Knowledge

Phases of ice

Source 📝

3112:. The temperatures of these moons range from 90 to 160 K, warm enough that amorphous ice is expected to crystallize on relatively short timescales. However, it was found that Europa has primarily amorphous ice, Ganymede has both amorphous and crystalline ice, and Callisto is primarily crystalline. This is thought to be the result of competing forces: the thermal crystallization of amorphous ice versus the conversion of crystalline to amorphous ice by the flux of charged particles from Jupiter. Closer to Jupiter than the other three moons, Europa receives the highest level of radiation and thus through irradiation has the most amorphous ice. Callisto is the farthest from Jupiter, receiving the lowest radiation flux and therefore maintaining its crystalline ice. Ganymede, which lies between the two, exhibits amorphous ice at high latitudes and crystalline ice at the lower latitudes. This is thought to be the result of the moon's intrinsic magnetic field, which would funnel the charged particles to higher latitudes and protect the lower latitudes from irradiation. Ganymede's interior probably includes a liquid water ocean with tens to hundreds of kilometers of ice V at its base. 2210:. The low temperature required to achieve this transition is correlated with the relatively low energy difference between the two structures. Hints of hydrogen-ordering in ice had been observed as early as 1964, when Dengel et al. attributed a peak in thermo-stimulated depolarization (TSD) current to the existence of a proton-ordered ferroelectric phase. However, they could not conclusively prove that a phase transition had taken place, and Onsager pointed out that the peak could also arise from the movement of defects and lattice imperfections. Onsager suggested that experimentalists look for a dramatic change in heat capacity by performing a careful calorimetric experiment. A phase transition to ice XI was first identified experimentally in 1972 by Shuji Kawada and others. 2268:, meaning that it has an intrinsic polarization. To qualify as a ferroelectric it must also exhibit polarization switching under an electric field, which has not been conclusively demonstrated but which is implicitly assumed to be possible. Cubic ice also has a ferrolectric phase and in this case the ferroelectric properties of the ice have been experimentally demonstrated on monolayer thin films. In a similar experiment, ferroelectric layers of hexagonal ice were grown on a platinum (111) surface. The material had a polarization that had a decay length of 30 monolayers suggesting that thin layers of ice XI can be grown on substrates at low temperature without the use of dopants. One-dimensional nano-confined ferroelectric ice XI was created in 2010. 314: 346: 2665:
prepared by the protocol reported previously contains both ice XV and ice beta-XV domains; (ii) upon heating, Raman spectra of ice beta-XV showed loss of H-order. In contrast, Salzmann's group again argued for the plausibility of a 'deep-glassy state' scenario based on neutron diffraction and neutron inelastic scattering experiments. Based on their experimental results, ice VI and deep-glassy ice VI share very similar features based on both elastic (diffraction) scattering and inelastic scattering experiments, and are different from the properties of ice XV.
2503: 3075:
Centaur, and Jupiter Family comets at heliocentric distances beyond ~6 AU. These objects are too cold for the sublimation of water ice, which drives comet activity closer to the Sun, to have much of an effect. Thermodynamic models show that the surface temperatures of those comets are near the amorphous/crystalline ice transition temperature of ~130 K, supporting this as a likely source of the activity. The runaway crystallization of amorphous ice can produce the energy needed to power outbursts such as those observed for Centaur Comet
6364: 6314: 3797: 2615:. The temperature in the diamond cells rose thousands of degrees, and the pressure increased to over a million times that of Earth's atmosphere. The experiment concluded that the current in the conductive water was indeed carried by ions rather than electrons and thus pointed to the water being superionic. More recent experiments from the same LLNL team used x-ray crystallography on laser-shocked water droplets to determine that the oxygen ions enter a face-centered-cubic phase, which was dubbed ice XVIII and reported in the journal 2900:, and so it may form on Earth. However, the transformation is very slow. According to one report, in Antarctic conditions it is estimated to take at least 100,000 years to form without the assistance of catalysts. Ice XI was sought and found in Antarctic ice that was about 100 years old in 1998. A further study in 2004 was not able to reproduce this finding, however, after studying Antarctic ice which was around 3000 years old. The 1998 Antarctic study also claimed that the transformation temperature (ice XI => ice I 2413:(or clathrates), they lack the cagelike structure generally found in clathrate hydrates, and are more properly referred to as filled ices. The filled ice is then placed in a vacuum, and the temperature gradually increased until the hydrogen frees itself from the crystal structure. If kept at a temperature range between 110 and 120 K (−163 and −153 °C; −262 and −244 °F), after about two hours, the structure will have emptied itself of any detectable hydrogen molecules. The resulting form is 2157:
hydrogen-ordering, orientational glass transition, and mechanical distortions. reported the DSC thermograms of HCl-doped ice IV finding an endothermic feature at about 120 K. Ten years later, Rosu-Finsen and Salzmann (2021) reported more detailed DSC data where the endothermic feature becomes larger as the sample is quench-recovered at higher pressure. They proposed three scenarios to explain the experimental results: weak hydrogen-ordering, orientational glass transition, and mechanical distortions.
2483: 2085:
below −70 °C without it changing into ice II. Conversely, however, any superheating of ice II was not possible in regards to retaining the same form. Bridgman found that the equilibrium curve between ice II and ice IV was much the same as with ice III, having the same stability properties and small volume change. The curve between ice II and ice V was extremely different, however, with the curve's bubble being essentially a straight line and the volume difference being almost always
2179: 2170:
ice VII has the largest stability field of all of the molecular phases of ice. The cubic oxygen sub-lattices that form the backbone of the ice VII structure persist to pressures of at least 128 GPa; this pressure is substantially higher than that at which water loses its molecular character entirely, forming ice X. In high pressure ices, protonic diffusion (movement of protons around the oxygen lattice) dominates molecular diffusion, an effect which has been measured directly.
405: 78: 2047: 2783: 12416: 469: 1049: 3124:" cracks on the surface and more amorphous ice between these regions. The crystalline ice near the tiger stripes could be explained by higher temperatures caused by geological activity that is the suspected cause of the cracks. The amorphous ice might be explained by flash freezing from cryovolcanism, rapid condensation of molecules from water geysers, or irradiation of high-energy particles from Saturn. Similarly, one of the inner layers of 12438: 155: 2187: 2771: 2904:) is −36 °C (237 K), which is far higher than the temperature of the expected triple point mentioned above (72 K, ~0 Pa). Ice XI was also found in experiments using pure water at very low temperature (~10 K) and low pressure – conditions thought to be present in the upper atmosphere. Recently, small domains of ice XI were found to form in pure water; its phase transition back to ice I 3190:. The possible roles of ice XI in interstellar space and planet formation have been the subject of several research papers. Until observational confirmation of ice XI in outer space is made, the presence of ice XI in space remains controversial owing to the aforementioned criticism raised by Iitaka. The infrared absorption spectra of ice XI was studied in 2009 in preparation for searches for ice XI in space. 12427: 2370: 36: 167: 2854:, a rare ring that occurs near 28 degrees from the Sun or the Moon. However, many atmospheric samples which were previously described as cubic ice were later shown to be stacking disordered ice with trigonal symmetry, and it has been dubbed the ″most faceted ice phase in a literal and a more general sense.″ The first true samples of cubic ice were only reported in 2020. 214:
the large hexagonal rings leave almost enough room for another water molecule to exist inside. This gives naturally occurring ice its rare property of being less dense than its liquid form. The tetrahedral-angled hydrogen-bonded hexagonal rings are also the mechanism that causes liquid water to be densest at 4 °C. Close to 0 °C, tiny hexagonal ice I
3012:
low temperatures where other indicators (such as the 3.1 and 12 μm bands) fail. This is useful studying ice in the interstellar medium and circumstellar disks. However, observing these features is difficult because the atmosphere is opaque at these wavelengths, requiring the use of space-based infrared observatories.
2963:). The latter process can occur within ice XVII. In physisorption, there is no chemical reaction, and the chemical bond between the two atoms within a hydrogen molecule remains intact. Because of this, the number of adsorption–desorption cycles ice XVII can withstand is "theoretically infinite". 2664:
Distinguishing between the two scenarios (new hydrogen-ordered phase vs. deep-glassy disordered ice VI) became an open question and the debate between the two groups has continued. Thoeny et al. (Loerting's group) collected another series of Raman spectra of ice beta-XV, and reported that (i) ice XV
2121:
1981 research by Engelhardt and Kamb elucidated crystal structure of ice IV through a low-temperature single-crystal X-ray diffraction, describing it as a rhombohedral unit cell with a space group of R-3c. This research mentioned that the structure of ice IV could be derived from the structure of ice
3131:
Medium-density amorphous ice may be present on Europa, as the experimental conditions of its formation are expected to occur there as well. It is possible that the MDA ice's unique property of releasing a large amount of heat energy after being released from compression could be responsible for 'ice
3065:
For the primordial solar nebula, there is much uncertainty as to the crystallinity of water ice during the circumstellar disk and planet formation phases. If the original amorphous ice survived the molecular cloud collapse, then it should have been preserved at heliocentric distances beyond Saturn's
3025:
exist. These low temperatures are readily achieved in astrophysical environments such as molecular clouds, circumstellar disks, and the surfaces of objects in the outer Solar System. In the laboratory, amorphous ice transforms into crystalline ice if it is heated above 130 K, although the exact
2084:
between the two. The curve showed that the structural change from ice III to ice II was more likely to happen if the medium had previously been in the structural conformation of ice II. However, if a sample of ice III that had never been in the ice II state was obtained, it could be supercooled even
2063:
in 1900 during his experiments with ice under high pressure and low temperatures. Having produced ice III, Tammann then tried condensing the ice at a temperature between −70 and −80 °C (203 and 193 K; −94 and −112 °F) under 200 MPa (2,000 atm) of pressure. Tammann noted that
436:
in the crystal lattice. The latent heat of melting is much smaller, partly because liquid water near 0 °C also contains a significant number of hydrogen bonds. By contrast, the structure of ice II is hydrogen-ordered, which helps to explain the entropy change of 3.22 J/mol when the crystal
213:
This tetrahedral bonding angle of the water molecule essentially accounts for the unusually low density of the crystal lattice – it is beneficial for the lattice to be arranged with tetrahedral angles even though there is an energy penalty in the increased volume of the crystal lattice. As a result,
3179:
Small domains of ice XI could exist in the atmospheres of Jupiter and Saturn as well. The fact that small domains of ice XI can exist at temperatures up to 111 K has some scientists speculating that it may be fairly common in interstellar space, with small 'nucleation seeds' spreading through
3087:
With radiation equilibrium temperatures of 40–50 K, the objects in the Kuiper Belt are expected to have amorphous water ice. While water ice has been observed on several objects, the extreme faintness of these objects makes it difficult to determine the structure of the ices. The signatures of
2756:
powder neutron diffraction experiments of ice XIX. In a change from their previous reports, they accepted the idea of the new phase (ice XIX) as they observed similar features to the previous two reports. However, they refined their diffraction profiles based on a disordered structural model (Pbcn)
2732:
Gasser et al. also collected powder neutron diffractograms of quench-recovered ices VI, XV, and XIX and found similar crystallographic features to those reported by Yamane et al., concluding that P-4 and Pcc2 are the plausible space group candidates. Both Yamane et al.'s and Gasser et al.'s results
2169:
theoretically transforms into proton-ordered ice XI on geologic timescales, in practice it is necessary to add small amounts of KOH catalyst.) It forms (ordered) ice VIII below 273 K up to ~8 GPa. Above this pressure, the VII–VIII transition temperature drops rapidly, reaching 0 K at ~60 GPa. Thus,
2156:
The ordered counterpart of ice IV has never been reported yet. 2011 research by Salzmann's group reported more detailed DSC data where the endothermic feature becomes larger as the sample is quench-recovered at higher pressure. They proposed three scenarios to explain the experimental results: weak
2138:
Several organic nucleating reagents had been proposed to selectively crystallize ice IV from liquid water, but even with such reagents, the crystallization of ice IV from liquid water was very difficult and seemed to be a random event. In 2001, Salzmann and his coworkers reported a whole new method
562:
of water molecules in an ice lattice. To compute its residual entropy, we need to count the number of configurations that the lattice can assume. The oxygen atoms are fixed at the lattice points, but the hydrogen atoms are located on the lattice edges. The problem is to pick one end of each lattice
3011:
At longer IR wavelengths, amorphous and crystalline ice have characteristically different absorption bands at 44 and 62 μm in that the crystalline ice has significant absorption at 62 μm while amorphous ice does not. In addition, these bands can be used as a temperature indicator at very
3074:
The possibility of the presence of amorphous water ice in comets and the release of energy during the phase transition to a crystalline state was first proposed as a mechanism for comet outbursts. Evidence of amorphous ice in comets is found in the high levels of activity observed in long-period,
3061:
isn't expected to rise above 120 K, indicating that the majority of the ice should remain in an amorphous state. However, if the temperature rises high enough to sublimate the ice, then it can re-condense into a crystalline form since the water flux rate is so low. This is expected to be the
3044:
and David F. Blake demonstrated in 1994 that a form of high-density amorphous ice is also created during vapor deposition of water on low-temperature (< 30 K) surfaces such as interstellar grains. The water molecules do not fully align to create the open cage structure of low-density
2130:
F II, whose hydrogen-bonded network is similar to ice IV. As the compression of ice Ih results in the formation of high-density amorphous ice (HDA), not ice IV, they claimed that the compression-induced conversion of ice I into ice IV is important, naming it "Engelhardt–Kamb collapse" (EKC). They
2830:
floats on water, which is highly unusual when compared to other materials. The solid phase of materials is usually more closely and neatly packed and has a higher density than the liquid phase. When lakes freeze, they do so only at the surface, while the bottom of the lake remains near 4 °C
2647:
In 2019, Alexander Rosu-Finsen and Christoph Salzman argued that there was no need to consider this to be a new phase of ice, and proposed a "deep-glassy" state scenario. According to their DSC data, the size of the endothermic feature depends not only on quench-recovery pressure but also on the
955:
The same answer can be found in another way. First orient each water molecule randomly in each of the 6 possible configurations, then check that each lattice edge contains exactly one hydrogen atom. Assuming that the lattice edges are independent, then the probability that a single edge contains
489:
inherent to the lattice and determined by the number of possible configurations of hydrogen positions that can be formed while still maintaining the requirement for each oxygen atom to have only two hydrogens in closest proximity, and each H-bond joining two oxygen atoms having only one hydrogen
3029:
An additional factor in determining the structure of water ice is deposition rate. Even if it is cold enough to form amorphous ice, crystalline ice will form if the flux of water vapor onto the substrate is less than a temperature-dependent critical flux. This effect is important to consider in
2332:
Based on powder neutron diffraction, the crystal structure of ice XV has been investigated in detail. Some researchers suggested that, in combination with density functional theory calculations, none of the possible perfectly ordered orientational configurations are energetically favoured. This
2079:
In later experiments by Bridgman in 1912, it was shown that the difference in volume between ice II and ice III was in the range of 0.0001 m/kg (2.8 cu in/lb). This difference hadn't been discovered by Tammann due to the small change and was why he had been unable to determine an
1056:
This estimate is 'naive', as it assumes the six out of 16 hydrogen configurations for oxygen atoms in the second set can be independently chosen, which is false. More complex methods can be employed to better approximate the exact number of possible configurations, and achieve results closer to
484:
atoms in the crystal lattice lie very nearly along the hydrogen bonds, and in such a way that each water molecule is preserved. This means that each oxygen atom in the lattice has two hydrogens adjacent to it: at about 101 pm along the 275 pm length of the bond for ice Ih. The crystal
3037:
At temperatures less than 77 K, irradiation from ultraviolet photons as well as high-energy electrons and ions can damage the structure of crystalline ice, transforming it into amorphous ice. Amorphous ice does not appear to be significantly affected by radiation at temperatures less than
2927:
and release hydrogen molecules without degrading its structure. The total amount of hydrogen that ice XVII can adsorb depends on the amount of pressure applied, but hydrogen molecules can be adsorbed by ice XVII even at pressures as low as a few millibars if the temperature is under
2555:, and from optical measurements of water shocked by extremely powerful lasers. The first definitive evidence for the crystal structure of the oxygen lattice in superionic water came from x-ray measurements on laser-shocked water which were reported in 2019. In 2005 Laurence Fried led a team at 2377:
In 2016, the discovery of a new form of ice was announced. Characterized as a "porous water ice metastable at atmospheric temperatures", this new form was discovered by taking a filled ice and removing the non-water components, leaving the crystal structure behind, similar to how ice XVI,
3140:
Because ice XI can theoretically form at low pressures at temperatures between 50–70 K – temperatures present in astrophysical environments of the outer solar system and within permanently shaded polar craters on the Moon and Mercury. Ice XI forms most easily around 70 K –
2865:
of water vapor in cold or vacuum conditions. Ice clouds form at and below the Earth's high latitude mesopause (~90 km) where temperatures have been observed to fall as to below 100 K. It has been suggested that homogeneous nucleation of ice particles results in low density amorphous ice.
