2967: 2965: 2964: 2959: 2943: 2941: 2940: 2935: 2923: 2921: 2920: 2915: 2910: 2902: 2884: 2882: 2881: 2876: 2864: 2862: 2861: 2856: 2851: 2843: 2831: 2829: 2828: 2823: 2812: 2804: 2792: 2790: 2789: 2784: 2782: 2770: 2768: 2767: 2762: 2760: 2748: 2746: 2745: 2740: 2728: 2726: 2725: 2720: 2680: 2678: 2677: 2672: 2667: 2644: 2626: 2624: 2623: 2618: 2613: 2612: 2600: 2599: 2594: 2575: 2573: 2572: 2567: 2559: 2551: 2546: 2534: 2532: 2531: 2526: 2524: 2523: 2504: 2502: 2501: 2496: 2478: 2476: 2475: 2470: 2462: 2461: 2446: 2445: 2440: 2418: 2416: 2415: 2410: 2405: 2397: 2396: 2388: 2362:, is called the 2361: 2359: 2358: 2353: 2348: 2340: 2339: 2334: 2318: 2316: 2315: 2310: 2305: 2297: 2296: 2291: 2272: 2270: 2269: 2264: 2246: 2244: 2243: 2238: 2233: 2225: 2224: 2219: 2200: 2198: 2197: 2192: 2187: 2179: 2178: 2173: 2157: 2155: 2154: 2149: 2144: 2136: 2135: 2130: 2111: 2109: 2108: 2103: 2098: 2090: 2089: 2084: 2060: 2058: 2057: 2052: 2044: 2036: 2035: 2027: 2015: 2014: 2002: 1984: 1982: 1981: 1976: 1971: 1944: 1942: 1941: 1936: 1924: 1922: 1921: 1916: 1914: 1913: 1905: 1893: 1889: 1880: 1865: 1863: 1862: 1857: 1855: 1843: 1841: 1840: 1835: 1833: 1821: 1819: 1818: 1813: 1797: 1795: 1794: 1789: 1787: 1775: 1773: 1772: 1767: 1765: 1761: 1745: 1743: 1742: 1737: 1726: 1706: 1705: 1700: 1688: 1687: 1668: 1666: 1665: 1660: 1648: 1646: 1645: 1640: 1638: 1637: 1632: 1620: 1602: 1600: 1599: 1594: 1582: 1580: 1579: 1574: 1572: 1560: 1558: 1557: 1552: 1536: 1534: 1533: 1528: 1508: 1506: 1505: 1500: 1498: 1486: 1484: 1483: 1478: 1476: 1475: 1470: 1454: 1452: 1451: 1446: 1434: 1432: 1431: 1426: 1409: 1394: 1392: 1391: 1386: 1369: 1350: 1348: 1347: 1342: 1330: 1328: 1327: 1322: 1317: 1309: 1295: 1293: 1292: 1287: 1279: 1271: 1270: 1265: 1253: 1241: 1239: 1238: 1233: 1231: 1219: 1217: 1216: 1211: 1203: 1195: 1184: 1176: 1175: 1170: 1148: 1146: 1145: 1140: 1135: 1127: 1115: 1113: 1112: 1107: 1095: 1093: 1092: 1087: 1082: 1074: 1073: 1068: 1052: 1050: 1049: 1044: 1042: 1016:William Thurston 993:Robert Langlands 953:Grigori Margulis 902:symmetric spaces 855: 853: 852: 847: 839: 831: 830: 825: 804:arithmetic group 788: 781: 774: 730:Algebraic groups 503:Hyperbolic group 493:Arithmetic group 484: 482: 481: 476: 474: 459: 457: 456: 451: 449: 422: 420: 419: 414: 412: 335:Schur multiplier 289:Cauchy's theorem 277:Quaternion group 225: 224: 51: 50: 40: 27: 16: 15: 6278: 6277: 6273: 6272: 6271: 6269: 6268: 6267: 6238: 6237: 6236: 6235: 6219: 6218: 6210: 6206: 6157: 6153: 6138:10.2307/1971319 6122: 6118: 6069: 6065: 6034:math.DG/0505007 6006: 6002: 5991: 5987: 5976: 5972: 5957: 5953: 5938:10.2307/2946567 5922: 5918: 5883: 5879: 5864: 5860: 5849: 5845: 5816: 5812: 5801: 5797: 5778: 5774: 5763: 5759: 5746: 5742: 5727:10.2307/1970210 5707: 5703: 5684: 5680: 5645: 5641: 5623: 5619: 5606: 5602: 5589: 5585: 5580: 5541: 5539: 5536: 5535: 5516: 5507: 5502: 5501: 5499: 5496: 5495: 5485:complex surface 5481: 5465: 5449: 5424: 5421: 5420: 5413: 5408: 5382: 5377: 5376: 5368: 5356: 5341: 5333: 5325: 5322: 5321: 5299: 5296: 5295: 5279: 