Knowledge

Kennedy–Thorndike experiment

Source 📝

1967:). This requires that length contraction and time dilation have the exact relativistic values. Kennedy and Thorndike now argued that they could derive the complete Lorentz transformation solely from the experimental data of the Michelson–Morley experiment and the Kennedy–Thorndike experiment. But this is not strictly correct, since length contraction and time dilation having their exact relativistic values are sufficient but not necessary for the explanation of both experiments. This is because length contraction solely in the direction of motion is only one possibility to explain the Michelson–Morley experiment. In general, its null result requires that the 2012: 1983:, the following scheme can be used to describe the experiments: α represents time changes, β length changes in the direction of motion, and δ length changes perpendicular to the direction of motion. The Michelson–Morley experiment tests the relationship between β and δ, while the Kennedy–Thorndike experiment tests the relationship between α and β. So α depends on β which itself depends on δ, and only combinations of those quantities but not their individual values can be measured in these two experiments. Another experiment is necessary to 20: 213: 1797: 897: 2308:
of light on the observer’s velocity, as well as direction dependence of length contraction. However, no such oscillations were observed in either study, with a RMS velocity bound of ~10, comparable to the bounds set by Hils and Hall (1990). Hence both length contraction and time dilation must have the values predicted by relativity.
1476: 1987:
measure the value of one of these quantities. This was actually achieved with the Ives-Stilwell experiment, which measured α as having the value predicted by relativistic time dilation. Combining this value for α with the Kennedy–Thorndike null result shows that β necessarily must assume the value of
1971:
between transverse and longitudinal lengths corresponds to the Lorentz factor – which includes infinitely many combinations of length changes in the transverse and longitudinal direction. This also affects the role of time dilation in the Kennedy–Thorndike experiment, because its value depends on the
2307:
of reference and the speed of light depends on the observer's velocity, then anomalous oscillations should be observable in the Earth-Moon distance measurements. Since time dilation is already confirmed to high precision, the observance of such oscillations would demonstrate dependence of the speed
198:
took place, the interferometer was made extremely stable and the interference patterns were photographed for later comparison. The tests were done over a period of many months. As no significant fringe shift was found (corresponding to a velocity of 10±10 km/s within the margin of error), the
193:
By making one arm of the experiment much shorter than the other, a change in velocity of the Earth would cause changes in the travel times of the light rays, from which a fringe shift would result unless the frequency of the light source changed to the same degree. In order to determine if such a
1107: 110:
The principle on which this experiment is based is the simple proposition that if a beam of homogeneous light is split into two beams which after traversing paths of different lengths are brought together again, then the relative phases will depend on the velocity of the apparatus unless the
2050:
2002 repeat of the Kennedy–Thorndike experiment. On the left, photodetectors (PD) monitor the resonance of a sapphire cryogenic optical resonator (CORE) length standard kept at liquid helium temperature to stabilize the frequency of a Nd:YAG laser to 1064 nm. On the right, the 532 nm
220:
Although Lorentz–FitzGerald contraction (Lorentz contraction) by itself is fully able to explain the null results of the Michelson–Morley experiment, it is unable by itself to explain the null results of the Kennedy–Thorndike experiment. Lorentz–FitzGerald contraction is given by the formula:
1587: 2718:
Tobar, M. E.; Wolf, P.; Bize, S.; Santarelli, G.; Flambaum, V. (2010). "Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser".
1988:
relativistic length contraction. And combining this value for β with the Michelson–Morley null result shows that δ must be zero. So the necessary components of the Lorentz transformation are provided by experiment, in agreement with the theoretical requirements of
637: 2043:(RMS), which indicates the relation between time dilation and length contraction, have been significantly improved. For instance, the original Kennedy–Thorndike experiment set bounds on RMS velocity dependence of ~10, but current limits are in the ~10 range. 1917: 1268: 2412:
Note: In contrast to the following demonstration, which is applicable only to light traveling along perpendicular paths, Kennedy and Thorndike (1932) provided a general argument applicable to light rays following completely arbitrary
1930:
for the fringe shift to be independent of velocity or orientation of the apparatus, it is necessary that the frequency and thus the wavelength λ be modified by the Lorentz factor. This is actually the case when the effect of
937: 523: 1213: 322: 1792:{\displaystyle \Delta N={\frac {\Delta L_{A}-\Delta L_{B}}{\lambda }}={\frac {2\left(L_{L}-L_{T}\right)}{\lambda }}\left({\frac {1}{\sqrt {1-v_{A}^{2}/c^{2}}}}-{\frac {1}{\sqrt {1-v_{B}^{2}/c^{2}}}}\right)} 39:. The modification is to make one arm of the classical Michelson–Morley (MM) apparatus shorter than the other one. While the Michelson–Morley experiment showed that the speed of light is independent of the 622: 892:{\displaystyle T_{L}=T_{1}+T_{2}={\frac {L_{L}/\gamma (v)}{c-v}}+{\frac {L_{L}/\gamma (v)}{c+v}}={\frac {2L_{L}/\gamma (v)}{c}}{\frac {1}{1-{\frac {v^{2}}{c^{2}}}}}={\frac {2L_{L}\gamma (v)}{c}}} 2286: 2215: 2123: 1813: 1471:{\displaystyle \Delta L_{A}={\frac {2\left(L_{L}-L_{T}\right)}{\sqrt {1-v_{A}^{2}/c^{2}}}},\qquad \Delta L_{B}={\frac {2\left(L_{L}-L_{T}\right)}{\sqrt {1-v_{B}^{2}/c^{2}}}}} 1935:
on the frequency is considered. Therefore, both length contraction and time dilation are required to explain the negative result of the Kennedy–Thorndike experiment.