119:
phase. Less common phases may be found in the atmosphere and underground due to more extreme pressures and temperatures. Some phases are manufactured by humans for nano scale uses due to their properties. In space, amorphous ice is the most common form as confirmed by observation. Thus, it is
2643:
patterns. In the DSC signals, there was an endothermic feature at about 110 K in addition to the endotherm corresponding to the ice XV-VI transition. Additionally, the Raman spectra, dielectric properties, and the ratio of the lattice parameters differed from those of ice XV. Based on these
2668:
In 2021, further crystallographic evidence for a new phase (ice XIX) was individually reported by three groups: Yamane et al. (Hiroyuki Kagi and Kazuki Komatsu's group from Japan), Gasser et al. (Loerting's group), and Salzmann's group. Yamane et al. collected neutron diffraction profiles
2221:
bonds. Such arrangements should change to the more ordered arrangement of hydrogen bonds found in ice XI at low temperatures, so long as localized proton hopping is sufficiently enabled; a process that becomes easier with increasing pressure. Correspondingly, ice XI is believed to have a
3020:
In general, amorphous ice can form below ~130 K. At this temperature, water molecules are unable to form the crystalline structure commonly found on Earth. Amorphous ice may also form in the coldest region of the Earth's atmosphere, the summer polar mesosphere, where
1161:
configurations. However, by explicit enumeration, there are actually 730 configurations. Now in the lattice, each oxygen atom participates in 12 hexagonal rings, so there are 2N rings in total for N oxygen atoms, or 2 rings for each oxygen atom, giving a refined result of
137:
0 °C. Subjected to higher pressures and varying temperatures, ice can form in nineteen separate known crystalline phases. With care, at least fifteen of these phases (one of the known exceptions being ice X) can be recovered at ambient pressure and low temperature in
3141:
paradoxically, it takes longer to form at lower temperatures. Extrapolating from experimental measurements, it is estimated to take ~50 years to form at 70 K and ~300 million years at 50 K. It is theorized to be present in places like the upper atmospheres of
2656:
O ice VI/XV prepared at different pressures of 1.0, 1.4 and 1.8 GPa, to show that there were no significant differences among them. They concluded that the low-temperature endotherm originated from kinetic features related to glass transitions of deep glassy states of
2112:
F resulted in the disappearance of ice II instead of the formation of a disordered ice II. According to the DFC calculation by Nakamura et al., the phase boundary between ice II and its disordered counterpart is estimated to be in the stability region of liquid water.
2134:
The disordered nature of Ice IV was confirmed by neutron powder diffraction studies by Lobban (1998) and Klotz et al. (2003). In addition, the entropy difference between ice VI (disordered phase) and ice IV is very small, according to Bridgman's measurement.
2324:
more ordered ice XV is obtained at ambient pressure. Being consistent with this, the ice VI-XV transition is reversible at ambient pressure. It was also shown that HCl-doping is selectively effective in producing ice XV while other acids and bases (HF, LiOH,
3056:
have extremely low temperatures (~10 K), falling well within the amorphous ice regime. The presence of amorphous ice in molecular clouds has been observationally confirmed. When molecular clouds collapse to form stars, the temperature of the resulting
2304:
On 14 June 2009, Christoph Salzmann and colleagues at the University of Oxford reported having experimentally reported an ordered phase of ice VI, named ice XV, and say that its properties differ significantly from those predicted. In particular, ice XV is
10635:
Omont, Alain; Forveille, Thierry; Moseley, S. Harvey; Glaccum, William J.; Harvey, Paul M.; Likkel, Lauren Jones; Loewenstein, Robert F.; Lisse, Casey M. (May 20, 1990), "Observations of 40–70 micron bands of ice in IRAS 09371 + 1212 and other stars",
2131:
suggested that the reason why we cannot obtain ice IV directly from ice Ih is that ice Ih is hydrogen-disordered; if oxygen atoms are arranged in the ice IV structure, hydrogen bonding may not be formed due to the donor-acceptor mismatch. and Raman
2757:
and argued that new Bragg reflections can be explained by distortions of ice VI, so ice XIX may still be regarded as a deep-glassy state of ice VI. The crystal structure of ice XIX including hydrogen order/disorder is still under debate as of 2022.
8395:
Salzmann, Christoph G.; Slater, Ben; Radaelli, Paolo G.; Finney, John L.; Shephard, Jacob J.; Rosillo-Lopez, Martin; Hindley, James (2016-11-22). "Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition".
3007:
water absorption lines are dependent on the ice temperature and crystal order. The peak strength of the 1.65 μm band as well as the structure of the 3.1 μm band are particularly useful in identifying the crystallinity of water ice.
2147:
is heated at a rate of 0.4 K/min and a pressure of 0.81 GPa, ice IV is crystallized at about 165 K. What governs the crystallization products is the heating rate; fast heating (over 10 K/min) results in the formation of single-phase ice XII.
2580:
lattice structure that would emerge at higher pressures. Additional experimental evidence was found by Marius Millot and colleagues in 2018 by inducing high pressure on water between diamonds and then shocking the water using a laser pulse.
476:, the oxygen atoms are arranged on the lattice points, and the hydrogen atoms are on the bonds between lattice points. Each oxygen atom has 4 neighboring ones. Note that the lattice bipartites into two subsets, here colored black and white. 285:
temperature, 77 K, in a vacuum. Cooling rates above 10 K/s are required to prevent crystallization of the droplets. At liquid nitrogen temperature, 77 K, HGW is kinetically stable and can be stored for many years.
950: 3217:
superionic phase to be kinetically favoured, but stable over a small window of parameters. On the other hand, there are also studies that suggest that other elements present inside the interiors of these planets, particularly
132:
temperatures because the pressure helps to hold the molecules together. However, the strong hydrogen bonds in water make it different: for some pressures higher than 1 atm (0.10 MPa), water freezes at a temperature
2966:
One significant advantage of using ice XVII as a hydrogen storage medium is the low cost of the only two chemicals involved: hydrogen and water. In addition, ice XVII has shown the ability to store hydrogen at an
11426:"Newly Discovered Form of Water Ice Is 'Really Strange' – Long theorized to be found in the mantles of Uranus and Neptune, the confirmation of the existence of superionic ice could lead to the development of new materials" 2276:
Although the parent phase ice VI was discovered in 1935, corresponding proton-ordered forms (ice XV) had not been observed until 2009. Theoretically, the proton ordering in ice VI was predicted several times; for example,
2234:, on raising the temperature, retains some hydrogen-ordered domains and more easily transforms back to ice XI again. A neutron powder diffraction study found that small hydrogen-ordered domains can exist up to 111 K. 2983:
clathrate hydrates, another potential storage medium. However, if ice XVII is used as a storage medium, it must be kept under a temperature of 130 K (−143 °C; −226 °F) or risk being destabilized.
5416:
Salzmann, Christoph G.; Rosu-Finsen, Alexander; Sharif, Zainab; Radaelli, Paolo G.; Finney, John L. (1 April 2021). "Detailed crystallographic analysis of the ice V to ice XIII hydrogen-ordering phase transition".
3030:
astrophysical environments where the water flux can be low. Conversely, amorphous ice can be formed at temperatures higher than expected if the water flux is high, such as flash-freezing events associated with
2599:
In 2018, the existence of superionic ice was confirmed in a laboratory setting. To create the required pressure, LLNL researchers compressed small amounts of water between pieces of diamond. At 2,500 
447:
When medium-density amorphous ice is compressed, released and then heated, it releases a large amount of heat energy, unlike other water ices which return to their normal form after getting similar treatment.
218:-like lattices form in liquid water, with greater frequency closer to 0 °C. This effect decreases the density of the water, causing it to be densest at 4 °C when the structures form infrequently. 202:. The planes alternate in an ABAB pattern, with B planes being reflections of the A planes along the same axes as the planes themselves. The distance between oxygen atoms along each bond is about 275  3119:
was mapped by the Visual and Infrared Mapping Spectrometer (VIMS) on the NASA/ESA/ASI Cassini space probe. The probe found both crystalline and amorphous ice, with a higher degree of crystallinity at the
2575:
which indicated that they had indeed created superionic water. In 2013 Hugh F. Wilson, Michael L. Wong, and Burkhard Militzer at the University of California, Berkeley published a paper predicting the
10689:
Meech, K. J.; Pittichová, J.; Bar-Nun, A.; Notesco, G.; Laufer, D.; Hainaut, O. R.; Lowry, S. C.; Yeomans, D. K.; Pitts, M. (2009). "Activity of comets at large heliocentric distances pre-perihelion".
4567:
del Rosso, Leonardo; Celli, Milva; Grazzi, Francesco; Catti, Michele; Hansen, Thomas C.; Fortes, A. Dominic; Ulivi, Lorenzo (June 2020). "Cubic ice Ic without stacking defects obtained from ice XVII".
2725:
and determined phase boundaries of ices VI/XV/XIX. They found that the sign of the slope of the boundary turns negative from positive at 1.6 GPa indicating the existence of two different phases by the
1243: 112:
ices have been observed. In modern history, phases have been discovered through scientific research with various techniques including pressurization, force application, nucleation agents, and others.
108:
as a solid. Variations in pressure and temperature give rise to different phases, which have varying properties and molecular geometries. Currently, twenty one phases, including both crystalline and
2719: 8269:
Rosu-Finsen, Alexander; Salzmann, Christoph G. (2018-06-28). "Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions".
2627:
The first report regarding ice XIX was published in 2018 by Thomas Loerting's group from Austria. They quenched HCl-doped ice VI to 77 K at different pressures between 1.0 and 1.8 GPa to collect
5494:
Drost-Hansen, W. (1969-11-14). "The Structure and Properties of Water. D. Eisenberg and W. Kauzmann. Oxford University Press, New York, 1969. xiv + 300 pp., illus. Cloth, $ 10; paper, $ 4.50".
485:
lattice allows a substantial amount of disorder in the positions of the hydrogen atoms frozen into the structure as it cools to absolute zero. As a result, the crystal structure contains some
1038: 2361:-1 and showed that experimental diffraction data should be analysed using space groups that permit full hydrogen order while the Pmmn model only accepts partially ordered structures. --> 1101:
As an illustrative example of refinement, consider the following way to refine the second estimation method given above. According to it, six water molecules in a hexagonal ring would allow
845: 741: 444:
The transition entropy from ice XIV to ice XII is estimated to be 60% of Pauling entropy based on DSC measurements. The formation of ice XIV from ice XII is more favoured at high pressure.
233:
bonding angles. This structure is stable down to −268 °C (5 K; −450 °F), as evidenced by x-ray diffraction and extremely high resolution thermal expansion measurements. Ice I
261:), or by compressing ordinary ice at low temperatures. The most common form on Earth, low-density ice, is usually formed in the laboratory by a slow accumulation of water vapor molecules ( 2397:
O), using temperatures from 100 to 270 K (−173 to −3 °C; −280 to 26 °F) and pressures from 360 to 700 MPa (52,000 to 102,000 psi; 3,600 to 6,900 atm), and C
1159: 1096: 6079:
Salzmann, Christoph G.; Radaelli, Paolo G.; Hallbrucker, Andreas; Mayer, Erwin; Finney, John L. (24 March 2006). "The Preparation and Structures of Hydrogen Ordered Phases of Ice".
1804: 11019:
Spencer, John R.; Tamppari, Leslie K.; Martin, Terry Z.; Travis, Larry D. (1999). "Temperatures on Europa from Galileo Photopolarimeter-Radiometer: Nighttime Thermal Anomalies".
2831:(277 K; 39 °F) because water is densest at this temperature. This anomalous behavior of water and ice is what allows fish to survive harsh winters. The density of ice I 566:
The oxygen atoms can be divided into two sets in a checkerboard pattern, shown in the picture as black and white balls. Focus attention on the oxygen atoms in one set: there are
541: 2893:
due to the strength and rigidity of the diamond lattice, but cooled down to surface temperatures, producing the required environment of high pressure without high temperature.
2992:
In outer space, hexagonal crystalline ice (the predominant form found on Earth) is extremely rare. Known examples are typically associated with volcanic action. Water in the
618: 3890:
Wagner, Wolfgang; Saul, A.; Pruss, A. (May 1994). "International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance".
2316:
In detail, ice XV has a smaller density (larger unit-cell volume) than ice VI. This makes the VI-to-XV disorder-to-order transition much favoured at low pressures. Indeed,
1650:
The hydrogen atoms' positions are disordered. Exhibits Debye relaxation. The hydrogen bonds form two interpenetrating lattices. Tetragonal form (contested) known as Ice VII
2100:
As ice II is completely hydrogen ordered, the presence of its disordered counterpart is a great matter of interest. Shephard et al. investigated the phase boundaries of NH
6377:
Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. (2015-03-26). "Square ice in graphene nanocapillaries".
2241:
and XI, with ice XI showing much stronger peaks in the translational (~230 cm), librational (~630 cm) and in-phase asymmetric stretch (~3200 cm) regions.
1985:
A porous crystalline phase with helical channels. Formed by placing hydrogen-filled ice in a vacuum and increasing the temperature until the hydrogen molecules escape.
5250:; Salzmann, Christoph; Kohl, Ingrid; Mayer, Erwin; Hallbrucker, Andreas (2001). "A second distinct structural "state" of high-density amorphous ice at 77 K and 1 bar". 9795: 3026:
temperature of this conversion is dependent on the environment and ice growth conditions. The reaction is irreversible and exothermic, releasing 1.26–1.6 kJ/mol.
9764: 9265: 3045:
amorphous ice. Many water molecules end up at interstitial positions. When warmed above 30 K, the structure re-aligns and transforms into the low-density form.
646:
possible placements of the hydrogen atoms along their hydrogen bonds, of which 6 are allowed. So, naively, we would expect the total number of configurations to be
2320:
by Shephard and Salzmann revealed that reheating quench-recovered HCl-doped ice XV at ambient pressure even produces exotherms originating from transient ordering,
8560:
Komatsu, Kazuki; Machida, Shinichi; Noritake, Fumiya; Hattori, Takanori; Sano-Furukawa, Asami; Yamane, Ryo; Yamashita, Keishiro; Kagi, Hiroyuki (3 February 2020).
2721:
supercell of ice XV and proposed some leading candidates for the space group of ice XIX: P-4, Pca21, Pcc2, P21/a, and P21/c. They also measured dielectric spectra
9587:
Lübken, F.-J.; Lautenbach, J.; Höffner, J.; Rapp, M.; Zecha, M. (March 2009). "First continuous temperature measurements within polar mesosphere summer echoes".
10522: 7943:
Iedema, M. J.; Dresser, M. J.; Doering, D. L.; Rowland, J. B.; Hess, W. P.; Tsekouras, A. A.; Cowin, J. P. (1 November 1998). "Ferroelectricity in Water Ice".
57: 6244: 11065:
Hansen, Gary B.; McCord, Thomas B. (2004). "Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes".
8543: 7704:
Arakawa, Masashi; Kagi, Hiroyuki; Fukazawa, Hiroshi (2010). "Annealing effects on hydrogen ordering in KOD-doped ice observed using neutron diffraction".
3294:
Klotz, S.; Besson, J. M.; Hamel, G.; Nelmes, R. J.; Loveday, J. S.; Marshall, W. G. (1999). "Metastable ice VII at low temperature and ambient pressure".
862: 9817:
Fukazawa, Hiroshi; Mae, Shinji; Ikeda, Susumu; Watanabe, Okitsugu (1998). "Proton ordering in Antarctic ice observed by Raman and neutron scattering".
7314:
Pruzan, Ph.; Chervin, J. C. & Canny, B. (1993). "Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature".
2592:
structure. However, at pressures in excess of 100 GPa, and temperatures above 2000 K, it is predicted that the structure would shift to a more stable
2357:, are good indicators of the ice XV formation. Combining density functional theory calculations, they successfully constructed fully ordered model in 2006:
A form of water also known as superionic water or superionic ice in which oxygen ions develop a crystalline structure while hydrogen ions move freely.
2733:
suggested a partially hydrogen-ordered structure. Gasser et al. also found an isotope effect using DSC; the low-temperature endotherm for DCl-doped D
11327:
Iedema, M. J.; Dresser, M. J.; Doering, D. L.; Rowland, J. B.; Hess, W. P.; Tsekouras, A. A.; Cowin, J. P. (1998). "Ferroelectricity in Water Ice".
7573:
Tajima, Yoshimitsu; Matsuo, Takasuke; Suga, Hiroshi (1984). "Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides".
1913:
when above 145–147 K at positive pressures. Theoretical studies predict ice XVI to be thermodynamically stable at negative pressures (that is under
9250: 9179: 9108: 6790: 6221: 4140: 3517: 1799:
Metastable. Observed in the phase space of ice V and ice VI. A topological mix of seven- and eight-membered rings, a 4-connected net (4-coordinate
11772: 11475:
Cheng, Bingqing; Bethkenhagen, Mandy; Pickard, Chris J.; Hamel, Sebastien (2021). "Phase behaviours of superionic water at planetary conditions".
4220:
Rosu-Finsen, Alexander; Davies, Michael B.; Amon, Alfred; Wu, Han; Sella, Andrea; Michaelides, Angelos; Salzmann, Christoph G. (3 February 2023).
3566:
Velikov, V.; Borick, S; Angell, C. A. (2001). "Estimation of water-glass transition temperature based on hyperquenched glassy water experiments".
11206:
University of Liège (2007, May 16). Astronomers Detect Shadow Of Water World In Front Of Nearby Star. ScienceDaily. Retrieved Jan. 3, 2010, from
3062:
case in the circumstellar disk of IRAS 09371+1212, where signatures of crystallized ice were observed despite a low temperature of 30–70 K.
642:
oxygen atoms: in general they won't be satisfied (i.e., they will not have precisely two hydrogen atoms near them). For each of those, there are
8462:
Liu, Yuan; Huang, Yingying; Zhu, Chongqin; Li, Hui; Zhao, Jijun; Wang, Lu; Ojamäe, Lars; Francisco, Joseph S.; Zeng, Xiao Cheng (25 June 2019).
4283:
Bernal, J. D.; Fowler, R. H. (1 January 1933). "A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions".
2611:
to be blasted with a laser. For less than a billionth of a second, the ice was subjected to conditions similar to those within the mantle of an
9853: 9316:
Murray, Benjamin J.; Knopf, Daniel A.; Bertram, Allan K. (2005). "The formation of cubic ice under conditions relevant to Earth's atmosphere".
5161:
Mishima, O.; Calvert, L. D.; Whalley, E. (1985). "An apparently 1st-order transition between two amorphous phases of ice induced by pressure".
2281:
calculations predicted the phase transition temperature is 108 K and the most stable ordered structure is antiferroelectric in the space group
321:
Ice from a theorized superionic water may possess two crystalline structures. At pressures in excess of 50 GPa (7,300,000 psi) such
3100:
The Near-Infrared Mapping Spectrometer (NIMS) on NASA's Galileo spacecraft spectroscopically mapped the surface ice of the Jovian satellites
2528:
In 1988, predictions of the so-called superionic water state were made. In superionic water, water molecules break apart and the oxygen ions
2122:
Ic by cutting and forming some hydrogen bondings and adding subtle structural distortions. Shephard et al. compressed the ambient phase of NH
11212: 9698:
O. Tschauner; S Huang; E. Greenberg; V.B. Prakapenka; C. Ma; G.R. Rossman; A.H. Shen; D. Zhang; M. Newville; A. Lanzirotti; K. Tait (2018).
