Knowledge

Hydroacylation

Source 📝

274: 241: 103: 201:, the alkene inserts into either the metal-acyl or the metal-hydride bonds. In the final step, the resulting alkyl-acyl or beta-ketoalkyl-hydride complex undergoes 428:
Catalytic decarbonylation, hydroacylation, and resolution of racemic pent-4-enals using chiral bis(di-tertiary-phosphine) complexes of rhodium(I)
197:. The resulting acyl hydride complex next binds the alkene. The sequence of oxidative addition and alkene coordination is often unclear. Via 480:
Asymmetric cyclization reactions. Cyclization of substituted 4-pentenals into cyclopentanone derivatives by rhodium(I) with chiral ligands
273: 256:
was demonstrated in the form of a kinetic resolution. A true asymmetric synthesis was also described. Both conversions employed
240: 205:. A competing side-reaction is decarbonylation of the aldehyde. This process also proceeds via the intermediacy of the acyl 349:
K. Sakai; J. Ide; O. Oda; N. Nakamura (1972). "Synthetic studies on prostanoids 1 synthesis of methyl 9-oxoprostanoate".
509:
Synthesis of D- and L-Carbocyclic Nucleosides via Rhodium-Catalyzed Asymmetric Hydroacylation as the Key Step
102: 542: 55: 27: 129: 94: 70: 484: 405:
The Asymmetric cyclisation of substituted pent-4-enals by a chiral rhodium phosphine catalyst
202: 194: 74: 8: 455: 351: 313:
Michael C. Willis (2009). "Transition Metal Catalyzed Alkene and Alkyne Hydroacylation".
253: 198: 261: 190: 186: 497: 468: 364: 439: 430:
Brian R. James, and Charles G. Young Journal of Organometallic Chemistry Volume 285,
381: 331: 90: 66: 520: 493: 482:
Yukari Taura, Masakazu Tanaka, Xiao-Ming Wu, Kazuhisa Funakoshi and Kiyoshi Sakai.
464: 435: 412: 389: 360: 323: 20: 114: 85:
The reaction was discovered in the 1970s as part of a synthetic route to certain
125: 536: 206: 24: 335: 110: 416: 453:
Yukari Tauraa, Masakazu Tanakaa, Kazuhisa Funakoshia and Kiyoshi Sakai.
393: 512: 315: 86: 524: 327: 121: 133: 62: 407:
Brian R. James and Charles G. Young J. Chem. Soc., Chem. Commun.,
225:
This step can be followed by reductive elimination of the alkane:
511:
Patricia Marce, Yolanda Dıaz, M. Isabel Matheu, Sergio Castillon
257: 30:
inserts into a formyl C-H bond. With alkenes, the product is a
348: 265: 31: 451:
Asymmetric cyclization reactions by Rh(I) with chiral ligands
378:
Transition-Metal-Promoted Aldehyde-Alkene Addition Reactions
169:
Labeling studies establish the following regiochemistry:
132:. In this reaction the solvent was saturated with 124:application involved cyclization of 4-pentenal to 312: 54:With an alkyne instead, the reaction produces an 534: 247: 69:. It is almost invariably practiced as an 308: 306: 535: 303: 164: 77:, often based on rhodium phosphines. 292: 290: 264:. In one application the ligand is 13: 14: 554: 380:Charles F. Lochow, Roy G. Miller 287: 300:, 8th ed. Rxn. 15-30. 272: 239: 101: 93:and a stoichiometric amount of 502: 473: 444: 421: 398: 371: 342: 61:The reaction requires a metal 1: 498:10.1016/S0040-4020(01)80954-6 469:10.1016/S0040-4039(01)93891-2 365:10.1016/S0040-4039(01)84569-X 280: 189:, hydroacylation begins with 440:10.1016/0022-328X(85)87377-0 113:was formed as the result of 7: 10: 559: 80: 298:March's Organic Chemistry 248:Asymmetric hydroacylation 519:, 10 (21), pp 4735–4738 233:-H → R"-H + M(CO)L 89:. The reaction required 488:. Volume 47, Issue 27, 459:. Volume 30, Issue 46, 388:, 98 (5), pp 1281–1283 260:catalysts and a chiral 71:intramolecular reaction 28:unsaturated hydrocarbon 56:α,β-unsaturated ketone 252:Hydroacylation as an 203:reductive elimination 109:An