355: 431: 404: 2506: 381: 2867: 1102:{\displaystyle T_{T}={\frac {2L_{T}}{\sqrt {c^{2}-v^{2}}}}={\frac {2L_{T}}{c}}{\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}={\frac {2L_{T}\gamma (v)}{c}}} 2665:
Wolf, P.; Tobar, M. E.; Bize, S.; Clairon, A.; Luiten, A. N.; Santarelli, G. (2004). "Whispering Gallery Resonators and Tests of Lorentz Invariance".
2299:
In addition to terrestrial measurements, Kennedy–Thorndike experiments were carried out by Müller & Soffel (1995) and Müller et al. (1999) using
102:
only. Kennedy had already made several increasingly sophisticated versions of the MM experiment through the 1920s when he struck upon a way to test
2836: 533:
with respect to the hypothetical aether, the difference in time that it takes light to traverse the longitudinal and transverse arms is given by:
529:
Fig. 2 illustrates a Kennedy–Thorndike apparatus with perpendicular arms and assumes the validity of Lorentz contraction. If the apparatus is
3034: 2051:
absorbance line of a low pressure iodine reference is used as a time standard to stabilize the (doubled) frequency of a second Nd:YAG laser.
453: 3081: 55:
alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no
2998: 2900: 1122: 227: 3060: 3029: 2860: 190:
allowed multiple exposures across the diameter of the rings to be recorded on a single photographic plate at different times of day.
2905: 2024: 1972:
value of length contraction used in the analysis of the experiment. Therefore, it's necessary to consider a third experiment, the
631:
The time it takes light to traverse back-and-forth along the Lorentz–contracted length of the longitudinal arm is given by:
2966: 931:
the length of the longitudinal interferometer arm. The time it takes light to go across and back the transverse arm is given by:
3003: 2961: 2936: 2001: 543: 3128: 3076: 2853: 3102: 2040: 1980: 1964: 1524:
are no longer equal. (The Michelson–Morley experiment isn't affected by velocity changes since the difference between
2971: 2951: 2545: 2440: 2080: 2910: 127: 3013: 2890: 32: 2956: 2920: 2300: 79: 1556:
are different from the outset, so it is also capable of measuring the dependence of the speed of light on the
1496:=0. However, it can be seen that both formulas only cancel each other as long as the velocities are the same ( 3008: 2163:
The frequency of a stationary cryogenic microwave oscillator, consisting of sapphire crystal operating in a
2993: 2946: 2941: 1973: 64: 2876: 1112:
The difference in time that it takes light to traverse the longitudinal and transverse arms is given by:
87: 1912:{\displaystyle \approx {\frac {L_{L}-L_{T}}{\lambda }}\left({\frac {v_{A}^{2}-v_{B}^{2}}{c^{2}}}\right)} 134:
kept the temperature regulated to within 0.001 °C. Monochromatic green light from a mercury source
2569:
Hils, Dieter; Hall, J. L. (1990). "Improved Kennedy–Thorndike experiment to test special relativity".
2258: 2187: 2095: 2182:
clocks. Changes during Earth's rotation have been searched for. Data between 2001–2002 was analyzed.
3138: 3133: 3107: 2370: 2327:
Kennedy, R. J.; Thorndike, E. M. (1932). "Experimental Establishment of the Relativity of Time".
2303:
data, in which the Earth-Moon distance is evaluated to an accuracy of centimeters. If there is a
2164: 1960: 2432: 2027:
as well as Kennedy–Thorndike type experiments have been repeated with increased precision using
2011: 3097: 2459:
Mansouri R.; Sexl R.U. (1977). "A test theory of special relativity: III. Second-order tests".
1952: 1262:
after rotation or velocity change due to Earth's own rotation or its rotation around the Sun):
68: 31:, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the 156:
to prevent unwanted rear surface reflections. The two beams were directed towards two mirrors
2830: 47:
of the apparatus in different inertial frames. It also served as a test to indirectly verify
43:
of the apparatus, the Kennedy–Thorndike experiment showed that it is also independent of the
2234:(2003). An active temperature control was implemented. Data between 2002–2003 was analyzed. 2781: 2738: 2684: 2631: 2578: 2521: 2468: 2385: 2336: 1538:
is zero. Therefore, the MM experiment only tests whether the speed of light depends on the
333: 2809: 8: 2696: 415: 388: 179: 153: 2785: 2742: 2688: 2635: 2582: 2525: 2472: 2389: 2340: 2985: 2754: 2728: 2700: 2674: 2621: 2484: 2425: 366: 99: 83: 52: 36: 2811: 199:
experimenters concluded that time dilation occurs as predicted by Special relativity.
3050: 2915: 2793: 2758: 2647: 2612:
Wolf; et al. (2003). "Tests of Lorentz Invariance using a Microwave Resonator".
2594: 2537: 2488: 2436: 2036: 2252:(2003). Data between 2002–2008 was analyzed for both sidereal and annual variations. 1944: 383:
is the length observed by an observer in relative motion with respect to the object,
2789: 2772:
Müller, J.; Soffel, M. H. (1995). "A Kennedy–Thorndike experiment using LLR data".
2746: 2704: 2692: 2639: 2586: 2529: 2505:
Braxmaier, C.; Müller, H.; Pradl, O.; Mlynek, J.; Peters, A.; Schiller, S. (2002).
2476: 2393: 2344: 174:
of the 5461 Å mercury line (≈32 cm, allowing a difference in arm length Δ
171: 51:– while the negative result of the Michelson–Morley experiment can be explained by 2643: 2533: 111:
frequency of the light depends on the velocity in the way required by relativity.