6589:
Millot, Marius; Coppari, Federica; Rygg, J. Ryan; Correa Barrios, Antonio; Hamel, Sebastien; Swift, Damian C.; Eggert, Jon H. (8 May 2019).
2866:
Amorphous ice is likely confined to the coldest parts of the clouds and stacking disordered ice I is thought to dominate elsewhere in these
2349:), whereas Rietveld refinement using the Pmmn space group only works well for poorly ordered samples. The lattice parameters, in particular 1421:
Experimental procedure generates shear force by crushing ice into powder with centimeter-wide stainless-steel balls added to its container.
7451: 2421:(ordinary ice) when brought above 130 K (−143 °C; −226 °F). The crystal structure is hexagonal in nature, and the pores are 9622:
Murray, Benjamin J.; Jensen, Eric J. (January 2010). "Homogeneous nucleation of amorphous solid water particles in the upper mesosphere".
8155:
Salzmann, Christoph G.; Radaelli, Paolo G.; Mayer, Erwin; Finney, John L. (2009). "Ice XV: A New Thermodynamically Stable Phase of Ice".
6269:
Falenty, A.; Hansen, T. C.; Kuhs, W. F. (2014). "Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate".
10321:
Moore, Marla H.; Hudson, Reggie L. (1992). "Far-infrared spectral studies of phase changes in water ice induced by proton irradiation".
206:
and is the same between any two bonded oxygen atoms in the lattice. The angle between bonds in the crystal lattice is very close to the
4406: 8216:
Shephard, Jacob J.; Salzmann, Christoph G. (2015). "The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition".
5904:
La Placa, Sam J.; Hamilton, Walter C.; Kamb, Barclay; Prakash, Anand (1973-01-15). "On a nearly proton-ordered structure for ice IX".
3338: 44: 3038:
110 K, though some experiments suggest that radiation might lower the temperature at which amorphous ice begins to crystallize.
752: 333:
lattice. Some estimates suggest that at an extremely high pressure of around 1.55 TPa (225,000,000 psi), ice would develop
11261: 10281:
Hagen, W.; ielens, A.G.G.M.; Greenberg, J. M. (1981). "The Infrared Spectra of Amorphous Solid Water and Ice Between 10 and 140 K".
8676: 4441: 4000: 649: 277:(HGW) is formed by spraying a fine mist of water droplets into a liquid such as propane around 80 K, or by hyperquenching fine 237:
is also stable under applied pressures of up to about 210 megapascals (2,100 atm) where it transitions into ice III or ice II.
10582:
Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A. (1995). "High-Density Amorphous Ice, the Frost on Interstellar Grains".
5831:
Whalley, E.; Davidson, D. W.; Heath, J. B. R. (1 December 1966). "Dielectric Properties of Ice VII. Ice VIII: A New Phase of Ice".
10114: 9483:
Malkin, Tamsin L.; Murray, Benjamin J.; Salzmann, Christoph G.; Molinero, Valeria; Pickering, Steven J.; Whale, Thomas F. (2015).
1593:
Most complicated structure of all the phases. Includes 4-membered, 5-membered, 6-membered, and 8-membered rings and a total of 28
210:
of 109.5°, which is also quite close to the angle between hydrogen atoms in the water molecule (in the gas phase), which is 105°.
8924: 5663:
Yao, Shu-Kai; Zhang, Peng; Zhang, Ying; Lu, Ying-Bo; Yang, Tian-Lin; Suna, Bai-Gong; Yuan, Zhen-Yu; Luo, Hui-Wen (21 June 2017).
5028: 4966:
Jenniskens P.; Banham S. F.; Blake D. F.; McCoustra M. R. (July 1997). "Liquid water in the domain of cubic crystalline ice Ic".
2882: 2537: 11238: 9414:
Murray, Benjamin J.; Salzmann, Christoph G.; Heymsfield, Andrew J.; Dobbie, Steven; Neely, Ryan R.; Cox, Christopher J. (2015).
7800:
Abe, K.; Shigenari, T. (2011). "Raman spectra of proton ordered phase XI of ICE I. Translational vibrations below 350 cm-1, J".
5108:
Jenniskens P.; Blake D. F.; Wilson M. A.; Pohorille A. (1995). "High-density amorphous ice, the frost on insterstellar grains".
4032:
Iglev, H.; Schmeisser, M.; Simeonidis, K.; Thaller, A.; Laubereau, A. (2006). "Ultrafast superheating and melting of bulk ice".
2556: 2064:
in this state ice II was denser than he had observed ice III to be. He also found that both types of ice can be kept at normal
2060: 1165: 11385:"Laboratory Measurements of Infrared Absorption Spectra of Hydrogen-Ordered Ice: a Step to the Exploration of Ice XI in Space" 8080:
Knight, Chris; Singer, Sherwin J. (2005-10-19). "Prediction of a Phase Transition to a Hydrogen Bond Ordered Form of Ice VI".
5062:
Mishima O.; Calvert L. D.; Whalley E. (1984). "'Melting ice' I at 77 K and 10 kbar: a new method of making amorphous solids".
2559:(LLNL) to recreate the formative conditions of superionic water. Using a technique involving smashing water molecules between 2337:
space group as a plausible space group to describe the time-space averaged structure of ice XV. Other researchers argued that
120:
theorized to be the most common phase in the universe. Various other phases could be found naturally in astronomical objects.
4424: 9787: 3758:
Conde, M.M.; Vega, C.; Tribello, G.A.; Slater, B. (2009). "The phase diagram of water at negative pressures: Virtual ices".
2850:
may occasionally present in the upper atmosphere clouds. It is believed to be responsible for the observation of Scheiner's
2835:
increases when cooled, down to about −211 °C (62 K; −348 °F); below that temperature, the ice expands again (
9756: 2684: 2584:
As of 2013, it is theorized that superionic ice can possess two crystalline structures. At pressures in excess of 50 
11796: 11786: 11631: 10440:
Murray, B. J.; Jensen, E. J. (2010). "Homogeneous nucleation of amorphous solid water particles in the upper mesosphere".
9272: 7843:
Raza, Zamaan; Alfè, Dario (28 Nov 2011). "Proton ordering in cubic ice and hexagonal ice; a potential new ice phase—XIc".
5029:"Scientists Have Created a New Type of Ice – It looks like a white powder and has nearly the same density as liquid water" 2920:
of biomolecules. The individual molecules can be preserved for imaging in a state close to what they are in liquid water.
2333:
implies that there are several energetically close configurations that coexist in ice XV. They proposed 'the orthorhombic
329:
structure. However, at pressures in excess of 100 GPa (15,000,000 psi) the structure may shift to a more stable
10192:"Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini" 9852:
Fortes, A. D.; Wood, I. G.; Grigoriev, D.; Alfredsson, M.; Kipfstuhl, S.; Knight, K. S.; Smith, R. I. (1 January 2004).
8951:"Origin of the low-temperature endotherm of acid-doped ice VI: new hydrogen-ordered phase of ice or deep glassy states?" 8788: 4378:(1 December 1935). "The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement". 2461:. This discovery was reported around the same time another research group announced that they were able to obtain pure D 9300: 8755: 8021:
Zhao, H.-X.; Kong, X.-J.; Li, H.; Jin, Y.-C.; Long, L.-S.; Zeng, X. C.; Huang, R.-B.; Zheng, L.-S. (14 February 2011).
7746:
Arakawa, Masashi; Kagi, Hiroyuki; Fernandez-Baca, Jaime A.; Chakoumakos, Bryan C.; Fukazawa, Hiroshi (17 August 2011).
5869:
Whalley, E.; Heath, J. B. R.; Davidson, D. W. (1 March 1968). "Ice IX: An Antiferroelectric Phase Related to Ice III".
4085:"Author Correction: Dynamics enhanced by HCl doping triggers 60% Pauling entropy release at the ice XII-XIV transition" 2932:, through the application of heat. This was an unexpected property of ice XVII, and could allow it to be used for 959: 273:
it is expected to be formed in a similar manner on a variety of cold substrates, such as dust particles. By contrast,
11791: 11670: 11649: 10724:
Tancredi, G.; Rickman, H.; Greenberg, J. M. (1994). "Thermochemistry of cometary nuclei 1: The Jupiter family case".
10499: 5321: 2628: 2317: 298: 3410:
Rottger, K.; Endriss, A.; Ihringer, J.; Doyle, S.; Kuhs, W. F. (1994). "Lattice Constants and Thermal Expansion of H
142:
form. The types are differentiated by their crystalline structure, proton ordering, and density. There are also two
10493: 10491: 10489: 3978: 3259:
La Placa, S. J.; Hamilton, W. C.; Kamb, B.; Prakash, A. (1972). "On a nearly proton ordered structure for ice IX".
2677:
under high pressure) and found new Bragg features completely different from both ice VI and ice XV. They performed
2457:
O ice XVII powder. The result was free of structural deformities compared to standard cubic ice, or ice I
245:
While most forms of ice are crystalline, several amorphous (or "vitreous") forms of ice also exist. Such ice is an
11425: 8891: 2889:. The ice VII was presumably formed when water trapped inside the diamonds retained the high pressure of the deep 2648:
heating rate and annealing duration at 93 K. They also collected neutron diffraction profiles of quench-recovered
11739: 8522: 6236: 4535: 3810:
Militzer, Burkhard; Wilson, Hugh F. (2 November 2010). "New Phases of Water Ice Predicted at Megabar Pressures".
2726: 2603:(360,000 psi), the water became ice VII, a form that is solid at room temperature. This ice, trapped within 563:
edge for the hydrogen to bond to, in a way that still makes sure each oxygen atom is bond to two hydrogen atoms.
10486: 10358:"Molecular ices as temperature indicators for interstellar dust: the 44- and 62-μm lattice features of H2O ice" 4780:
Dowell, L. G.; Rinfret, A. P. (December 1960). "Low-Temperature Forms of Ice as Studied by X-Ray Diffraction".
2644:
observations, they proposed the existence of a second hydrogen-ordered phase of ice VI, naming it ice beta-XV.
2536:
float around freely within the oxygen lattice. The freely mobile hydrogen ions make superionic water almost as
1104: 956:
exactly one hydrogen atom is 1/2, and since there are 2N edges in total, we obtain a total configuration count
746: 10242:
Grundy, W. M.; Schmitt, B. (1998). "The temperature-dependent near-infrared absorption spectrum of hexagonal H
1060: 249:
form of water, which lacks long-range order in its molecular arrangement. Amorphous ice is produced either by
11823: 1257:
nomenclature. The majority have only been created in the laboratory at different temperatures and pressures.
573:
of them. Each has four hydrogen bonds, with two hydrogens close to it and two far away. This means there are
8869: 551:
There are various ways of approximating this number from first principles. The following is the one used by
11756: 11689: 9469: 8330:
Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H. (2016-07-04).
7978:
Su, Xingcai; Lianos, L.; Shen, Y.; Somorjai, Gabor (1998). "Surface-Induced Ferroelectric Ice on Pt(111)".
6568: 6329:"Thermodynamic Stability and Growth of Guest-Free Clathrate Hydrates: A Low-Density Crystal Phase of Water" 6152: 6053: 5971: 5649: 5538: 5480: 5402: 5379: 5356: 3076: 2081: 461: 289:
Amorphous ices have the property of suppressing long-range density fluctuations and are, therefore, nearly
254: 187: 9889: 7608:
Matsuo, Takasuke; Tajima, Yoshimitsu; Suga, Hiroshi (1986). "Calorimetric study of a phase transition in D
6441: 11109: 10791: 6804:
Shephard, J. J., Slater, B., Harvey, P., Hart, M., Bull, C. L., Bramwell, S. T., Salzmann, C. G. (2018),
1840:<118 K (−155 °C) (formation from ice XII); <140 K (−133 °C) (stability point) 502: 11762: 1996:<118 K (−155 °C) (formation from ice III);<140 K (−133 °C) (stability point) 10500:"Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices" 10012: 10011:
Dubochet, J.; Adrian, M.; Chang, J. .J; Homo, J. C.; Lepault, J-; McDowall, A. W.; Schultz, P. (1988).
9415: 8464:"An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram" 7790:, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp 101–108 3000: 2996:
is instead dominated by amorphous ice, making it likely the most common form of water in the universe.
2836: 2548:, which is a hypothetical liquid state characterized by a disordered soup of hydrogen and oxygen ions. 2144: 294: 257:(about 136 K or −137 °C) in milliseconds (so the molecules do not have enough time to form a 11286:
Fukazawa, H.; Hoshikawa, A.; Ishii, Y.; Chakoumakos, B. C.; Fernandez-Baca, J. A. (20 November 2006).
10968:
Jewitt, David C.; Luu, Jane (2004). "Crystalline water ice on the Kuiper belt object (50000) Quaoar".
10191: 8134: 6852:"Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy" 6732: 12477: 12220: 4082: 3459: 3121: 2928:
40 K (−233.2 °C; −387.7 °F). The adsorbed hydrogen molecules can then be released, or
2851: 2278: 262: 6485:"New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice" 6363: 6313: 6066:
C. Lobban, J.L. Finney and W.F. Kuhs, The structure of a new phase of ice, Nature 391, 268–270, 1998
3796: 576: 313: 11018: 9058: 4683: 3003:
and infrared spectrum. At near-IR wavelengths, the characteristics of the 1.65, 3.1, and 4.53 
2937: 2917: 2867: 2545: 2417:
at room pressure while under 120 K (−153 °C; −244 °F), but collapses into ice I
1463:
1 and 2 GPa (formation at 160 K (−113 °C)); ambient (at 77 K (−196.2 °C))
1438:
At 77 K (−196.2 °C): 1.6 GPa (formation from Ih); 0.5 GPa (formation from LDA)
226: 9911:
Furić, K.; Volovšek, V. (2010). "Water ice at low temperatures and pressures; new Raman results".
7745: 4416: 4160:"Thermodynamic and kinetic isotope effects on the order-disorder transition of ice XIV to ice XII" 1901:
The least dense crystalline form of water, topologically equivalent to the empty structure of sII
11975: 11726: 11208: 8628: 8023:"Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture" 5780:
Grande, Zachary M.; et al. (2022). "Pressure-driven symmetry transitions in dense H2O ice".
5553: 5313: 2632: 2608: 1876:
A proton-ordered form of ice VI formed by cooling water to around 80–108 K at 1.1 GPa.
1254: 437:
structure changes to that of ice I. Also, ice XI, an orthorhombic, hydrogen-ordered form of ice I
390: 49: 17: 7478: 1434:<30 K (−243.2 °C) (vapor deposition); 77 K (−196.2 °C) (stability point) 12029: 11721: 11453: 10539:
Kouchi, Akira; Kuroda, Toshio (1990). "Amorphization of cubic ice by ultraviolet irradiation".
7114:"The Pressure-Volume-Temperature Relations of the Liquid, and the Phase Diagram of Heavy Water" 5033: 4837: 2980: 2814:
exhibits many peculiar properties that are relevant to the existence of life and regulation of
2165:
Ice VII is the only disordered phase of ice that can be ordered by simple cooling. (While ice I
345: 9854:"No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction" 9290: 6926:
Shephard, J. J., Ling, S., Sosso, G. C., Michaelides, A., Slater, B., Salzmann, C. G. (2017),
11534: 9244: 9173: 9102: 7748:"The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive" 7503:
Dengel, O.; Eckener, U.; Plitz, H.; Riehl, N. (1 May 1964). "Ferroelectric behavior of ice".
7049: 6784: 6215: 5307: 4134: 3511: 1727:
Has symmetrized hydrogen bonds – a hydrogen atom is found at the center of two oxygen atoms.
10944: 10737: 10518: 10410: 10397:
Seki, J.; Hasegawa, H. (1983). "The heterogeneous condensation of interstellar ice grains".
7651:
Castro Neto, A.; Pujol, P.; Fradkin, E. (2006). "Ice: A strongly correlated proton system".
6928:"Is High-Density Amorphous Ice Simply a "Derailed" State along the Ice I to Ice IV Pathway?" 6733:
Yamane R, Komatsu K, Gouchi J, Uwatoko Y, Machida S, Hattori T, Kagi H; et al. (2021).
6712: 3342: 2951:, it can also be stored within a solid substance, either via a reversible chemical process ( 2385:
To create ice XVII, the researchers first produced filled ice in a stable phase named C
146:
phases of ice under pressure, both fully hydrogen-disordered; these are Ice IV and Ice XII.
12430: 12311: 11592: 11543: 11494: 11396: 11299: 11189: 11124: 11074: 11028: 10977: 10940: 10899: 10852: 10805: 10764: 10733: 10698: 10645: 10591: 10548: 10514: 10449: 10406: 10369: 10330: 10290: 10255: 10206: 10190:
Newman, Sarah F.; Buratti, B. J.; Brown, R. H.; Jaumann, R.; Bauer, J.; Momary, T. (2008).
10152: 9969: 9920: 9865: 9826: 9711: 9670: 9631: 9596: 9541: 9430: 9380: 9325: 9206: 9135: 9015: 8803: 8709: 8643: 8583: 8475: 8415: 8343: 8288: 8235: 8174: 8034: 7987: 7907: 7852: 7809: 7759: 7713: 7670: 7625: 7582: 7547: 7538:
Kawada, Shuji (1 May 1972). "Dielectric Dispersion and Phase Transition of KOH Doped Ice".
7512: 7408: 7369: 7323: 7281: 7235: 7163: 7125: 7079: 6901: 6817: 6746: 6602: 6506: 6396: 6278: 6179: 6165: 6088: 5998: 5913: 5878: 5840: 5789: 5717: 5676: 5625: 5565: 5426: 5259: 5213: 5170: 5117: 5071: 4975: 4922: 4875: 4789: 4752: 4695: 4640: 4586: 4500: 4453: 4341: 4292: 4233: 4171: 4096: 4083:
Köster KW, Fuentes-Landete V, Raidt A, Seidl M, Gainaru C, Loerting T; et al. (2018).
4041: 3938: 3899: 3829: 3769: 3695: 3640: 3617:
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto (2017-09-29).
