Knowledge

Kepler–Poinsot polyhedron

Source 📝

3515: 1094: 1051: 1782: 1680: 69: 39: 1565: 1331: 1085: 1042: 1649: 1532: 1415: 1298: 25: 55: 1214: 2669: 3473: 1448: 2880: 2903: 1941: 1228: 2896: 2873: 2554: 1921: 1901: 1579: 1345: 1076: 1033: 3545: 3059: 3035: 2014: 1994: 1462: 1572: 3277: 3263: 3506: 1640: 1406: 1338: 3321: 3307: 3233: 3219: 3054: 3030: 2910: 2887: 3272: 3258: 3011: 3006: 3316: 3302: 3249: 3244: 1974: 3228: 3214: 3293: 3288: 1868: 1523: 1221: 3205: 3200: 1455: 1289: 1852: 1828: 3133: 3109: 2662: 2547: 2319: 2297: 2207: 2196: 2158: 2147: 1812: 3128: 3104: 2286: 2275: 2185: 2174: 2136: 2122: 3590: 3085: 3080: 2655: 2540: 2308: 2264: 2106: 2095: 3565: 3395:
the regular convex dodecahedron, for the first time treating it as a surface rather than a solid. He noticed that by extending the edges or faces of the convex dodecahedron until they met again, he could obtain star pentagons. Further, he recognized that these star pentagons are also regular. In this
487:
A Kepler–Poinsot polyhedron covers its circumscribed sphere more than once, with the centers of faces acting as winding points in the figures which have pentagrammic faces, and the vertices in the others. Because of this, they are not necessarily topologically equivalent to the sphere as Platonic
470:
which touch at five points around the pentagon. We could treat these triangles as 60 separate faces to obtain a new, irregular polyhedron which looks outwardly identical. Each edge would now be divided into three shorter edges (of two different kinds), and the 20 false vertices would become true
450:
In all cases, two faces can intersect along a line that is not an edge of either face, so that part of each face passes through the interior of the figure. Such lines of intersection are not part of the polyhedral structure and are sometimes called false edges. Likewise where three such lines
3396:
way he constructed the two stellated dodecahedra. Each has the central convex region of each face "hidden" within the interior, with only the triangular arms visible. Kepler's final step was to recognize that these polyhedra fit the definition of regularity, even though they were not
3411:
rediscovered Kepler's figures, by assembling star pentagons around each vertex. He also assembled convex polygons around star vertices to discover two more regular stars, the great icosahedron and great dodecahedron. Some people call these two the
3761:"These figures are so closely related the one to the dodecahedron the other to the icosahedron that the latter two figures, particularly the dodecahedron, seem somehow truncated or maimed when compared to the figures with spikes." ( 402: 329: 211: 2532: 2504: 544:
does not always hold. Schläfli held that all polyhedra must have χ = 2, and he rejected the small stellated dodecahedron and great dodecahedron as proper polyhedra. This view was never widely held.
2762: 2716: 2647: 2601: 1016: 969: 922: 873: 826: 779: 3776:"A small stellated dodecahedron can be constructed by cumulation of a dodecahedron, i.e., building twelve pentagonal pyramids and attaching them to the faces of the original dodecahedron." 3335:
Most, if not all, of the Kepler-Poinsot polyhedra were known of in some form or other before Kepler. A small stellated dodecahedron appears in a marble tarsia (inlay panel) on the floor of
3141: 3117: 3067: 3043: 257: 2443: 3093: 3019: 682: 1059: 451:
intersect at a point that is not a corner of any face, these points are false vertices. The images below show spheres at the true vertices, and blue rods along the true edges.
1102: 539: 715:. Two relationships described in the article below are also easily seen in the images: That the violet edges are the same, and that the green faces lie in the same planes. 1619: 1472: 1385: 1238: 1599: 1589: 1502: 1482: 1365: 1355: 1268: 1248: 1609: 1492: 1375: 1258: 2404: 1614: 1497: 1380: 1263: 1604: 1594: 1487: 1477: 1370: 1360: 1253: 1243: 611: 584: 471:
ones, so that we have a total of 32 vertices (again of two kinds). The hidden inner pentagons are no longer part of the polyhedral surface, and can disappear. Now
213:
times the original icosahedron edge length. The small stellated dodecahedron, great dodecahedron, and great stellated dodecahedron edge lengths are respectively
3808:"Another way to construct a great stellated dodecahedron via cumulation is to make 20 triangular pyramids and attach them to the sides of an icosahedron." 4180: 2245:
The great stellated dodecahedron shares its vertices with the dodecahedron. The other three Kepler–Poinsot polyhedra share theirs with the icosahedron.
2234: 3671: 334: 261: 143: 2831:
This is just a help to visualize the shape of these solids, and not actually a claim that the edge intersections (false vertices) are vertices.
2510: 2482: 3881: 3172: 1755:
changes pentagonal faces into pentagrams. (In this sense stellation is a unique operation, and not to be confused with the more general
3597:
Regular star polyhedra first appear in Renaissance art. A small stellated dodecahedron is depicted in a marble tarsia on the floor of
4173: 2938:
resemble the icosahedron and its dual in that they have faces and vertices on the 3-fold (yellow) and 5-fold (red) symmetry axes.
4280: 4494: 4069: 3979: 3962: 3865: 3514: 475:
holds: 60 − 90 + 32 = 2. However, this polyhedron is no longer the one described by the
2722: 2676: 2607: 2561: 3974:, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, 4166: 978: 4398: 4383: 4368: 4285: 4085: 4043: 931: 884: 835: 788: 741: 4413: 4388: 4373: 3380:. It is clear from the general arrangement of the book that he regarded only the five Platonic solids as regular. 617:, and holds both for convex polyhedra (where the correction factors are all 1), and the Kepler–Poinsot polyhedra: 4408: 4403: 3532: 3352: 4363: 3970: 3841: 1781: 1679: 2827:
states that the two star polyhedra can be constructed by adding pyramids to the faces of the Platonic solids.
216: 4393: 2409: 1093: 1050: 4504: 4330: 4320: 4260: 4250: 4220: 4210: 3527: 3458: 3377: 3365: 3183: 3179: 2995: 2984: 2945: 2935: 2371: 2367: 2323: 2301: 2211: 2200: 2162: 2151: 2070: 1714: 1556: 1322: 926: 736: 455: 421: 417: 74: 44: 479:{5/2, 5}, and so can not be a Kepler–Poinsot solid even though it still looks like one from outside. 4335: 4325: 4275: 623: 4458: 4448: 4345: 4340: 4142: 3614: 2815:
In his view the great stellation is related to the icosahedron as the small one is to the dodecahedron.
1564: 1330: 68: 38: 2948:
all faces and vertices are on 5-fold symmetry axes (so there are no yellow elements in these images).
4463: 4453: 3982: 2057: 1084: 1041: 497: 3573: 4499: 4473: 4468: 4255: 3641: 3472: 2775:
This implies that the pentagrams have the same size, and that the cores have the same edge length.
2384:
The pentagon faces of these cores are the invisible parts of the star polyhedra's pentagram faces.
4270: 4265: 3691: 3681: 2959: 1648: 3814: 3782: 3733:
Conway et al. (2008), p.405 Figure 26.1 Relationships among the three-dimensional star-polytopes
4378: 3336: 1531: 1414: 1297: 1149: 472: 4147: 2668: 2389: 127:. They can all be seen as three-dimensional analogues of the pentagram in one way or another. 4057: 3950: 3923: 3622: 3598: 3481: 3373: 2952: 2839: 2222:
If the intersections are treated as new edges and vertices, the figures obtained will not be
1213: 24: 3190:
have the same edge length, namely the side length of a pentagram in the surrounding decagon.
