Knowledge

Intracluster medium

Source 📝

206: 187:
Plasma in regions of the cluster, with a cooling time shorter than the age of the system, should be cooling due to strong X-ray radiation where emission is proportional to the density squared. Since the density of the ICM is highest towards the center of the cluster, the radiative cooling time drops
121:
of the particles is roughly 10 m, or about one lightyear. The density of the ICM rises towards the centre of the cluster with a relatively strong peak. In addition, the temperature of the ICM typically drops to 1/2 or 1/3 of the outer value in the central regions. Once the density of the plasma
197:, images of galaxy clusters with better spatial resolution have been taken. These new images do not indicate signs of new star formation on the order of what was historically predicted, motivating research into the mechanisms that would prevent the central ICM from cooling. 378:
Sanders, J. S.; Fabian, A. C.; Taylor, G. B.; Russell, H. R.; Blundell, K. M.; Canning, R. E. A.; Hlavacek-Larrondo, J.; Walker, S. A.; Grimes, C. K. (2016-03-21). "A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies".
707:"James Webb Space Telescope peers into the 'ghostly light' of interstellar space - The faint light emitted by 'orphan' stars that exist between the galaxies in galactic clusters is featured in the first deep field image produced by the space telescope" 192:
where the hot gas from the external regions flows slowly towards the center of the cluster. This inflow would result in regions of cold gas and thus regions of new star formation. Recently however, with the launch of new X-ray telescopes such as the
310:
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; Simionescu, Aurora; Urban, Ondrej; Werner, Norbert; Zhuravleva, Irina (December 2017). "The Metallicity of the Intracluster Medium Over Cosmic Time: Further Evidence for Early Enrichment".
232:
of plasma and sloshing of the ICM plasma during mergers with subclusters. The relativistic jets of material from active galactic nuclei can be seen in images taken by telescopes with high angular resolution such as the
102:
Roughly 15% of a galaxy cluster's mass resides in the ICM. The stars and galaxies contribute only around 5% to the total mass. It is theorized that most of the mass in a galaxy cluster consists of
83:. Studying the chemical composition of the ICMs as a function of radius has shown that cores of the galaxy clusters are more metal-rich than at larger radii. In some clusters (e.g. the 153:
modeling. The mass distributions determined from these methods reveal masses that far exceed the luminous mass seen and are thus a strong indication of dark matter in galaxy clusters.
461:
Fouque, Pascal; Solanes, Jose M.; Sanchis, Teresa; Balkowski, Chantal (2001-09-01). "Structure, mass and distance of the Virgo cluster from a Tolman-Bondi model".
99:, which corresponds to looking at different epochs of the evolution of the Universe, the ICM can provide a history record of element production in a galaxy. 179:
is reported to be studying the faint light emitted in the intracluster medium. Which a 2018 study found to be an "accurate luminous tracer of dark matter".
117:
Although the ICM on the whole contains the bulk of a cluster's baryons, it is not very dense, with typical values of 10 particles per cubic centimeter. The
146:
and through analysis of this data, it is possible to determine the physical conditions, including the temperature, density, and metallicity of the plasma.
188:
a significant amount. The central cooled gas can no longer support the weight of the external hot gas and the pressure gradient drives what is known as a
149:
Measurements of the temperature and density profiles in galaxy clusters allow for a determination of the mass distribution profile of the ICM through
640:
Staniszewski, Z.; Ade, P. A. R.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; H.-M. Cho; Crawford, T. M. (2009).
87:) the metallicity of the gas can rise to above that of the sun. Due to the gravitational field of clusters, metal-enriched gas ejected from 1061: 432: 364: 160:
of low energy photons through interactions with the relativistic electrons in the ICM cause distortions in the spectrum of the
1026: 289: 52: 1066: 165: 934:. The Monster's Fiery Breath: Feedback in Galaxies. AIP Conference Proceedings. Vol. 1201. pp. 383–386. 706: 224:
There are two popular explanations of the mechanisms that prevent the central ICM from cooling: feedback from
205: 1081: 92: 161: 281: 176: 234: 209: 194: 1009: 958: 832: 122:
reaches a critical value, enough interactions between the ions ensures cooling via X-ray radiation.