19: 2304: 2179: 1948: 212: 2590: 74:
Improved variants of the Kennedy–Thorndike experiment have been conducted using
2819:
Proceedings of the 11th International Workshop on Laser Ranging Instrumentation
2750: 2168: 443: 434: 116: 75: 2845: 2398: 1976:, in order to derive the Lorentz transformation from experimental data alone. 3122: 3055: 2981: 1956: 1932: 358: 146: 103: 56: 48: 16:
Modified form of the Michelson–Morley experiment, testing special relativity
2651: 2598: 2541: 2348: 2146: 1989: 195: 123: 2717: 2504: 178: ≈ 16 cm). The reflected beams recombined to form circular 139: 1542:
of the apparatus.) But in the Kennedy–Thorndike experiment, the lengths
2664: 2480: 2679: 2626: 518:{\displaystyle \gamma (v)\equiv {\frac {1}{\sqrt {1-v^{2}/c^{2}}}}\ } 406:
is the relative velocity between the observer and the moving object,
98:
The original Michelson–Morley experiment was useful for testing the
2810:
Müller, J., Nordtvedt, K., Schneider, M., Vokrouhlicky, D. (1999).
2176: 920:
is the velocity component with respect to the luminiferous aether,
2733: 2371:"Postulate versus Observation in the Special Theory of Relativity" 2431:(Reprint of 1968 ed.). Courier Dover Publications. pp.  2172: 2138:
Comparing the frequency of a cryogenic optical resonator with an
1563:
According to the previous formula, the travel length difference Δ
1208:{\displaystyle T_{L}-T_{T}={\frac {2(L_{L}-L_{T})\gamma (v)}{c}}} 317:{\displaystyle L=L_{0}{\sqrt {1-v^{2}/c^{2}}}=L_{0}/{\gamma (v)}} 67:. Combining the results of those three experiments, the complete 59:
will be detected while the Earth moves around the Sun. The first
115:
Referring to Fig. 1, key optical components were mounted within
2139: 2084: 216:
Figure 2. Kennedy–Thorndike light path using perpendicular arms
170:
which were set at distances as divergent as possible given the
2032: 2028: 2812:"Improved Determination of Relativistic Quantities from LLR" 2046:
Fig. 3 presents a simplified schematic diagram of Braxmaier
2507:"Tests of Relativity Using a Cryogenic Optical Resonator" 2771: 2568: 2326: 617:{\displaystyle T_{L}-T_{T}={\frac {2(L_{L}-L_{T})}{c}}} 145:
before entering the vacuum chamber, and was split by a
1482:
In order to obtain a negative result, we should have Δ
1234:, the following travel length differences are given (Δ 2261: 2190: 2098: 2039:. The bounds on velocity dependence according to the 1816: 1590: 1271: 1125: 940: 640: 546: 456: 418: 410:
between the hypothetical aether and the moving object
391: 369: 336: 230: 2458: 2424: 2280: 2209: 2117: 1911: 1803:Neglecting magnitudes higher than second order in 1791: 1470: 1207: 1101: 891: 616: 517: 425: 398: 375: 349: 316: 63:confirmation of time dilation was achieved by the 207: 3120: 2422: 2368: 23:Figure 1. The Kennedy–Thorndike experiment 2875: 1241:being the initial travel length difference and 1510:). But if the velocities are different, then Δ 2861: 2083:cavity with that of a laser stabilized to an 361:(the length of the object in its rest frame), 2835:: CS1 maint: multiple names: authors list ( 1938: 1577:and consequently the expected fringe shift Δ 1248:the initial velocity of the apparatus, and Δ 2500: 2498: 909:is the travel time in direction of motion, 2868: 2854: 2805: 2803: 2015:Figure 3. Simplified diagram of Braxmaier 3030:Tests of relativistic energy and momentum 2732: 2678: 2625: 2397: 422: 395: 100:Lorentz–FitzGerald contraction hypothesis 2495: 2010: 1979:More precisely: In the framework of the 211: 18: 2967:Lorentz-violating neutrino oscillations 2800: 1581:are given by (λ being the wavelength): 3121: 2454: 2452: 2294: 2079:Comparing the frequency of an optical 3035:Kaufmann–Bucherer–Neumann experiments 3004:Experimental testing of time dilation 2962:Antimatter tests of Lorentz violation 2937:Modern searches for Lorentz violation 2849: 2364: 2362: 2360: 2358: 2002:Modern searches for Lorentz violation 1995: 82:. For a general overview of tests of 2611: 2322: 2320: 3103:Test theories of special relativity 2449: 2041:Robertson-Mansouri-Sexl test theory 1981:Robertson-Mansouri-Sexl test theory 