Knowledge

Intramolecular reaction

Source đź“ť

409: 383: 594: 628: 362: 117: 256:
experienced at the transition state. Although three-membered rings are more strained, formation of aziridine is faster than formation of azetidine due to the proximity of the leaving group and nucleophile in the former, which increases the probability that they would meet in a reactive conformation.
66:
Intramolecular reactions, especially ones leading to the formation of 5- and 6-membered rings, are rapid compared to an analogous intermolecular process. This is largely a consequence of the reduced entropic cost for reaching the transition state of ring formation and the absence of significant
585:) which are fairly inert in many organic reactions yet can be cleaved by specific reagents. The main hurdle for this strategy to work is selecting the proper length for the tether and making sure reactive groups have an optimal orientation with respect to each other. An examples is a 545: 526: 810:
Coates, R. M.; Senter, P. D.; Baker, W. R. (1982). "Annelative Ring Expansion via Intramolecular Photocycloaddition of α,β-Unsaturated γ-Lactones and Reductive Cleavage: Synthesis of Hydrocyclopentacyclooctene-5-carboxylates".
467: 67:
strain associated with formation of rings of these sizes. For the formation of different ring sizes via cyclization of substrates of varying tether length, the order of reaction rates (rate constants
296:
Many reactions in organic chemistry can occur in either an intramolecular or intermolecular senses. Some reactions are by definition intramolecular or are only practiced intramolecularly, e.g.,
288:
Although the details may change somewhat, the general trends hold for a variety of intramolecular reactions, including radical-mediated and (in some cases) transition metal-catalyzed processes.
838:
Tamura, Y.; Kita, Y.; Ishibashi, H.; Ikeda, M. (1971). "Intramolecular photocycloaddition of 3-allyloxy- and 3-allylamino-cyclohex-2-enones: formation of oxa- and aza-bicyclohexanes".
376:, involving reductive coupling of alkyl halides, essentially is only useful when conducted intramolecularly. Its utility is illustrated with the synthesis of strained rings: 496: 520: 422:
Many tools and concepts have been developed to exploit the advantages of intramolecular cyclizations. For example, installing large substituents exploits the
1037:
Booker-Milburn, Kevin I.; Gulten, Sirin; Sharpe, Andrew (1997). "Diastereoselective intramolecular photochemical cycloaddition reactions of tethered l-(+)-
285:), the rate constants level off, as the distance between the leaving group and nucleophile is now so large the reaction is now effectively intermolecular. 395:
of diesters almost uniquely produces 10-membered carbocycles, which are difficult to construct otherwise. Another example is the 2+2 cycloaddition of
113:
as shown below for a series of ω-bromoalkylamines. This somewhat complicated rate trend reflects the interplay of these entropic and strain factors:
1087: 916:
Cox, Liam R.; Ley, Steven V. (2007). "Use of the Temporary Connection in Organic Synthesis". In Diederich, François; Stang, Peter J. (eds.).
499: 544: 525: 478:
of the reaction. Longer tethers tend to generate the "straight" product where the terminal carbon of the alkene is linked to the
949:
Bracegirdle, S.; Anderson, E. A. (2010). "Recent advances in the use of temporary silicon tethers in metal-mediated reactions".
273:) is particularly disfavorable due to a combination of an increasingly unfavorable entropic cost and the additional presence of 990: 795: 1299: 1176: 1133: 599:
In this particular reaction, the tether angle bringing the reactive groups together is effectively reduced by placing