2879: 1940: 1447: 54: 2973: 2951:
The following table shows the solids in pairs of duals. In the top row they are shown with
2924: 2902: 2820: 2375: 2312: 2110: 2063: 1227: 1183: 1173: 589: 562: 489: 3454: 1920: 1900: 1710: 1578: 1344: 8: 4305: 4107: 3686: 3626: 3544: 2969: 2843: 2268: 2099: 2053: 973: 3612:'s interest in geometric forms often led to works based on or including regular solids; 3058: 3034: 2895: 2872: 2553: 4315: 4310: 4245: 4215: 4053: 3946: 3676: 3666: 3523: 3450: 3369: 3276: 3262: 2980: 2941: 2379: 2339: 2279: 2223: 2189: 2140: 1696: 1684: 1639: 1405: 1205: 1188: 783: 548: 467: 432: 92: 30: 3505: 2013: 1993: 1571: 1461: 1337: 1143: 1075: 1032: 476: 4433: 4225: 4104: 4081: 4065: 4039: 3975: 3958: 3861: 3845: 3811: 3779: 3569: 3446:
gave the Kepler–Poinsot polyhedra the names by which they are generally known today.
3397: 3320: 3306: 3187: 2991: 2955:, in the bottom row with icosahedral symmetry (to which the mentioned colors refer). 2931: 2348: 2290: 2178: 2126: 2045: 1439: 879: 436: 106: 60: 3232: 3218: 4443: 4438: 4136: 4031: 3853: 3763: 3748: 3661: 3550: 3361: 3053: 3029: 2909: 2886: 4126: 3850:
Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination
3271: 3257: 4189: 4027:, Cambridge University Press (1976) - discussion of proof of Euler characteristic 3909: 3555: 3432: 3420: 3388: 3010: 3005: 1198: 830: 693: 120: 95: 3633: 3315: 3301: 3248: 3243: 4297: 3428: 3401: 3227: 3213: 1193: 1178: 700:, or more precisely, Petrie polygons with the same two dimensional projection. 697: 440: 4131: 3857: 3292: 3287: 1973: 1765:
maintains the type of faces, shifting and resizing them into parallel planes.
1683:
Conway's system of relations between the six polyhedra (ordered vertically by
4488: 4010: 4000: 3933: 3602: 3490: 3443: 3408: 3344: 3204: 3199: 2864: 1288: 1167: 704: 614: 556: 444: 124: 3416:. Poinsot did not know if he had discovered all the regular star polyhedra. 1522: 1220: 397:{\displaystyle \phi ^{5}={\tfrac {1}{2}}{\bigl (}11+5{\sqrt {5}}\,{\bigr )}} 4158: 3649: 3609: 3132: 3108: 2661: 2546: 2448: 2318: 2296: 2206: 2195: 2157: 2146: 1454: 712: 466:
part hidden inside the solid. The visible parts of each face comprise five
425: 324:{\displaystyle \phi ^{2}={\tfrac {1}{2}}{\bigl (}3+{\sqrt {5}}\,{\bigr )},} 206:{\displaystyle \phi ^{4}={\tfrac {1}{2}}{\bigl (}7+3{\sqrt {5}}\,{\bigr )}} 109: 1867: 3645: 113: 2962:
from the 5-fold (red), 3-fold (yellow) and 2-fold (blue) symmetry axes.
2799:
i.e. as dodecahedron and icosahedron with pyramids added to their faces.
1851: 1827: 4152: 4121: 3767:, Book II, Proposition XXVI — p. 117 in the translation by E. J. Aiton) 3695: 3424: 3392: 3343:, Italy. It dates from the 15th century and is sometimes attributed to 2248: 2227: 2049: 1756: 1136: 102: 3127: 3103: 2527:{\displaystyle {\frac {\text{core midradius}}{\text{hull midradius}}}} 2499:{\displaystyle {\frac {\text{hull midradius}}{\text{core midradius}}}} 2285: 2274: 2184: 2173: 2135: 2121: 1811: 4112: 3819: 3809: 3787: 3777: 3589: 3162: 2824: 2770: 2456: 1788: 708: 459: 428: 413: 117: 3084: 3079: 2654: 2539: 2307: 2263: 2105: 2094: 3436: 2835: 2252: 2074: 463: 84: 3601:, Venice, Italy, dating from ca. 1430 and sometimes attributed to 3752:, Book V, Chapter III — p. 407 in the translation by E. J. Aiton) 3457:
for stellations in up to four dimensions. Within this scheme the
3166: 3722:
Star polytopes and the Schläfli function f(α,β,γ)
3564: 3383:
The small and great stellated dodecahedra, sometimes called the
2459:
is a common measure to compare the size of different polyhedra.)
3485: 3477: 3340: 4072:(Chapter 26. pp. 404: Regular star-polytopes Dimension 3) 4102: 4007:. San Carlos, CA: Wide World Publ./Tetra, p. 113, 1989. 3584: 1674: 4155:: Software used to create many of the images on this page. 3742:"augmented dodecahedron to which I have given the name of 2789:
Traditionally the two star polyhedra have been defined as
3892:
H.S.M. Coxeter, P. Du Val, H.T. Flather and J.F. Petrie;
3698:, 4-dimensional analogues of the Kepler–Poinsot polyhedra 2382:
with their edges and faces extended until they intersect.
3625:
of the great dodecahedron was used for the 1980s puzzle
4080:. California: University of California Press Berkeley. 3965:(Chapter 24, Regular Star-polytopes, pp. 404–408) 1787:
The polyhedra in this section are shown with the same
352: 279: 161: 3914:
Comptes rendus des séances de l'Académie des Sciences
2777:(Compare the 5-fold orthographic projections below.) 2757:{\displaystyle {\frac {3-{\sqrt {5}}}{2}}=0.38196...} 2725: 2711:{\displaystyle {\frac {3+{\sqrt {5}}}{2}}=2.61803...} 2679: 2642:{\displaystyle {\frac {{\sqrt {5}}-1}{2}}=0.61803...} 2610: 2596:{\displaystyle {\frac {{\sqrt {5}}+1}{2}}=1.61803...} 2564: 2513: 2485: 2412: 2392: 981: 934: 887: 838: 791: 744: 626: 592: 565: 500: 337: 264: 219: 146: 4127:
Free paper models (nets) of Kepler–Poinsot polyhedra
2406:
times bigger than the core, and for the great it is