5277: 5274: 5273: 5257: 5255: 5252: 5251: 5235: 5232: 5231: 5215: 5212: 5211: 5195: 5192: 5191: 5188: 5167: 5164: 5163: 5147: 5144: 5143: 5111: 5107: 5102: 5101: 5097: 5091: 5083: 5082: 5080: 5077: 5076: 5057: 5048: 5040: 5039: 5037: 5034: 5033: 5017: 5014: 5013: 4997: 4994: 4993: 4990: 4963: 4958: 4957: 4948: 4940: 4939: 4928: 4919: 4911: 4910: 4908: 4905: 4904: 4872: 4868: 4863: 4862: 4858: 4852: 4844: 4843: 4841: 4838: 4837: 4805: 4801: 4796: 4795: 4791: 4785: 4777: 4776: 4774: 4771: 4770: 4754: 4751: 4750: 4732: 4729: 4728: 4724: 4707: 4701: 4680: 4677: 4676: 4657: 4648: 4640: 4639: 4628: 4619: 4611: 4610: 4602: 4599: 4598: 4582: 4579: 4578: 4562: 4559: 4558: 4555: 4529: 4520: 4512: 4511: 4509: 4506: 4505: 4489: 4486: 4485: 4469: 4466: 4465: 4443: 4434: 4426: 4425: 4423: 4420: 4419: 4400: 4398: 4395: 4394: 4378: 4375: 4374: 4352: 4343: 4335: 4334: 4332: 4329: 4328: 4311: 4307: 4302: 4296: 4292: 4286: 4282: 4277: 4274: 4273: 4256: 4250: 4249: 4248: 4246: 4243: 4242: 4219: 4210: 4206: 4204: 4201: 4200: 4184: 4178: 4174: 4168: 4164: 4162: 4159: 4158: 4142: 4128: 4125: 4124: 4108: 4105: 4104: 4087: 4086: 4084: 4081: 4080: 4064: 4061: 4060: 4044: 4041: 4040: 4021: 4018: 4017: 4011: 4005: 3999: 3972: 3969: 3968: 3934: 3932: 3929: 3928: 3894: 3891: 3890: 3856: 3854: 3851: 3850: 3828: 3825: 3824: 3790: 3788: 3785: 3784: 3764: 3759: 3753: 3750: 3749: 3727: 3724: 3723: 3689: 3687: 3684: 3683: 3661: 3652: 3644: 3643: 3632: 3623: 3615: 3614: 3612: 3609: 3608: 3589: 3580: 3572: 3571: 3560: 3551: 3543: 3542: 3540: 3537: 3536: 3512: 3504: 3495: 3487: 3486: 3484: 3481: 3480: 3463: 3459: 3457: 3454: 3453: 3436: 3432: 3423: 3419: 3411: 3408: 3407: 3391: 3388: 3387: 3358: 3355: 3354: 3335: 3326: 3318: 3317: 3315: 3312: 3311: 3304: 3270: 3265: 3264: 3262: 3259: 3258: 3242: 3240: 3237: 3236: 3235:variables over 3220: 3217: 3216: 3200: 3198: 3195: 3194: 3178: 3176: 3173: 3172: 3156: 3153: 3152: 3137: 3113: 3104: 3096: 3095: 3093: 3090: 3089: 3070: 3061: 3053: 3052: 3050: 3047: 3046: 3030: 3027: 3026: 3007: 2998: 2990: 2989: 2981: 2978: 2977: 2960: 2952: 2951: 2949: 2946: 2945: 2929: 2926: 2925: 2906: 2898: 2890: 2887: 2886: 2870: 2867: 2866: 2847: 2839: 2837: 2834: 2833: 2808: 2800: 2798: 2795: 2794: 2778: 2776: 2773: 2772: 2756: 2754: 2751: 2750: 2734: 2731: 2730: 2714: 2711: 2710: 2707: 2695:hermitian forms 2663: 2637: 2635: 2632: 2631: 2608: 2604: 2595: 2587: 2586: 2584: 2581: 2580: 2550: 2542: 2540: 2537: 2536: 2516: 2512: 2510: 2507: 2506: 2484: 2481: 2480: 2454: 2450: 2441: 2433: 2432: 2430: 2427: 2426: 2401: 2389: 2381: 2380: 2378: 2375: 2374: 2344: 2335: 2327: 2326: 2324: 2321: 2320: 2319:, or sometimes 2301: 2292: 2281: 2280: 2278: 2275: 2274: 2252: 2249: 2248: 2229: 2220: 2209: 2208: 2206: 2203: 2202: 2183: 2174: 2166: 2165: 2163: 2160: 2159: 2140: 2131: 2120: 2119: 2117: 2114: 2113: 2094: 2085: 2077: 2076: 2074: 2071: 2070: 2067: 2040: 2028: 2020: 2019: 2007: 2003: 1995: 1990: 1987: 1986: 1967: 1950: 1947: 1946: 1930: 1927: 1926: 1906: 1898: 1897: 1885: 1884: 1873: 1871: 1868: 1867: 1851: 