13: 2697:10.1023/B:GERG.0000046188.87741.51 2667:General Relativity and Gravitation 2355: 1965:History of Lorentz transformations 1619: 1603: 1591: 1372: 1272: 14: 3150: 3061:Michelson–Gale–Pearson experiment 2972:Lorentz-violating electrodynamics 2952:Experiments of Rayleigh and Brace 2317: 93: 3014:Length contraction confirmations 2911:de Sitter double star experiment 2281:{\displaystyle \lesssim 10^{-8}} 2210:{\displaystyle \lesssim 10^{-7}} 2171:whose frequency was compared to 2118:{\displaystyle \lesssim 10^{-5}} 128:coefficient of thermal expansion 2765: 2711: 2006: 1371: 3082:Refutations of emission theory 2921:Measurements of neutrino speed 2658: 2605: 2562: 2416: 2406: 2145:frequency standard, using two 1943:In 1905, it had been shown by 1196: 1190: 1184: 1158: 1090: 1084: 880: 874: 804: 798: 754: 748: 707: 701: 605: 579: 466: 460: 310: 304: 208:Basic theory of the experiment 1: 2644:10.1103/PhysRevLett.90.060402 2534:10.1103/PhysRevLett.88.010401 2311: 2128: 106:as well. In their own words: 33:Michelson–Morley experimental 3077:Refutations of aether theory 2999:Moessbauer rotor experiments 2901:Moessbauer rotor experiments 2896:Kennedy–Thorndike experiment 2794:10.1016/0375-9601(94)01001-B 2025:Michelson–Morley experiments 29:Kennedy–Thorndike experiment 7: 3129:Tests of special relativity 2891:Michelson–Morley experiment 2877:Tests of special relativity 2591:10.1103/PhysRevLett.64.1697 924:is the speed of light, and 916:in the opposite direction, 182:which were photographed at 88:Tests of special relativity 10: 3155: 2957:Trouton–Rankine experiment 2751:10.1103/PhysRevD.81.022003 1999: 3090: 3069: 3043: 3022: 3009:Hafele–Keating experiment 2980: 2929: 2883: 2423:Albert Shadowitz (1988). 2399:10.1103/RevModPhys.21.378 2378:Reviews of Modern Physics 2369:Robertson, H. P. (1949). 2184: 2092: 1939:Importance for relativity 202: 3108:Standard-Model Extension 2994:Ives–Stilwell experiment 2947:Trouton–Noble experiment 2942:Hughes–Drever experiment 1974:Ives–Stilwell experiment 65:Ives–Stilwell experiment 2614:Physical Review Letters 2165:whispering gallery mode 1961:principle of relativity 3098:One-way speed of light 2349:10.1103/PhysRev.42.400 2282: 2211: 2119: 2020: 1953:Lorentz transformation 1913: 1793: 1472: 1209: 1103: 893: 618: 519: 427: 400: 377: 351: 318: 217: 140:Nicol polarizing prism 126:base of extremely low 113: 69:Lorentz transformation 24: 2906:Resonator experiments 2283: 2212: 2120: 2014: 2000:Further information: 1914: 1794: 1473: 1210: 1104: 894: 619: 520: 428: 401: 378: 352: 350:{\displaystyle L_{0}} 319: 215: 108: 22: 2259: 2188: 2096: 2068:velocity dependence 1814: 1588: 1269: 1123: 938: 638: 544: 454: 416: 389: 367: 334: 228: 180:interference fringes 3023:Relativistic energy 2786:1995PhLA..198...71M 2743:2010PhRvD..81b2003T 2689:2004GReGr..36.2351W 2636:2003PhRvL..90f0402W 2583:1990PhRvL..64.1697H 2526:2001PhRvL..88a0401B 2473:1977GReGr...8..809M 2390:1949RvMP...21..378R 2341:1932PhRv...42..400K 2301:Lunar Laser Ranging 2295:Lunar laser ranging 2167:, is compared to a 1891: 1873: 1765: 1717: 1449: 1349: 426:{\displaystyle c\,} 399:{\displaystyle v\,} 80:Lunar Laser Ranging 35:procedure, testing 2986:Length contraction 2930:Lorentz invariance 2481:10.1007/BF00759585 2427:Special relativity 2278: 2207: 2115: 2037:optical resonators 2021: 1996:Recent experiments 1909: 1877: 1859: 1789: 1751: 1703: 1560:of the apparatus. 1468: 1435: 1335: 1205: 1099: 889: 614: 515: 423: 396: 373: 347: 314: 218: 84:Lorentz invariance 53:length contraction 37:special relativity 25: 3116: 3115: 3056:Sagnac experiment 3051:Fizeau experiment 2916:Hammar experiment 2774:Physics Letters A 2721:Physical Review D 2673:(10): 2351–2372. 2577:(15): 1697–1700. 