1056: 225: 150: 1076: 1004: 953: 827: 577:"Chandra Sample of Galaxy Clusters at z = 0.4–0.55: Evolution in the Mass-Temperature Relation" 71:, mainly ionised hydrogen and helium. This plasma is enriched with heavier elements, including 426: 358: 991:
Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology
823: 734: 484: 1071: 945: 886: 819: 782: 663: 598: 541: 480: 398: 330: 169: 8: 447: 246: 220:, are X-ray "cold", and appear as dark patches in stark contrast to the rest of the ICM. 51:
material in galaxy clusters. The ICM is heated to temperatures on the order of 10 to 100
949: 890: 841: 786: 667: 602: 545: 402: 334: 1032: 994: 971: 935: 912: 876: 809: 772: 687: 653: 622: 588: 557: 531: 504: 470: 388: 320: 157: 1036: 1022: 975: 904: 899: 845: 679: 675: 626: 614: 496: 414: 346: 285: 229: 84: 916: 691: 561: 508: 1014: 963: 894: 837: 671: 606: 549: 488: 406: 338: 40: 32: 865:"How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations" 553: 522:
Peterson, J. R.; Fabian, A. C. (2006). "X-ray spectroscopy of cooling clusters".
492: 213: 168:. These temperature distortions in the CMB can be used by telescopes such as the 143: 106:
and not baryonic matter. For the Virgo Cluster, the ICM contains roughly 3 × 10 M
576: 864: 735:"Intracluster light: a luminous tracer for dark matter in clusters of galaxies" 641: 139: 135: 118: 36: 1050: 908: 849: 683: 618: 500: 418: 350: 410: 342: 993:. Eso Astrophysics Symposia. Springer, Berlin, Heidelberg. pp. 24–36. 273: 189: 999: 814: 777: 593: 536: 475: 103: 76: 75:. The average amount of heavier elements relative to hydrogen, known as 1018: 217: 967: 765:
Galaxy Evolution: Theory & Observations (Eds. Vladimir Avila-Reese
800:
Fabian, A. C. (1994-01-01). "Cooling Flows in Clusters of Galaxies".
711: 88: 20: 642:"Galaxy Clusters Discovered with a Sunyaev-Zel'dovich Effect Survey" 989:
Fabian, Andrew C. (2002). "Cooling Flows in Clusters of Galaxies".
881: 610: 393: 325: 96: 940: 658: 110:
while the total mass of the cluster is estimated to be 1.2 × 10 M
79:
in astronomy, ranges from a third to a half of the value in the
763:
Fabian, A. C. (2003-06-01). "Cluster cores and cooling flows".
142:
from the heavy elements. These X-rays can be observed using an
68: 48: 44: 460: 131: 56: 72: 863:
Yang, H.-Y. Karen; Reynolds, Christopher S. (2016-01-01).
451:, Carnegie Observatories Centennial Symposia, p.422, 2004. 377: 309: 639: 95:
to the cluster as part of the ICM. By looking at varying
80: 172:
to detect dense clusters of galaxies at high redshifts.
216:'s radio lobes. These relativistic jets of plasma emit 733:
Montes, Mireia; Trujillo, Ignacio (23 October 2018).
125: 741:. Monthly Notices of the Royal Astronomical Society 130:As the ICM is at such high temperatures, it emits 16:Superheated plasma that permeates a galaxy cluster 381:Monthly Notices of the Royal Astronomical Society 313:Monthly Notices of the Royal Astronomical Society 1048: 929: 448:Chemical Composition of the Intracluster Medium 272: 732: 574: 521: 932:Cluster Core Heating from Merging Subclusters 930:ZuHone, J. A.; Markevitch, M. (2009-01-01). 862: 802:Annual Review of Astronomy and Astrophysics 698: 162:cosmic microwave background radiation (CMB) 67:The ICM is composed primarily of ordinary 1008: 998: 957: 939: 898: 880: 831: 813: 776: 657: 592: 535: 474: 392: 324: 204: 1049: 988: 799: 762: 758: 756: 305: 303: 301: 268: 266: 264: 262: 1062:Large-scale structure of the cosmos 842:10.1146/annurev.aa.32.090194.001425 704: 13: 856: 793: 753: 431:: CS1 maint: unflagged free DOI ( 363:: CS1 maint: unflagged free DOI ( 14: 1093: 575:Kotov, O.; Vikhlinin, A. (2006). 