1440: 1080: 933: 664: 627: 593: 840: 1348: 1343: 1153: 691: 361: 659:. New Delhi: Medtech (Scientific International, reprint of 1998 revised 4th edition, Macmillan). p. 198. 607:. No reaction takes place when these bulky groups are replaced by smaller methyl groups. Another example is a 1513: 1508: 1534: 1073: 349: 785: 561:
Otherwise-intermolecular reactions can be made temporarily intramolecular by linking both reactants by a
1544: 1539: 1478: 1168: 466: 51:, two reaction sites are contained within a single molecule. This configuration elevates the effective 1205: 1105: 586: 533:
Tethered reactions have been used to synthesize organic compounds with interesting ring systems and
1435: 604: 1483: 460: 681: 408: 1238: 427: 300: 1468: 1400: 1258: 1248: 481: 505: 430:
suppress intermolecular processes. One set of tools involves tethering as discussed below.
1463: 1191: 423: 392: 319: 8: 1473: 1405: 1390: 1333: 715:
Michael C. Willis (2009). "Transition Metal Catalyzed Alkene and Alkyne Hydroacylation".
382: 274: 1498: 1268: 1097: 1014: 985: 893: 868: 537:. For example, photocyclization was used to construct the tricyclic core structure in 502:. When the tether consists only two carbons, the “bent” product is generated where the 310: 304: 32: 391:
Some transformations that are enabled or enhanced intramolecularly. For example, the
1493: 1488: 1450: 1395: 1314: 1294: 1230: 1019: 966: 929: 898: 791: 753: 733: 697: 687: 660: 1425: 1374: 1328: 1051: 1009: 999: 958: 921: 888: 880: 849: 820: 762: 725: 614:
with two alkene groups tethered through a silicon acetal group (racemic, the other
48: 28: 1503: 1415: 1364: 566: 475: 1210: 1199: 866: 373: 353: 324: 60: 565:
with all the advantages associated to it. Popular choices of tether contain a
1528: 1458: 1430: 1338: 1289: 1263: 1043: 867:
Corey, E. J.; Kang, M. C.; Desai, M. C.; Ghosh, A. K.; Houpis, I. N. (1988).
766: 611: 608: 570: 456: 400: 396: 56: 52: 1065: 701: 1410: 1216: 1123: 1113: 1023: 1004: 970: 902: 737: 578: 925: 1369: 1304: 853: 781: 574: 452: 253: 884: 824: 655:
Streitwieser, Andrew; Heathcock, Clayton H.; Kosower, Edward M. (2017).
522:-carbon of the enone is connected to the terminal carbon of the alkene. 962: 717: 635: 615: 538: 534: 39:, a property or phenomenon limited to the extent of a single molecule. 16:
Process or characteristic limited to the structure of a single molecule
809: 729: 1420: 1055: 600: 20: 116: 327:
is almost invariably practiced intramolecularly to produce ketones.
36: 1038: 986:"The use of silicon-based tethers for the Pauson-Khand reaction" 787:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
589:
of an alkene and an alkyne tethered together via a silyl ether.
562: 529:
Effects of the length of tether on photocyclization reaction
314: 277:
arising from steric interactions across the ring. Finally, for
751:
Lampman, Gary M.; Aumiller, James C. (1971). "Bicyclobutane".
1323: 779: 790:(6th ed.), New York: Wiley-Interscience, p. 1461, 654: 619: 451:
Tethered intramolecular reactions entail the formation of
1036: 434: 1143: 837: 463:. Tethering ensures formation of a multi-cyclic system. 59:. Many intramolecular reactions are observed where the 983: 508: 484: 433: 948: 686:. Oxford: Oxford University Press. pp. 454]. 514: 490: 714: 1526: 679: 618:not depicted), which is subsequently cleaved by 750: 984:Dobbs, A.; Miller, I.; Martinovic, S. (2007). 548:Tethered reaction in the total synthesis of ( 1095: 1081: 303:of diesters is the intramolecular version of 115: 55:of the reacting partners resulting in high 1088: 1074: 1013: 1003: 892: 124:Relative rate constants for cyclization ( 869:"Total Synthesis of (.+-.)