3575: 3481: 3431: 3373: 3303: 3268: 2519: 2306: 2065: 621: 12437: 3927:"Review of the vapour pressures of ice and supercooled water for atmospheric applications" 3618: 349:
An alternative formulation of the phase diagram for certain ices and other phases of water
8: 12472: 12467: 12316: 4007: 3048: 2993: 2956: 2944: 2874: 2819: 2678: 2593: 2589: 2577: 1944: 421: 330: 326: 105: 11596: 11547: 11498: 11400: 11303: 11193: 11128: 11078: 11032: 10981: 10903: 10856: 10809: 10792:
Hosek, Matthew W. Jr.; Blaauw, Rhiannon C.; Cooke, William J.; Suggs, Robert M. (2013).
10768: 10702: 10649: 10595: 10552: 10453: 10373: 10334: 10294: 10259: 10210: 10156: 10106: 9973: 9924: 9869: 9830: 9715: 9674: 9635: 9600: 9545: 9434: 9384: 9329: 9210: 9139: 9061:"Deep-Glassy Ice VI Revealed with a Combination of Neutron Spectroscopy and Diffraction" 9019: 8807: 8713: 8647: 8587: 8479: 8419: 8347: 8292: 8239: 8178: 8038: 7991: 7911: 7856: 7813: 7763: 7717: 7674: 7629: 7586: 7551: 7516: 7450:
Fan, Xiaofeng; Bing, Dan; Zhang, Jingyun; Shen, Zexiang; Kuo, Jer-Lai (1 October 2010).
7412: 7373: 7327: 7285: 7239: 7167: 7129: 7083: 6905: 6821: 6750: 6657:
Gasser, TM; Thoeny, AV; Plaga, LJ; Köster, KW; Etter, M; Böhmer, R; et al. (2018).
6606: 6510: 6400: 6282: 6183: 6092: 6002: 5917: 5882: 5844: 5793: 5721: 5680: 5569: 5430: 5263: 5217: 5174: 5121: 5075: 4979: 4926: 4879: 4793: 4756: 4699: 4644: 4590: 4504: 4457: 4345: 4296: 4237: 4175: 4100: 4045: 3942: 3903: 3833: 3773: 3699: 3644: 3579: 3485: 3435: 3377: 3307: 3272: 2857:
Low-density ASW (LDA), also known as hyperquenched glassy water, may be responsible for
2108:
F has been reported to be a hydrogen disordering reagent. However, adding 2.5 mol% of NH
397:. In an experiment, ice at −3 °C was superheated to about 17 °C for about 250 12462: 12419: 11954: 11510: 11484: 11430: 11363: 11090: 11001: 10868: 10842: 10617: 10564: 10422: 10043: 9993: 9959: 9737: 9564: 9525: 9349: 9227: 9194: 9156: 9123: 9085: 9060: 9041: 8975: 8950: 8733: 8604: 8573: 8561: 8498: 8463: 8405: 8372: 8331: 8278: 8225: 8198: 8164: 8124: 8057: 8022: 8003: 7960: 7925: 7876: 7686: 7660: 7432: 7385: 7297: 7095: 7068:"Recrystallisation of HDA ice under pressure by in-situ neutron diffraction to 3.9 GPa" 6965: 6939: 6833: 6767: 6735:"Experimental evidence for the existence of a second partially-ordered phase of ice VI" 6734: 6683: 6658: 6634: 6527: 6496: 6484: 6420: 6386: 6302: 6203: 6112: 6021: 5986: 5813: 5608: 5275: 5229: 5186: 5143: 5087: 4948: 4813: 4765: 4740: 4664: 4610: 4576: 4331: 4265: 4197: 4117: 4084: 4065: 3956: 3853: 3819: 3737: 3664: 3630: 3599: 3548: 3319: 3214: 3058: 3022: 2858: 2636: 2604: 2552: 2541: 1902: 856: 852: 432:. The high latent heat of sublimation is principally indicative of the strength of the 11409: 11384: 11188:(49.02). Division for Planetary Sciences Meeting, American Astronomical Society: 732. 10818: 10793: 9838: 5740: 5705: 4319: 11816: 11776: 11666: 11645: 11610: 11561: 11514: 11454:"Public Affairs Office: Recreating the Bizarre State of Water Found on Giant Planets" 11344: 11234: 11150: 11094: 11044: 10993: 10663: 10621: 10426: 10355: 10302: 10035: 9985: 9881: 9741: 9729: 9569: 9506: 9396: 9341: 9296: 9232: 9161: 9090: 9045: 9033: 8980: 8899: 8819: 8763: 8737: 8725: 8659: 8609: 8537: 8503: 8439: 8431: 8377: 8359: 8312: 8304: 8251: 8190: 8105: 8097: 8062: 8007: 7929: 7868: 7825: 7690: 7637: 7594: 7524: 7424: 7301: 7251: 6957: 6871: 6772: 6688: 6638: 6626: 6618: 6532: 6412: 6352: 6294: 6195: 6104: 6026: 5929: 5817: 5805: 5745: 5591:
Bridgman, P. W. (1912). "Water, in the Liquid and Five Solid Forms, under Pressure".
5511: 5450: 5442: 5317: 5147: 5009: 4991: 4940: 4891: 4838:"Scientists created a weird new type of ice that is almost exactly as dense as water" 4805: 4721: 4668: 4656: 4614: 4602: 4516: 4512: 4469: 4420: 4357: 4269: 4257: 4249: 4189: 4122: 4057: 3960: 3845: 3785: 3741: 3729: 3721: 3656: 3591: 3499: 3389: 2640: 2453:
O) can be formed from ice XVII. This was done by heating specifically prepared D
2410: 2379: 1914: 1866:
80 K (−193.2 °C) – 108 K (−165 °C) (formation from liquid water)
278: 258: 207: 175: 10885: 10872: 10833:
Jewitt, David C.; Luu, Jane X. (2001). "Colors and Spectra of Kuiper Belt Objects".
10581: 8202: 7964: 7880: 7474: 7436: 7099: 6969: 6837: 6207: 6116: 5279: 4952: 4201: 3857: 3668: 3603: 3531:
P. W. Bridgman (1912). "Water, in the Liquid and Five Solid Forms, under Pressure".
945:{\displaystyle R\ln(3/2)=3.37\mathrm {J} \cdot \mathrm {mol} ^{-1}\mathrm {K} ^{-1}} 317:
Water phase diagram extended to negative pressures calculated with TIP4P/2005 model.
12195: 11766: 11701: 11600: 11551: 11502: 11404: 11336: 11307: 11132: 11082: 11036: 11005: 10985: 10948: 10907: 10860: 10813: 10772: 10706: 10653: 10607: 10599: 10568: 10556: 10457: 10414: 10377: 10338: 10298: 10263: 10222: 10214: 10160: 10085: 10047: 10027: 9997: 9977: 9932: 9928: 9873: 9834: 9719: 9700:"Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle" 9678: 9639: 9604: 9559: 9549: 9496: 9438: 9388: 9353: 9333: 9222: 9214: 9151: 9143: 9080: 9072: 9023: 8970: 8962: 8845: 8811: 8717: 8651: 8599: 8591: 8493: 8483: 8423: 8367: 8351: 8296: 8243: 8186: 8182: 8129: 8089: 8052: 8042: 7995: 7952: 7915: 7860: 7817: 7767: 7725: 7721: 7678: 7633: 7590: 7555: 7520: 7470: 7416: 7389: 7377: 7360: 7331: 7289: 7243: 7205: 7171: 7133: 7087: 7025: 6995: 6949: 6909: 6863: 6825: 6762: 6754: 6678: 6670: 6610: 6522: 6514: 6424: 6404: 6342: 6333: 6306: 6286: 6187: 6096: 6016: 6006: 5921: 5886: 5848: 5797: 5735: 5725: 5684: 5600: 5573: 5503: 5434: 5267: 5233: 5221: 5190: 5178: 5133: 5125: 5091: 5079: 4983: 4965: 4930: 4883: 4817: 4797: 4760: 4711: 4703: 4648: 4594: 4508: 4461: 4412: 4387: 4349: 4300: 4241: 4179: 4112: 4104: 4069: 4049: 3946: 3907: 3841: 3837: 3777: 3711: 3703: 3652: 3648: 3583: 3540: 3494: 3489: 3461: 3439: 3381: 3323: 3311: 3276: 3206: 3041: 2933: 2890: 2862: 2568: 2493: 2310: 1624: 1540: 1328: 486: 101: 11040: 9124:"Structural characterization of ice XIX as the second polymorph related to ice VI" 8815: 7269: 7067: 6925: 6442:"Sandwiching water between graphene makes square ice crystals at room temperature" 5948: 4221: 3683: 11845: 11744: 11660: 11639: 10953: 10928: 10753:"The search for a cometary outbursts mechanism: a comparison of various theories" 10710: 10218: 9392: 8999: 8247: 7293: 7189: 7091: 7053: 6927: 5507: 5247: 4631:
Salzmann, Christoph G.; Murray, Benjamin J. (June 2020). "Ice goes fully cubic".
4155: 3385: 3213:
superionic phases to be stable over a wide temperature and pressure range, and a
3186: 3109: 3105: 3053: 2948: 2529: 2195: 413: 290: 282: 246: 109: 11180:
McKinnon, W. B.; Hofmeister, A.M. (August 2005). "Ice XI on Pluto and Charon?".
10926: 10688: 10461: 9683: 9658: 9643: 9608: 9076: 8655: 7999: 7942: 6953: 5801: 5107: 4488: 4442:"Lattice Statistics of Hydrogen Bonded Crystals. I. The Residual Entropy of Ice" 3682:
Martelli, Fausto; Leoni, Fabio; Sciortino, Francesco; Russo, John (2020-09-14).
12400: 12390: 12200: 11506: 10316: 10314: 10312: 9534:
Proceedings of the National Academy of Sciences of the United States of America
9218: 9192: 9147: 8700: 8595: 8562:"Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate" 7682: 6849: 6805: 6758: 6560: 6011: 4353: 3760: 2826:
which causes atoms to become closer in the liquid phase. Because of this, ice I
2823: 2572: 2551:
The initial evidence came from optical measurements of laser-heated water in a
2489: 1952: 11716: 10382: 10357: 10137: 10031: 9788:"What scientists found trapped in a diamond: a type of ice not known on Earth" 9697: 9457: 9442: 8721: 7043: 6851: 6829: 6614: 6144: 5967: 5763: 5577: 5371: 4864:"Structural transitions in amorphous water ice and astrophysical implications" 4652: 4598: 3872: 3460:
David T. W. Buckingham, J. J. Neumeier, S. H. Masunaga, and Yi-Kuo Yu (2018).
3443: 2908:
occurred at 72 K while under hydrostatic pressure conditions of up to 70 MPa.
361:, which is exactly 273.16 K (0.01 °C) at a pressure of 611.657  12456: 12215: 12167: 12152: 12020: 11780: 11752: 11348: 11265: 10667: 8903: 8767: 8435: 8363: 8308: 8255: 8101: 7403:
Katoh, E. (15 February 2002). "Protonic Diffusion in High-Pressure Ice VII".
7065: 6867: 6045: 5933: 5515: 5446: 5394: 5348: 4887: 4809: 4520: 4473: 4375: 4361: 4253: 3725: 3238:
One millibar is equivalent to 100 Pa (0.015 psi; 0.00099 atm).
3173: 3161: 3154: 3101: 3031: 2960: 2952: 2600: 2585: 2533: 2426: 2265: 1786:(5,400 atm) (formation from liquid water); 0.81–1.00 GPa/min (from ice I 1783: 1754: 1365: 552: 433: 386: 362: 199: 179: 89: 85: 81: 11696: 11681: 10612: 10309: 9851: 9724: 9699: 9554: 9059:
Rosu-Finsen A, Amon A, Armstrong J, Fernandez-Alonso F, Salzmann CG (2020).
8488: 8047: 7420: 7187: 7012:
Salzmann, C. G., Kohl, I., Loerting, T., Mayer, E., Hallbrucker, A. (2003),
7011: 6191: 6100: 5530: 5472: 5138: 4245: 4153: 3587: 2502: 12225: 12137: 12132: 12127: 12025: 11995: 11809: 11614: 11565: 11136: 11048: 10997: 10777: 10752: 10498:
Kouchi, A.; Yamamoto, T.; Kozasa, T.; Kuroda, T.; Greenberg, J. M. (1994).
9989: 9885: 9733: 9657:
Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G. (May 2015).
9573: 9510: 9400: 9345: 9236: 9165: 9121: 9094: 9037: 8984: 8823: 8663: 8613: 8507: 8443: 8381: 8316: 8194: 8109: 8066: 7872: 7829: 7428: 7255: 7223: 6961: 6875: 6803: 6776: 6692: 6630: 6536: 6416: 6356: 6298: 6199: 6167: 6108: 6030: 5965: 5749: 5730: 5454: 5204:
O.Mishima (1996). "Relationship between melting and amorphization of ice".
4995: 4944: 4895: 4725: 4660: 4606: 4261: 4193: 4126: 4061: 3849: 3789: 3733: 3660: 3595: 3503: 3393: 3210: 3169: 3125: 3089: 2223: 2194:
Ice XI is the hydrogen-ordered form of the ordinary form of ice. The total
2178: 1749: 1536: 1500: 394: 358: 354: 250: 191: 10090: 10073: 10039: 3258: 1554:
190 K (−83 °C) – 210 K (−63 °C) (formation from HDA);
12395: 12301: 12185: 12157: 12147: 12142: 12080: 12065: 12050: 12035: 11959: 11923: 11086: 10847: 10227: 8849: 8840:
Marris, Emma (22 March 2005). "Giant planets may host superionic water".
7772: 7747: 7665: 7559: 7066:
Klotz, S., Hamel, G., Loveday, J. S., Nelmes, R. J., Guthrie, M. (2003),
4336: 3974: 3716: 2976: 2815: 2588:(7,300,000 psi) it is predicted that superionic ice would take on a 2518:
A remarkable characteristic of superionic ice is its ability to act as a
2446: 2409:
O molecules, formed at high pressures. Although sometimes referred to as
1948: 1482:
190 K (−83 °C) - 210 K (−63 °C) (formation from ice I
1409: 404: 270: 230: 77: 12331: 10989: 9337: 8696:"Experimental evidence for superionic water ice using shock compression" 6518: 6408: 6290: 5641: 5612: 4391: 4108: 4053: 3552: 3293: 2782: 2046: 12385: 12265: 12250: 12210: 12205: 12085: 12060: 12010: 11985: 11889: 11605: 11580: 11556: 11529: 10723: 10418: 9981: 9501: 9484: 9315: 9028: 9003: 8966: 8870:"New phase of water could dominate the interiors of Uranus and Neptune" 7864: 7247: 7193: 7151: 7113: 7013: 6674: 6591:"Nanosecond X-ray diffraction of shock-compressed superionic water ice" 5689: 5664: 4184: 4159: 2414: 2226:
with hexagonal ice and gaseous water at (~72 K, ~0 Pa). Ice I
2069: 1588: 1530: 398: 143: 139: 11340: 11235:"Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology" 10267: 10164: 9877: 8729: 8695: 8427: 8355: 8300: 8093: 7956: 7821: 7209: 7175: 7137: 7029: 6983: 6889: 6622: 6590: 6347: 6328: 5925: 5890: 5852: 5809: 5438: 4801: 4741:"The Enhanced formation of cubic ice in aqueous organic acid droplets" 4716: 4465: 4304: 3781: 3707: 3280: 3092:, perhaps due to resurfacing events such as impacts or cryovolcanism. 3049:
Molecular clouds, circumstellar disks, and the primordial solar nebula
3015: 2955:) or by having the hydrogen molecules attach to the substance via the 2482: 1610:
130 K (−143 °C) - 355 K (82 °C) (stability range)
1048: 468: 12357: 12347: 12326: 12255: 12100: 12075: 12055: 11990: 11980: 11949: 11944: 11909: 10679:
Patashnick, et.al., Nature Vol.250, No. 5464, July 1974, pp. 313–314.
10560: 9004:"Distinguishing ice β-XV from deep glassy ice VI: Raman spectroscopy" 7381: 7335: 6999: 6913: 6483:
del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo (7 November 2016).
5604: 5271: 5225: 5182: 5083: 5010:"Scientists made a new kind of ice that might exist on distant moons" 4987: 4707: 4405:
Petrenko, Victor F.; Whitworth, Robert W. (2002-01-17). "2. Ice Ih".
3951: 3911: 3684:"Connection between liquid and non-crystalline solid phases in water" 3544: 3194: 3165: 3116: 2795: 2774:
Photograph showing details of an ice cube under magnification. Ice I
2649: 2612: 1316: 457: 225:, the crystal structure is characterized by the oxygen atoms forming 203: 10356:
Smith, R. G.; Robinson, G.; Hyland, A. R.; Carpenter, G. L. (1994).
9946:
Yen, Fei; Chi, Zhenhua (16 Apr 2015). "Proton ordering dynamics of H
8262: 7351: 6166:
Salzmann CG, Radaelli PG, Hallbrucker A, Mayer E, Finney JL (2006).
4863: 3926: 2916:
Amorphous ice is used in some scientific experiments, especially in
2068:
in a stable condition so long as the temperature is kept at that of
12367: 12362: 12352: 12321: 12285: 12280: 12270: 12122: 12070: 12045: 11904: 11899: 11489: 11362:
Iitaka, Toshiaki (13 July 2010). "Stability of ferroelectric ice".
11312: 11287: 10912: 10887: 10864: 10658: 10603: 10342: 9964: 8578: 8410: 8329: 8283: 8230: 8073: 7977: 7014:"Raman Spectroscopic Study on Hydrogen Bonding in Recovered Ice IV" 6944: 6806:"Doping-induced disappearance of ice II from water's phase diagram" 6501: 5129: 4935: 4910: 4581: 3635: 3181: 2929: 2878: 2248:
also has a proton-ordered form. The total internal energy of ice XI
2237:
There are distinct differences in the Raman spectra between ices I
2218: 2186: 2050:
Phase diagram of water, showing the region where ice III is stable.