2292: 2291: 2023:In recent years, 1903: 1850: 1782: 1781: 1734: 1733: 1684: 1636: 1466: 1465: 1366: 1365: 1218: 1217: 1203: 1097: 1060: 1059: 1057: 1021: 996: 995: 887: 850: 847: 811: 769: 722: 627: 626: 612: 514: 510: 509: 376:{\displaystyle L} 280: 138:passed through a 130:. A water jacket 3146: 2870: 2863: 2856: 2847: 2846: 2841: 2840: 2834: 2826: 2816: 2807: 2798: 2797: 2769: 2763: 2762: 2736: 2715: 2709: 2708: 2682: 2662: 2656: 2655: 2629: 2609: 2603: 2602: 2566: 2560: 2559: 2557: 2556: 2550: 2544:. Archived from 2511: 2502: 2493: 2492: 2461:Gen. Rel. Gravit 2456: 2447: 2446: 2430: 2420: 2414: 2410: 2404: 2403: 2401: 2375: 2366: 2353: 2352: 2324: 2287: 2285: 2284: 2279: 2277: 2276: 2216: 2214: 2213: 2208: 2206: 2205: 2124: 2122: 2121: 2116: 2114: 2113: 2054: 2053: 2035:, and cryogenic 1918: 1916: 1915: 1910: 1908: 1904: 1902: 1901: 1892: 1890: 1885: 1872: 1867: 1857: 1851: 1846: 1845: 1844: 1832: 1831: 1821: 1798: 1796: 1795: 1790: 1788: 1784: 1783: 1780: 1779: 1770: 1764: 1759: 1744: 1740: 1735: 1732: 1731: 1722: 1716: 1711: 1696: 1692: 1685: 1680: 1679: 1675: 1674: 1673: 1661: 1660: 1642: 1637: 1632: 1631: 1630: 1615: 1614: 1601: 1477: 1475: 1474: 1469: 1467: 1464: 1463: 1454: 1448: 1443: 1428: 1427: 1426: 1422: 1421: 1420: 1408: 1407: 1389: 1384: 1383: 1367: 1364: 1363: 1354: 1348: 1343: 1328: 1327: 1326: 1322: 1321: 1320: 1308: 1307: 1289: 1284: 1283: 1214: 1212: 1211: 1206: 1204: 1199: 1183: 1182: 1170: 1169: 1153: 1148: 1147: 1135: 1134: 1117: 1116: 1108: 1106: 1105: 1100: 1098: 1093: 1080: 1079: 1066: 1061: 1058: 1056: 1055: 1046: 1045: 1036: 1028: 1024: 1022: 1017: 1016: 1015: 1002: 997: 994: 993: 981: 980: 971: 970: 969: 968: 955: 950: 949: 898: 896: 895: 890: 888: 883: 870: 869: 856: 851: 849: 848: 846: 845: 836: 835: 826: 814: 812: 807: 794: 789: 788: 775: 770: 768: 757: 744: 739: 738: 728: 723: 721: 710: 697: 692: 691: 681: 676: 675: 663: 662: 650: 649: 623: 621: 620: 615: 613: 608: 604: 603: 591: 590: 574: 569: 568: 556: 555: 538: 537: 524: 522: 521: 516: 512: 511: 508: 507: 498: 493: 492: 477: 473: 432: 430: 429: 424: 405: 403: 402: 397: 382: 380: 379: 374: 356: 354: 353: 348: 346: 345: 323: 321: 320: 315: 313: 299: 294: 293: 281: 279: 278: 269: 264: 263: 248: 246: 245: 172:coherence length 154:Brewster's angle 76:optical cavities 71:can be derived. 3154: 3153: 3149: 3148: 3147: 3145: 3144: 3143: 3139:1932 in science 3134:Aether theories 3119: 3118: 3117: 3112: 3086: 3065: 3039: 3018: 2984: 2976: 2925: 2879: 2874: 2844: 2828: 2827: 2814: 2808: 2801: 2770: 2766: 2716: 2712: 2663: 2659: 2610: 2606: 2571:Phys. Rev. Lett 2567: 2563: 2554: 2552: 2548: 2514:Phys. Rev. Lett 2509: 2503: 2496: 2467:(10): 809–814. 2457: 2450: 2443: 2421: 2417: 2411: 2407: 2373: 2367: 2356: 2329:Physical Review 2325: 2318: 2314: 2305:preferred frame 2297: 2288: 2269: 2265: 2260: 2257: 2256: 2198: 2194: 2189: 2186: 2185: 2180:atomic fountain 2143: 2106: 2102: 2097: 2094: 2093: 2090:reference line. 2088: 2067: 2009: 2004: 1998: 1959:to satisfy the 1949:Albert Einstein 1941: 1897: 1893: 1886: 1881: 1868: 1863: 1858: 1856: 1852: 1840: 1836: 1827: 1823: 1822: 1820: 1815: 1812: 1811: 1775: 1771: 1766: 1760: 1755: 1739: 1727: 1723: 1718: 1712: 1707: 1691: 1690: 1686: 1669: 1665: 1656: 1652: 1651: 1647: 1643: 1641: 1626: 1622: 1610: 1606: 1602: 1600: 1589: 1586: 1585: 1575: 1568: 1555: 1548: 1537: 1530: 1522: 1515: 1508: 1501: 1494: 1487: 1459: 1455: 1450: 1444: 1439: 1416: 1412: 1403: 1399: 1398: 1394: 1390: 1388: 1379: 1375: 1359: 1355: 1350: 1344: 1339: 1316: 1312: 1303: 1299: 1298: 1294: 1290: 1288: 1279: 1275: 1270: 1267: 1266: 1260: 1253: 1246: 1239: 1231: 1227: 1178: 1174: 1165: 1161: 1154: 1152: 1143: 1139: 1130: 1126: 1124: 1121: 1120: 1075: 1071: 1067: 1065: 1051: 1047: 1041: 1037: 1035: 1023: 1011: 1007: 1003: 1001: 989: 985: 976: 972: 964: 960: 956: 954: 945: 941: 939: 936: 935: 929: 915: 908: 865: 861: 857: 855: 841: 837: 831: 827: 825: 818: 813: 790: 784: 780: 776: 774: 758: 740: 734: 730: 729: 727: 711: 693: 687: 683: 682: 680: 671: 667: 658: 654: 645: 641: 639: 636: 635: 599: 595: 586: 582: 575: 573: 564: 560: 551: 547: 545: 542: 541: 503: 499: 494: 488: 484: 472: 455: 452: 451: 417: 414: 413: 390: 387: 386: 368: 365: 364: 341: 337: 335: 332: 331: 300: 295: 289: 285: 274: 270: 265: 259: 255: 247: 241: 237: 229: 226: 225: 210: 205: 168: 161: 96: 17: 12: 11: 5: 3152: 3142: 3141: 3136: 3131: 3114: 3113: 3111: 3110: 3105: 3100: 3094: 3092: 3088: 3087: 3085: 3084: 3079: 3073: 3071: 3067: 3066: 3064: 3063: 3058: 3053: 3047: 3045: 3041: 3040: 3038: 3037: 3032: 3026: 3024: 3020: 3019: 3017: 3016: 3011: 3006: 3001: 2996: 2990: 2988: 2978: 2977: 2975: 2974: 2969: 2964: 2959: 2954: 2949: 2944: 2939: 2933: 2931: 2927: 2926: 2924: 2923: 2918: 2913: 2908: 2903: 2898: 2893: 2887: 2885: 2884:Speed/isotropy 2881: 2880: 2873: 2872: 2865: 2858: 2850: 2843: 2842: 2799: 2764: 2710: 2657: 2604: 2561: 2494: 2448: 2441: 2415: 2405: 2384:(3): 378–382. 