Knowledge

Coherence length

Source đź“ť

833: 1020: 816:
has a chapter on sources which quotes a line width of around 0.052 angstroms for each of the Sodium D lines in an uncooled low-pressure sodium lamp, corresponding to a coherence length of around 67 mm for each line by itself. Cooling the low pressure sodium discharge to
165: 428: 730: 43:
is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect sinusoidal wave. Coherence length is important in
583:
to 50%. It is important to note that this is a roundtrip coherence length — this definition is applied in applications like OCT where the light traverses the measured displacement twice (as in a
1024: 85: 642: 519: 552: 804:
due to the narrow linewidth of each tooth. Non-zero visibility is present only for short intervals of pulses repeated after cavity length distances up to this long coherence length.
247: 343: 298: 821:
temperatures increases the individual D line coherence length by a factor of 6. A very narrow-band interference filter would be required to isolate an individual D line.
453: 273: 577: 755: 484: 335: 212: 190: 788:
have a typical coherence length on the order of centimeters, while the coherence length of longitudinally single-mode lasers can exceed 1 km.
650: 792:
can reach some 100 m, but small, inexpensive semiconductor lasers have shorter lengths, with one source claiming 20 cm. Singlemode
1029: 955: 930: 160:{\displaystyle L={\frac {c}{\,n\,\mathrm {\Delta } f\,}}\approx {\frac {\lambda ^{2}}{\,n\,\mathrm {\Delta } \lambda \,}}~,} 605: 1062: 1004: 800:
of a few kHz can have coherence lengths exceeding 100 km. Similar coherence lengths can be reached with optical
761: 875:
Akcay, C.; Parrein, P.; Rolland, J.P. (2002). "Estimation of longitudinal resolution in optical coherence imaging".
497: 851: 832: 1035: 588: 40: 532: 49: 423:{\displaystyle L={\frac {\,2\ln 2\,}{\pi }}\,{\frac {\lambda ^{2}}{\,n_{g}\,\mathrm {\Delta } \lambda \,}}~,} 250: 225: 308: 64: 1077: 278: 526: 921:
Izatt; Choma; Dhalla (2014). "Theory of Optical Coherence Tomography". In Drexler; Fujimoto (eds.).
1067: 591:, the light traverses the displacement only once, and the coherence length is effectively doubled. 584: 436: 256: 557: 785: 884: 738: 462: 318: 304: 195: 173: 32: 8: 789: 765: 595: 36: 28: 888: 594:
The coherence length can also be measured using a Michelson interferometer and is the
1000: 971: 951: 926: 900: 856: 580: 60: 56: 1039: 892: 487: 215: 818: 797: 491: 219: 1072: 846: 838: 801: 522: 16:
Distance over which a propagating wave maintains a certain degree of coherence
1056: 68: 764:
systems, the coherence length may be reduced by propagation factors such as
904: 725:{\displaystyle V={\frac {\;I_{\max }-I_{\min }\;}{I_{\max }+I_{\min }}}~,} 1045: 896: 793: 773: 769: 599: 456: 45: 312: 874: 20: 79:
In radio-band systems, the coherence length is approximated by
644:
fringe visibility, where the fringe visibility is defined as
525:
of the source. If the source has a Gaussian spectrum with
300:
is the width of the range of wavelengths in the signal.
741: 653: 608: 560: 535: 500: 465: 439: 346: 321: 281: 259: 228: 198: 176: 88: 63:, there is a mathematically analogous concept of the 828: 749: 724: 637:{\displaystyle \,{\frac {1}{\,e\,}}\approx 37\%\,} 636: 571: 546: 513: 478: 447: 422: 329: 315:emission spectrum, the roundtrip coherence length 292: 267: 241: 206: 184: 159: 587:). In transmissive applications, such as with a 1054: 920: 708: 695: 682: 669: 514:{\displaystyle \,\mathrm {\Delta } \lambda \,} 687: 663: 547:{\displaystyle \mathrm {\Delta } \lambda } 945: 746: 742: 633: 620: 616: 609: 568: 561: 510: 501: 444: 440: 410: 401: 390: 376: 369: 