298: 259: 126:Observing the intracluster medium 182: 982: 923: 726: 705:Lea, Robert (9 December 2022). 276:; Gallagher, J. S. III (2007). 633: 568: 515: 454: 439: 371: 62: 1: 554:10.1016/j.physrep.2005.12.007 252: 47:and accounts for most of the 39:. The gas consists mainly of 463:Astronomy & Astrophysics 7: 240: 10: 1098: 900:10.3847/0004-637X/829/2/90 676:10.1088/0004-637X/701/1/32 493:10.1051/0004-6361:20010833 282:Cambridge University Press 200: 177:James Webb Space Telescope 869:The Astrophysical Journal 646:The Astrophysical Journal 581:The Astrophysical Journal 235:Chandra X-ray Observatory 195:Chandra X-ray Observatory 166:Sunyaev–Zel'dovich effect 134:radiation, mainly by the 278:Galaxies in the Universe 1067:Extragalactic astronomy 824:1994ARA&A..32..277F 485:2001A&A...375..770F 151:hydrostatic equilibrium 445:Loewenstein, Michael. 226:active galactic nuclei 221: 175:In December 2022, the 411:10.1093/mnras/stv2972 343:10.1093/mnras/stx2200 228:through injection of 208: 93:gravitationally bound 31:) is the superheated 170:South Pole Telescope 1082:Intergalactic media 950:2009AIPC.1201..383Z 891:2016ApJ...829...90Y 787:2003RMxAC..17..303F 668:2009ApJ...701...32S 603:2006ApJ...641..752K 546:2006PhR...427....1P 403:2016MNRAS.457...82S 335:2017MNRAS.472.2877M 247:Interstellar medium 25:intracluster medium 1019:10.1007/10856495_3 222: 158:Compton scattering 138:process and X-ray 55:, emitting strong 1028:978-3-540-43769-7 968:10.1063/1.3293082 291:978-0-521-67186-6 230:relativistic jets 85:Centaurus cluster 35:that permeates a 1089: 1041: 1040: 1012: 1002: 1000:astro-ph/0201386 986: 980: 979: 961: 943: 927: 921: 920: 902: 884: 860: 854: 853: 835: 817: 815:astro-ph/0201386 797: 791: 790: 780: 778:astro-ph/0210150 760: 751: 750: 748: 746: 739:academic.oup.com 730: 724: 723: 721: 719: 702: 696: 695: 661: 637: 631: 630: 596: 594:astro-ph/0511044 572: 566: 565: 539: 537:astro-ph/0512549 519: 513: 512: 478: 476:astro-ph/0106261 458: 452: 443: 437: 436: 430: 422: 396: 375: 369: 368: 362: 354: 328: 319:(3): 2877–2888. 307: 296: 295: 270: 41:ionized hydrogen 1097: 1096: 1092: 1091: 1090: 1088: 1087: 1086: 1057:Galaxy clusters 1047: 1046: 1045: 1044: 1029: 1010:10.1.1.255.3254 987: 983: 959:10.1.1.246.2787 928: 924: 861: 857: 833:10.1.1.255.3254 798: 794: 761: 754: 744: 742: 731: 727: 717: 715: 703: 699: 638: 634: 573: 569: 524:Physics Reports 520: 516: 459: 455: 444: 440: 424: 423: 376: 372: 356: 355: 308: 299: 292: 271: 260: 255: 243: 214:Perseus Cluster 203: 185: 164:, known as the 144:X-ray telescope 128: 113: 109: 65: 17: 12: 11: 5: 1095: 1085: 1084: 1079: 1074: 1069: 1064: 1059: 1043: 1042: 1027: 981: 922: 855: 792: 752: 725: 697: 632: 611:10.1086/500553 587:(2): 752–755. 567: 514: 469:(3): 770–780. 453: 438: 370: 297: 290: 257: 256: 254: 251: 250: 249: 242: 239: 202: 199: 184: 181: 140:emission lines 136:bremsstrahlung 127: 124: 119:mean free path 111: 107: 64: 61: 37:galaxy cluster 15: 9: 6: 4: 3: 2: 1094: 1083: 1080: 1078: 1077:Space plasmas 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1054: 1052: 1038: 1034: 1030: 1024: 1020: 1016: 1011: 1006: 1001: 996: 992: 985: 977: 973: 969: 965: 960: 955: 951: 947: 942: 937: 933: 926: 918: 914: 910: 906: 901: 896: 892: 888: 883: 878: 874: 870: 866: 859: 851: 847: 843: 839: 834: 829: 825: 821: 816: 811: 807: 803: 796: 788: 784: 779: 774: 770: 766: 759: 757: 740: 736: 729: 714: 713: 708: 701: 693: 689: 685: 681: 677: 673: 669: 665: 660: 655: 651: 647: 643: 636: 628: 624: 620: 616: 612: 608: 604: 600: 595: 590: 586: 582: 578: 571: 563: 559: 555: 551: 547: 543: 538: 533: 529: 525: 518: 510: 506: 502: 498: 494: 490: 486: 482: 477: 472: 468: 464: 457: 450: 449: 442: 434: 428: 420: 416: 412: 408: 404: 400: 395: 390: 387:(1): 82–109. 