2354: 2335:(3): 400–418. 2315: 2313: 2310: 2296: 2293: 2290: 2289: 2275: 2272: 2268: 2264: 2255: 2253: 2246: 2243: 2236: 2235: 2228: 2225: 2218: 2217: 2204: 2201: 2197: 2193: 2183: 2169:hydrogen maser 2161: 2158: 2151: 2150: 2141: 2136: 2133: 2126: 2125: 2112: 2109: 2105: 2101: 2091: 2086: 2077: 2074: 2070: 2069: 2064: 2061: 2058: 2008: 2005: 1997: 1994: 1945:Henri Poincaré 1940: 1937: 1922:For constant Δ 1920: 1919: 1907: 1900: 1896: 1889: 1884: 1880: 1876: 1871: 1866: 1862: 1855: 1849: 1843: 1839: 1835: 1830: 1826: 1819: 1801: 1800: 1787: 1778: 1774: 1769: 1763: 1758: 1754: 1750: 1747: 1743: 1738: 1730: 1726: 1721: 1715: 1710: 1706: 1702: 1699: 1695: 1689: 1683: 1678: 1672: 1668: 1664: 1659: 1655: 1650: 1646: 1640: 1635: 1629: 1625: 1621: 1618: 1613: 1609: 1605: 1599: 1596: 1593: 1573: 1566: 1553: 1546: 1535: 1528: 1520: 1513: 1506: 1499: 1492: 1485: 1480: 1479: 1462: 1458: 1453: 1447: 1442: 1438: 1434: 1431: 1425: 1419: 1415: 1411: 1406: 1402: 1397: 1393: 1387: 1382: 1378: 1374: 1370: 1362: 1358: 1353: 1347: 1342: 1338: 1334: 1331: 1325: 1319: 1315: 1311: 1306: 1302: 1297: 1293: 1287: 1282: 1278: 1274: 1258: 1251: 1244: 1237: 1229: 1225: 1220: 1219: 1216: 1215: 1202: 1198: 1195: 1192: 1189: 1186: 1181: 1177: 1173: 1168: 1164: 1160: 1157: 1151: 1146: 1142: 1138: 1133: 1129: 1110: 1109: 1096: 1092: 1089: 1086: 1083: 1078: 1074: 1070: 1064: 1054: 1050: 1044: 1040: 1034: 1031: 1027: 1020: 1014: 1010: 1006: 1000: 992: 988: 984: 979: 975: 967: 963: 959: 953: 948: 944: 927: 913: 906: 900: 899: 886: 882: 879: 876: 873: 868: 864: 860: 854: 844: 840: 834: 830: 824: 821: 817: 810: 806: 803: 800: 797: 793: 787: 783: 779: 773: 767: 764: 761: 756: 753: 750: 747: 743: 737: 733: 726: 720: 717: 714: 709: 706: 703: 700: 696: 690: 686: 679: 674: 670: 666: 661: 657: 653: 648: 644: 629: 628: 625: 624: 611: 607: 602: 598: 594: 589: 585: 581: 578: 572: 567: 563: 559: 554: 550: 527: 526: 506: 502: 497: 491: 487: 483: 480: 476: 471: 468: 465: 462: 459: 447:is defined as 444:Lorentz factor 439: 438: 435:speed of light 421: 411: 394: 384: 372: 362: 344: 340: 325: 324: 312: 309: 306: 303: 298: 292: 288: 284: 277: 273: 268: 262: 258: 254: 251: 244: 240: 236: 233: 209: 206: 204: 201: 166: 159: 117:vacuum chamber 95: 94:The experiment 92: 15: 9: 6: 4: 3: 2: 3151: 3140: 3137: 3135: 3132: 3130: 3127: 3126: 3124: 3109: 3106: 3104: 3101: 3099: 3096: 3095: 3093: 3089: 3083: 3080: 3078: 3075: 3074: 3072: 3068: 3062: 3059: 3057: 3054: 3052: 3049: 3048: 3046: 3044:Fizeau/Sagnac 3042: 3036: 3033: 3031: 3028: 3027: 3025: 3021: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2991: 2989: 2987: 2983: 2982:Time dilation 2979: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2934: 2932: 2928: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2888: 2886: 2882: 2878: 2871: 2866: 2864: 2859: 2857: 2852: 2851: 2848: 2838: 2832: 2824: 2820: 2813: 2806: 2804: 2795: 2791: 2787: 2783: 2779: 2775: 2768: 2760: 2756: 2752: 2748: 2744: 2740: 2735: 2730: 2727:(2): 022003. 2726: 2722: 2714: 2706: 2702: 2698: 2694: 2690: 2686: 2681: 2680:gr-qc/0401017 2676: 2672: 2668: 2661: 2653: 2649: 2645: 2641: 2637: 2633: 2628: 2627:gr-qc/0210049 2623: 2620:(6): 060402. 2619: 2615: 2608: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2572: 2565: 2551:on 2021-03-23 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2520:(1): 010401. 