2079:The three others are facetings of the icosahedron. 1691: 2756: 2710: 2641: 2595: 2526: 2498: 2437: 2398: 1010: 963: 916: 867: 820: 773: 676: 605: 578: 533: 396: 323: 251: 205: 3994:Star Polytopes and the Schlafli Function f(α,β,γ) 3431:, and almost half a century after that, in 1858, 3161:The platonic hulls in these images have the same 2769:The platonic hulls in these images have the same 2386:For the small stellated dodecahedron the hull is 416:(star pentagons) as faces or vertex figures. The 4486: 3844:(2013). "Regular and semiregular polyhedra". In 2062:The three others are all the stellations of the 1011:{\displaystyle \left\{{\frac {10}{3,5}}\right\}} 3912:, Note sur la théorie des polyèdres réguliers, 3644:. The star spans 14 meters, and consists of an 3165:, so all the 5-fold projections below are in a 964:{\displaystyle \left\{{\frac {5}{2}},3\right\}} 917:{\displaystyle \left\{3,{\frac {5}{2}}\right\}} 868:{\displaystyle \left\{{\frac {6}{1,3}}\right\}} 821:{\displaystyle \left\{5,{\frac {5}{2}}\right\}} 774:{\displaystyle \left\{{\frac {5}{2}},5\right\}} 2834:If they were, the two star polyhedra would be 711:. They also show that the Petrie polygons are 687: 4174: 404:times the original dodecahedron edge length. 389: 365: 313: 292: 198: 174: 4188: 4075: 3882:File:Perspectiva Corporum Regularium 27e.jpg 3618:is based on a small stellated dodecahedron. 2356: 2240: 2039: 4143:VRML models of the Kepler–Poinsot polyhedra 3930:J. de l'École Polytechnique 9, 68–86, 1813. 2466:Hull and core of the stellated dodecahedra 4181: 4167: 4148:Stellation and facetting - a brief history 4013:, Memoire sur les polygones et polyèdres. 3852:(2nd ed.). Springer. pp. 41–52. 547:A modified form of Euler's formula, using 116:, and differ from these in having regular 4030: 3585:Regular star polyhedra in art and culture 3360:), a book of woodcuts published in 1568, 1746:great stellated dodecahedron (sgD = gsD) 1675:Relationships among the regular polyhedra 482: 386: 310: 195: 4122:Paper models of Kepler–Poinsot polyhedra 3936:, On Poinsot's Four New Regular Solids. 3588: 3563: 3543: 3471: 2374:stellated dodecahedron can be seen as a 2012: 1992: 1972: 1939: 1919: 1899: 1699:defines the Kepler–Poinsot polyhedra as 1678: 252:{\displaystyle \phi ^{3}=2+{\sqrt {5}},} 3840: 3652:inside a great stellated dodecahedron. 2923:All Kepler–Poinsot polyhedra have full 2853:Stellated dodecahedra as augmentations 2438:{\displaystyle \varphi +1=\varphi ^{2}} 4487: 4281:nonconvex great rhombicosidodecahedron 3724:p. 121 1. The Kepler–Poinsot polyhedra 3387:, were first recognized as regular by 692:The Kepler–Poinsot polyhedra exist in 4162: 4103: 3810: 3778: 2803:Kepler calls the small stellation an 2335: 140:The great icosahedron edge length is 3969:Kaleidoscopes: Selected Writings of 3372:(both shown below). There is also a 2251:of the solids sharing vertices are 2235:List of Wenninger polyhedron models 2226:, but they can still be considered 677:{\displaystyle d_{v}V-E+d_{f}F=2D.} 13: 4092:Chapter 8: Kepler Poisot polyhedra 3896:, 3rd Edition, Tarquin, 1999. p.11 3358:Perspectives of the regular solids 703:The following images show the two 488:solids are, and in particular the 443:polygonal faces, but pentagrammic 130: 14: 4516: 4399:great stellapentakis dodecahedron 4384:medial pentagonal hexecontahedron 4369:small stellapentakis dodecahedron 4286:great truncated icosidodecahedron 4096: 3943:, pp. 123–127 and 209, 1859. 3435:provided a more elegant proof by 3391:around 1619. He obtained them by 2823:definitions are still used. E.g. 4414:great pentagonal hexecontahedron 4389:medial disdyakis triacontahedron 4374:medial deltoidal hexecontahedron 3513: 3504: 3319: 3314: 3305: 3300: 3291: 3286: 3275: 3270: 3261: 3256: 3247: 3242: 3231: 3226: 3217: 3212: 3203: 3198: 3131: 3126: 3107: 3102: 3083: 3078: 3057: 3052: 3033: 3028: 3009: 3004: 2927:, just like their convex hulls. 2908: 2901: 2894: 2885: 2878: 2871: 2784: 2667: 2660: 2653: 2552: 2545: 2538: 2361: 2317: 2306: 2295: 2284: 2273: 2262: 2205: 2194: 2183: 2172: 2156: 2145: 2134: 2120: 2104: 2093: 1866: 1850: 1826: 1810: 1780: 1692:Conway's operational terminology 1647: 1638: 1617: 1612: 1607: 1602: 1597: 1592: 1587: 1577: 1570: 1563: 1530: 1521: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1460: 1453: 1446: 1413: 1404: 1383: 1378: 1373: 1368: 1363: 1358: 1353: 1343: 1336: 1329: 1296: 1287: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1226: 1219: 1212: 1092: 1083: 1074: 1049: 1040: 1031: 407: 67: 53: 37: 23: 4409:great disdyakis triacontahedron 4404:great deltoidal hexecontahedron 3903: 3533:Perspectiva Corporum Regularium 3353:Perspectiva corporum regularium 2347:share vertices, skeletons form 534:{\displaystyle \chi =V-E+F=2\ } 16:Any of 4 regular star polyhedra 4364:medial rhombic triacontahedron 4038:. Cambridge University Press. 4003:, (The Kepler–Poinsot Solids) 3886: 3875: 3834: 3815:"Great Stellated Dodecahedron" 3802: 3783:"Small Stellated Dodecahedron" 3770: 3755: 3736: 3727: 3714: 2994:)   and   {5/2, 3} ( 2983:)   and   {5/2, 5} ( 2215:(the one with yellow vertices) 1: 4394:great rhombic triacontahedron 3928:Recherches sur les polyèdres. 3702: 1771:Conway relations illustrated 1551:great stellated dodecahedron 1317:small stellated dodecahedron 4331:great dodecahemidodecahedron 4321:small dodecahemidodecahedron 4261:truncated dodecadodecahedron 4251:truncated great dodecahedron 4221:great stellated dodecahedron 4211:small stellated dodecahedron 4153:Stella: Polyhedron Navigator 4078:Polyhedra: A Visual Approach 3920:(1858), pp. 79–82, 117. 