1929: 1594: 481: 154: 12441: 11368: 11209:"Astronomers Detect Shadow of Water World in Front of Nearby Star" 8169: 7920: 7895: 6659:"Experiments indicating a second hydrogen ordered phase of ice VI" 6391: 6168:"The preparation and structures of hydrogen ordered phases of ice" 4320:"Residual entropy of ordinary ice from multicanonical simulations" 3824: 3315: 12377: 12275: 12245: 12190: 12180: 12005: 11939: 11934: 11919: 11914: 11894: 11730: 11285: 10886:
Brown, Robert H.; Cruikshank, Dale P.; Pendleton, Yvonne (1999).
8209: 5415: 5061: 3616: 3202: 3146: 2999:
Amorphous ice can be separated from crystalline ice based on its
2886: 2770: 2752:
Several months later, Salzmann et al. published a paper based on
2560: 1391: 1300: 11064: 10320: 7456:, II, III, VI and ice VII: DFT methods with localized based set" 7350:
Hemley, R. J.; Jephcoat, A. P.; Mao, H. K.; et al. (1987),
6078: 4031: 2881:. Due to this demonstration that ice VII exists in nature, the 1057:
measured values. Nagle (1966) used a series summation to obtain
35: 12306: 11929: 11717:"A New State of Water Reveals a Hidden Ocean in Earth's Mantle" 10927:
Fornasier, S.; Dotto, E.; Barucci, M. A.; Barbieri, C. (2004).
10072:
Del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo (June 2017).
8892:"New Form of Water, Both Liquid and Solid, Is 'Really Strange'" 8020: 6588: 4489:"Configurational statistics and the dielectric constant of ice" 4318:
Berg, Bernd A.; Muguruma, Chizuru; Okamoto, Yuko (2007-03-21).
3364:
Bjerrum, N (11 April 1952). "Structure and Properties of Ice".
3219: 3198: 3142: 2924: 2369: 2207: 2095: 1956: 1800: 1296: 366: 195: 10794:"Outburst Dust Production of Comet 29P/Schwassmann-Wachmann 1" 9413: 8786: 7788:
Raman scattering study of proton ordered ice XI single crystal
7267: 6850:
Nakamura, T., Matsumoto, M., Yagasaki, T., Tanaka, H. (2015),
2508:
When an electric field is applied, H ions migrate towards the
2341:-1 model is still the best (with the second best candidate of 2301:
structure were found 4 K per water molecule higher in energy.
2190:
Crystal structure of ice XI (c-axis in the vertical direction)
2059:
The properties of ice II were first described and recorded by
1466:
1.26 g/cm (77 K (−196.2 °C); ambient pressure)
620:
allowed configurations of hydrogens for this oxygen atom (see
12260: 12175: 12090: 12015: 11849: 11842: 11474: 9295:(9th ed.). New York: W. H. Freeman and Co. p. 144. 8925:"Scientists create a new form of matter—superionic water ice" 8559: 6376: 6327:
Jacobson, Liam C.; Hujo, Waldemar; Molinero, Valeria (2009).
4001:"Information for users about the proposed revision of the SI" 3619:"Large-Scale Structure and Hyperuniformity of Amorphous Ices" 3150: 2896:
Ice XI is thought to be a more stable conformation than ice I
2564: 2509: 2422: 334: 302: 266: 10832: 10634: 9524:
Kuhs, W. F.; Sippel, C.; Falenty, A.; Hansen, T. C. (2012).
9482: 8997: 8394: 7221: 6984:"The infrared spectrum of ice IV in the range 4000–400 cm−1" 4911:"Crystallization of amorphous water ice in the solar system" 3004: 2737:
O ice XIX was significantly smaller than that of HCl-doped H
2151: 166: 12095: 12040: 12000: 11382: 11326: 10538: 9659:"The crystal structure of ice under mesospheric conditions" 9586: 8154: 5903: 4006:. Bureau International des Poids et Mesures. Archived from 3681: 3409: 393:
in May 2019. Unlike most other solids, ice is difficult to
11528:
Chau, Ricky; Hamel, Sebastien; Nellis, William J. (2011).
10497: 9271:(Physics 511 paper). Iowa State University. Archived from 7222:
Salzmann, CG; Radaelli, PG; Slater, B; Finney, JL (2011),
4534:
Flatz, Christian; Hohenwarter, Stefan (18 February 2021).
2230:
that has been transformed to ice XI and then back to ice I
441:, is considered the most stable form at low temperatures. 198:
atom on each vertex, and the edges of the rings formed by
11832: 10967: 10482:. Dordrecht Kluwer Academic Publishers. pp. 139–155. 10189: 8756:"A Bizarre Form of Water May Exist All Over the Universe" 7452:"Predicting the hydrogen bond ordered structures of ice I 6981: 5246: 4566: 2979:
above 40%, higher than the theoretical maximum ratio for
1970:<118 K (−155 °C) (formation from ice III); 1887:<118 K (−155 °C) (formation from ice III); 1852: 1702:
Proton-ordered equivalent to Ice III. Antiferroelectric.
1493: 1238:{\displaystyle R\ln(1.5\times (730/729)^{2})=R\ln(1.504)} 11797:
Computerized illustrations of molecular structure of HDA
11659:
Petrenko, Victor F.; Whitworth, Robert W. (1999-08-19).
10241: 9816: 9367:
Whalley, E. (1981). "Scheiner's Halo: Evidence for Ice I
9193:
Salzmann CG, Loveday JS, Rosu-Finsen A, Bull CL (2021).
7072:
Zeitschrift für Kristallographie – Crystalline Materials
5593:
Proceedings of the American Academy of Arts and Sciences
4908: 4684:"Formation and stability of cubic ice in water droplets" 3533:
Proceedings of the American Academy of Arts and Sciences
1818:
130 K (−143 °C) (formation from liquid water)
1772:
260 K (−13 °C) (formation from liquid water);
1579:
253 K (−20 °C) (formation from liquid water);
1515:
250 K (−23 °C) (formation from liquid water);
10010: 9523: 8863: 8861: 8859: 8679:, New Scientist,01 September 2010, Magazine issue 2776. 7650: 7502: 6890:"Structure of ice IV, a metastable high-pressure phase" 6816:(6), Springer Science and Business Media LLC: 569–572, 6656: 5057: 5055: 5053: 5051: 4219: 3757: 3180:
space and converting regular ice, much like the fabled
2329:, HBr) do not significantly enhance ice XV formations. 1851:
The proton-ordered form of ice XII. Formation requires
1608:
270 K (−3 °C) (formation from liquid water);
1345:
130 and 220 K (−143 and −53 °C) (formation);
11801: 11383:
Arakawa, M.; Kagi, H.; Fukazawa, H. (1 October 2009).
8789:"Dynamic Ionization of Water under Extreme Conditions" 6887: 5665:"Computing analysis of lattice vibrations of ice VIII" 2567:
they observed frequency shifts which indicated that a
2544:. The ice appears black in color. It is distinct from 2072:, which slows the change in conformation back to ice I 1778:); 183 K (−90 °C) (formation from HDA ice) 581: 579: 10477: 10185: 10183: 10181: 10107:"Astronomers Contemplate Icy Volcanoes in Far Places" 9757:"Pockets of water may lay deep below Earth's surface" 8342:(1). Springer Science and Business Media LLC: 28920. 7224:"The polymorphism of ice: five unresolved questions." 5160: 4857: 4855: 4853: 4851: 3931:
Quarterly Journal of the Royal Meteorological Society
2714:{\displaystyle {\sqrt {2}}\times {\sqrt {2}}\times 1} 2687: 2465:
O cubic ice by first synthesizing filled ice in the C
2202:, so in principle it should naturally form when ice I 2017:<100 K (−173 °C) (formation from ice VI 1951:
and liquid water to pass through laminated sheets of
1713:
165 K (−108 °C) (formation from ice III);
1687:
165 K (−108 °C) (formation from ice III);
1168: 1107: 1063: 962: 865: 755: 652: 505: 10396: 10280: 9663:
Journal of Atmospheric and Solar-Terrestrial Physics
9656: 9624:
Journal of Atmospheric and Solar-Terrestrial Physics
9589:
Journal of Atmospheric and Solar-Terrestrial Physics
9526:"Extent and relevance of stacking disorder in "ice I 9122:
Gasser TM, Thoeny AV, Fortes AD, Loerting T (2021).
8856: 8125:"Super-Dense Frozen Water Breaks Final Ice Frontier" 8088:(44). American Chemical Society (ACS): 21040–21046. 6326: 5868: 5830: 5048: 1665:<278 K (5 °C) (formation from ice VII) 1323:, with the exception only of a small amount of ice I 11530:"Chemical processes in the deep interior of Uranus" 11445: 11110:"Coupled Orbital and Thermal Evolution of Ganymede" 10929:"Water ice on the surface of the large TNO 2004 DW" 10473: 10471: 10439: 10074:"Ice XVII as a Novel Material for Hydrogen Storage" 10071: 8948: 8268: 7703: 6482: 5704:Kamb, Barclay; Davis, Briant L. (1 December 1964). 4317: 3565: 3341:. University of Wisconsin Green Bay. Archived from 3016:
Properties of the amorphous ice in the Solar System
2378:another porous form of ice, was synthesized from a 2182:
Crystal structure of Ice XI viewed along the c-axis
1390:Likely the most common phase in the universe. More 11581:"High pressure partially ionic phase of water ice" 11335:(46). American Chemical Society (ACS): 9203–9214. 11179: 10178: 8626: 7741: 7739: 7737: 7735: 7313: 7270:"Is pressure the key to hydrogen ordering ice IV?" 7204:(22), American Chemical Society (ACS): 5587–5590, 7024:(12), American Chemical Society (ACS): 2802–2807, 5551: 4848: 2818:. For instance, its density is lower than that of 2713: 1803:packing)—the densest possible arrangement without 1432:<140 K (−133 °C) (normal formation); 1237: 1153: 1090: 1032: 944: 839: 735: 612: 535: 115:On Earth, most ice is found in the hexagonal Ice I 11873: 11658: 10362:Monthly Notices of the Royal Astronomical Society 10136:Debennetti, Pablo G.; Stanley, H. Eugene (2003). 10135: 10013:"Cryo-electron microscopy of vitrified specimens" 8670: 7349: 6938:(7), American Chemical Society (ACS): 1645–1650, 6862:(8), American Chemical Society (ACS): 1843–1848, 6370: 6268: 5966:Chaplin, Martinwork=Water Structure and Science. 4773: 4404: 3222:, may prevent the formation of superionic water. 2126:F, an isostructural material of ice, to obtain NH 1738:72 K (−201.2 °C) (formation from ice I 12454: 11288:"Existence of Ferroelectric Ice in the Universe" 11232: 10468: 10067: 10065: 10063: 10061: 10059: 10057: 8542:: CS1 maint: bot: original URL status unknown ( 8215: 7607: 7572: 7449: 7152:"Selective Nucleation of the High-Pressure Ices" 6706: 6704: 6702: 5949:"Inside the hotly contested creation of 'ice X'" 5630:science.sciencemag.org, B. Kamb, 8 October 1965. 4533: 2445:It was reported in 2020 that cubic ice based on 1972:<140 K (−133 °C) (stability point) 1889:<140 K (−133 °C) (stability point) 1774:77 K (−196.2 °C) (formation from ice I 1715:<140 K (−133 °C) (stability point) 1689:<140 K (−133 °C) (stability point) 1638:355 K (82 °C) (formation from ice VI) 1457:160 K (−113 °C) (formation from HDA); 1033:{\displaystyle 6^{N}\times (1/2)^{2N}=(3/2)^{N}} 385:of the difference between this triple point and 128:Most liquids under increased pressure freeze at 11527: 11237:. Harvard-Smithsonian Center for Astrophysics. 9423:Bulletin of the American Meteorological Society 8694:Millot, Marius; et al. (5 February 2018). 8689: 8687: 8685: 8555: 8553: 8468:Proceedings of the National Academy of Sciences 8027:Proceedings of the National Academy of Sciences 7732: 7192:, Kohl, I., Mayer, E., Hallbrucker, A. (2002), 7111: 6728: 6726: 6652: 6650: 6648: 6478: 6476: 6474: 6472: 6470: 6468: 6466: 6464: 6462: 6074: 6072: 5710:Proceedings of the National Academy of Sciences 5662: 5552:Kamb, B.; Prakash, A.; Knobler, C. (May 1967). 4861: 4831: 4829: 4827: 4626: 4624: 4562: 4560: 4558: 4556: 3892:Journal of Physical and Chemical Reference Data 3889: 2472: 1568:Typically requires a nucleating agent to form. 840:{\displaystyle S_{0}=k\ln(3/2)^{N}=nR\ln(3/2),} 11060: 11058: 10750: 10104: 9288: 8835: 8833: 8693: 6264: 6262: 6234: 5864: 5862: 4630: 3809: 3530: 2765: 2217:are surrounded by four semi-randomly directed 736:{\displaystyle 6^{N/2}(6/16)^{N/2}=(3/2)^{N}.} 11817: 11417: 11182:Bulletin of the American Astronomical Society 10054: 9910: 9416:"Trigonal Ice Crystals in Earth's Atmosphere" 9186: 9115: 9052: 8991: 8942: 8787:Goncharov, Alexander F.; et al. (2005). 8461: 8388: 7194:"Pure Ice IV from High-Density Amorphous Ice" 6699: 6584: 6582: 6580: 6578: 4779: 4681: 4215: 4213: 4211: 3977:. Bureau International des Poids et Mesures. 3873:"Verwiebe's '3-D' Ice phase diagram reworked" 2749:O is sufficient for the ordering transition. 2401:are all stable solid phases of a mixture of H 2198:of ice XI is about one sixth lower than ice I 1556:77 K (−196.2 °C) (stability point) 1517:77 K (−196.2 °C) (stability point) 1488:77 K (−196.2 °C) (stability point) 1459:77 K (−196.2 °C) (stability point) 1347:240 K (−33 °C) (conversion to Ice I 597: 584: 190:, roughly one of crinkled planes composed of 11729:from the original on 2021-12-21 – via 11175: 11173: 11171: 11101: 10888:"Water Ice on Kuiper Belt Object 1996 TO_66" 9621: 9249:: CS1 maint: multiple names: authors list ( 9178:: CS1 maint: multiple names: authors list ( 9107:: CS1 maint: multiple names: authors list ( 8682: 8550: 8323: 8079: 7799: 7215: 7149: 7041: 6789:: CS1 maint: multiple names: authors list ( 6723: 6645: 6554: 6552: 6550: 6548: 6546: 6459: 6320: 6220:: CS1 maint: multiple names: authors list ( 6159: 6069: 5493: 5409: 4824: 4621: 4553: 4282: 4147: 4139:: CS1 maint: multiple names: authors list ( 4076: 3753: 3751: 3516:: CS1 maint: multiple names: authors list ( 3455: 3453: 2425:channels with a diameter of about 6.10  2096:Search for a hydrogen-disordered counterpart 1693:200 MPa-400 MPa (stability range) 1521:300 MPa (formation from liquid water) 308: 11679: 11389:The Astrophysical Journal Supplement Series 11055: 9754: 9455: 9263: 8830: 8457: 8455: 8453: 6558: 6436: 6434: 6259: 6142: 6043: 5859: 5639: 5528: 5470: 5392: 5369: 5346: 5020: 4862:Jenniskens, Peter; Blake, David F. (1994). 2259: 1905:. Transforms into the stacking-faulty ice I 1821:500 MPa (formation from liquid water) 1614:1.1 GPa (formation from liquid water) 1582:500 MPa (formation from liquid water) 499:is equal to 3.4±0.1 J mol K 281:-sized droplets on a sample-holder kept at 92:correspond to some ice phases listed below. 11824: 11810: 11714: 11451: 11355: 11262:"Electric ice a shock to the solar system" 8780: 8525:. Archived from the original on 2022-09-11 7618:Journal of Physics and Chemistry of Solids 7575:Journal of Physics and Chemistry of Solids 7343: 7307: 6575: 6138: 6136: 6134: 6132: 6130: 6128: 6126: 4208: 2778:is the form of ice commonly seen on Earth. 