-Ginkgolide B" 1527: 1114:Unimolecular nucleophilic substitution 991:Beilstein Journal of Organic Chemistry 915: 252:), the slow rates is a consequence of 1124:Bimolecular nucleophilic substitution 1069: 708: 474:The length of the tether affects the 417: 31:or characteristic limited within the 603:groups on the silicon atom via the 556: 1177:Electrophilic aromatic substitution 13: 1144:Nucleophilic internal substitution 1134:Nucleophilic aromatic substitution 543: 524: 470:Tethered intramolecular reactions 465: 435:Tethered intramolecular reactions 407: 381: 360: 14: 1556: 1041:derived tetrahydrophthalimides". 657:Introduction to Organic Chemistry 257:The same reasoning holds for the 42: 626: 592: 365:The Nazarov cyclization reaction 1300:Lindemann–Hinshelwood mechanism 1030: 977: 942: 1349:Outer sphere electron transfer 1344:Inner sphere electron transfer 1154:Nucleophilic acyl substitution 909: 860: 831: 803: 773: 744: 673: 648: 1: 1514:Diffusion-controlled reaction 641: 63:version does not take place. 350:Nazarov cyclization reaction 7: 1169:Electrophilic substitutions 918:Templated Organic Synthesis 291: 78:-membered ring) is usually 10: 1561: 1479:Energy profile (chemistry) 1441:More O'Ferrall–Jencks plot 1106:Nucleophilic substitutions 1509:Michaelis–Menten kinetics 1449: 1383: 1357: 1313: 1277: 1229: 1190: 1167: 1104: 680:Jonathan Clayden (2001). 1436:Potential energy surface 1315:Electron/Proton transfer 1200:Unimolecular elimination 767:10.15227/orgsyn.051.0055 634:Without the tether, the 622:yielding the endo-diol. 74:for the formation of an 1484:Transition state theory 1285:Intramolecular reaction 1211:Bimolecular elimination 491:{\displaystyle \alpha } 461:2+2 photocycloadditions 428:High dilution reactions 1278:Unimolecular reactions 1239:Electrophilic addition 1005:10.1186/1860-5397-3-21 553: 530: 516: 515:{\displaystyle \beta } 492: 476:stereochemical outcome 471: 412: 386: 366: 301:Dieckmann condensation 263:5-, 6-, and 7-membered 120: 1469:Rate-determining step 1401:Reactive intermediate 1259:Free-radical addition 1249:Nucleophilic addition 1192:Elimination reactions 926:10.1002/9783527613526 587:Pauson–Khand reaction 547: 528: 517: 493: 469: 411: 385: 364: 352:for the synthesis of 283:14-membered or higher 119: 1464:Equilibrium constant 920:. pp. 274–395. 854:10.1039/C29710001167 605:Thorpe–Ingold effect 506: 482: 424:Thorpe-Ingold effect 393:acyloin condensation 320:Smiles rearrangement 267:'medium-sized rings' 265:). The formation of 1535:Reaction mechanisms 1474:Reaction coordinate 1406:Radical (chemistry) 1391:Elementary reaction 1334:Grotthuss mechanism 1098:reaction mechanisms 885:10.1021/ja00210a083 825:10.1021/jo00140a001 780:Smith, Michael B.; 459:via intramolecular 336:=CHR' → RC(O)CH 275:transannular strain 138: 136: 1499:Arrhenius equation 1269:Oxidative addition 1231:Addition reactions 963:10.1039/C0CS00007H 554: 531: 512: 488: 472: 418:Tools and concepts 413: 387: 367: 311:Madelung synthesis 305:aldol condensation 259:'unstrained rings' 250:3- and 4- membered 137: 123: 121: 47:In intramolecular 1545:Organic chemistry 1540:Molecular physics 1522: 1521: 1494:Activated complex 1489:Activation energy 1451:Chemical kinetics 1396:Reaction dynamics 1295:Photodissociation 1050:(15): 1385–1386. 957:(11): 4114–4129. 