2519: 2515: 2508: 2501: 2499: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2455: 2453: 2444: 2442:0-486-65743-4 2438: 2434: 2429: 2428: 2419: 2409: 2400: 2395: 2391: 2387: 2383: 2379: 2372: 2365: 2363: 2361: 2359: 2350: 2346: 2342: 2338: 2334: 2330: 2323: 2321: 2316: 2309: 2306: 2302: 2273: 2270: 2266: 2262: 2254: 2251: 2247: 2244: 2242: 2238: 2237: 2233: 2229: 2226: 2224: 2220: 2219: 2202: 2199: 2195: 2191: 2181: 2178: 2174: 2170: 2166: 2162: 2159: 2157: 2153: 2152: 2148: 2147:Nd:YAG lasers 2144: 2137: 2134: 2132: 2127: 2110: 2107: 2103: 2099: 2089: 2082: 2078: 2075: 2073:Hils and Hall 2072: 2071: 2065: 2062: 2059: 2056: 2055: 2052: 2049: 2044: 2042: 2038: 2034: 2030: 2026: 2018: 2013: 2003: 1993: 1991: 1986: 1982: 1977: 1975: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1936: 1934: 1933:time dilation 1929: 1925: 1905: 1898: 1894: 1887: 1882: 1878: 1874: 1869: 1864: 1860: 1853: 1847: 1841: 1837: 1833: 1828: 1824: 1817: 1810: 1809: 1808: 1806: 1785: 1776: 1772: 1767: 1761: 1756: 1752: 1748: 1745: 1741: 1736: 1728: 1724: 1719: 1713: 1708: 1704: 1700: 1697: 1693: 1687: 1681: 1676: 1670: 1666: 1662: 1657: 1653: 1648: 1644: 1638: 1633: 1627: 1623: 1616: 1611: 1607: 1597: 1594: 1584: 1583: 1582: 1580: 1576: 1569: 1561: 1559: 1552: 1545: 1541: 1534: 1527: 1523: 1516: 1509: 1502: 1495: 1488: 1460: 1456: 1451: 1445: 1440: 1436: 1432: 1429: 1423: 1417: 1413: 1409: 1404: 1400: 1395: 1391: 1385: 1380: 1376: 1368: 1360: 1356: 1351: 1345: 1340: 1336: 1332: 1329: 1323: 1317: 1313: 1309: 1304: 1300: 1295: 1291: 1285: 1280: 1276: 1265: 1264: 1263: 1261: 1254: 1247: 1240: 1233: 1200: 1193: 1187: 1179: 1175: 1171: 1166: 1162: 1155: 1149: 1144: 1140: 1136: 1131: 1127: 1119: 1118: 1115: 1114: 1113: 1094: 1087: 1081: 1076: 1072: 1068: 1062: 1052: 1048: 1042: 1038: 1032: 1029: 1025: 1018: 1012: 1008: 1004: 998: 990: 986: 982: 977: 973: 965: 961: 957: 951: 946: 942: 934: 933: 932: 930: 923: 919: 912: 905: 884: 877: 871: 866: 862: 858: 852: 842: 838: 832: 828: 822: 819: 815: 808: 801: 795: 791: 785: 781: 777: 771: 765: 762: 759: 751: 745: 741: 735: 731: 724: 718: 715: 712: 704: 698: 694: 688: 684: 677: 672: 668: 664: 659: 655: 651: 646: 642: 634: 633: 632: 609: 600: 596: 592: 587: 583: 576: 570: 565: 561: 557: 552: 548: 540: 539: 536: 535: 534: 532: 504: 500: 495: 489: 485: 481: 478: 474: 469: 463: 457: 450: 449: 448: 446: 445: 436: 419: 412: 409: 392: 385: 370: 363: 360: 359:proper length 342: 338: 330: 329: 328: 307: 301: 296: 290: 286: 282: 275: 271: 266: 260: 256: 252: 249: 242: 238: 234: 231: 224: 223: 222: 214: 200: 197: 191: 189: 185: 181: 177: 173: 169: 162: 155: 151: 148: 147:beam splitter 144: 141: 137: 133: 129: 125: 121: 118: 112: 107: 105: 104:time dilation 101: 91: 89: 85: 81: 77: 72: 70: 66: 62: 58: 54: 50: 49:time dilation 46: 42: 38: 34: 30: 21: 3070:Alternatives 2895: 2831:cite journal 2822: 2818: 2780:(2): 71–73. 2777: 2773: 2767: 2724: 2720: 2713: 2670: 2666: 2660: 2617: 2613: 2607: 2574: 2570: 2564: 2553:. Retrieved 2546:the original 2517: 2513: 2464: 2460: 2426: 2418: 2408: 2381: 2377: 2332: 2328: 2298: 2249: 2240: 2231: 2222: 2155: 2130: 2047: 2045: 2022: 2016: 2007:Cavity tests 1990:group theory 1984: 1978: 1968: 1955:must form a 1942: 1927: 1923: 1921: 1804: 1802: 1578: 1571: 1564: 1562: 1557: 1550: 1543: 1539: 1532: 1525: 1518: 1511: 1504: 1497: 1490: 1483: 1481: 1256: 1249: 1242: 1235: 1223: 1221: 1111: 925: 921: 917: 910: 903: 901: 630: 530: 528: 442: 440: 407: 326: 219: 196:fringe shift 192: 187: 183: 175: 164: 157: 149: 142: 135: 131: 124:fused quartz 119: 114: 109: 97: 73: 60: 57:phase shifts 44: 40: 28: 26: 2081:Fabry–Pérot 2063:Description 1540:orientation 41:orientation 3123:Categories 2825:: 216–222. 2555:2012-07-21 2312:References 2129:Braxmaier 531:motionless 2759:119262822 2734:0912.2803 2489:121834946 2271:− 2263:≲ 2248:See Wolf 2230:See Wolf 2200:− 2192:≲ 2108:− 2100:≲ 1951:that the 1875:− 1848:λ 1834:− 1818:≈ 1749:− 1737:− 1701:− 1682:λ 1663:− 1634:λ 1620:Δ 1617:− 1604:Δ 1592:Δ 1433:− 1410:− 1373:Δ 1333:− 1310:− 1273:Δ 1222:Because Δ 1188:γ 1172:− 1137:− 1082:γ 1033:− 983:− 872:γ 823:− 796:γ 746:γ 716:− 699:γ 593:− 558:− 482:− 470:≡ 458:γ 302:γ 253:− 186:. A slit 2652:12633279 2599:10041466 2542:11800924 2177:rubidium 2048:et al.'s 1985:directly 1558:velocity 441:and the 45:velocity 3091:General 2782:Bibcode 2739:Bibcode 2705:8799879 2685:Bibcode 2632:Bibcode 2579:Bibcode 2522:Bibcode 2469:Bibcode 2386:Bibcode 2337:Bibcode 2173:caesium 2066:Maximum 433:is the 357:is the 152:set at 2757:  2703:  2650:  2597:  2540:  2487:  2439:  2413:paths. 