11740:"The Hunt for Earth's Deep Hidden Oceans" 11604: 11555: 11488: 11408: 11367: 11311: 11168: 10952: 10911: 10846: 10817: 10776: 10657: 10611: 10381: 10226: 10089: 9963: 9723: 9682: 9563: 9553: 9500: 9226: 9155: 9084: 9027: 8974: 8749: 8747: 8620: 8603: 8577: 8497: 8487: 8409: 8371: 8282: 8229: 8168: 8056: 8046: 7919: 7771: 7664: 7268:Rosu-Finsen, A., Salzmann, C. G. (2022), 6943: 6932:The Journal of Physical Chemistry Letters 6766: 6682: 6543: 6526: 6500: 6390: 6346: 6020: 6010: 5987:"The everlasting hunt for new ice phases" 5739: 5729: 5703: 5688: 5203: 5137: 4934: 4764: 4715: 4580: 4417:10.1093/acprof:oso/9780198518945.003.0002 4335: 4183: 4116: 3950: 3823: 3748: 3715: 3634: 3493: 3450: 3405: 3403: 2760: 2152:Search for a hydrogen-ordered counterpart 1790:); 810 MPa (formation from HDA ice) 1154:{\displaystyle 6^{6}\times (1/2)^{6}=729} 11715:Hunsberger, Maren (September 21, 2018). 11637: 11259: 10129: 8677:Weird water lurking inside giant planets 8450: 8014: 7893: 7842: 7540:Journal of the Physical Society of Japan 6713:"Exotic crystals of 'ice 19' discovered" 6710: 6431: 5697: 5590: 5545: 5466: 5464: 5301: 5299: 5297: 5295: 5293: 5291: 5289: 5103: 5101: 5026: 4536:"Neue kristalline Eisform aus Innsbruck" 4380:Journal of the American Chemical Society 4154:Fuentes-Landete V; Köster KW; Böhmer R; 3160:Ice VII may comprise the ocean floor of 2822:. This is attributed to the presence of 2781: 2769: 2571:had taken place. The team also created 2532:into an evenly spaced lattice while the 2368: 2185: 2177: 2045: 1793:1.3 g·cm (at 127 K (−146 °C)) 1757:. The most stable configuration of ice I 1253:These phases are named according to the 1091:{\displaystyle R\ln(1.50685\pm 0.00015)} 1047: 467: 462:Geometrical frustration § Water ice 403: 344: 312: 165: 162:. Dashed lines represent hydrogen bonds 153: 76: 60:of all important aspects of the article. 11763:Glass transition in hyperquenched water 11107: 9366: 9289:Atkins, Peter; de Paula, Julio (2010). 8122: 7894:Bramwell, Steven T. (21 January 1999). 6123: 5775: 5773: 5656: 5522: 5342: 5340: 4486: 4374: 3363: 2883:International Mineralogical Association 2741:O ice XIX, and that doping of 0.5% of H 1451:Very high-density amorphous ice (VHDA) 1405:73.15 K (−200 °C) (freezing) 635:atoms. But now, consider the remaining 14: 12455: 11361: 9945: 8885: 8883: 8839: 8744: 8116: 7537: 7078:(2), Walter de Gruyter GmbH: 117–122, 6247:from the original on 14 September 2009 5984: 5779: 4835: 4738: 4276: 3924: 3462:"Thermal Expansion of Single-Crystal H 3400: 3357: 3088:crystalline water ice was observed on 3082: 2885:duly classified ice VII as a distinct 2873:In 2018, ice VII was identified among 2557:Lawrence Livermore National Laboratory 2092: m/kg (1.51 cu in/lb). 2061:Gustav Heinrich Johann Apollon Tammann 2041: 1676:Proton-ordered equivalent to Ice VII. 1668:2.1 GPa (formation from ice VII) 178:of ordinary ice was first proposed by 56:Please consider expanding the lead to 11805: 11423: 8949:Rosu-Finsen, A; Salzmann, CG (2019). 8889: 8753: 7402: 5959: 5461: 5305: 5286: 5098: 4836:Pappas, Stephanie (2 February 2023). 4682:Murray, B.J.; Bertram, A. K. (2006). 4439: 3870: 3132:quakes' within the thick ice layers. 1928:Room temperature (in the presence of 1869:1.1GPa (formation from liquid water) 1641:2.2 GPa (formation from ice VI) 269:crystal surface under 120 K. In 27:States of matter for water as a solid 12426: 11578: 8867: 8514: 8123:Sanders, Laura (11 September 2009). 7786:K. Abe, Y. Ootake and T. Shigenari, 6982:Engelhardt, H., Whalley, E. (1979), 6235:Sanders, Laura (11 September 2009). 5770: 5337: 859:. So, the molar residual entropy is 451: 221:In the best-known form of ice, ice I 149: 29: 11737: 11704:(PDF in German, iktp.tu-dresden.de) 11697:London South Bank University Report 11329:The Journal of Physical Chemistry B 10528:from the original on 22 March 2020. 9952:Physical Chemistry Chemical Physics 9785: 9489:Physical Chemistry Chemical Physics 8880: 8520: 8332:"Partially ordered state of ice XV" 8082:The Journal of Physical Chemistry B 7945:The Journal of Physical Chemistry B 7845:Physical Chemistry Chemical Physics 7198:The Journal of Physical Chemistry B 7045:Neutron diffraction studies of ices 7018:The Journal of Physical Chemistry B 6856:The Journal of Physical Chemistry B 5946: 5669:Royal Society of Chemistry Advances 5252:Physical Chemistry Chemical Physics 4909:Jenniskens P.; Blake D. F. (1996). 4493:Proceedings of the Physical Society 1955:, unlike smaller molecules such as 1399:Medium-density amorphous ice (MDA) 536:{\displaystyle =R\ln(1.50\pm 0.02)} 340: 24: 11863: 11625: 11579:Wang, Yanchao (29 November 2011). 11424:Chang, Kenneth (5 February 2018). 11241:from the original on April 7, 2012 10478:Jenniskens; Blake; Kouchi (1998). 10105:Chang, Kenneth (9 December 2004). 9798:from the original on 12 March 2018 9767:from the original on March 8, 2018 8922: 8627:Demontis, P.; et al. (1988). 5706:"Ice Vii, the Densest Form of Ice" 5027:Sullivan, Will (3 February 2023). 3205:hold a layer of superionic water. 3176:) that are largely made of water. 2861:on Earth and is usually formed by 2469:phase, and then decompressing it. 2252:was predicted as similar as ice XI 1829:The proton-ordered form of ice V. 1560:810 MPa (formation from HDA) 1441:1.17 g/cm (ambient pressure) 929: 914: 911: 908: 899: 628:configurations that satisfy these 588: 408:Pressure dependence of ice melting 301:has shown that amorphous ices are 25: 12489: 11868: 11708: 11260:Grossman, Lisa (25 August 2011). 9195:"Structure and nature of ice XIX" 8629:"New high-pressure phases of ice" 7162:(12), AIP Publishing: 4930–4932, 6994:(10), AIP Publishing: 4050–4051, 6900:(12), AIP Publishing: 5887–5899, 6888:Engelhardt, H., Kamb, B. (1981), 5985:Hansen, Thomas C. (26 May 2021). 3981:from the original on 16 July 2012 3336: 3115:The surface ice of Saturn's moon 2911: 2790:with respect to other ice phases. 2629:differential scanning calorimetry 2318:differential scanning calorimetry 1426:High-density amorphous ice (HDA) 1052:The crystal structure of ice VIII 558:Suppose there are a given number 12436: 12425: 12415: 12414: 11787:AIP accounting discovery of VHDA 11783:of water (requires registration) 11572: 11521: 11468: 11376: 11320: 11279: 11253: 11226: 11200: 11143: 11012: 10961: 10920: 10879: 10826: 10785: 10744: 10717: 10682: 10673: 10628: 10575: 10532: 10433: 10390: 10349: 10274: 10235: 10098: 10004: 9939: 9904: 9845: 9810: 9779: 9748: 9691: 9650: 9615: 9580: 9517: 9476: 9449: 9407: 9360: 9309: 9282: 9257: 8916: 8148: 7971: 7936: 7887: 7836: 7793: 7780: 7697: 7644: 7601: 7566: 7531: 7496: 6362: 6312: 4487:Hollins, G. T. (December 1964). 3795: 3232: 3209:and free-energy methods predict 2943:Aside from storing hydrogen via 2501: 2481: 2145:high-density amorphous ice (HDA) 1843:1.2GPa (formation from ice XII) 1373:Low-density amorphous ice (LDA) 472:The Wurtzite structure. In Ice I 240: 170:The crystal structure of ice XII 34: 11233:David A. Aguilar (2009-12-16). 11215:from the original on 2017-08-21 11067:Journal of Geophysical Research 10248:Journal of Geophysical Research 10117:from the original on 9 May 2015 10020:Quarterly Reviews of Biophysics 9858:The Journal of Chemical Physics 9458:"Stacking disordered ice; Ice I 8398:The Journal of Chemical Physics 8271:The Journal of Chemical Physics 7802:The Journal of Chemical Physics 7475:10.1016/j.commatsci.2010.04.004 7463:Computational Materials Science 7443: 7396: 7261: 7181: 7143: 7124:(10), AIP Publishing: 597–605, 7118:The Journal of Chemical Physics 7105: 7059: 7035: 7005: 6988:The Journal of Chemical Physics 6975: 6919: 6894:The Journal of Chemical Physics 6881: 6843: 6797: 6334:Journal of Physical Chemistry B 6228: 6060: 6037: 5978: 5940: 5906:The Journal of Chemical Physics 5897: 5871:The Journal of Chemical Physics 5833:The Journal of Chemical Physics 5824: 5756: 5633: 5619: 5584: 5487: 5419:The Journal of Chemical Physics 5386: 5363: 5306:Hobbs, Peter V. (May 6, 2010). 5240: 5197: 5154: 5002: 4959: 4902: 4732: 4675: 4527: 4480: 4446:Journal of Mathematical Physics 4433: 4398: 4368: 4311: 4285:The Journal of Chemical Physics 4025: 3993: 3967: 3918: 3883: 3864: 3803: 3761:The Journal of Chemical Physics 3688:The Journal of Chemical Physics 3675: 3128:is believed to contain ice VI. 2540:as typical metals, making it a 2035:Formation requires HCl doping. 1943:Formation likely driven by the 1909:and further into ordinary ice I 1543:of 1.16 with respect to water. 1248: 613:{\textstyle {\tbinom {4}{2}}=6} 546: 182:in 1935. The structure of ice I 48:may be too short to adequately 11644:. Cambridge University Press. 11638:Fletcher, N. H. (2009-06-04). 10399:Astrophysics and Space Science 10138:"Supercooled and Glassy Water" 9933:10.1016/j.molstruc.2010.03.024 8277:(24). AIP Publishing: 244507. 8187:10.1103/PhysRevLett.103.105701 7726:10.1016/j.molstruc.2010.02.016 7706:Journal of Molecular Structure 6711:Metcalfe, Tom (9 March 2021). 4222:"Medium-density amorphous ice" 3842:10.1103/PhysRevLett.105.195701 3653:10.1103/PhysRevLett.119.136002 3610: 3559: 3524: 3495:10.1103/PhysRevLett.121.185505 3330: 3287: 3252: 2987: 2936:, an issue often mentioned in 1805:hydrogen bond interpenetration 1719:30-70 GPa (from ice VII) 1232: 1226: 1211: 1202: 1187: 1178: 1136: 1121: 1085: 1073: 1043: 1021: 1006: 991: 976: 889: 875: 831: 817: 793: 778: 721: 706: 686: 671: 530: 518: 293:. Despite the epithet "ice", 58:provide an accessible overview 13: 1: 11738:Woo, Marcus (July 11, 2018). 11151:"Titan: Facts – NASA Science" 11041:10.1126/science.284.5419.1514 10638:Astrophysical Journal Letters 9839:10.1016/S0009-2614(98)00908-7 8890:Chang, Kenneth (2018-02-05). 8816:10.1103/PhysRevLett.94.125508 7407:. 29=5558 (5558): 1264–1266. 7356:O-ice to 128 GPa (1.28 Mbar)" 7048:, University College London, 5947:Kim, Shi En (24 March 2022). 3877:Chemistry Education Materials 3871:David, Carl (8 August 2016). 3245: 2923:Ice XVII can repeatedly 2681:of the profiles based on the 2488:In the absence of an applied 2389:from a mixture of hydrogen (H 2373:Crystal structure of ice XVII 2285:, while an antiferroelectric 11690:London South Bank University 10711:10.1016/j.icarus.2008.12.045 10303:10.1016/0301-0104(81)80158-9 10219:10.1016/j.icarus.2007.04.019 9485:"Stacking disorder in ice I" 9470:London South Bank University 9393:10.1126/science.211.4480.389 8868:Zyga, Lisa (25 April 2013). 8754:Sokol, Joshua (2019-05-12). 8248:10.1016/j.cplett.2015.07.064 7752:Geophysical Research Letters 7638:10.1016/0022-3697(86)90126-5 7595:10.1016/0022-3697(84)90008-8 7525:10.1016/0031-9163(64)90366-X 7294:10.1016/j.cplett.2021.139325 7092:10.1524/zkri.218.2.117.20669 6569:London South Bank University 6153:London South Bank University 6054:London South Bank University 5972:London South Bank University 5650:London South Bank University 5642:"Ice-six (Ice VI) structure" 5627:Reports: Structure of Ice VI 5539:London South Bank University 5508:10.1126/science.166.3907.861 5481:London South Bank University 5403:London South Bank University 5380:London South Bank University 5357:London South Bank University 4766:10.1088/1748-9326/3/2/025008 3386:10.1126/science.115.2989.385 3095: 2473:Ice XVIII (superionic water) 2440: 1368:crystalline variant of ice. 490:atom. This residual entropy 255:glass transition temperature 7: 11753:Discussion of amorphous ice 11686:Water Structure and Science 11641:The Chemical Physics of Ice 11410:10.1088/0067-0049/184/2/361 10819:10.1088/0004-6256/145/5/122 10462:10.1016/j.jastp.2009.10.007 9684:10.1016/j.jastp.2014.12.005 9644:10.1016/j.jastp.2009.10.007 9609:10.1016/j.jastp.2008.06.001 9466:Water Structure and Science 9077:10.1021/acs.jpclett.0c00125 8656:10.1103/PhysRevLett.60.2284 8000:10.1103/PhysRevLett.80.1533 7316:Journal of Chemical Physics 6954:10.1021/acs.jpclett.7b00492 6565:Water Structure and Science 6149:Water Structure and Science 6050:Water Structure and Science 5802:10.1103/PhysRevB.105.104109 5646:Water Structure and Science 5535:Water Structure and Science 5477:Water Structure and Science 5399:Water Structure and Science 5376:Water Structure and Science 5353:Water Structure and Science 4968:Journal of Chemical Physics 4440:Nagle, J. F. (1966-08-01). 4411:. Oxford University Press. 3261:Journal of Chemical Physics 2766:Earth's natural environment 2727:Clausius–Clapeyron relation 2364: 2206:is cooled to below 72  2024:2GPa (formation from ice VI 747:Boltzmann's entropy formula 10: 12494: 11507:10.1038/s41567-021-01334-9 10954:10.1051/0004-6361:20048004 10933:Astronomy and Astrophysics 10726:Astronomy and Astrophysics 10507:Astronomy and Astrophysics 9755:Sid Perkins (2018-03-08). 9219:10.1038/s41467-021-23399-z 9148:10.1038/s41467-021-21161-z 8596:10.1038/s41467-020-14346-5 8523:"Ice-seventeen (Ice XVII)" 7683:10.1103/PhysRevB.74.024302 7156:Journal of Applied Physics 6759:10.1038/s41467-021-21351-9 6561:"Ice-seventeen (Ice XVII)" 6012:10.1038/s41467-021-23403-6 4513:10.1088/0370-1328/84/6/318 4354:10.1103/PhysRevB.75.092202 3135: 2837:negative thermal expansion 2622: 2563:and super heating it with 2160: 1381:NA (atmospheric or lower) 455: 275:hyperquenched glassy water 158:Crystal structure of ice I 12409: 12376: 12340: 12294: 12238: 12221:Short-track speed skating 12166: 12118: 12109: 11968: 11882: 11856: 11839: 11682:"Hexagonal ice structure" 11292:The Astrophysical Journal 10892:The Astrophysical Journal 10757:Astronomische Nachrichten 10442:J. Atmos. Sol.-Terr. Phys 10032:10.1017/S0033583500004297 9443:10.1175/BAMS-D-13-00128.1 8722:10.1038/s41567-017-0017-4 7616:doped with KOD: Ice XI". 