equal amount of a 75:homogeneous catalysts 417:10.1039/C39830001215 195:carbon-hydrogen bond 130:Wilkinson's catalyst 95:Wilkinson's catalyst 456:Tetrahedron Letters 394:10.1021/ja00421a050 352:Tetrahedron Letters 254:asymmetric reaction 199:migratory insertion 177:=CHR' → RC(O)CH 42:=CHR' → RC(O)CH 492:, Pages 4879-4888 463:, Pages 6349-6352 262:diphosphine ligand 217:-H → R"-M(CO)L 191:oxidative addition 187:reaction mechanism 165:Reaction mechanism 543:Organic reactions 525:10.1021/ol801791g 382:J. Am. Chem. Soc. 359:(13): 1287–1290. 328:10.1021/cr900096x 193:of the aldehydic 91:tin tetrachloride 67:radical initiator 550: 527: 506: 500: 477: 471: 448: 442: 434:, Pages 321-332 425: 419: 402: 396: 375: 369: 368: 346: 340: 339: 310: 301: 294: 276: 243: 185:In terms of the 105: 21:organic reaction 558: 557: 553: 552: 551: 549: 548: 547: 533: 532: 531: 530: 507: 503: 478: 474: 449: 445: 426: 422: 411:, 1215 - 1216, 403: 399: 376: 372: 347: 343: 311: 304: 295: 288: 283: 250: 236: 232: 220: 216: 180: 176: 167: 159: 155: 151: 147: 143: 115:decarbonylation 83: 49: 45: 41: 12: 11: 5: 556: 546: 545: 529: 528: 501: 472: 443: 420: 397: 370: 341: 322:(2): 725–748. 302: 296:Smith (2020), 285: 284: 282: 279: 278: 277: 249: 246: 245: 244: 237: 234: 230: 223: 222: 218: 214: 183: 182: 178: 174: 166: 163: 162: 161: 157: 153: 149: 145: 141: 128:using (again) 126:cyclopentanone 107: 106: 82: 79: 52: 51: 47: 43: 39: 17:Hydroacylation 9: 6: 4: 3: 2: 555: 544: 541: 540: 538: 526: 522: 518: 514: 510: 505: 499: 495: 491: 487: 486: 481: 476: 470: 466: 462: 458: 457: 452: 447: 441: 437: 433: 429: 424: 418: 414: 410: 406: 401: 395: 391: 387: 383: 379: 374: 366: 362: 358: 354: 353: 345: 337: 333: 329: 325: 321: 318: 317: 309: 307: 299: 293: 291: 286: 275: 271: 270: 269: 267: 263: 259: 255: 242: 238: 228: 227: 226: 212: 211: 210: 208: 207:metal hydride 204: 200: 196: 192: 188: 172: 171: 170: 152:CHO → (CH 139: 138: 137: 135: 131: 127: 123: 118: 116: 112: 104: 100: 99: 98: 96: 92: 88: 78: 76: 72: 68: 64: 59: 57: 37: 36: 35: 33: 29: 26: 25:electron-rich 22: 19:is a type of 18: 516: 508: 504: 489: 483: 479: 475: 460: 454: 450: 446: 431: 427: 423: 408: 404: 400: 385: 377: 373: 356: 350: 344: 319: 314: 297: 251: 224: 184: 168: 119: 111:cyclopropane 108: 84: 60: 53: 23:in which an 16: 15: 485:Tetrahedron 173:RCDO + CH 87:prostanoids 38:RCHO + CH 513:Org. Lett. 316:Chem. Rev. 281:References 120:The first 266:Me-DuPhos 229:R"-M(CO)L 213:R"C(O)-ML 122:catalytic 537:Category 336:19873977 134:ethylene 63:catalyst 258:rhodium 81:History 334:  73:using 32:ketone 181:CHDR' 144:=CHCH 65:or a 517:2008 490:1991 461:1989 432:1985 409:1983 386:1976 332:PMID 521:doi 494:doi 465:doi 436:doi 413:doi 390:doi 361:doi 324:doi 320:110 136:. 34:: 539:: 515:, 384:, 357:13 355:. 330:. 305:^ 289:^ 268:: 221:-H 209:: 160:CO 148:CH 140:CH 117:. 97:: 58:. 50:R' 46:CH 523:: 496:: 467:: 438:: 415:: 392:: 367:. 363:: 338:. 326:: 235:n 231:n 219:n 215:n 179:2 175:2 158:4 156:) 154:2 150:2 146:2 142:2 48:2 44:2 40:2

Index

organic reaction
electron-rich
unsaturated hydrocarbon
ketone
α,β-unsaturated ketone
catalyst
radical initiator
intramolecular reaction
homogeneous catalysts
prostanoids
tin tetrachloride
Wilkinson's catalyst
Hydroacylation Sakai 1972
cyclopropane
decarbonylation
catalytic
cyclopentanone
Wilkinson's catalyst
ethylene
reaction mechanism
oxidative addition
carbon-hydrogen bond
migratory insertion
reductive elimination
metal hydride
Hydroacylation reaction Mechanism
asymmetric reaction
rhodium
diphosphine ligand
Me-DuPhos

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.