3608:In the 20th century, artist 3528:great stellated dodecahedron 3459:small stellated dodecahedron 3423:proved the list complete by 3378:small stellated dodecahedron 3366:great stellated dodecahedron 2972:)   and   {5, 3} ( 2324:great stellated dodecahedron 2302:small stellated dodecahedron 2071:great stellated dodecahedron 1738:stellated dodecahedron (sD) 1715:small stellated dodecahedron 1557:great stellated dodecahedron 1554: 1437: 1323:small stellated dodecahedron 1320: 1203: 927:great stellated dodecahedron 737:small stellated dodecahedron 456:small stellated dodecahedron 422:great stellated dodecahedron 75:Great stellated dodecahedron 45:Small stellated dodecahedron 7: 4336:great icosihemidodecahedron 4326:small icosihemidodecahedron 4276:truncated great icosahedron 4015:J. de l'École Polytechnique 3992:(Paper 10) H.S.M. Coxeter, 3655: 2918: 2130:(the one with yellow faces) 696:pairs. Duals have the same 688:Duality and Petrie polygons 10: 4521: 4459:great dodecahemidodecacron 4449:small dodecahemidodecacron 4346:small dodecahemicosahedron 4341:great dodecahemicosahedron 3986:(Paper 1) H.S.M. Coxeter, 3330: 3173:projection of the compound 2085:Stellations and facetings 1115: 4464:great icosihemidodecacron 4454:small icosihemidodecacron 4422: 4354: 4294: 4234: 4196: 3894:The Fifty-Nine Icosahedra 3858:10.1007/978-0-387-92714-5 3672:List of regular polytopes 3159: 3155:orthographic projections 3154: 2852: 2767: 2465: 2357:The stellated dodecahedra 2346: 2333:share vertices and edges 2332: 2330:share vertices and edges 2329: 2241:Shared vertices and edges 2204: 2119: 2103: 2092: 2084: 2058:The Fifty-Nine Icosahedra 2040:Stellations and facetings 1770: 89:Kepler–Poinsot polyhedron 4495:Kepler–Poinsot polyhedra 4474:small dodecahemicosacron 4469:great dodecahemicosacron 4256:rhombidodecadodecahedron 4190:Star-polyhedra navigator 4062:The Symmetries of Things 3872:See in particular p. 42. 3707: 3642:Oslo Airport, Gardermoen 2960:orthographic projections 2399:{\displaystyle \varphi } 1735:great dodecahedron (gD) 1125:(Conway's abbreviation) 722:horizontal edge in front 135: 101:They may be obtained by 4271:great icosidodecahedron 4266:snub dodecadodecahedron 4020:, pp. 16–48, 1810. 3988:The Nine Regular Solids 3694:– the ten regular star 3692:Regular star 4-polytope 3682:Uniform star polyhedron 3548:Stellated dodecahedra, 3449:A hundred years later, 1743:great icosahedron (gI) 462:faces with the central 4425:uniform polyhedra with 4379:small rhombidodecacron 4108:"Kepler–Poinsot solid" 4025:Proofs and Refutations 4005:The Joy of Mathematics 3955:The Symmetry of Things 3594: 3577: 3559: 3495: 3463:stellated dodecahedron 3455:systematic terminology 2958:The table below shows 2805:augmented dodecahedron 2758: 2712: 2643: 2597: 2528: 2500: 2439: 2400: 2028: 2008: 1988: 1955: 1935: 1915: 1719:stellated dodecahedron 1688: 1103:Compound of gI and gsD 1012: 965: 918: 869: 822: 775: 727:vertical edge in front 678: 607: 580: 535: 483:Euler characteristic χ 398: 325: 253: 207: 4137:Kepler-Poinsot Solids 4132:The Uniform Polyhedra 4076:Anthony Pugh (1976). 4058:Chaim Goodman-Strauss 3951:Chaim Goodman-Strauss 3924:Augustin-Louis Cauchy 3592: 3568:Cardboard model of a 3567: 3547: 3475: 3400:, as the traditional 2953:pyritohedral symmetry 2840:pentakis dodecahedron 2759: 2713: 2644: 2598: 2529: 2501: 2440: 2401: 2016: 1996: 1976: 1943: 1923: 1903: 1707:of the convex solids. 1682: 1105:with Petrie decagrams 1060:Compound of sD and gD 1013: 966: 919: 870: 823: 776: 679: 608: 606:{\displaystyle d_{f}} 581: 579:{\displaystyle d_{v}} 536: 399: 326: 254: 208: 4427:infinite stellations 4235:Uniform truncations 3442:The following year, 2925:icosahedral symmetry 2807:(then nicknaming it 2723: 2677: 2608: 2562: 2511: 2483: 2410: 2390: 2077:of the dodecahedron. 1062:with Petrie hexagons 979: 932: 885: 836: 789: 742: 624: 590: 563: 498: 335: 262: 217: 144: 4505:Nonconvex polyhedra 4355:Duals of nonconvex 4306:tetrahemihexahedron 4139:in Visual Polyhedra 3687:Polyhedral compound 3599:St. Mark's Basilica 3574:Tübingen University 3419:Three years later, 3337:St. Mark's Basilica 2844:triakis icosahedron 1434:great dodecahedron 468:isosceles triangles 412:These figures have 4423:Duals of nonconvex 4316:octahemioctahedron 4311:cubohemioctahedron 4295:Nonconvex uniform 4246:dodecadodecahedron 4237:of Kepler-Poinsot 4216:great dodecahedron 4204:regular polyhedra) 4105:Weisstein, Eric W. 3846:Senechal, Marjorie 3812:Weisstein, Eric W. 3780:Weisstein, Eric W. 3677:Uniform polyhedron 3667:Regular polyhedron 3640:is displayed near 3595: 3578: 3560: 3524:Great dodecahedron 3496: 3370:great dodecahedron 3178:This implies that 3169:of the same size. 2942:great dodecahedron 2838:equivalent to the 2754: 2708: 2639: 2593: 2524: 2496: 2435: 2396: 2380:great dodecahedron 2340:dodecahedral graph 2280:great dodecahedron 2029: 2009: 1989: 1956: 1936: 1916: 1759:described below.) 1689: 1668:great icosahedron 1206:great dodecahedron 1008: 961: 914: 865: 818: 784:great dodecahedron 771: 674: 603: 576: 531: 433:great dodecahedron 394: 361: 321: 288: 249: 203: 170: 31:Great dodecahedron 4482: 4481: 4434:tetrahemihexacron 4357:uniform polyhedra 4226:great icosahedron 4070:978-1-56881-220-5 4056:, Heidi Burgiel, 4050:, pp. 39–41. 