6830:10.1038/s41567-018-0094-z 6615:10.1038/s41586-019-1114-6 6237:"A Very Special Snowball" 5578:10.1107/S0365110X67001409 4653:10.1038/s41563-020-0696-6 4599:10.1038/s41563-020-0606-y 3444:10.1107/S0108768194004933 3193:It is theorized that the 3069: 2846:, a small amount of ice I 2794:Virtually all ice in the 2279:density functional theory 2271: 2173: 2116: 2054: 1315:Virtually all ice in the 389:, though this definition 309:Pressure-dependent states 263:physical vapor deposition 194:hexagonal rings, with an 123: 10835:The Astronomical Journal 10798:The Astronomical Journal 9819:Chemical Physics Letters 9266:"The Many Phases of Ice" 8218:Chemical Physics Letters 7352:"Static compression of H 7274:Chemical Physics Letters 7112:Bridgman, P. W. (1935), 6868:10.1021/acs.jpcb.5b09544 4888:10.1126/science.11539186 3225: 3184:mentioned in Vonnegut's 3077:29P/Schwassmann–Wachmann 2938:environmental technology 2918:cryo-electron microscopy 2868:polar mesospheric clouds 2260:Ferroelectric properties 2213:Water molecules in ice I 1585:1.24 g cm (at 350 MPa). 11831: 11769:(requires registration) 11542:. Article number: 203. 10945:2004A&A...422L..43F 10751:Gronkowski, P. (2007). 10738:1994A&A...286..659T 10519:1994A&A...290.1009K 10411:1983Ap&SS..94..177S 10383:10.1093/mnras/271.2.481 9725:10.1126/science.aao3030 9555:10.1073/pnas.1210331110 8489:10.1073/pnas.1900739116 8157:Physical Review Letters 8048:10.1073/pnas.1010310108 7980:Physical Review Letters 7421:10.1126/science.1067746 7280:, Elsevier BV: 139325, 6192:10.1126/science.1123896 6101:10.1126/science.1123896 5314:Oxford University Press 4246:10.1126/science.abq2105 3812:Physical Review Letters 3623:Physical Review Letters 3588:10.1126/science.1061757 3474:Physical Review Letters 3422:Between 10 and 265 K". 2609:University of Rochester 2313:as had been predicted. 2104:F-doped ices because NH 1269:Temperature thresholds 253:of liquid water to its 11137:10.1006/icar.1997.5778 10778:10.1002/asna.200510657 8998:Thoeny AV; Gasser TM; 8404:(20). AIP Publishing. 8224:. Elsevier BV: 63–66. 6145:"Ice-twelve (Ice XII)" 5731:10.1073/pnas.52.6.1433 5558:Acta Crystallographica 5425:(13). AIP Publishing. 4688:Phys. Chem. Chem. Phys 3925:Murphy, D. M. (2005). 2791: 2779: 2761:Practical implications 2715: 2374: 2191: 2183: 2051: 1999:1.2GPa (from ice VII) 1979:Near that of ice XVI. 1976:1.2GPa (from ice III) 1893:1.2GPa (from ice VII) 1281:Other characteristics 1239: 1155: 1092: 1053: 1034: 946: 841: 737: 614: 537: 477: 409: 350: 318: 171: 163: 93: 11585:Nature Communications 11535:Nature Communications 10584:Astrophysical Journal 10323:Astrophysical Journal 10091:10.3390/challe8010003 8566:Nature Communications 7150:Evans, L. F. (1967), 7042:Colin Lobban (1998), 6489:Nature Communications 6046:"Ice-eleven (ice XI)" 5991:Nature Communications 5968:"Ice-seven (Ice VII)" 5764:"Ice VII (ice-seven)" 5554:"Structure of ice. V" 5372:"Ice-three (Ice III)" 5110:Astrophysical Journal 4915:Astrophysical Journal 4739:Murray, B.J. (2008). 4540:Universität Innsbruck 3066:orbit (~12 AU). 2785: 2773: 2716: 2372: 2189: 2181: 2049: 1240: 1156: 1093: 1051: 1035: 947: 842: 738: 615: 538: 471: 407: 348: 316: 265:) onto a very smooth 169: 157: 84:pressure-temperature 80: 11634:(www.idc-online.com) 11108:Showman, A. (1997). 11087:10.1029/2003JE002149 9371:in the Atmosphere". 8850:10.1038/news050321-4 7773:10.1029/2011GL048217 7581:(11–12): 1135–1144. 7560:10.1143/JPSJ.32.1442 5034:Smithsonian Magazine 2786:Phase space of ice I 2685: 2542:superionic conductor 2066:atmospheric pressure 1272:Pressure thresholds 1166: 1105: 1061: 960: 863: 753: 650: 622:Binomial coefficient 577: 503: 12317:Iceman (occupation) 11597:2011NatCo...2..563W 11548:2011NatCo...2..203C 11499:2021NatPh..17.1228C 11401:2009ApJS..184..361A 11304:2006ApJ...652L..57F 11194:2005DPS....37.4902M 11129:1997Icar..129..367S 11079:2004JGRE..109.1012H 11033:1999Sci...284.1514S 11027:(5419): 1514–1516. 10990:10.1038/nature03111 10982:2004Natur.432..731J 10904:1999ApJ...519L.101B 10857:2001AJ....122.2099J 10810:2013AJ....145..122H 10769:2007AN....328..126G 10703:2009Icar..201..719M 10650:1990ApJ...355L..27O 10596:1995ApJ...455..389J 10553:1990Natur.344..134K 10454:2010JASTP..72...51M 10374:1994MNRAS.271..481S 10335:1992ApJ...401..353M 10295:1981CP.....56..367H 10260:1998JGR...10325809G 10211:2008Icar..193..397N 10157:2003PhT....56f..40D 9974:2015PCCP...1712458Y 9958:(19): 12458–12461. 9925:2010JMoSt.976..174F 9870:2004JChPh.12011376F 9831:1998CPL...294..554F 9716:2018Sci...359.1136T 9710:(6380): 1136–1139. 9675:2015JASTP.127...78M 9636:2010JASTP..72...51M 9601:2009JASTP..71..453L 9546:2012PNAS..10921259K 9540:(52): 21259–21264. 9435:2015BAMS...96.1519M 9385:1981Sci...211..389W 9338:10.1038/nature03403 9330:2005Natur.434..202M 9211:2021NatCo..12.3162S 9140:2021NatCo..12.1128G 9020:2019PCCP...2115452T 9014:(28): 15452–15462. 9008:Phys Chem Chem Phys 8808:2005PhRvL..94l5508G 8714:2018NatPh..14..297M 8648:1988PhRvL..60.2284D 8588:2020NatCo..11..464K 8480:2019PNAS..11612684L 8474:(26): 12684–12691. 8420:2016JChPh.145t4501S 8348:2016NatSR...628920K 8293:2018JChPh.148x4507R 8240:2015CPL...637...63S 8179:2009PhRvL.103j5701S 8039:2011PNAS..108.3481Z 7992:1998PhRvL..80.1533S 7912:1999Natur.397..212B 7896:"Ferroelectric ice" 7857:2011PCCP...1319788R 7814:2011JChPh.134j4506A 7764:2011GeoRL..3816101A 7718:2010JMoSt.972..111A 7675:2006PhRvB..74b4302C 7630:1986JPCS...47..165M 7587:1984JPCS...45.1135T 7552:1972JPSJ...32.1442K 7517:1964PhL.....9..291D 7413:2002Sci...295.1264K 7374:1987Natur.330..737H 7328:1993JChPh..99.9842P 7286:2022CPL...78939325R 7240:2011PCCP...1318468S 7228:Phys Chem Chem Phys 7168:1967JAP....38.4930E 7130:1935JChPh...3..597B 7084:2003ZK....218..117K 6906:1981JChPh..75.5887E 6822:2018NatPh..14..569S 6751:2021NatCo..12.1129Y 6607:2019Natur.569..251M 6519:10.1038/ncomms13394 6511:2016NatCo...713394D 6409:10.1038/nature14295 6401:2015Natur.519..443A 6341:(30): 10298–10307. 6291:10.1038/nature14014 6283:2014Natur.516..231F 6184:2006Sci...311.1758S 6093:2006Sci...311.1758S 6087:(5768): 1758–1761. 6003:2021NatCo..12.3161H 5918:1973JChPh..58..567L 5883:1968JChPh..48.2362W 5845:1966JChPh..45.3976W 5794:2022PhRvB.105j4109G 5722:1964PNAS...52.1433K 5681:2017RSCAd...731789Y 5675:(51): 31789–31794. 5570:1967AcCry..22..706K 5431:2021JChPh.154m4504S 5395:"Ice-four (Ice IV)" 5264:2001PCCP....3.5355L 5218:1996Natur.384..546M 5175:1985Natur.314...76M 5122:1995ApJ...455..389J 5076:1984Natur.310..393M 4980:1997JChPh.107.1232J 4927:1996ApJ...473.1104J 4880:1994Sci...265..753J 4794:1960Natur.188.1144D 4788:(4757): 1144–1148. 4757:2008ERL.....3b5008M 4700:2006PCCP....8..186M 4645:2020NatMa..19..586S 4591:2020NatMa..19..663D 4505:1964PPS....84.1001H 4458:1966JMP.....7.1484N 4392:10.1021/ja01315a102 4346:2007PhRvB..75i2202B 4297:1933JChPh...1..515B 4238:2023Sci...379..474R 4176:2018PCCP...2021607F 4170:(33): 21607–21616. 4164:Phys Chem Chem Phys 4109:10.1038/ncomms16189 4101:2018NatCo...916189K 4054:10.1038/nature04415 4046:2006Natur.439..183I 3943:2005QJRMS.131.1539M 3904:1994JPCRD..23..515W 3834:2010PhRvL.105s5701M 3774:2009JChPh.131c4510C 3700:2020JChPh.153j4503M 3645:2017PhRvL.119m6002M 3580:2001Sci...294.2335V 3486:2018PhRvL.121r5505B 3436:1994AcCrB..50..644R 3378:1952Sci...115..385B 3308:1999Natur.398..681K 3273:1973JChPh..58..567L 3083:Kuiper Belt objects 2994:interstellar medium 2957:van der Waals force 2679:Rietveld refinement 2633:dielectric spectrum 2631:(DSC) thermograms, 2607:, was taken to the 2605:diamond anvil cells 2594:face-centered cubic 2590:body-centered cubic 2578:face-centered cubic 2042:History of research 1945:van der Waals force 1535:Very high relative 1394:than normal water. 749:, we conclude that 624:). Thus, there are 422:heat of sublimation 357:can coexist at the 331:face-centered cubic 327:body-centered cubic 297:analysis utilizing 11869:Crystalline phases 11606:10.1038/ncomms1566 11557:10.1038/ncomms1198 11431:The New York Times 10419:10.1007/BF00651770 10111:The New York Times 9982:10.1039/C5CP01529D 9786:Netburn, Deborah. 9502:10.1039/c4cp02893g 9292:Physical chemistry 9278:on 7 October 2009. 9029:10.1039/c9cp02147g 8967:10.1039/c8sc03647k 8896:The New York Times 8336:Scientific Reports 7865:10.1039/c1cp22506e 7248:10.1039/c1cp21712g 6675:10.1039/c8sc00135a 5690:10.1039/C7RA05563C 5531:"Ice-five (Ice V)" 5473:"Ice-five (Ice V)" 5349:"Ice-two (Ice II)" 5316:. pp. 61–70. 5016:. 4 February 2023. 4185:10.1039/c8cp03786h 4013:on 21 January 2018 3937:(608): 1539–1565. 3345:on 16 October 2016 3215:body-centred cubic 3166:extrasolar planets 3059:circumstellar disk 3023:noctilucent clouds 2859:noctilucent clouds 2792: 2780: 2711: 2553:diamond anvil cell 2411:clathrate hydrates 2375: 2192: 2184: 2139:to prepare ice IV 2052: 1903:clathrate hydrates 1597:in the unit cell. 1358:Similar to Ice Ih 1292:12,976 - 8,476 BC 1266:Year of discovery 1235: 1151: 1088: 1054: 1030: 942: 857:molar gas constant 853:Boltzmann constant 837: 733: 610: 602: 533: 478: 410: 351: 319: 227:hexagonal symmetry 172: 164: 94: 12450: 12449: 12431:Wikimedia Commons 12234: 12233: 11680:Chaplin, Martin. 11483:(11): 1228–1232. 11341:10.1021/jp982549e 10547:(6262): 134–135. 10480:Solar System Ices 10268:10.1029/98je00738 10165:10.1063/1.1595053 9913:J. Mol. Structure 9878:10.1063/1.1765099 9792:Los Angeles Times 9456:Chaplin, Martin. 9379:(4480): 389–390. 9324:(7030): 202–205. 9264:Norman Anderson. 8642:(22): 2284–2287. 8521:Chaplin, Martin. 8428:10.1063/1.4967167 8356:10.1038/srep28920 8301:10.1063/1.5022159 8094:10.1021/jp0540609 7957:10.1021/jp982549e 7951:(46): 9203–9214. 7906:(6716): 212–213. 7822:10.1063/1.3551620 7653:Physical Review B 7368:(6150): 737–740, 7322:(12): 9842–9846. 7210:10.1021/jp014391v 7188:Salzmann, C. G., 7176:10.1063/1.1709255 7138:10.1063/1.1749561 7030:10.1021/jp021534k 6669:(18): 4224–4234. 6601:(7755): 251–255. 6559:Chaplin, Martin. 6385:(7544): 443–445. 6348:10.1021/jp903439a 6277:(7530): 231–233. 6178:(5768): 1758–61. 6143:Chaplin, Martin. 6044:Chaplin, Martin. 5926:10.1063/1.1679238 5891:10.1063/1.1669438 5853:10.1063/1.1727447 5839:(11): 3976–3982. 5640:Chaplin, Martin. 5529:Chaplin, Martin. 5471:Chaplin, Martin. 5439:10.1063/5.0045443 5393:Chaplin, Martin. 5370:Chaplin, Martin. 5347:Chaplin, Martin. 5258:(24): 5355–5357. 5212:(6609): 546–549. 5070:(5976): 393–395. 4802:10.1038/1881144a0 4466:10.1063/1.1705058 4426:978-0-19-851894-5 4386:(12): 2680–2684. 4324:Physical Review B 4305:10.1063/1.1749327 4232:(6631): 474–478. 4040:(7073): 183–186. 3782:10.1063/1.3182727 3768:(34510): 034510. 3708:10.1063/5.0018923 3372:(2989): 385–390. 3302:(6729): 681–684. 3281:10.1063/1.1679238 2877:found in natural 2703: 2693: 2652:chloride-doped, D 2641:X-ray diffraction 2496:in the O lattice. 2380:clathrate hydrate 2307:antiferroelectric 2082:equilibrium curve 2039: 2038: 1710:2022 (contested) 1355:NA (atmospheric) 1306:NA (atmospheric) 595: 452:Hydrogen disorder 420:, and its latent 208:tetrahedral angle 176:crystal structure 150:Crystal structure 100:are all possible 75: 74: 16:(Redirected from 12485: 12478:Hydrogen storage 12440: 12429: 12428: 12418: 12417: 12116: 12115: 11826: 11819: 11812: 11803: 11802: 11749: 11734: 11702:Physik des Eises 11693: 11676: 11655: 11619: 11618: 11608: 11576: 11570: 11569: 11559: 11525: 11519: 11518: 11492: 11472: 11466: 11465: 11463: 11461: 11452:Charlie Osolin. 11449: 11443: 11442: 11440: 11438: 11421: 11415: 11414: 11412: 11380: 11374: 11373: 11371: 11359: 11353: 11352: 11324: 11318: 11317: 11315: 11283: 11277: 11276: 11274: 11272: 11257: 11251: 11250: 11248: 11246: 11230: 11224: 11223: 11221: 11220: 11204: 11198: 11197: 11177: 11166: 11165: 11163: 11161: 11155:science.nasa.gov 11147: 11141: 11140: 11114: 11105: 11099: 11098: 11062: 11053: 11052: 11016: 11010: 11009: 10965: 10959: 10958: 10956: 10924: 10918: 10917: 10915: 10883: 10877: 10876: 10850: 10848:astro-ph/0107277 10841:(4): 2099–2114. 10830: 10824: 10823: 10821: 10789: 10783: 10782: 10780: 10748: 10742: 10741: 10721: 10715: 10714: 10686: 10680: 10677: 10671: 10670: 10661: 10632: 10626: 10625: 10615: 10613:2060/19980018148 10579: 10573: 10572: 10561:10.1038/344134a0 10536: 10530: 10529: 10527: 10504: 10495: 10484: 10483: 10475: 10466: 10465: 10437: 10431: 10430: 10394: 10388: 10387: 10385: 10353: 10347: 10346: 10318: 10307: 10306: 10283:Chemical Physics 10278: 10272: 10271: 10239: 10233: 10232: 10230: 10196: 10187: 10176: 10175: 10173: 10171: 10142: 10133: 10127: 10126: 10124: 10122: 10102: 10096: 10095: 10093: 10069: 10052: 10051: 10017: 10008: 10002: 10001: 9967: 9943: 9937: 9936: 9919:(1–3): 174–180. 9908: 9902: 9901: 9899: 9897: 9888:. Archived from 9849: 9843: 9842: 9814: 9808: 9807: 9805: 9803: 9783: 9777: 9776: 9774: 9772: 9752: 9746: 9745: 9727: 9695: 9689: 9688: 9686: 9654: 9648: 9647: 9619: 9613: 9612: 9595:(3–4): 453–463. 9584: 9578: 9577: 9567: 9557: 9521: 9515: 9514: 9504: 9480: 9474: 9473: 9453: 9447: 9446: 9429:(9): 1519–1531. 9420: 9411: 9405: 9404: 9364: 9358: 9357: 9313: 9307: 9306: 9286: 9280: 9279: 9277: 9270: 9261: 9255: 9254: 9248: 9240: 9230: 9190: 9184: 9183: 9177: 9169: 9159: 9119: 9113: 9112: 9106: 9098: 9088: 9071:(3): 1106–1111. 9065:J Phys Chem Lett 9056: 9050: 9049: 9031: 8995: 8989: 8988: 8978: 8946: 8940: 8939: 8937: 8935: 8920: 8914: 8913: 8911: 8910: 8887: 8878: 8877: 8865: 8854: 8853: 8837: 8828: 8827: 8793: 8784: 8778: 8777: 8775: 8774: 8751: 8742: 8741: 8691: 8680: 8674: 8668: 8667: 8633: 8624: 8618: 8617: 8607: 8581: 8557: 8548: 8547: 8541: 8533: 8531: 8530: 8518: 8512: 8511: 8501: 8491: 8459: 8448: 8447: 8413: 8392: 8386: 8385: 8375: 8327: 8321: 8320: 8286: 8266: 8260: 8259: 8233: 8213: 8207: 8206: 8172: 8152: 8146: 8145: 8143: 8141: 8120: 8114: 8113: 8077: 8071: 8070: 8060: 8050: 8033:(9): 3481–3486. 8018: 8012: 8011: 7986:(7): 1533–1536. 7975: 7969: 7968: 7940: 7934: 7933: 7923: 7891: 7885: 7884: 7851:(44): 19788–95. 