2250:et al. 2241:et al. 2239:Tobar 2232:et al. 2223:et al. 2156:et al. 2131:et al. 2057:Author 2033:masers 2029:lasers 2017:et al. 902:where 513:  327:where 203:Theory 86:, see 61:direct 2815:(PDF) 2755:S2CID 2729:arXiv 2701:S2CID 2675:arXiv 2622:arXiv 2549:(PDF) 2510:(PDF) 2485:S2CID 2374:(PDF) 2221:Wolf 2154:Wolf 1969:ratio 1963:(see 1957:group 1517:and Δ 1224:L=c(T 122:on a 2837:link 2648:PMID 2595:PMID 2538:PMID 2437:ISBN 2245:2009 2227:2004 2175:and 2160:2003 2135:2002 2076:1990 2060:Year 2019:2002 1947:and 1928:i.e. 1549:and 1531:and 1255:and 408:i.e. 163:and 27:The 2790:doi 2778:198 2747:doi 2693:doi 2640:doi 2587:doi 2530:doi 2477:doi 2433:161 2394:doi 2345:doi 1805:v/c 78:or 3125:: 2833:}} 2829:{{ 2823:10 2821:. 2817:. 2802:^ 2788:. 2776:. 2753:. 2745:. 2737:. 2725:81 2723:. 2699:. 2691:. 2683:. 2671:36 2669:. 2646:. 2638:. 2630:. 2618:90 2616:. 2593:. 2585:. 2575:64 2573:. 2536:. 2528:. 2518:88 2516:. 2512:. 2497:^ 2483:. 2475:. 2463:. 2451:^ 2435:. 2392:. 2382:21 2380:. 2376:. 2357:^ 2343:. 2333:42 2331:. 2319:^ 2267:10 2196:10 2149:. 2104:10 2031:, 1992:. 1926:, 1807:: 1570:−Δ 1489:−Δ 1228:-T 136:Hg 90:. 2869:e 2862:t 2855:v 2839:) 2796:. 2792:: 2784:: 2761:. 2749:: 2741:: 2731:: 2707:. 2695:: 2687:: 2677:: 2654:. 2642:: 2634:: 2624:: 2601:. 2589:: 2581:: 2558:. 2532:: 2524:: 2491:. 2479:: 2471:: 2465:8 2445:. 2402:. 2396:: 2388:: 2351:. 2347:: 2339:: 2274:8 2203:7 2142:2 2140:I 2111:5 2087:2 2085:I 1924:N 1906:) 1899:2 1895:c 1888:2 1883:B 1879:v 1870:2 1865:A 1861:v 1854:( 1842:T 1838:L 1829:L 1825:L 1799:. 1786:) 1777:2 1773:c 1768:/ 1762:2 1757:B 1753:v 1746:1 1742:1 1729:2 1725:c 1720:/ 1714:2 1709:A 1705:v 1698:1 1694:1 1688:( 1677:) 1671:T 1667:L 1658:L 1654:L 1649:( 1645:2 1639:= 1628:B 1624:L 1612:A 1608:L 1598:= 1595:N 1579:N 1574:B 1572:L 1567:A 1565:L 1554:T 1551:L 1547:L 1544:L 1536:T 1533:L 1529:L 1526:L 1521:B 1519:L 1514:A 1512:L 1507:B 1505:v 1503:= 1500:A 1498:v 1493:B 1491:L 1486:A 1484:L 1478:. 1461:2 1457:c 1452:/ 1446:2 1441:B 1437:v 1430:1 1424:) 1418:T 1414:L 1405:L 1401:L 1396:( 1392:2 1386:= 1381:B 1377:L 1369:, 1361:2 1357:c 1352:/ 1346:2 1341:A 1337:v 1330:1 1324:) 1318:T 1314:L 1305:L 1301:L 1296:( 1292:2 1286:= 1281:A 1277:L 1259:B 1257:v 1252:B 1250:L 1245:A 1243:v 1238:A 1236:L 1232:) 1230:T 1226:L 1201:c 1197:) 1194:v 1191:( 1185:) 1180:T 1176:L 1167:L 1163:L 1159:( 1156:2 1150:= 1145:T 1141:T 1132:L 1128:T 1095:c 1091:) 1088:v 1085:( 1077:T 1073:L 1069:2 1063:= 1053:2 1049:c 1043:2 1039:v 1030:1 1026:1 1019:c 1013:T 1009:L 1005:2 999:= 991:2 987:v 978:2 974:c 966:T 962:L 958:2 952:= 947:T 943:T 928:L 926:L 922:c 918:v 914:2 911:T 907:1 904:T 885:c 881:) 878:v 875:( 867:L 863:L 859:2 853:= 843:2 839:c 833:2 829:v 820:1 816:1 809:c 805:) 802:v 799:( 792:/ 786:L 782:L 778:2 772:= 766:v 763:+ 760:c 755:) 752:v 749:( 742:/ 736:L 732:L 725:+ 719:v 713:c 708:) 705:v 702:( 695:/ 689:L 685:L 678:= 673:2 669:T 665:+ 660:1 656:T 652:= 647:L 643:T 610:c 606:) 601:T 597:L 588:L 584:L 580:( 577:2 571:= 566:T 562:T 553:L 549:T 525:. 505:2 501:c 496:/ 490:2 486:v 479:1 475:1 467:) 464:v 461:( 437:, 420:c 393:v 371:L 343:0 339:L 311:) 308:v 305:( 297:/ 291:0 287:L 283:= 276:2 272:c 267:/ 261:2 257:v 250:1 243:0 239:L 235:= 232:L 188:S 184:P 176:L 167:2 165:M 160:1 158:M 150:B 143:N 132:W 120:V

Index


Michelson–Morley experimental
special relativity
time dilation
length contraction
phase shifts
Ives–Stilwell experiment
Lorentz transformation
optical cavities
Lunar Laser Ranging
Lorentz invariance
Tests of special relativity
Lorentz–FitzGerald contraction hypothesis
time dilation
vacuum chamber
fused quartz
coefficient of thermal expansion
Nicol polarizing prism
beam splitter
Brewster's angle
coherence length
interference fringes
fringe shift

proper length
speed of light
Lorentz factor
time dilation
Henri Poincaré
Albert Einstein

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.