4032:Wenninger, Magnus 3980:978-0-471-01003-6 3963:978-1-56881-220-5 3949:, Heidi Burgiel, 3867:978-0-387-92713-8 3842:Coxeter, H. S. M. 3632:Norwegian artist 3582: 3581: 3570:great icosahedron 3494: 3414:Poinsot polyhedra 3328: 3327: 3150: 3149: 3145: 3121: 3097: 3071: 3047: 3023: 2932:great icosahedron 2916: 2915: 2782: 2781: 2746: 2740: 2700: 2694: 2631: 2619: 2585: 2573: 2522: 2521: 2518: 2494: 2493: 2490: 2460: 2354: 2353: 2349:icosahedral graph 2291:great icosahedron 2220: 2219: 2216: 2131: 2046:great icosahedron 2037: 2036: 2033: 2032: 1960: 1959: 1887: 1886: 1792: 1750: 1749: 1730:dodecahedron (D) 1711:naming convention 1672: 1671: 1440:great icosahedron 1113: 1112: 1021: 1020: 1002: 948: 907: 880:great icosahedron 859: 811: 758: 530: 454:For example, the 437:great icosahedron 426:nonconvex regular 384: 360: 308: 287: 244: 193: 169: 61:Great icosahedron 4512: 4444:octahemioctacron 4439:hexahemioctacron 4183: 4176: 4169: 4160: 4159: 4118: 4117: 4091: 4049: 3971:H. S. M. Coxeter 3897: 3890: 3884: 3879: 3873: 3871: 3838: 3832: 3831: 3830: 3828: 3827: 3806: 3800: 3799: 3798: 3796: 3795: 3774: 3768: 3764:Harmonices Mundi 3759: 3753: 3749:Harmonices Mundi 3740: 3734: 3731: 3725: 3718: 3662:Regular polytope 3627:Alexander's Star 3593:Alexander's Star 3551:Harmonices Mundi 3517: 3508: 3488: 3468: 3467: 3385:Kepler polyhedra 3362:Wenzel Jamnitzer 3324: 3323: 3318: 3310: 3309: 3304: 3296: 3295: 3290: 3280: 3279: 3274: 3266: 3265: 3260: 3252: 3251: 3246: 3236: 3235: 3230: 3222: 3221: 3216: 3208: 3207: 3202: 3191: 3176: 3152: 3151: 3139: 3136: 3135: 3130: 3115: 3112: 3111: 3106: 3091: 3088: 3087: 3082: 3065: 3062: 3061: 3056: 3041: 3038: 3037: 3032: 3017: 3014: 3013: 3008: 2965: 2964: 2912: 2905: 2898: 2889: 2882: 2875: 2861:Star polyhedron 2850: 2849: 2847: 2832: 2816: 2800: 2763: 2761: 2760: 2755: 2747: 2742: 2741: 2736: 2727: 2717: 2715: 2714: 2709: 2701: 2696: 2695: 2690: 2681: 2671: 2664: 2657: 2648: 2646: 2645: 2640: 2632: 2627: 2620: 2615: 2612: 2602: 2600: 2599: 2594: 2586: 2581: 2574: 2569: 2566: 2556: 2549: 2542: 2533: 2531: 2530: 2525: 2523: 2519: 2516: 2515: 2505: 2503: 2502: 2497: 2495: 2491: 2488: 2487: 2474:Star polyhedron 2463: 2462: 2454: 2452: 2444: 2442: 2441: 2436: 2434: 2433: 2405: 2403: 2402: 2397: 2342: 2336:share vertices, 2321: 2310: 2299: 2288: 2277: 2266: 2259: 2258: 2256: 2214: 2209: 2198: 2187: 2176: 2160: 2149: 2138: 2129: 2124: 2108: 2097: 2082: 2081: 2027: 2021: 2007: 2001: 1987: 1981: 1969: 1968: 1954: 1948: 1934: 1928: 1914: 1908: 1896: 1895: 1878: 1870: 1861: 1854: 1837: 1830: 1821: 1814: 1802: 1801: 1785: 1784: 1768: 1767: 1727:icosahedron (I) 1724: 1723: 1651: 1642: 1622: 1621: 1620: 1616: 1615: 1611: 1610: 1606: 1605: 1601: 1600: 1596: 1595: 1591: 1590: 1581: 1574: 1567: 1534: 1525: 1505: 1504: 1503: 1499: 1498: 1494: 1493: 1489: 1488: 1484: 1483: 1479: 1478: 1474: 1473: 1464: 1457: 1450: 1417: 1408: 1388: 1387: 1386: 1382: 1381: 1377: 1376: 1372: 1371: 1367: 1366: 1362: 1361: 1357: 1356: 1347: 1340: 1333: 1300: 1291: 1271: 1270: 1269: 1265: 1264: 1260: 1259: 1255: 1254: 1250: 1249: 1245: 1244: 1240: 1239: 1230: 1223: 1216: 1120: 1119: 1096: 1087: 1078: 1053: 1044: 1035: 1023: 1022: 1017: 1015: 1014: 1009: 1007: 1003: 1001: 987: 970: 968: 967: 962: 960: 956: 949: 941: 923: 921: 920: 915: 913: 909: 908: 900: 874: 872: 871: 866: 864: 860: 858: 844: 827: 825: 824: 819: 817: 813: 812: 804: 780: 778: 777: 772: 770: 766: 759: 751: 728: 723: 718: 717: 683: 681: 680: 675: 658: 657: 636: 635: 612: 610: 609: 604: 602: 601: 585: 583: 582: 577: 575: 574: 540: 538: 537: 532: 528: 403: 401: 400: 395: 393: 392: 385: 380: 369: 368: 362: 353: 347: 346: 330: 328: 327: 322: 317: 316: 309: 304: 296: 295: 289: 280: 274: 273: 258: 256: 255: 250: 245: 240: 229: 228: 212: 210: 209: 204: 202: 201: 194: 189: 178: 177: 171: 162: 156: 155: 71: 57: 41: 27: 4520: 4519: 4515: 4514: 4513: 4511: 4510: 4509: 4500:Johannes Kepler 4485: 4484: 4483: 4478: 4426: 4424: 4418: 4356: 4350: 4296: 4290: 4238: 4236: 4230: 4203: 4199: 4198:Kepler-Poinsot 4192: 4187: 4099: 4088: 4046: 4023:Lakatos, Imre; 3906: 3901: 3900: 3891: 3887: 3880: 3876: 3868: 3839: 3835: 3825: 3823: 3807: 3803: 3793: 3791: 3775: 3771: 3760: 3756: 3741: 3737: 3732: 3728: 3719: 3715: 3710: 3705: 3658: 3638:The Kepler Star 3587: 3556:Johannes Kepler 3540: 3539: 3538: 3537: 3520: 3519: 3518: 3510: 3509: 3429:Platonic solids 3421:Augustin Cauchy 3402:Platonic solids 3389:Johannes Kepler 3376:version of the 3333: 3313: 3299: 3285: 3269: 3255: 3241: 3225: 3211: 3197: 3177: 3170: 3137: 3125: 3113: 3101: 3089: 3077: 3063: 3051: 3039: 3027: 3015: 3003: 2939: 2921: 2833: 2830: 2814: 2798: 2787: 2776: 2774: 2735: 2728: 2726: 2724: 2721: 2720: 2689: 2682: 2680: 2678: 2675: 2674: 2614: 2613: 2611: 2609: 2606: 2605: 2568: 2567: 2565: 2563: 2560: 2559: 2514: 2512: 2509: 2508: 2486: 2484: 2481: 2480: 2453: 2446: 2429: 2425: 2411: 2408: 2407: 2391: 2388: 2387: 2385: 2383: 2364: 2359: 2338:skeletons form 2337: 2322: 2311: 2300: 2289: 2278: 2267: 2246: 2243: 2210: 2199: 2188: 2177: 2161: 2150: 2139: 2125: 2109: 2098: 2078: 2061: 2042: 2023: 2017: 2003: 1997: 1983: 1977: 1950: 1944: 1930: 1924: 1910: 1904: 1883: 1882: 1881: 1880: 1879: 1873: 1871: 1863: 1862: 1857: 1855: 1842: 1841: 1840: 1839: 1838: 1833: 1831: 1823: 1822: 1817: 1815: 1786: 1708: 1694: 1677: 1665: 1652: 1643: 1634: 1626: 1618: 1613: 1608: 1603: 1598: 1593: 1588: 1586: 1585: 1559: 1548: 1535: 1526: 1517: 1509: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1469: 1468: 1442: 1431: 1418: 1409: 1400: 1392: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1352: 1351: 1325: 1314: 1301: 1292: 1283: 1275: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1235: 1234: 1208: 1172: 1169: 1163: 1155: 1148: 1147:{p, q} and 1146: 1139: 1132: 1124: 1118: 1109: 1108: 1107: 1106: 1099: 1098: 1097: 1089: 1088: 1080: 1079: 1066: 1065: 1064: 1063: 1056: 1055: 1054: 1046: 1045: 1037: 1036: 991: 986: 982: 980: 