356: 326: 322: 289: 282: 264: 260: 238: 229: 203: 199: 181: 177: 147: 138: 134: 114: 105: 101: 55:This article focuses on the coherence of 27:is the propagation distance over which a 994: 242:{\displaystyle \,\mathrm {\Delta } f\,} 1055: 914: 807: 311:(OCT), assuming that the source has a 868: 293:{\displaystyle \,\Delta \lambda \,} 13: 630: 537: 503: 403: 283: 231: 140: 107: 14: 1089: 997:An Introduction to Interferometry 814:An introduction to Interferometry 598:difference of a self-interfering 192:is the speed of light in vacuum, 1023: This article incorporates 1018: 972:"Sam's Laser FAQ - Diode Lasers" 948:Holography: A Practical Approach 852:Superconducting coherence length 831: 1036:General Services Administration 988: 964: 946:Ackermann, Gerhard K. (2007). 939: 925:. Springer Berlin Heidelberg. 50:telecommunications engineering 1: 862: 275:is the signal wavelength and 923:Optical Coherence Tomography 448:{\displaystyle \,\lambda \,} 309:optical coherence tomography 268:{\displaystyle \,\lambda \,} 59:electromagnetic fields. In 7: 824: 589:Mach–Zehnder interferometer 74: 10: 1094: 1063:Electromagnetic radiation 995:Tolansky, Samuel (1973). 779: 757:is the fringe intensity. 572:{\displaystyle \,\pm L\,} 585:Michelson interferometer 554:, then a path offset of 35:) maintains a specified 1031:Federal Standard 1037C 1025:public domain material 751: 726: 638: 573: 548: 515: 480: 449: 424: 331: 294: 269: 243: 208: 186: 161: 1044: (in support of 752: 750:{\displaystyle \,I\,} 727: 639: 602:which corresponds to 574: 549: 516: 481: 479:{\displaystyle n_{g}} 450: 425: 332: 330:{\displaystyle \,L\,} 295: 270: 244: 209: 207:{\displaystyle \,n\,} 187: 185:{\displaystyle \,c\,} 162: 897:10.1364/ao.41.005256 790:Semiconductor lasers 739: 651: 606: 558: 533: 498: 463: 437: 344: 319: 279: 257: 226: 196: 174: 86: 33:electromagnetic wave 889:2002ApOpt..41.5256A 808:Other light sources 596:optical path length 37:degree of coherence 1078:Optical quantities 786:helium–neon lasers 747: 722: 634: 569: 544: 511: 476: 445: 420: 327: 290: 265: 239: 204: 182: 157: 976:www.repairfaq.org 957:978-3-527-40663-0 932:978-3-319-06419-2 883:(25): 5256–5262. 857:Spatial coherence 760:In long-distance 718: 714: 622: 581:fringe visibility 416: 412: 374: 253:of the source or 153: 149: 116: 65:quantum coherence 61:quantum mechanics 41:Wave interference 1085: 1049: 1043: 1038:. Archived from 1022: 1021: 1011: 1010: 992: 986: 985: 983: 982: 968: 962: 961: 943: 937: 936: 918: 912: 911: 872: 841: 836: 835: 756: 754: 753: 748: 731: 729: 728: 723: 716: 715: 713: 712: 711: 699: 698: 688: 686: 685: 673: 672: 661: 643: 641: 640: 635: 623: 621: 611: 579:will reduce the 578: 576: 575: 570: 553: 551: 550: 545: 540: 520: 518: 517: 512: 506: 488:refractive index 485: 483: 482: 477: 475: 474: 454: 452: 451: 446: 429: 427: 426: 421: 414: 413: 411: 406: 400: 399: 388: 387: 378: 375: 370: 354: 336: 334: 333: 328: 299: 297: 296: 291: 274: 272: 271: 266: 248: 246: 245: 240: 234: 216:refractive index 213: 211: 210: 205: 191: 189: 188: 183: 166: 164: 163: 158: 151: 150: 148: 143: 132: 131: 122: 117: 115: 110: 96: 25:coherence length 1093: 1092: 1088: 1087: 1086: 1084: 1083: 1082: 1068:Physical optics 1053: 1052: 1028: 1019: 1017: 1014: 1007: 993: 989: 980: 978: 970: 969: 965: 958: 944: 940: 933: 919: 915: 873: 869: 865: 837: 830: 827: 819:liquid nitrogen 810: 802:frequency combs 782: 740: 737: 736: 707: 703: 694: 690: 689: 681: 677: 668: 664: 662: 660: 652: 649: 648: 615: 610: 607: 604: 603: 559: 556: 555: 536: 534: 531: 530: 529:spectral width 502: 499: 496: 495: 470: 466: 464: 461: 460: 459:of the source, 455:is the central 438: 435: 434: 402: 395: 391: 389: 383: 379: 377: 355: 353: 345: 342: 341: 320: 317: 316: 280: 277: 276: 258: 255: 254: 230: 227: 224: 223: 197: 194: 193: 175: 172: 171: 139: 133: 127: 123: 121: 106: 100: 95: 87: 84: 83: 77: 17: 12: 11: 5: 1091: 1081: 1080: 1075: 1070: 1065: 1051: 1050: 1042:on 2022-01-22. 