386: 382: 374: 366: 360: 352: 348: 344: 340: 336: 332: 327: 322: 318: 314: 306: 304: 302: 293: 287: 283: 279: 275: 274:Sparke, L. S. 269: 267: 265: 263: 258: 248: 245: 244: 238: 236: 231: 227: 219: 215: 212:image of the 211: 207: 198: 196: 191: 183:Cooling flows 180: 178: 173: 171: 167: 163: 159: 154: 152: 147: 145: 141: 137: 133: 123: 120: 115: 105: 100: 98: 94: 90: 86: 82: 78: 74: 70: 60: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 990: 984: 931: 925: 872: 868: 858: 805: 801: 795: 768: 764: 743:. Retrieved 738: 728: 716:. Retrieved 710: 700: 652:(1): 32–41. 649: 645: 635: 584: 580: 570: 527: 523: 517: 466: 462: 456: 446: 441: 427:cite journal 384: 380: 373: 359:cite journal 316: 312: 277: 223: 190:cooling flow 186: 174: 155: 148: 129: 116: 101: 66: 28: 24: 18: 1072:Outer space 808:: 277–318. 771:: 303–313. 718:10 December 530:(1): 1–39. 218:radio waves 104:dark matter 77:metallicity 63:Composition 59:radiation. 53:megakelvins 1051:Categories 882:1605.01725 745:11 January 394:1601.01489 326:1706.01476 253:References 1037:118831315 1005:CiteSeerX 976:119287922 954:CiteSeerX 941:0909.0560 909:0004-637X 875:(2): 90. 850:0066-4146 828:CiteSeerX 712:Space.com 684:0004-637X 659:0810.1578 627:119325925 619:0004-637X 501:0004-6361 419:0035-8711 351:0035-8711 89:supernova 21:astronomy 917:55081632 692:14817925 562:11711221 509:10468717 241:See also 156:Inverse 97:redshift 91:remains 49:baryonic 946:Bibcode 887:Bibcode 820:Bibcode 783:Bibcode 664:Bibcode 599:Bibcode 542:Bibcode 481:Bibcode 399:Bibcode 331:Bibcode 210:Chandra 201:Heating 69:baryons 1035:  1025:  1007:  974:  956:  915:  907:  848:  830:  690:  682:  625:  617:  560:  507:  499:  417:  349:  288:  45:helium 33:plasma 23:, the 1033:S2CID 995:arXiv 972:S2CID 936:arXiv 913:S2CID 877:arXiv 810:arXiv 773:arXiv 688:S2CID 654:arXiv 623:S2CID 589:arXiv 558:S2CID 532:arXiv 505:S2CID 471:arXiv 389:arXiv 321:arXiv 132:X-ray 57:X-ray 1023:ISBN 905:ISSN 846:ISSN 747:2023 720:2022 680:ISSN 615:ISSN 497:ISSN 433:link 415:ISSN 365:link 347:ISSN 286:ISBN 73:iron 43:and 1015:doi 964:doi 895:doi 873:829 838:doi 672:doi 650:701 607:doi 585:641 550:doi 528:427 489:doi 467:375 407:doi 385:457 339:doi 317:472 81:sun 29:ICM 19:In 1053:: 1031:. 1021:. 1013:. 1003:. 970:. 962:. 952:. 944:. 911:. 903:. 893:. 885:. 871:. 867:. 844:. 836:. 826:. 818:. 806:32 804:. 781:. 769:17 767:. 755:^ 737:. 709:. 686:. 678:. 670:. 662:. 648:. 644:. 621:. 613:. 605:. 597:. 583:. 579:. 556:. 548:. 540:. 526:. 503:. 495:. 487:. 479:. 465:. 429:}} 425:{{ 413:. 405:. 397:. 383:. 361:}} 357:{{ 345:. 337:. 329:. 315:. 300:^ 284:. 280:. 261:^ 237:. 114:. 1039:. 1017:: 997:: 978:. 966:: 948:: 938:: 919:. 897:: 889:: 879:: 852:. 840:: 822:: 812:: 789:. 785:: 775:: 749:. 722:. 694:. 674:: 666:: 656:: 629:. 609:: 601:: 591:: 564:. 552:: 544:: 534:: 511:. 491:: 483:: 473:: 435:) 421:. 409:: 401:: 391:: 367:) 353:. 341:: 333:: 323:: 294:. 112:☉ 108:☉ 27:(

Index

astronomy
plasma
galaxy cluster
ionized hydrogen
helium
baryonic
megakelvins
X-ray
baryons
iron
metallicity
sun
Centaurus cluster
supernova
gravitationally bound
redshift
dark matter
mean free path
X-ray
bremsstrahlung
emission lines
X-ray telescope
hydrostatic equilibrium
Compton scattering
cosmic microwave background radiation (CMB)
Sunyaev–Zel'dovich effect
South Pole Telescope
James Webb Space Telescope
cooling flow
Chandra X-ray Observatory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.