977: 976: 940: 939: 935: 933: 930: 929: 899: 892: 888: 886: 883: 882: 848: 843: 839: 837: 834: 833: 803: 796: 792: 790: 787: 786: 750: 749: 745: 743: 740: 739: 731:Petrie polygon 726: 721: 690: 653: 649: 631: 627: 625: 622: 621: 613:) was given by 597: 593: 591: 588: 587: 570: 566: 564: 561: 560: 499: 496: 495: 485: 477:Schläfli symbol 473:Euler's formula 410: 388: 387: 379: 364: 363: 351: 342: 338: 336: 333: 332: 312: 311: 303: 291: 290: 278: 269: 265: 263: 260: 259: 239: 224: 220: 218: 215: 214: 197: 196: 188: 173: 172: 160: 151: 147: 145: 142: 141: 138: 133: 131:Characteristics 91:is any of four 81: 80: 79: 78: 77: 72: 64: 63: 58: 49: 48: 47: 42: 34: 33: 28: 17: 12: 11: 5: 4518: 4508: 4507: 4502: 4497: 4480: 4479: 4477: 4476: 4471: 4466: 4461: 4456: 4451: 4446: 4441: 4436: 4430: 4428: 4420: 4419: 4417: 4416: 4411: 4406: 4401: 4396: 4391: 4386: 4381: 4376: 4371: 4366: 4360: 4358: 4352: 4351: 4349: 4348: 4343: 4338: 4333: 4328: 4323: 4318: 4313: 4308: 4302: 4300: 4292: 4291: 4289: 4288: 4283: 4278: 4273: 4268: 4263: 4258: 4253: 4248: 4242: 4240: 4232: 4231: 4229: 4228: 4223: 4218: 4213: 4207: 4205: 4194: 4193: 4186: 4185: 4178: 4171: 4163: 4157: 4156: 4150: 4145: 4140: 4134: 4129: 4124: 4119: 4098: 4097:External links 4095: 4094: 4093: 4086: 4073: 4054:John H. Conway 4051: 4044: 4028: 4021: 4008: 3998: 3997: 3996: 3990: 3966: 3947:John H. Conway 3944: 3931: 3921: 3905: 3902: 3899: 3898: 3885: 3874: 3866: 3833: 3801: 3769: 3754: 3735: 3726: 3712: 3711: 3709: 3706: 3704: 3701: 3700: 3699: 3689: 3684: 3679: 3674: 3669: 3664: 3657: 3654: 3586: 3583: 3580: 3579: 3561: 3541: 3522: 3521: 3512: 3511: 3503: 3502: 3501: 3500: 3499: 3497: 3332: 3329: 3326: 3325: 3311: 3297: 3282: 3281: 3267: 3253: 3238: 3237: 3223: 3209: 3194: 3193: 3157: 3156: 3148: 3147: 3123: 3099: 3074: 3073: 3049: 3025: 3000: 2999: 2988: 2977: 2920: 2917: 2914: 2913: 2906: 2899: 2891: 2890: 2883: 2876: 2868: 2867: 2862: 2859: 2855: 2854: 2786: 2783: 2780: 2779: 2765: 2764: 2753: 2750: 2745: 2739: 2734: 2731: 2718: 2707: 2704: 2699: 2693: 2688: 2685: 2672: 2665: 2658: 2650: 2649: 2638: 2635: 2630: 2626: 2623: 2618: 2603: 2592: 2589: 2584: 2580: 2577: 2572: 2557: 2550: 2543: 2535: 2534: 2520:hull midradius 2517:core midradius 2506: 2492:core midradius 2489:hull midradius 2478: 2475: 2472: 2468: 2467: 2445:times bigger. 2432: 2428: 2424: 2421: 2418: 2415: 2395: 2363: 2360: 2358: 2355: 2352: 2351: 2344: 2343: 2334: 2331: 2327: 2326: 2315: 2304: 2293: 2282: 2271: 2242: 2239: 2218: 2217: 2203: 2192: 2181: 2170: 2166: 2165: 2154: 2143: 2132: 2118: 2114: 2113: 2102: 2091: 2087: 2086: 2048:is one of the 2041: 2038: 2035: 2034: 2031: 2030: 2010: 1990: 1966: 1962: 1961: 1958: 1957: 1937: 1917: 1893: 1889: 1888: 1885: 1884: 1872: 1865: 1864: 1856: 1849: 1848: 1847: 1846: 1845: 1843: 1832: 1825: 1824: 1816: 1809: 1808: 1807: 1806: 1805: 1799: 1795: 1794: 1777: 1773: 1772: 1748: 1747: 1744: 1740: 1739: 1736: 1732: 1731: 1728: 1693: 1690: 1676: 1673: 1670: 1669: 1666: 1663: 1660: 1657: 1654: 1645: 1636: 1631: 1628: 1623: 1582: 1575: 1568: 1561: 1553: 1552: 1549: 1546: 1543: 1540: 1537: 1528: 1519: 1514: 1511: 1506: 1465: 1458: 1451: 1444: 1436: 1435: 1432: 1429: 1426: 1423: 1420: 1411: 1402: 1397: 1394: 1389: 1348: 1341: 1334: 1327: 1319: 1318: 1315: 1312: 1309: 1306: 1303: 1294: 1285: 1280: 1277: 1272: 1231: 1224: 1217: 1210: 1202: 1201: 1196: 1191: 1186: 1181: 1179:Petrie polygon 1176: 1165: 1160: 1157: 1152: 1150:Coxeter-Dynkin 1141: 1134: 1129: 1126: 1117: 1114: 1111: 1110: 1101: 1100: 1091: 1090: 1082: 1081: 1073: 1072: 1071: 1070: 1069: 1067: 1058: 1057: 1048: 1047: 1039: 1038: 1030: 1029: 1028: 1027: 1026: 1019: 1018: 1006: 1000: 997: 994: 990: 985: 971: 959: 955: 952: 947: 944: 938: 924: 912: 906: 903: 898: 895: 891: 876: 875: 863: 857: 854: 851: 847: 842: 828: 816: 810: 807: 802: 799: 795: 781: 769: 765: 762: 757: 754: 748: 733: 732: 729: 724: 707:with the same 705:dual compounds 698:Petrie polygon 689: 686: 685: 684: 673: 670: 667: 664: 661: 656: 652: 648: 645: 642: 639: 634: 630: 600: 596: 573: 569: 557:vertex figures 542: 541: 527: 524: 521: 518: 515: 512: 509: 506: 503: 490:Euler relation 484: 481: 445:vertex figures 409: 406: 391: 383: 378: 375: 372: 367: 359: 356: 350: 345: 341: 320: 315: 307: 302: 299: 294: 286: 283: 277: 272: 268: 248: 243: 238: 235: 232: 227: 223: 200: 192: 187: 184: 181: 176: 168: 165: 159: 154: 150: 137: 134: 132: 129: 125:vertex figures 96:star polyhedra 73: 66: 65: 59: 52: 51: 50: 43: 36: 35: 29: 22: 21: 20: 19: 18: 15: 9: 6: 4: 3: 2: 4517: 4506: 4503: 4501: 4498: 4496: 4493: 4492: 4490: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4445: 4442: 4440: 4437: 4435: 4432: 4431: 4429: 4421: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4365: 4362: 4361: 4359: 4353: 4347: 4344: 4342: 4339: 4337: 4334: 4332: 4329: 4327: 4324: 4322: 4319: 4317: 4314: 4312: 4309: 4307: 4304: 4303: 4301: 4299: 4298:hemipolyhedra 4293: 4287: 4284: 4282: 4279: 4277: 4274: 4272: 4269: 4267: 4264: 4262: 4259: 4257: 4254: 4252: 4249: 4247: 4244: 4243: 4241: 4233: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4208: 4206: 4201: 4195: 4191: 4184: 4179: 4177: 4172: 4170: 4165: 4164: 4161: 4154: 4151: 4149: 4146: 4144: 4141: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4120: 4115: 4114: 4109: 4106: 4101: 4100: 4089: 4087:0-520-03056-7 4083: 4079: 4074: 4071: 4067: 4063: 4059: 4055: 4052: 4047: 4045:0-521-54325-8 4041: 4037: 4033: 4029: 4026: 4022: 4019: 