797:978-0-471-72091-1 754:Organic Syntheses 730:10.1021/cr900096x 683:Organic chemistry 557:Molecular tethers 271:8- to 13-membered 242: 241: 49:organic reactions 1552: 1426:Collision theory 1375:Matrix isolation 1329:Harpoon reaction 1206:E1cB-elimination 1090: 1083: 1076: 1067: 1066: 1060: 1059: 1056:10.1039/a702386c 1034: 1028: 1027: 1017: 1007: 981: 975: 974: 946: 940: 939: 913: 907: 906: 896: 873:J. Am. Chem. Soc 864: 858: 857: 835: 829: 828: 807: 801: 800: 777: 771: 769: 748: 742: 741: 712: 706: 705: 677: 671: 670: 652: 630: 596: 521: 519: 518: 513: 497: 495: 494: 489: 448: 447: 443: 436: 139: 122: 1560: 1559: 1555: 1554: 1553: 1551: 1550: 1549: 1525: 1524: 1523: 1518: 1504:Eyring equation 1445: 1416:Stereochemistry 1379: 1365:Solvent effects 1353: 1309: 1273: 1254: 1244: 1225: 1220: 1186: 1182: 1163: 1159: 1149: 1139: 1129: 1119: 1100: 1094: 1064: 1063: 1035: 1031: 982: 978: 947: 943: 936: 914: 910: 865: 861: 841:J. Chem. Soc. D 836: 832: 808: 804: 798: 778: 774: 749: 745: 713: 709: 694: 678: 674: 667: 653: 649: 644: 583:silicon tethers 567:carbonate ester 559: 507: 504: 503: 498:-carbon of the 483: 480: 479: 449: 445: 441: 440:reactions": --> 439: 438: 420: 354:cyclopentenones 343: 339: 335: 294: 178: 165: 152: 134: 112: 105: 98: 91: 84: 72: 45: 17: 12: 11: 5: 1558: 1548: 1547: 1542: 1537: 1520: 1519: 1517: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1455: 1453: 1447: 1446: 1444: 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1387: 1385: 1384:Related topics 1381: 1380: 1378: 1377: 1372: 1367: 1361: 1359: 1358:Medium effects 1355: 1354: 1352: 1351: 1346: 1341: 1336: 1331: 1326: 1320: 1318: 1311: 1310: 1308: 1307: 1302: 1297: 1292: 1287: 1281: 1279: 1275: 1274: 1272: 1271: 1266: 1261: 1256: 1252: 1246: 1242: 1235: 1233: 1227: 1226: 1224: 1223: 1218: 1214: 1208: 1203: 1196: 1194: 1188: 1187: 1185: 1184: 1180: 1173: 1171: 1165: 1164: 1162: 1161: 1157: 1151: 1147: 1141: 1137: 1131: 1127: 1121: 1117: 1110: 1108: 1102: 1101: 1093: 1092: 1085: 1078: 1070: 1062: 1061: 1029: 976: 951:Chem. Soc. Rev 941: 934: 908: 879:(2): 649–651. 859: 830: 802: 796: 772: 743: 724:(2): 725–748. 707: 692: 672: 665: 646: 645: 643: 640: 632: 631: 558: 555: 552:- Ginkgolide B 511: 487: 437: 432: 419: 416: 415: 414: 389: 388: 378: 377: 374:Wurtz reaction 369: 368: 357: 356: 346: 345: 341: 337: 333: 329: 328: 325:Hydroacylation 322: 317: 308: 293: 290: 240: 239: 236: 233: 230: 227: 224: 220: 219: 216: 213: 210: 207: 204: 200: 199: 196: 193: 190: 187: 184: 180: 179: 176: 171: 166: 163: 158: 153: 150: 145: 132: 110: 103: 96: 89: 82: 70: 61:intermolecular 57:reaction rates 44: 43:Relative rates 41: 25:intramolecular 15: 9: 6: 4: 3: 2: 1557: 1546: 1543: 1541: 1538: 1536: 1533: 1532: 1530: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1459:Rate equation 1457: 1456: 1454: 1452: 1448: 1442: 1439: 1437: 1434: 1432: 1431:Arrow pushing 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1388: 1386: 1382: 1376: 1373: 1371: 1368: 1366: 1363: 1362: 1360: 1356: 1350: 1347: 1345: 1342: 1340: 1339:Marcus theory 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1321: 1319: 1316: 1312: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1290:Isomerization 1288: 1286: 1283: 1282: 1280: 1276: 1270: 1267: 1265: 1264:Cycloaddition 1262: 1260: 1257: 1250: 1247: 1240: 1237: 1236: 1234: 1232: 1228: 1222: 1215: 1212: 1209: 1207: 1204: 1201: 1198: 1197: 1195: 1193: 1189: 1178: 1175: 1174: 1172: 1170: 1166: 1155: 1152: 1145: 1142: 1135: 1132: 1125: 1122: 1115: 1112: 1111: 1109: 1107: 1103: 1099: 1091: 1086: 1084: 1079: 1077: 1072: 1071: 1068: 1057: 1053: 1049: 1046: 1045: 1044:Chem. Commun. 