1849: 1846: 1845: 1829: 1827: 1824: 1823: 1807: 1804: 1803: 1783: 1781: 1778: 1777: 1757: 1756: 1754: 1751: 1750: 1722: 1701: 1693: 1692: 1680: 1676: 1674: 1671: 1670: 1654: 1651: 1650: 1633: 1625: 1624: 1616: 1608: 1605: 1604: 1588: 1585: 1584: 1568: 1566: 1563: 1562: 1546: 1543: 1542: 1522: 1519: 1518: 1515: 1494: 1492: 1489: 1488: 1471: 1463: 1462: 1460: 1457: 1456: 1440: 1437: 1436: 1405: 1400: 1397: 1396: 1365: 1360: 1357: 1356: 1336: 1333: 1332: 1313: 1305: 1303: 1300: 1299: 1275: 1266: 1258: 1257: 1249: 1247: 1244: 1243: 1227: 1225: 1222: 1221: 1199: 1191: 1180: 1171: 1163: 1162: 1154: 1151: 1150: 1131: 1123: 1121: 1118: 1117: 1101: 1098: 1097: 1078: 1069: 1061: 1060: 1058: 1055: 1054: 1038: 1036: 1033: 1032: 1029: 1024: 890:Charles Hermite 886: 858:quadratic forms 835: 826: 818: 817: 815: 812: 811: 808:algebraic group 792: 763: 762: 751:Abelian variety 744:Reductive group 732: 722: 721: 720: 719: 670: 662: 654: 646: 638: 611:Special unitary 522: 508: 507: 489: 488: 470: 468: 465: 464: 445: 443: 440: 439: 408: 406: 403: 402: 394: 393: 384:Discrete groups 373: 372: 328:Frobenius group 273: 260: 249: 242:Symmetric group 238: 222: 212: 211: 62:Normal subgroup 48: 28: 19: 12: 11: 5: 6276: 6266: 6265: 6260: 6255: 6250: 6234: 6233: 6204: 6151: 6116: 6063: 6027:(3): 399–422, 6000: 5985: 5970: 5951: 5932:(1): 165–182. 5916: 5877: 5858: 5843: 5830:(3): 357–381. 5810: 5795: 5788:. New Series. 5772: 5757: 5740: 5721:(3): 485–535. 5701: 5678: 5639: 5617: 5600: 5582: 5581: 5579: 5576: 5563: 5560: 5557: 5554: 5551: 5547: 5544: 5523: 5519: 5515: 5510: 5505: 5480: 5477: 5464: 5461: 5448: 5445: 5428: 5412: 5409: 5407: 5404: 5403: 5402: 5390: 5385: 5380: 5375: 5371: 5365: 5362: 5359: 5355: 5351: 5348: 5344: 5340: 5336: 5332: 5329: 5303: 5282: 5260: 5239: 5219: 5199: 5187: 5184: 5171: 5151: 5130: 5125: 5119: 5116: 5110: 5105: 5100: 5094: 5089: 5086: 5064: 5060: 5056: 5051: 5046: 5043: 5021: 5001: 4989: 4986: 4974: 4971: 4966: 4961: 4956: 4951: 4946: 4943: 4938: 4935: 4931: 4927: 4922: 4917: 4914: 4891: 4886: 4880: 4877: 4871: 4866: 4861: 4855: 4850: 4847: 4824: 4819: 4813: 4810: 4804: 4799: 4794: 4788: 4783: 4780: 4758: 4736: 4723: 4720: 4703:Main article: 4700: 4697: 4684: 4664: 4660: 4656: 4651: 4646: 4643: 4638: 4635: 4631: 4627: 4622: 4617: 4614: 4609: 4606: 4586: 4566: 4554: 4553:Classification 4551: 4539: 4536: 4532: 4528: 4523: 4518: 4515: 4493: 4473: 4450: 4446: 4442: 4437: 4432: 4429: 4407: 4403: 4382: 4362: 4359: 4355: 4351: 4346: 4341: 4338: 4314: 4310: 4305: 4299: 4295: 4289: 4285: 4281: 4259: 4253: 4226: 4222: 4218: 4213: 4209: 4187: 4181: 4177: 4171: 4167: 4145: 4141: 4138: 4135: 4132: 4112: 4090: 4068: 4048: 4025: 4007:Main article: 4001:Main article: 3998: 3995: 3982: 3979: 3976: 3956: 3953: 3950: 3947: 3944: 3940: 3937: 3916: 3913: 3910: 3907: 3904: 3901: 3898: 3878: 3875: 3872: 3869: 3866: 3862: 3859: 3838: 3835: 3832: 3812: 3809: 3806: 3803: 3800: 3796: 3793: 3770: 3767: 3762: 3758: 3737: 3734: 3731: 3711: 3708: 3705: 3702: 3699: 3695: 3692: 3668: 3664: 3660: 3655: 3650: 3647: 