4016: 4012: 4011:Louis Poinsot 4009: 4006: 4002: 4001:Theoni Pappas 3999: 3995: 3991: 3989: 3985: 3984: 3983: 3981: 3977: 3973: 3972: 3967: 3964: 3960: 3956: 3952: 3948: 3945: 3942: 3939: 3935: 3934:Arthur Cayley 3932: 3929: 3925: 3922: 3919: 3915: 3911: 3908: 3907: 3895: 3889: 3883: 3878: 3869: 3863: 3859: 3855: 3851: 3847: 3843: 3837: 3822: 3821: 3816: 3813: 3805: 3790: 3789: 3784: 3781: 3773: 3766: 3765: 3758: 3751: 3750: 3745: 3739: 3730: 3723: 3717: 3713: 3697: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3659: 3653: 3651: 3647: 3643: 3639: 3636:'s sculpture 3635: 3630: 3628: 3624: 3619: 3617: 3616: 3611: 3606: 3604: 3603:Paulo Uccello 3600: 3591: 3576:(around 1860) 3575: 3571: 3566: 3562: 3557: 3553: 3552: 3546: 3542: 3535: 3534: 3529: 3525: 3516: 3507: 3498: 3492: 3491:Paolo Uccello 3489:(possibly by 3487: 3483: 3479: 3474: 3470: 3469: 3466: 3464: 3460: 3456: 3452: 3447: 3445: 3444:Arthur Cayley 3440: 3438: 3434: 3430: 3426: 3422: 3417: 3415: 3410: 3409:Louis Poinsot 3405: 3403: 3399: 3394: 3390: 3386: 3381: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3354: 3348: 3346: 3345:Paolo Uccello 3342: 3338: 3322: 3317: 3312: 3308: 3303: 3298: 3294: 3289: 3284: 3283: 3278: 3273: 3268: 3264: 3259: 3254: 3250: 3245: 3240: 3239: 3234: 3229: 3224: 3220: 3215: 3210: 3206: 3201: 3196: 3195: 3192: 3189: 3185: 3181: 3174: 3168: 3164: 3158: 3153: 3146: 3143: 3134: 3129: 3124: 3122: 3119: 3110: 3105: 3100: 3098: 3095: 3086: 3081: 3076: 3075: 3072: 3069: 3060: 3055: 3050: 3048: 3045: 3036: 3031: 3026: 3024: 3021: 3012: 3007: 3002: 3001: 2997: 2993: 2989: 2986: 2982: 2978: 2975: 2971: 2967: 2966: 2963: 2961: 2956: 2954: 2949: 2947: 2943: 2937: 2933: 2928: 2926: 2911: 2907: 2904: 2900: 2897: 2893: 2892: 2888: 2884: 2881: 2877: 2874: 2870: 2869: 2866: 2865:Catalan solid 2863: 2860: 2857: 2856: 2851: 2848: 2845: 2841: 2837: 2836:topologically 2828: 2826: 2822: 2817: 2812: 2810: 2806: 2801: 2796: 2792: 2791:augmentations 2785:Augmentations 2778: 2772: 2766: 2751: 2748: 2743: 2737: 2732: 2729: 2719: 2705: 2702: 2697: 2691: 2686: 2683: 2673: 2670: 2666: 2663: 2659: 2656: 2652: 2651: 2636: 2633: 2628: 2624: 2621: 2616: 2604: 2590: 2587: 2582: 2578: 2575: 2570: 2558: 2555: 2551: 2548: 2544: 2541: 2537: 2536: 2507: 2479: 2476: 2473: 2470: 2469: 2464: 2461: 2458: 2450: 2430: 2426: 2422: 2419: 2416: 2413: 2393: 2381: 2377: 2373: 2369: 2362:Hull and core 2350: 2345: 2341: 2328: 2325: 2320: 2316: 2314: 2309: 2305: 2303: 2298: 2294: 2292: 2287: 2283: 2281: 2276: 2272: 2270: 2265: 2261: 2260: 2257: 2254: 2253:topologically 2250: 2238: 2236: 2231: 2229: 2225: 2213: 2208: 2202: 2197: 2193: 2191: 2186: 2182: 2180: 2175: 2171: 2168: 2167: 2164: 2159: 2155: 2153: 2148: 2144: 2142: 2137: 2133: 2128: 2123: 2116: 2115: 2112: 2107: 2101: 2096: 2089: 2088: 2083: 2080: 2076: 2072: 2067: 2065: 2059: 2055: 2051: 2047: 2026: 2020: 2015: 2011: 2006: 2000: 1995: 1991: 1986: 1980: 1975: 1971: 1970: 1967: 1964: 1963: 1953: 1947: 1942: 1938: 1933: 1927: 1922: 1918: 1913: 1907: 1902: 1898: 1897: 1894: 1891: 1890: 1877: 1869: 1860: 1853: 1844: 1836: 1829: 1820: 1813: 1804: 1803: 1800: 1797: 1796: 1793: 1790: 1783: 1778: 1775: 1774: 1769: 1766: 1764: 1760: 1758: 1754: 1745: 1742: 1741: 1737: 1734: 1733: 1729: 1726: 1725: 1722: 1720: 1716: 1712: 1706: 1702: 1698: 1686: 1681: 1667: 1661: 1658: 1655: 1650: 1646: 1641: 1637: 1632: 1629: 1624: 1584:{5/2, 3} 1583: 1580: 1576: 1573: 1569: 1566: 1562: 1558: 1555: 1550: 1544: 1541: 1538: 1533: 1529: 1524: 1520: 1515: 1512: 1507: 1467:{3, 5/2} 1466: 1463: 1459: 1456: 1452: 1449: 1445: 1441: 1438: 1433: 1427: 1424: 1421: 1416: 1412: 1407: 1403: 1398: 1395: 1390: 1350:{5/2, 5} 1349: 1346: 1342: 1339: 1335: 1332: 1328: 1324: 1321: 1316: 1310: 1307: 1304: 1299: 1295: 1290: 1286: 1281: 1278: 1273: 1233:{5, 5/2} 1232: 1229: 1225: 1222: 1218: 1215: 1211: 1207: 1204: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1171: 1166: 1161: 1158: 1153: 1151: 1145: 1142: 1138: 1135: 1130: 1127: 1122: 1121: 1104: 1095: 1086: 1077: 1068: 1061: 1052: 1043: 1034: 1025: 1024: 1004: 998: 995: 992: 988: 983: 975: 972: 957: 953: 950: 945: 942: 936: 928: 925: 910: 904: 901: 896: 893: 889: 881: 878: 877: 861: 855: 852: 849: 845: 840: 832: 829: 814: 808: 805: 800: 797: 793: 785: 782: 767: 763: 760: 755: 752: 746: 738: 735: 734: 730: 725: 720: 719: 716: 714: 710: 706: 701: 699: 695: 671: 668: 665: 662: 659: 654: 650: 646: 643: 640: 637: 632: 628: 620: 619: 618: 616: 615:Arthur Cayley 598: 594: 586:) and faces ( 571: 567: 558: 554: 550: 545: 525: 522: 519: 516: 513: 510: 507: 504: 501: 494: 493: 492: 491: 480: 478: 474: 469: 465: 461: 457: 452: 448: 446: 442: 438: 434: 430: 427: 423: 419: 415: 408:Non-convexity 405: 381: 376: 373: 370: 357: 354: 348: 343: 339: 318: 305: 300: 297: 284: 281: 275: 270: 266: 246: 241: 236: 233: 230: 225: 221: 190: 185: 182: 179: 166: 163: 157: 152: 148: 128: 126: 122: 119: 115: 111: 108: 104: 99: 97: 94: 90: 86: 76: 70: 62: 56: 46: 40: 32: 26: 4197: 4111: 4077: 4061: 4035: 4024: 4017: 4014: 4004: 3993: 3987: 3968: 3954: 3940: 3937: 3927: 3917: 3913: 3904:Bibliography 3893: 3888: 3877: 3849: 3836: 3824:. Retrieved 3818: 3804: 3792:. Retrieved 3786: 3772: 3762: 3757: 3747: 3743: 3738: 3729: 3721: 3716: 3650:dodecahedron 3637: 3634:Vebjørn Sand 3631: 3620: 3613: 3610:M. C. Escher 3607: 3596: 3549: 3531: 3462: 3461:is just the 3453:developed a 3448: 3441: 3418: 3413: 3406: 3384: 3382: 3364:depicts the 3357: 3351: 3349: 3334: 3160: 3138: 3114: 3090: 3064: 3040: 3016: 2957: 2950: 2929: 2922: 2829: 2818: 2813: 2808: 2804: 2802: 2794: 2790: 2788: 2768: 2449:Golden ratio 2365: 2313:dodecahedron 2244: 2232: 2221: 2117:Stellations 2111:dodecahedron 2068: 2064:dodecahedron 2043: 2024: 2018: 2004: 1998: 1984: 1978: 1951: 1945: 1931: 1925: 1911: 1905: 1875: 1858: 1834: 1818: 1779: 1762: 1761: 1752: 1751: 1718: 1717:is just the 1704: 1700: 1695: 1560:(sgD = gsD) 702: 691: 552: 546: 543: 486: 453: 449: 411: 139: 118:pentagrammic 110:dodecahedron 105:the regular 100: 88: 82: 4202:(nonconvex 4036:Dual Models 3910:J. Bertrand 3696:4-polytopes 3646:icosahedron 3615:Gravitation 3451:John Conway 2795:cumulations 2269:icosahedron 2255:equivalent. 