1040: 1033: 1025: 1021: 1016: 1011: 1006: 1001: 997: 993: 992: 987: 980: 972: 968: 964: 960: 956: 952: 945: 937: 935:9783527296668 931: 927: 923: 919: 912: 904: 900: 895: 890: 886: 882: 878: 874: 870: 863: 855: 851: 847: 843: 842: 834: 826: 822: 818: 814: 806: 799: 793: 789: 788: 783: 776: 768: 764: 760: 756: 755: 747: 739: 735: 731: 727: 723: 720: 719: 711: 703: 699: 695: 689: 685: 684: 676: 668: 666:9789385998898 662: 658: 651: 647: 639: 637: 629: 625: 624: 623: 621: 617: 613: 612:cycloaddition 610: 609:photochemical 606: 602: 597: 595: 590: 588: 584: 580: 576: 572: 571:boronic ester 568: 564: 551: 546: 542: 540: 536: 527: 523: 509: 501: 485: 477: 468: 464: 462: 458: 457:cyclobutanone 454: 444: 431: 429: 425: 410: 406: 405: 404: 402: 401:quadricyclane 398: 397:norbornadiene 394: 384: 380: 379: 375: 371: 370: 363: 359: 358: 355: 351: 348: 347: 331: 330: 326: 323: 321: 318: 316: 312: 309: 306: 302: 299: 298: 297: 289: 286: 284: 280: 279:'large rings' 276: 272: 268: 264: 260: 255: 251: 247: 246:'small rings' 237: 234: 231: 228: 225: 222: 221: 217: 214: 211: 208: 205: 202: 201: 197: 194: 191: 188: 185: 182: 181: 175: 172: 170: 167: 162: 159: 157: 154: 149: 146: 144: 141: 140: 131: 127: 118: 114: 109: 102: 95: 88: 81: 77: 73: 64: 62: 58: 54: 53:concentration 50: 40: 38: 34: 30: 26: 22: 1411:Molecularity 1284: 1047: 1042: 1032: 995: 989: 979: 954: 950: 944: 917: 911: 876: 872: 862: 848:(19): 1167. 845: 839: 833: 819:(19): 3597. 816: 813:J. Org. Chem 812: 805: 786: 782:March, Jerry 775: 758: 752: 746: 721: 716: 710: 682: 675: 656: 650: 633: 598: 591: 582: 579:silyl acetal 560: 549: 532: 473: 450: 421: 390: 295: 287: 282: 278: 270: 266: 262: 258: 254:angle strain 249: 245: 243: 173: 168: 160: 155: 147: 142: 129: 125: 107: 100: 93: 86: 79: 75: 68: 65: 46: 35:of a single 27:describes a 24: 18: 1370:Cage effect 1305:RRKM theory 1221:elimination 575:silyl ether 453:cyclobutane 332:RCHO + CH 232:0.00000001 128:= 5 set to 1529:Categories 718:Chem. Rev. 693:0198503474 642:References 636:exo isomer 616:enantiomer 539:ginkgolide 535:topologies 1421:Catalysis 1317:reactions 998:(3): 21. 601:isopropyl 510:β 486:α 33:structure 21:chemistry 1024:17617903 971:20838677 903:31527923 784:(2007), 738:19873977 702:43338068 399:to give 292:Examples 244:For the 198:0.00001 37:molecule 1039:valinol 1015:1949821 894:6746322 638:forms. 577:, or a 315:indoles 238:0.0003 218:0.0003 135:= 100) 29:process 1096:Basic 1022:  1012:  969:  932:  901:  891:  794:  761:: 55. 736:  700:  690:  663:  581:link ( 563:tether 206:0.002 1324:Redox 1160:Acyl) 500:enone 212:0.03 106:> 99:> 92:> 85:> 1213:(E2) 1202:(E1) 1048:1997 1020:PMID 996:2007 967:PMID 930:ISBN 899:PMID 792:ISBN 734:PMID 698:OCLC 688:ISBN 661:ISBN 620:TBAF 455:and 442:edit 372:The 226:100 192:1.7 186:0.1 1183:Ar) 1140:Ar) 1052:doi 1010:PMC 1000:doi 959:doi 922:doi 889:PMC 881:doi 877:110 850:doi 821:doi 763:doi 726:doi 722:110 573:, 541:B. 426:. 313:of 235:15 229:10 215:14 195:12 177:rel 164:rel 151:rel 133:rel 19:In 1531:: 1251:(A 1241:(A 1179:(S 1156:(S 1150:i) 1146:(S 1136:(S 1130:2) 1126:(S 1120:1) 1116:(S 1018:. 1008:. 994:. 988:. 965:. 955:39 953:. 928:. 897:. 887:. 875:. 871:. 846:19 844:. 817:47 815:. 759:51 757:. 732:. 696:. 569:, 550:+) 403:. 344:R' 340:CH 223:5 209:7 203:4 189:6 183:3 23:, 1255:) 1253:N 1245:) 1243:E 1219:i 1217:E 1181:E 1158:N 1148:N 1138:N 1128:N 1118:N 1089:e 1082:t 1075:v 1058:. 1054:: 1026:. 1002:: 973:. 961:: 938:. 924:: 905:. 883:: 856:. 852:: 827:. 823:: 770:. 765:: 740:. 728:: 704:. 669:. 446:] 342:2 338:2 334:2 307:. 281:( 269:( 261:( 248:( 174:k 169:n 161:k 156:n 148:k 143:n 130:k 126:n 111:4 108:k 104:7 101:k 97:3 94:k 90:6 87:k 83:5 80:k 76:n 71:n 69:k

Index

chemistry
process
structure
molecule
organic reactions
concentration
reaction rates
intermolecular

angle strain
transannular strain
Dieckmann condensation
aldol condensation
Madelung synthesis
indoles
Smiles rearrangement
Hydroacylation
Nazarov cyclization reaction
cyclopentenones
The Nazarov cyclization reaction
Wurtz reaction

acyloin condensation
norbornadiene
quadricyclane

Thorpe-Ingold effect
High dilution reactions
cyclobutane
cyclobutanone

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