3642: 3639: 3635: 3631: 3626: 3621: 3618: 3596: 3592: 3588: 3583: 3578: 3575: 3570: 3567: 3563: 3559: 3554: 3549: 3546: 3524: 3521: 3516: 3511: 3507: 3503: 3498: 3493: 3490: 3466: 3462: 3439: 3435: 3431: 3426: 3422: 3418: 3415: 3395: 3368: 3365: 3362: 3342: 3338: 3334: 3329: 3324: 3321: 3303: 3300: 3287: 3284: 3281: 3278: 3273: 3268: 3245: 3224: 3203: 3181: 3160: 3136: 3133: 3120: 3116: 3112: 3107: 3102: 3099: 3077: 3073: 3069: 3064: 3059: 3056: 3034: 3014: 3010: 3006: 3001: 2996: 2993: 2988: 2985: 2963: 2958: 2955: 2933: 2913: 2909: 2905: 2901: 2897: 2894: 2874: 2854: 2850: 2846: 2842: 2821: 2818: 2815: 2811: 2807: 2803: 2781: 2759: 2738: 2718: 2706: 2703: 2670: 2666: 2662: 2659: 2656: 2653: 2650: 2647: 2643: 2640: 2616: 2611: 2607: 2603: 2598: 2593: 2590: 2565: 2562: 2557: 2554: 2549: 2545: 2522: 2519: 2515: 2494: 2491: 2488: 2468: 2465: 2460: 2457: 2453: 2449: 2444: 2439: 2436: 2424:Bianchi groups 2408: 2404: 2400: 2395: 2392: 2387: 2384: 2351: 2347: 2343: 2338: 2333: 2330: 2308: 2304: 2300: 2295: 2290: 2287: 2284: 2262: 2259: 2256: 2236: 2232: 2228: 2223: 2218: 2215: 2212: 2190: 2186: 2182: 2177: 2172: 2169: 2147: 2143: 2139: 2134: 2129: 2126: 2123: 2101: 2097: 2093: 2088: 2083: 2080: 2066: 2063: 2050: 2047: 2043: 2039: 2034: 2031: 2026: 2023: 2018: 2013: 2010: 2006: 2001: 1998: 1994: 1974: 1970: 1966: 1963: 1960: 1957: 1954: 1934: 1912: 1909: 1904: 1901: 1896: 1892: 1888: 1883: 1879: 1876: 1854: 1832: 1811: 1786: 1764: 1760: 1735: 1732: 1729: 1725: 1721: 1718: 1715: 1712: 1709: 1704: 1699: 1696: 1691: 1686: 1683: 1679: 1658: 1636: 1631: 1628: 1623: 1619: 1615: 1612: 1592: 1571: 1550: 1526: 1514: 1511: 1497: 1474: 1469: 1466: 1444: 1424: 1421: 1418: 1415: 1412: 1408: 1404: 1384: 1381: 1378: 1375: 1372: 1368: 1364: 1340: 1320: 1316: 1312: 1308: 1285: 1282: 1278: 1274: 1269: 1264: 1261: 1256: 1252: 1230: 1209: 1206: 1202: 1198: 1194: 1190: 1187: 1183: 1179: 1174: 1169: 1166: 1161: 1158: 1138: 1134: 1130: 1126: 1105: 1085: 1081: 1077: 1072: 1067: 1064: 1041: 1028: 1025: 1023: 1020: 941:Harish-Chandra 885: 882: 845: 842: 838: 834: 829: 824: 821: 810:, for example 794: 793: 791: 790: 783: 776: 768: 765: 764: 761: 760: 758:Elliptic curve 754: 753: 747: 746: 740: 739: 733: 728: 727: 724: 723: 718: 717: 714: 711: 707: 703: 702: 701: 696: 694:Diffeomorphism 690: 689: 684: 679: 673: 672: 668: 664: 660: 656: 652: 648: 644: 640: 636: 631: 630: 619: 618: 607: 606: 595: 594: 583: 582: 571: 570: 559: 558: 551:Special linear 547: 546: 539:General linear 535: 534: 529: 523: 514: 513: 510: 509: 506: 505: 500: 495: 487: 486: 473: 461: 448: 435: 433:Modular groups 431: 430: 429: 424: 411: 395: 392: 391: 386: 380: 379: 378: 375: 374: 369: 368: 367: 366: 361: 356: 353: 347: 346: 340: 339: 338: 337: 331: 330: 324: 323: 318: 309: 308: 306:Hall's theorem 303: 301:Sylow theorems 297: 296: 291: 283: 282: 281: 280: 274: 269: 266:Dihedral group 262: 261: 256: 250: 245: 239: 234: 223: 218: 217: 214: 213: 208: 207: 206: 205: 200: 192: 191: 190: 189: 184: 179: 174: 169: 164: 159: 157:multiplicative 154: 149: 144: 139: 131: 130: 129: 128: 123: 115: 114: 106: 105: 104: 103: 101:Wreath product 98: 93: 88: 86:direct product 80: 78:Quotient group 72: 71: 70: 69: 64: 59: 49: 46: 45: 42: 41: 33: 32: 9: 6: 4: 3: 2: 6275: 6264: 6261: 6259: 6258:Number theory 6256: 6254: 6251: 6249: 6246: 6245: 6243: 6229: 6223: 6215: 6208: 6200: 6196: 6192: 6188: 6184: 6180: 6175: 6170: 6166: 6162: 6155: 6147: 6143: 6139: 6135: 6131: 6128:(in French). 