2228:stellations 2100:icosahedron 2054:icosahedron 2050:stellations 1892:greatening 1798:stellation 1705:stellations 1701:greatenings 1697:John Conway 709:edge radius 431:faces. The 114:icosahedron 4489:Categories 3938:Phil. Mag. 3826:2018-09-21 3794:2018-09-21 3703:References 3623:dissection 3425:stellating 3393:stellating 3142:animations 3118:animations 3094:animations 3068:animations 3044:animations 3020:animations 2990:{3, 5/2} ( 2979:{5, 5/2} ( 2752:0.38196... 2706:2.61803... 2637:0.61803... 2591:1.61803... 2233:(See also 2169:Facetings 1763:Greatening 1757:stellation 1753:Stellation 1137:Stellation 464:pentagonal 414:pentagrams 103:stellating 4239:polyhedra 4200:polyhedra 4113:MathWorld 3820:MathWorld 3788:MathWorld 3720:Coxeter, 3482:St Mark's 3407:In 1809, 3374:truncated 3171:(Compare 3163:midradius 2825:MathWorld 2771:midradius 2733:− 2622:− 2457:midradius 2427:φ 2414:φ 2394:φ 2249:skeletons 1789:midradius 1174:(config.) 1131:Spherical 641:− 555:) of the 511:− 502:χ 460:pentagram 429:pentagram 340:ϕ 267:ϕ 222:ϕ 149:ϕ 4034:(1983). 3656:See also 3437:faceting 3433:Bertrand 2968:{3, 5} ( 2946:its dual 2936:its dual 2919:Symmetry 2842:and the 2809:hedgehog 2075:faceting 1965:duality 1776:diagram 1194:Symmetry 1162:Vertices 1144:Schläfli 1140:diagram 1128:Picture 974:decagram 85:geometry 3848:(ed.). 3744:Echinus 3350:In his 3331:History 3167:decagon 2940:In the 2376:regular 2224:regular 2090:Convex 2056:. (See 2052:of the 1709:In his 1685:density 1653:{10/3} 1536:{10/3} 1189:Density 1133:tiling 1116:Summary 831:hexagon 549:density 458:has 12 93:regular 4084:  4068:  4064:2008, 4042:  3978:  3961:  3957:2008, 3864:  3648:and a 3558:(1619) 3536:(1568) 3486:Venice 3478:mosaic 3476:Floor 3439:them. 3404:were. 3398:convex 3368:and a 3341:Venice 2819:These 2378:and a 1874:sgD = 1644:(5/2) 1627:{5/2} 1527:(3)/2 1410:(5/2) 1393:{5/2} 1293:(5)/2 1170:figure 1168:Vertex 1159:Edges 529:  441:convex 107:convex 3708:Notes 3572:from 2858:Core 2821:naïve 2477:Core 2471:Hull 2455:(The 2447:(See 2372:great 2368:small 2073:is a 1518:{5/2} 1443:(gI) 1326:(sD) 1284:{5/2} 1209:(gD) 1154:Faces 439:have 424:have 418:small 136:Sizes 121:faces 4082:ISBN 4066:ISBN 4040:ISBN 3976:ISBN 3959:ISBN 3862:ISBN 3526:and 3427:the 3186:and 2944:and 2934:and 2930:The 2793:(or 2370:and 2366:The 2247:The 2069:The 2044:The 2022:and 2002:and 1982:and 1949:and 1929:and 1909:and 1713:the 1703:and 1510:{3} 1419:{6} 1302:{6} 1276:{5} 1199:Dual 1164:{q} 1156:{p} 1123:Name 713:skew 694:dual 435:and 420:and 331:and 112:and 87:, a 3854:doi 3746:" ( 3554:by 3530:in 3480:in 3184:gsD 2996:gsD 2811:). 2797:), 2212:gsD 2163:gsD 2025:gsD 1952:gsD 1876:gsD 1635:{3} 1401:{5} 123:or 83:In 4491:: 4110:. 4060:, 3953:, 3941:17 3926:, 3918:46 3916:, 3860:. 3817:. 3785:. 3629:. 3621:A 3605:. 3484:, 3465:. 3347:. 3339:, 3188:gI 3182:, 3180:sD 3175:.) 2998:) 2992:gI 2987:) 2985:sD 2981:gD 2976:) 2237:) 2230:. 2201:sD 2190:gD 2179:gI 2152:sD 2141:gD 2127:gI 2066:. 2019:gI 2005:sD 1999:gD 1946:sD 1932:gI 1912:gD 1859:gD 1835:sD 1721:. 1633:20 1630:30 1625:12 1516:12 1513:30 1508:20 1422:−6 1399:12 1396:30 1391:12 1305:−6 1282:12 1279:30 1274:12 989:10 447:. 371:11 98:. 4182:e 4175:t 4168:v 4116:. 4090:. 4048:. 4018:9 3870:. 3856:: 3829:. 3797:. 3493:) 3356:( 3144:) 3140:( 3120:) 3116:( 3096:) 3092:( 3070:) 3066:( 3046:) 3042:( 3022:) 3018:( 2974:D 2970:I 2846:. 2773:. 2749:= 2744:2 2738:5 2730:3 2703:= 2698:2 2692:5 2687:+ 2684:3 2634:= 2629:2 2625:1 2617:5 2588:= 2583:2 2579:1 2576:+ 2571:5 2451:) 2431:2 2423:= 2420:1 2417:+ 2060:) 1985:I 1979:D 1926:I 1906:D 1819:D 1791:. 1687:) 1664:h 1662:I 1659:7 1656:2 1547:h 1545:I 1542:7 1539:2 1430:h 1428:I 1425:3 1313:h 1311:I 1308:3 1184:χ 1005:} 999:5 996:, 993:3 984:{ 958:} 954:3 951:, 946:2 943:5 937:{ 911:} 905:2 902:5 897:, 894:3 890:{ 862:} 856:3 853:, 850:1 846:6 841:{ 815:} 809:2 806:5 801:, 798:5 794:{ 768:} 764:5 761:, 756:2 753:5 747:{ 672:. 669:D 666:2 663:= 660:F 655:f 651:d 647:+ 644:E 638:V 633:v 629:d 599:f 595:d 572:v 568:d 559:( 553:D 551:( 526:2 523:= 520:F 517:+ 514:E 508:V 505:= 390:) 382:5 377:5 374:+ 366:( 358:2 355:1 349:= 344:5 319:, 314:) 306:5 301:+ 298:3 293:( 285:2 282:1 276:= 271:2 247:, 242:5 237:+ 234:2 231:= 226:3 199:) 191:5 186:3 183:+ 180:7 175:( 167:2 164:1 158:= 153:4

Index


Great dodecahedron

Small stellated dodecahedron

Great icosahedron

Great stellated dodecahedron
geometry
regular
star polyhedra
stellating
convex
dodecahedron
icosahedron
pentagrammic
faces
vertex figures
pentagrams
small
great stellated dodecahedron
nonconvex regular
pentagram
great dodecahedron
great icosahedron
convex
vertex figures
small stellated dodecahedron
pentagram
pentagonal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.