1013: 1012: 1005: 987: 963: 956: 938: 931: 913: 877:Applied Optics 866: 864: 861: 860: 859: 854: 849: 847:Coherence time 843: 842: 839:Physics portal 826: 823: 809: 806: 781: 778: 745: 733: 732: 721: 710: 706: 702: 697: 693: 684: 680: 676: 671: 667: 659: 656: 632: 629: 626: 619: 614: 567: 564: 543: 539: 523:spectral width 521:is the (FWHM) 509: 505: 473: 469: 443: 431: 430: 419: 409: 405: 398: 394: 386: 382: 373: 368: 365: 362: 359: 352: 349: 325: 305:communications 288: 285: 263: 237: 233: 202: 180: 168: 167: 156: 146: 142: 137: 130: 126: 120: 113: 109: 104: 99: 94: 91: 76: 73: 31:wave (e.g. an 15: 9: 6: 4: 3: 2: 1090: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1047: 1041: 1037: 1033: 1032: 1026: 1016: 1015: 1008: 1006:9780582443334 1002: 998: 991: 977: 973: 967: 959: 953: 950:. Wiley-VCH. 949: 942: 934: 928: 924: 917: 910: 906: 902: 898: 894: 890: 886: 882: 878: 871: 867: 858: 855: 853: 850: 848: 845: 844: 840: 834: 829: 822: 820: 815: 805: 803: 799: 795: 791: 787: 777: 775: 771: 767: 763: 758: 743: 719: 704: 700: 691: 678: 674: 665: 657: 654: 647: 646: 645: 627: 624: 617: 612: 601: 597: 592: 590: 586: 582: 565: 562: 541: 528: 524: 507: 493: 489: 486:is the group 471: 467: 458: 441: 417: 407: 396: 392: 384: 380: 371: 366: 363: 360: 357: 350: 347: 340: 339: 338: 337:is given by 323: 314: 310: 306: 301: 286: 261: 252: 235: 221: 217: 200: 178: 154: 144: 135: 128: 124: 118: 111: 102: 97: 92: 89: 82: 81: 80: 72: 70: 69:wave function 66: 62: 58: 53: 51: 47: 42: 38: 34: 30: 26: 22: 1040:the original 1030: 996: 990: 979:. Retrieved 975: 966: 947: 941: 922: 916: 908: 880: 876: 870: 813: 811: 794:fiber lasers 783: 762:transmission 759: 734: 593: 432: 302: 169: 78: 67:length of a 54: 24: 18: 1046:MIL-STD-188 999:. Longman. 812:Tolansky's 774:diffraction 303:In optical 1057:Categories 981:2017-02-06 909:equation 8 863:References 798:linewidths 784:Multimode 770:scattering 766:dispersion 600:laser beam 457:wavelength 46:holography 675:− 631:% 625:≈ 563:± 542:λ 538:Δ 508:λ 504:Δ 442:λ 408:λ 404:Δ 381:λ 372:π 364:⁡ 287:λ 284:Δ 262:λ 251:bandwidth 232:Δ 145:λ 141:Δ 125:λ 119:≈ 108:Δ 57:classical 905:12211551 825:See also 313:Gaussian 75:Formulas 29:coherent 885:Bibcode 490:of the 249:is the 218:of the 214:is the 21:physics 1003:  954:  929:  903:  780:Lasers 772:, and 735:where 717:  494:, and 492:medium 433:where 415:  222:, and 220:medium 170:where 152:  1073:Waves 1027:from 796:with 1001:ISBN 952:ISBN 927:ISBN 901:PMID 527:FWHM 307:and 48:and 893:doi 709:min 696:max 683:min 670:max 39:. 19:In 1059:: 1048:). 1034:. 974:. 907:. 899:. 891:. 881:41 879:. 776:. 768:, 628:37 361:ln 71:. 52:. 23:, 1009:. 984:. 960:. 935:. 895:: 887:: 744:I 720:, 705:I 701:+ 692:I 679:I 666:I 658:= 655:V 618:e 613:1 566:L 472:g 468:n 418:, 397:g 393:n 385:2 367:2 358:2 351:= 348:L 324:L 236:f 201:n 179:c 155:, 136:n 129:2 112:f 103:n 98:c 93:= 90:L

Index

physics
coherent
electromagnetic wave
degree of coherence
Wave interference
holography
telecommunications engineering
classical
quantum mechanics
quantum coherence
wave function
refractive index
medium
bandwidth
communications
optical coherence tomography
Gaussian
wavelength
refractive index
medium
spectral width
FWHM
fringe visibility
Michelson interferometer
Mach–Zehnder interferometer
optical path length
laser beam
transmission
dispersion
scattering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