6127: 6126:Ann. of Math. 6120: 6112: 6108: 6104: 6100: 6096: 6092: 6087: 6082: 6078: 6074: 6067: 6060: 6056: 6052: 6048: 6044: 6040: 6035: 6030: 6026: 6022: 6018: 6014: 6010: 6004: 5996: 5989: 5982:. Birkhäuser. 5981: 5974: 5966: 5962: 5955: 5947: 5943: 5939: 5935: 5931: 5927: 5920: 5912: 5908: 5904: 5900: 5896: 5892: 5888: 5881: 5873: 5869: 5862: 5854: 5847: 5838: 5833: 5829: 5825: 5821: 5814: 5806: 5799: 5791: 5787: 5783: 5776: 5768: 5761: 5753: 5752: 5744: 5736: 5732: 5728: 5724: 5720: 5716: 5712: 5705: 5697: 5693: 5689: 5682: 5674: 5670: 5666: 5662: 5658: 5654: 5650: 5643: 5636: 5632: 5628: 5621: 5613: 5612: 5604: 5596: 5595: 5587: 5583: 5575: 5558: 5555: 5552: 5508: 5494: 5490: 5489:Betti numbers 5486: 5476: 5474: 5470: 5460: 5458: 5454: 5444: 5442: 5426: 5418: 5383: 5363: 5360: 5357: 5353: 5349: 5330: 5327: 5320: 5319: 5318: 5317: 5237: 5197: 5183: 5169: 5149: 5128: 5123: 5117: 5114: 5108: 5098: 5092: 5049: 5019: 4999: 4985: 4972: 4964: 4949: 4936: 4920: 4889: 4884: 4878: 4875: 4869: 4859: 4853: 4822: 4817: 4811: 4808: 4802: 4792: 4786: 4756: 4748: 4734: 4719: 4717: 4712: 4706: 4696: 4682: 4649: 4636: 4620: 4607: 4604: 4584: 4564: 4550: 4537: 4521: 4491: 4471: 4462: 4435: 4405: 4380: 4360: 4344: 4312: 4297: 4293: 4287: 4283: 4257: 4240: 4211: 4207: 4179: 4175: 4169: 4165: 4136: 4133: 4130: 4110: 4079:and an order 4066: 4046: 4039: 4023: 4016: 4010: 4004: 3994: 3980: 3977: 3974: 3951: 3948: 3945: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3873: 3870: 3867: 3836: 3833: 3830: 3807: 3804: 3801: 3768: 3765: 3760: 3756: 3735: 3732: 3729: 3706: 3703: 3700: 3680: 3653: 3640: 3624: 3581: 3568: 3552: 3514: 3496: 3464: 3460: 3437: 3433: 3429: 3424: 3420: 3416: 3413: 3393: 3384: 3382: 3381:superrigidity 3366: 3363: 3360: 3327: 3309: 3299: 3282: 3271: 3222: 3158: 3150: 3145: 3142: 3132: 3105: 3062: 3032: 2999: 2986: 2983: 2961: 2931: 2895: 2892: 2872: 2819: 2771:defined over 2736: 2716: 2702: 2700: 2696: 2692: 2688: 2684: 2654: 2651: 2648: 2628: 2609: 2605: 2596: 2579: 2563: 2555: 2552: 2520: 2517: 2513: 2492: 2489: 2486: 2466: 2458: 2455: 2451: 2442: 2425: 2420: 2393: 2390: 2373: 2369: 2368:modular curve 2365: 2364:modular group 2336: 2293: 2260: 2257: 2254: 2221: 2175: 2132: 2086: 2062: 2032: 2029: 2011: 2008: 1999: 1996: 1964: 1961: 1955: 1952: 1932: 1910: 1907: 1890: 1881: 1877: 1874: 1809: 1801: 1762: 1747: 1730: 1719: 1710: 1702: 1684: 1681: 1677: 1656: 1649:defined over 1634: 1613: 1610: 1590: 1548: 1540: 1524: 1510: 1472: 1416: 1406: 1376: 1366: 1354: 1353:commensurable 1296: 1283: 1267: 1207: 1188: 1172: 1159: 1103: 1070: 1019: 1017: 1013: 1009: 1004: 1002: 998: 997:trace formula 994: 991:initiated by 990: 985: 983: 982:Marina Ratner 979: 975: 970: 964: 962: 958: 957:David Kazhdan 954: 950: 946: 942: 938: 934: 930: 925: 922: 917: 915: 911: 907: 903: 899: 895: 891: 881: 879: 875: 871: 867: 863: 862:number theory 859: 843: 827: 809: 805: 801: 789: 784: 782: 777: 775: 770: 769: 767: 766: 759: 756: 755: 752: 749: 748: 745: 742: 741: 738: 735: 734: 731: 726: 725: 715: 712: 709: 708: 706: 700: 697: 695: 692: 691: 688: 685: 683: 680: 678: 675: 674: 671: 665: 663: 657: 655: 649: 647: 641: 639: 633: 632: 628: 624: 621: 620: 616: 612: 609: 608: 604: 600: 597: 596: 592: 588: 585: 584: 580: 576: 573: 572: 568: 564: 561: 560: 556: 552: 549: 548: 544: 540: 537: 536: 533: 530: 528: 525: 524: 521: 517: 512: 511: 504: 501: 499: 496: 494: 491: 490: 462: 437: 436: 434: 428: 425: 400: 397: 396: 390: 387: 385: 382: 381: 377: 376: 365: 362: 360: 357: 354: 351: 350: 349: 348: 345: 342: 341: 336: 333: 332: 329: 326: 325: 322: 319: 317: 315: 311: 310: 307: 304: 302: 299: 298: 295: 292: 290: 287: 286: 285: 284: 278: 275: 272: 267: 264: 263: 259: 254: 251: 248: 243: 240: 237: 232: 229: 228: 227: 226: 221: 220:Finite groups 216: 215: 204: 201: 199: 196: 195: 194: 193: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 134: 133: 132: 127: 124: 122: 119: 118: 117: 116: 113: 112: 108: 107: 102: 99: 97: 94: 92: 89: 87: 84: 81: 79: 76: 75: 74: 73: 68: 65: 63: 60: 58: 55: 54: 53: 52: 47:Basic notions 44: 43: 39: 35: 34: 31: 26: 22: 18: 17: 6253:Group theory 6213: 6207: 6164: 6160: 6154: 6132:(1): 21–32. 6129: 6125: 6119: 6076: 6073:Duke Math. J 6072: 6066: 6024: 6020: 6003: 5994: 5988: 5979: 5973: 5964: 5954: 5929: 5926:Ann. of Math 5925: 5919: 5894: 5890: 5880: 5871: 5861: 5852: 5846: 5827: 5823: 5813: 5804: 5798: 5789: 5785: 5775: 5766: 5760: 5750: 5743: 5718: 5714: 5704: 5687: 5681: 5656: 5652: 5642: 5626: 5620: 5610: 5603: 5593: 5586: 5482: 5466: 5450: 5414: 5189: 5075:replaced by 4991: 4727: 4725: 4708: 4556: 4463: 4157:the algebra 4012: 3681: 3385: 3307: 3305: 3146: 3138: 2708: 2629: 2421: 2068: 1798:obtained by 1748: 1539:number field 1516: 1297: 1030: 1005: 1001:James Arthur 986: 965: 949:Atle Selberg 937:Jacques Tits 929:Armand Borel 926: 918: 910:discriminant 887: 803: 797: 626: 614: 602: 590: 578: 566: 554: 542: 492: 313: 270: 257: 246: 235: 231:Cyclic group 109: 96:Free product 67:Group action 30:Group theory 25:Group theory 24: 6167:: 113–184. 6013:Vishne, Uzi 5897:: 165–246. 1925:induced by 1866:-embedding 1014:, which as 914:unit groups 800:mathematics 516:Topological 355:alternating 6242:Categories 6079:(3): 465. 5659:: 55–150. 5597:. Hermann. 5578:References 4988:Definition 2273:the group 1331:any group 945:Lie groups 933:André Weil 623:Symplectic 563:Orthogonal 520:Lie groups 427:Free group 152:continuous 91:Direct sum 6174:0705.2891 6086:1201.3399 5911:118023776 5673:189767074 5427:τ 5361:∈ 5354:∏ 5350:× 5302:Γ 5218:Γ 4937:× 4294:⊗ 4288:σ 4176:⊗ 4170:σ 4140:→ 4131:σ 3978:⩾ 3834:⩾ 3766:− 3733:⩾ 3641:× 3569:× 3430:× 3364:≥ 3277:∖ 3149:cocompact 2987:∩ 2817:→ 2553:− 2518:− 2456:− 2009:− 1997:ρ 1933:ρ 1895:→ 1875:ρ 1720:⊂ 1682:− 1678:ρ 1622:→ 1611:ρ 1443:Γ 1420:Λ 1417:∩ 1414:Γ 1403:Λ 1380:Λ 1377:∩ 1374:Γ 1363:Γ 1351:which is 1339:Λ 1255:→ 1189:∩ 1157:Γ 1096:for some 687:Conformal 575:Euclidean 182:nilpotent 6222:citation 6111:20839217 6059:18152345 6015:(2007), 5792:: 47–87. 3679:is not. 2576:and the 2065:Examples 2000:′ 1891:′ 1878:′ 1844:and the 1763:′ 874:topology 682:Poincaré 527:Solenoid 399:Integers 389:Lattices 364:sporadic 359:Lie type 187:solvable 177:dihedral 162:additive 147:infinite 57:Subgroup 6199:1153678 6191:2511587 6146:1971319 6103:3165420 6051:2331526 5946:2946567 5735:1970210 5696:0670072 5635:0213362 5491:as the 4749:(where 3193:-group 3141:lattice 1945:(where 884:History 677:Lorentz 599:Unitary 498:Lattice 438:PSL(2, 172:abelian 83:(Semi-) 6197:  6189:  6144:  6109:  6101:  6057:  6049:  5944:  5909:  5733:  5694:  5671:  5633:  5230:is an 5142:where 2683:orders 2479:where 2247:. For 532:Circle 463:SL(2, 352:cyclic 316:-group 167:cyclic 142:finite 137:simple 121:kernel 6195:S2CID 6169:arXiv 6142:JSTOR 6107:S2CID 6081:arXiv 6055:S2CID 6029:arXiv 5942:JSTOR 5907:S2CID 5731:JSTOR 5669:S2CID 5457:girth 5294:then 4059:over 3967:when 3889:when 2976:then 2709:When 1802:from 1776:over 1537:be a 802:, an 716:Sp(∞) 713:SU(∞) 126:image 6228:link 5961:"18" 5868:"16" 4036:, a 3823:for 3722:for 2924:and 2490:> 2201:and 1561:and 1395:and 872:and 710:O(∞) 699:Loop 518:and 6179:doi 6165:109 6134:doi 6130:112 6091:doi 6077:163 6039:doi 5934:doi 5930:135 5899:doi 5832:doi 5723:doi 5661:doi 4103:in 3535:in 3308:any 2685:in 1822:to 1031:If 955:, 947:by 798:In 625:Sp( 613:SU( 589:SO( 553:SL( 541:GL( 6244:: 6224:}} 6220:{{ 6193:. 6187:MR 6185:. 6177:. 6163:. 6140:. 6105:. 6099:MR 6097:. 6089:. 6075:. 6053:, 6047:MR 6045:, 6037:, 6025:76 6023:, 6019:, 5963:. 5940:. 5928:. 5905:. 5895:76 5893:. 5889:. 5870:. 5826:. 5822:. 5790:20 5784:. 5729:. 5719:75 5717:. 5713:. 5692:MR 5667:. 5657:27 5655:. 5651:. 5631:MR 5182:. 4709:A 4695:. 3993:. 3769:20 3298:. 3139:A 3131:. 2701:. 2627:. 2419:. 2158:, 2061:. 1003:. 984:. 959:, 951:, 935:, 931:, 892:, 601:U( 577:E( 565:O( 23:→ 6230:) 6201:. 6181:: 6171:: 6148:. 6136:: 6113:. 6093:: 6083:: 6041:: 6031:: 5967:. 5948:. 5936:: 5913:. 5901:: 5874:. 5840:. 5834:: 5828:6 5737:. 5725:: 5698:. 5675:. 5663:: 5562:) 5559:1 5556:, 5553:2 5550:( 5546:U 5543:P 5522:) 5518:C 5514:( 5509:2 5504:P 5401:. 5389:) 5384:p 5379:Q 5374:( 5370:G 5364:S 5358:p 5347:) 5343:R 5339:( 5335:G 5331:= 5328:G 5281:G 5259:Q 5238:S 5198:S 5170:S 5150:N 5129:) 5124:] 5118:N 5115:1 5109:[ 5104:Z 5099:( 5093:n 5088:L 5085:G 5063:) 5059:Z 5055:( 5050:n 5045:L 5042:G 5020:S 5000:S 4973:. 4970:) 4965:p 4960:Q 4955:( 4950:2 4945:L 4942:S 4934:) 4930:R 4926:( 4921:2 4916:L 4913:S 4890:) 4885:] 4879:p 4876:1 4870:[ 4865:Z 4860:( 4854:2 4849:L 4846:S 4823:) 4818:] 4812:p 4809:1 4803:[ 4798:Z 4793:( 4787:2 4782:L 4779:S 4757:S 4735:S 4683:G 4663:) 4659:C 4655:( 4650:2 4645:L 4642:S 4637:, 4634:) 4630:R 4626:( 4621:2 4616:L 4613:S 4608:= 4605:G 4585:G 4565:G 4538:. 4535:) 4531:C 4527:( 4522:2 4517:L 4514:S 4492:A 4472:F 4449:) 4445:R 4441:( 4436:2 4431:L 4428:S 4406:. 4402:Q 4381:A 4361:, 4358:) 4354:R 4350:( 4345:2 4340:L 4337:S 4313:1 4309:) 4304:R 4298:F 4284:A 4280:( 4258:1 4252:O 4225:) 4221:R 4217:( 4212:2 4208:M 4186:R 4180:F 4166:A 4144:R 4137:F 4134:: 4111:A 4089:O 4067:F 4047:A 4024:F 3981:4 3975:n 3955:) 3952:1 3949:, 3946:n 3943:( 3939:U 3936:S 3915:3 3912:, 3909:2 3906:, 3903:1 3900:= 3897:n 3877:) 3874:1 3871:, 3868:n 3865:( 3861:U 3858:S 3837:2 3831:n 3811:) 3808:1 3805:, 3802:n 3799:( 3795:O 3792:S 3761:4 3757:F 3736:1 3730:n 3710:) 3707:1 3704:, 3701:n 3698:( 3694:p 3691:S 3667:) 3663:Z 3659:( 3654:2 3649:L 3646:S 3638:) 3634:Z 3630:( 3625:2 3620:L 3617:S 3595:) 3591:R 3587:( 3582:2 3577:L 3574:S 3566:) 3562:R 3558:( 3553:2 3548:L 3545:S 3523:) 3520:] 3515:2 3510:[ 3506:Z 3502:( 3497:2 3492:L 3489:S 3465:i 3461:G 3438:2 3434:G 3425:1 3421:G 3417:= 3414:G 3394:G 3367:3 3361:n 3341:) 3337:R 3333:( 3328:n 3323:L 3320:S 3286:} 3283:0 3280:{ 3272:n 3267:Q 3244:Q 3223:n 3202:G 3180:Q 3159:G 3119:) 3115:R 3111:( 3106:n 3101:L 3098:S 3076:) 3072:Z 3068:( 3063:n 3058:L 3055:S 3033:G 3013:) 3009:Z 3005:( 3000:n 2995:L 2992:G 2984:G 2962:n 2957:L 2954:G 2932:G 2912:) 2908:R 2904:( 2900:G 2896:= 2893:G 2873:G 2853:) 2849:Q 2845:( 2841:G 2820:G 2814:) 2810:R 2806:( 2802:G 2780:Q 2758:G 2737:G 2717:G 2669:) 2665:Z 2661:( 2658:) 2655:1 2652:, 2649:n 2646:( 2642:O 2639:S 2615:) 2610:m 2606:O 2602:( 2597:2 2592:L 2589:S 2564:, 2561:) 2556:m 2548:( 2544:Q 2521:m 2514:O 2493:0 2487:m 2467:, 2464:) 2459:m 2452:O 2448:( 2443:2 2438:L 2435:S 2407:) 2403:Z 2399:( 2394:g 2391:2 2386:p 2383:S 2350:) 2346:Z 2342:( 2337:2 2332:L 2329:S 2307:) 2303:Z 2299:( 2294:2 2289:L 2286:S 2283:P 2261:2 2258:= 2255:n 2235:) 2231:Z 2227:( 2222:n 2217:L 2214:G 2211:P 2189:) 2185:Z 2181:( 2176:n 2171:L 2168:G 2146:) 2142:Z 2138:( 2133:n 2128:L 2125:S 2122:P 2100:) 2096:Z 2092:( 2087:n 2082:L 2079:S 2049:) 2046:) 2042:Z 2038:( 2033:d 2030:n 2025:L 2022:G 2017:( 2012:1 2005:) 1993:( 1973:] 1969:Q 1965:: 1962:F 1959:[ 1956:= 1953:d 1911:n 1908:d 1903:L 1900:G 1887:G 1882:: 1853:Q 1831:Q 1810:F 1785:Q 1759:G 1734:) 1731:F 1728:( 1724:G 1717:) 1714:) 1711:O 1708:( 1703:n 1698:L 1695:G 1690:( 1685:1 1657:F 1635:n 1630:L 1627:G 1618:G 1614:: 1591:F 1570:G 1549:O 1525:F 1496:G 1473:n 1468:L 1465:G 1423:) 1411:( 1407:/ 1383:) 1371:( 1367:/ 1319:) 1315:Q 1311:( 1307:G 1284:. 1281:) 1277:Q 1273:( 1268:n 1263:L 1260:G 1251:G 1229:Q 1208:. 1205:) 1201:Q 1197:( 1193:G 1186:) 1182:Z 1178:( 1173:n 1168:L 1165:G 1160:= 1137:) 1133:Q 1129:( 1125:G 1104:n 1084:) 1080:Q 1076:( 1071:n 1066:L 1063:G 1040:G 844:. 841:) 837:Z 833:( 828:2 823:L 820:S 787:e 780:t 773:v 669:8 667:E 661:7 659:E 653:6 651:E 645:4 643:F 637:2 635:G 629:) 627:n 617:) 615:n 605:) 603:n 593:) 591:n 581:) 579:n 569:) 567:n 557:) 555:n 545:) 543:n 485:) 472:Z 460:) 447:Z 423:) 410:Z 401:( 314:p 279:Q 271:n 268:D 258:n 255:A 247:n 244:S 236:n 233:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.