7840: 7834: 7833: 7797: 7791: 7784: 7778: 7777: 7775: 7743: 7730: 7729: 7712:(1–3): 111–114. 7701: 7695: 7694: 7668: 7666:cond-mat/0511092 7648: 7642: 7641: 7605: 7599: 7598: 7570: 7564: 7563: 7535: 7529: 7528: 7500: 7494: 7493: 7491: 7489: 7483: 7477:. Archived from 7469:(4): S170–S175. 7460: 7447: 7441: 7440: 7400: 7394: 7392: 7382:10.1038/330737a0 7347: 7341: 7339: 7336:10.1063/1.465467 7311: 7305: 7304: 7265: 7259: 7258: 7234:(41): 18468–80, 7219: 7213: 7212: 7185: 7179: 7178: 7147: 7141: 7140: 7109: 7103: 7102: 7063: 7057: 7056: 7039: 7033: 7032: 7009: 7003: 7002: 7000:10.1063/1.438173 6979: 6973: 6972: 6947: 6923: 6917: 6916: 6914:10.1063/1.442040 6885: 6879: 6878: 6847: 6841: 6840: 6801: 6795: 6794: 6788: 6780: 6770: 6730: 6721: 6720: 6708: 6697: 6696: 6686: 6654: 6643: 6642: 6586: 6573: 6572: 6556: 6541: 6540: 6530: 6504: 6480: 6457: 6456: 6454: 6453: 6438: 6429: 6428: 6394: 6374: 6368: 6367: 6366: 6360: 6350: 6324: 6318: 6317: 6316: 6310: 6266: 6257: 6256: 6254: 6252: 6232: 6226: 6225: 6219: 6211: 6163: 6157: 6156: 6140: 6121: 6120: 6076: 6067: 6064: 6058: 6057: 6041: 6035: 6034: 6024: 6014: 5982: 5976: 5975: 5963: 5957: 5956: 5944: 5938: 5937: 5901: 5895: 5894: 5877:(5): 2362–2370. 5866: 5857: 5856: 5828: 5822: 5821: 5777: 5768: 5767: 5760: 5754: 5753: 5743: 5733: 5716:(6): 1433–1439. 5701: 5695: 5694: 5692: 5660: 5654: 5653: 5637: 5631: 5623: 5617: 5616: 5605:10.2307/20022754 5588: 5582: 5581: 5549: 5543: 5542: 5526: 5520: 5519: 5491: 5485: 5484: 5468: 5459: 5458: 5413: 5407: 5406: 5390: 5384: 5383: 5367: 5361: 5360: 5344: 5335: 5334: 5332: 5330: 5303: 5284: 5283: 5272:10.1039/b108676f 5248:Loerting, Thomas 5244: 5238: 5237: 5226:10.1038/384546a0 5201: 5195: 5194: 5183:10.1038/314076a0 5158: 5152: 5151: 5141: 5139:2060/19980018148 5105: 5096: 5095: 5084:10.1038/310393a0 5059: 5046: 5045: 5043: 5041: 5024: 5018: 5017: 5006: 5000: 4999: 4988:10.1063/1.474468 4963: 4957: 4956: 4938: 4906: 4900: 4899: 4859: 4846: 4845: 4833: 4822: 4821: 4777: 4771: 4770: 4768: 4736: 4730: 4729: 4719: 4708:10.1039/b513480c 4679: 4673: 4672: 4633:Nature Materials 4628: 4619: 4618: 4584: 4569:Nature Materials 4564: 4551: 4550: 4548: 4547: 4531: 4525: 4524: 4499:(6): 1001–1016. 4484: 4478: 4477: 4452:(8): 1484–1491. 4437: 4431: 4430: 4402: 4396: 4395: 4372: 4366: 4365: 4339: 4337:cond-mat/0609211 4315: 4309: 4308: 4280: 4274: 4273: 4217: 4206: 4205: 4187: 4151: 4145: 4144: 4138: 4130: 4120: 4080: 4074: 4073: 4029: 4023: 4022: 4020: 4018: 4012: 4005: 3997: 3991: 3990: 3988: 3986: 3971: 3965: 3964: 3954: 3952:10.1256/qj.04.94 3922: 3916: 3915: 3912:10.1063/1.555947 3887: 3881: 3880: 3868: 3862: 3861: 3827: 3807: 3801: 3800: 3799: 3793: 3755: 3746: 3745: 3719: 3679: 3673: 3672: 3638: 3614: 3608: 3607: 3574:(5550): 2335–8. 3563: 3557: 3556: 3545:10.2307/20022754 3528: 3522: 3521: 3515: 3507: 3497: 3457: 3448: 3447: 3424:Acta Crystallogr 3407: 3398: 3397: 3361: 3355: 3354: 3352: 3350: 3337:Dutch, Stephen. 3334: 3328: 3327: 3291: 3285: 3284: 3256: 3239: 3236: 3207:Machine learning 3054:Molecular clouds 3042:Peter Jenniskens 2934:hydrogen storage 2806:, also known as 2720: 2718: 2717: 2712: 2704: 2699: 2694: 2689: 2569:phase transition 2505: 2485: 2436: 2432: 2091: 2090: 1625:Debye relaxation 1541:specific gravity 1526: 1329:refractive index 1260: 1259: 1244: 1242: 1241: 1236: 1210: 1209: 1197: 1160: 1158: 1157: 1152: 1144: 1143: 1131: 1117: 1116: 1097: 1095: 1094: 1089: 1039: 1037: 1036: 1031: 1029: 1028: 1016: 1002: 1001: 986: 972: 971: 951: 949: 948: 943: 941: 940: 932: 926: 925: 917: 902: 885: 850: 846: 844: 843: 838: 827: 801: 800: 788: 765: 764: 742: 740: 739: 734: 729: 728: 716: 702: 701: 697: 681: 670: 669: 665: 645: 641: 634: 627: 619: 617: 616: 611: 603: 601: 600: 587: 572: 561: 542: 540: 539: 534: 498: 487:residual entropy 431: 429: 419: 384: 382: 381: 378: 375: 353:Ice, water, and 341:Heat and entropy 325:would take on a 188:wurtzite lattice 102:states of matter 70: 67: 61: 38: 30: 21: 12493: 12492: 12488: 12487: 12486: 12484: 12483: 12482: 12453: 12452: 12451: 12446: 12405: 12372: 12336: 12290: 12230: 12162: 12111: 12105: 11976:Albedo feedback 11964: 11878: 11864:Amorphous solid 11852: 11835: 11830: 11745:Quanta Magazine 11711: 11673: 11652: 11628: 11626:Further reading 11623: 11622: 11577: 11573: 11526: 11522: 11473: 11469: 11459: 11457: 11450: 11446: 11436: 11434: 11422: 11418: 11381: 11377: 11360: 11356: 11325: 11321: 11284: 11280: 11270: 11268: 11258: 11254: 11244: 11242: 11231: 11227: 11218: 11216: 11207: 11205: 11201: 11178: 11169: 11159: 11157: 11149: 11148: 11144: 11112: 11106: 11102: 11063: 11056: 11017: 11013: 10976:(7018): 731–3. 10966: 10962: 10925: 10921: 10884: 10880: 10831: 10827: 10790: 10786: 10749: 10745: 10722: 10718: 10687: 10683: 10678: 10674: 10633: 10629: 10580: 10576: 10537: 10533: 10525: 10502: 10496: 10487: 10476: 10469: 10438: 10434: 10395: 10391: 10354: 10350: 10319: 10310: 10279: 10275: 10245: 10240: 10236: 10194: 10188: 10179: 10169: 10167: 10140: 10134: 10130: 10120: 10118: 10103: 10099: 10070: 10055: 10015: 10009: 10005: 9949: 9944: 9940: 9909: 9905: 9895: 9893: 9892:on 29 July 2012 9864:(24): 11376–9. 9850: 9846: 9815: 9811: 9801: 9799: 9784: 9780: 9770: 9768: 9753: 9749: 9696: 9692: 9655: 9651: 9620: 9616: 9585: 9581: 9529: 9522: 9518: 9481: 9477: 9461: 9454: 9450: 9418: 9412: 9408: 9370: 9365: 9361: 9314: 9310: 9303: 9287: 9283: 9275: 9268: 9262: 9258: 9242: 9241: 9191: 9187: 9171: 9170: 9120: 9116: 9100: 9099: 9057: 9053: 8996: 8992: 8947: 8943: 8933: 8931: 8923:Langin, Katie. 8921: 8917: 8908: 8906: 8888: 8881: 8866: 8857: 8838: 8831: 8796:Phys. Rev. Lett 8791: 8785: 8781: 8772: 8770: 8752: 8745: 8692: 8683: 8675: 8671: 8636:Phys. Rev. Lett 8631: 8625: 8621: 8558: 8551: 8535: 8534: 8528: 8526: 8519: 8515: 8460: 8451: 8393: 8389: 8328: 8324: 8267: 8263: 8214: 8210: 8153: 8149: 8139: 8137: 8121: 8117: 8078: 8074: 8019: 8015: 7976: 7972: 7941: 7937: 7892: 7888: 7841: 7837: 7798: 7794: 7785: 7781: 7744: 7733: 7702: 7698: 7649: 7645: 7615: 7611: 7606: 7602: 7571: 7567: 7536: 7532: 7505:Physics Letters 7501: 7497: 7487: 7485: 7484:on 14 July 2014 7481: 7458: 7455: 7448: 7444: 7401: 7397: 7355: 7348: 7344: 7312: 7308: 7266: 7262: 7220: 7216: 7186: 7182: 7148: 7144: 7110: 7106: 7064: 7060: 7040: 7036: 7010: 7006: 6980: 6976: 6924: 6920: 6886: 6882: 6848: 6844: 6802: 6798: 6782: 6781: 6731: 6724: 6709: 6700: 6655: 6646: 6587: 6576: 6557: 6544: 6481: 6460: 6451: 6449: 6440: 6439: 6432: 6375: 6371: 6361: 6325: 6321: 6311: 6267: 6260: 6250: 6248: 6233: 6229: 6213: 6212: 6164: 6160: 6141: 6124: 6077: 6070: 6065: 6061: 6042: 6038: 5983: 5979: 5964: 5960: 5953:Popular Science 5945: 5941: 5902: 5898: 5867: 5860: 5829: 5825: 5778: 5771: 5762: 5761: 5757: 5702: 5698: 5661: 5657: 5638: 5634: 5624: 5620: 5599:(13): 441–558. 5589: 5585: 5550: 5546: 5527: 5523: 5492: 5488: 5469: 5462: 5414: 5410: 5391: 5387: 5368: 5364: 5345: 5338: 5328: 5326: 5324: 5304: 5287: 5245: 5241: 5202: 5198: 5169:(6006): 76–78. 5159: 5155: 5106: 5099: 5060: 5049: 5039: 5037: 5025: 5021: 5008: 5007: 5003: 4964: 4960: 4907: 4903: 4874:(5173): 753–6. 4860: 4849: 4834: 4825: 4778: 4774: 4737: 4733: 4680: 4676: 4629: 4622: 4565: 4554: 4545: 4543: 4532: 4528: 4485: 4481: 4438: 4434: 4427: 4403: 4399: 4373: 4369: 4316: 4312: 4281: 4277: 4218: 4209: 4152: 4148: 4132: 4131: 4081: 4077: 4030: 4026: 4016: 4014: 4010: 4003: 3999: 3998: 3994: 3984: 3982: 3975:"SI base units" 3973: 3972: 3968: 3923: 3919: 3888: 3884: 3869: 3865: 3808: 3804: 3794: 3756: 3749: 3680: 3676: 3615: 3611: 3564: 3560: 3539:(13): 441–558. 3529: 3525: 3509: 3508: 3469: 3465: 3458: 3451: 3421: 3417: 3413: 3408: 3401: 3362: 3358: 3348: 3346: 3339:"Ice Structure" 3335: 3331: 3292: 3288: 3257: 3253: 3248: 3243: 3242: 3237: 3233: 3228: 3138: 3098: 3085: 3072: 3051: 3018: 2990: 2974: 2970: 2914: 2907: 2903: 2899: 2849: 2845: 2834: 2829: 2813: 2801: 2789: 2777: 2768: 2763: 2748: 2744: 2740: 2736: 2698: 2688: 2686: 2683: 2682: 2655: 2625: 2573:computer models 2526: 2525: 2524: 2523: 2515: 2514: 2513: 2506: 2498: 2497: 2486: 2475: 2468: 2464: 2460: 2456: 2452: 2443: 2434: 2433:10 m; 2.40 2430: 2420: 2408: 2404: 2400: 2396: 2392: 2388: 2367: 2348: 2328: 2300: 2296: 2292: 2274: 2262: 2255: 2251: 2247: 2240: 2233: 2229: 2216: 2205: 2201: 2196:internal energy 2176: 2168: 2163: 2154: 2129: 2125: 2119: 2111: 2107: 2103: 2098: 2088: 2086: 2075: 2057: 2044: 2027: 2020: 1947:, which allows 1912: 1908: 1789: 1777: 1760: 1741: 1696:1.16 g/cm 1653: 1524: 1485: 1469:NA (amorphous) 1444:NA (amorphous) 1418:NA (amorphous) 1415:1.06±0.06 g cm 1387:NA (amorphous) 1384:0.94 g/cm 1350: 1339: 1326: 1322: 1289: 1251: 1205: 1201: 1193: 1167: 1164: 1163: 1139: 1135: 1127: 1112: 1108: 1106: 1103: 1102: 1062: 1059: 1058: 1046: 1024: 1020: 1012: 994: 990: 982: 967: 963: 961: 958: 957: 933: 928: 927: 918: 907: 906: 898: 881: 864: 861: 860: 848: 823: 796: 792: 784: 760: 756: 754: 751: 750: 724: 720: 712: 693: 689: 685: 677: 661: 657: 653: 651: 648: 647: 643: 639: 636: 632: 629: 625: 596: 583: 582: 580: 578: 575: 574: 570: 567: 559: 549: 504: 501: 500: 497: 494: 491: 475: 464: 454: 440: 427: 425: 418:5987 J/mol 417: 414:heat of melting 379: 376: 373: 372: 370: 369:was defined as 343: 311: 299:neural networks 283:liquid nitrogen 259:crystal lattice 247:amorphous solid 243: 236: 224: 217: 185: 161: 152: 126: 118: 71: 65: 62: 55: 43:This article's 39: 28: 23: 22: 15: 12: 11: 5: 12491: 12481: 12480: 12475: 12470: 12465: 12448: 12447: 12445: 12444: 12433: 12422: 12410: 12407: 12406: 12404: 12403: 12401:Snowball Earth 12398: 12393: 12391:Little Ice Age 12388: 12382: 12380: 12374: 12373: 12371: 12370: 12365: 12360: 12355: 12350: 12344: 12342: 12338: 12337: 12335: 12334: 12329: 12324: 12319: 12314: 12309: 12304: 12298: 12296: 12292: 12291: 12289: 12288: 12283: 12278: 12273: 12268: 12263: 12258: 12253: 12248: 12242: 12240: 12236: 12235: 12232: 12231: 12229: 12228: 12223: 12218: 12213: 12208: 12203: 12201:Figure skating 12198: 12193: 12188: 12183: 12178: 12172: 12170: 12164: 12163: 12161: 12160: 12155: 12150: 12145: 12140: 12135: 12130: 12125: 12119: 12113: 12107: 12106: 12104: 12103: 12098: 12093: 12088: 12083: 12078: 12073: 12068: 12063: 12058: 12053: 12048: 12043: 12038: 12033: 12023: 12018: 12013: 12008: 12003: 11998: 11993: 11988: 11986:Circle or disc 11983: 11978: 11972: 11970: 11966: 11965: 11963: 11962: 11957: 11952: 11947: 11942: 11937: 11932: 11927: 11917: 11912: 11907: 11902: 11897: 11892: 11886: 11884: 11880: 11879: 11877: 11876: 11871: 11866: 11860: 11858: 11854: 11853: 11840: 11837: 11836: 11829: 11828: 11821: 11814: 11806: 11800: 11799: 11794: 11789: 11784: 11781:phase diagrams 11770: 11760: 11750: 11735: 11710: 11709:External links 11707: 11706: 11705: 11699: 11694: 11677: 11671: 11665:. OUP Oxford. 11662:Physics of Ice 11656: 11650: 11635: 11627: 11624: 11621: 11620: 11571: 11520: 11477:Nature Physics 11467: 11444: 11416: 11395:(2): 361–365. 11375: 11354: 11319: 11313:10.1086/510017 11298:(1): L57–L60. 11278: 11252: 11225: 11199: 11167: 11142: 11123:(2): 367–383. 11100: 11073:(E1): E01012. 11054: 11011: 10960: 10919: 10913:10.1086/312098 10878: 10865:10.1086/323304 10825: 10784: 10763:(2): 126–136. 10743: 10716: 10697:(2): 719–739. 10681: 10672: 10659:10.1086/185730 10627: 10604:10.1086/176585 10574: 10531: 10485: 10467: 10432: 10405:(1): 177–189. 10389: 10368:(2): 481–489. 10348: 10343:10.1086/172065 10308: 10289:(3): 367–379. 10273: 10254:(E11): 25809. 10243: 10234: 10205:(2): 397–406. 10177: 10128: 10097: 10053: 10026:(2): 129–228. 10003: 9947: 9938: 9903: 9844: 9825:(6): 554–558. 9809: 9778: 9747: 9690: 9649: 9614: 9579: 9527: 9516: 9475: 9459: 9448: 9406: 9368: 9359: 9308: 9302:978-1429218122 9301: 9281: 9256: 9185: 9114: 9051: 8990: 8961:(2): 515–523. 8941: 8915: 8879: 8855: 8829: 8802:(12): 125508. 8779: 8743: 8708:(3): 297–302. 8701:Nature Physics 8681: 8669: 8619: 8549: 8513: 8449: 8387: 8322: 8261: 8208: 8163:(10): 105701. 8147: 8115: 8072: 8013: 7970: 7935: 7886: 7835: 7808:(10): 104506. 7792: 7779: 7731: 7696: 7643: 7624:(2): 165–173. 7613: 7609: 7600: 7565: 7530: 7511:(4): 291–292. 7495: 7453: 7442: 7395: 7353: 7342: 7306: 7260: 7214: 7180: 7142: 7104: 7058: 7034: 7004: 6974: 6918: 6880: 6842: 6810:Nature Physics 6796: 6722: 6698: 6644: 6574: 6542: 6458: 6430: 6369: 6319: 6258: 6227: 6158: 6122: 6068: 6059: 6036: 5977: 5958: 5939: 5912:(2): 567–580. 5896: 5858: 5823: 5788:(10): 104109. 5769: 5755: 5696: 5655: 5632: 5618: 5583: 5564:(5): 706–715. 5544: 5521: 5486: 5460: 5408: 5385: 5362: 5336: 5322: 5285: 5239: 5196: 5153: 5130:10.1086/176585 5097: 5047: 5019: 5001: 4974:(4): 1232–41. 4958: 4936:10.1086/178220 4921:(2): 1104–13. 4901: 4847: 4823: 4772: 4745:Env. Res. Lett 4731: 4694:(1): 186–192. 4674: 4639:(6): 586–587. 4620: 4575:(6): 663–668. 4552: 4526: 4479: 4432: 4425: 4408:Physics of Ice 4397: 4376:Pauling, Linus 4367: 4310: 4275: 4207: 4146: 4075: 4024: 3992: 3966: 3917: 3898:(3): 515–527. 3882: 3863: 3818:(19): 195701. 3802: 3747: 3694:(10): 104503. 3674: 3629:(13): 136002. 3609: 3558: 3523: 3480:(18): 185505. 3467: 3463: 3449: 3430:(6): 644–648. 3419: 3415: 3411: 3399: 3356: 3329: 3286: 3267:(2): 567–580. 3250: 3249: 3247: 3244: 3241: 3240: 3230: 3229: 3227: 3224: 3137: 3134: 3097: 3094: 3084: 3081: 3071: 3068: 3050: 3047: 3017: 3014: 2989: 2986: 2972: 2968: 2913: 2912:Human industry 2910: 2905: 2901: 2897: 2847: 2843: 2832: 2827: 2824:hydrogen bonds 2816:global climate 2811: 2799: 2787: 2775: 2767: 2764: 2762: 2759: 2746: 2742: 2738: 2734: 2710: 2707: 2702: 2697: 2692: 2653: 2637:Raman spectrum 2624: 2621: 2517: 2516: 2507: 2500: 2499: 2490:electric field 2487: 2480: 2479: 2478: 2477: 2476: 2474: 2471: 2466: 2462: 2458: 2454: 2450: 2442: 2439: 2418: 2406: 2402: 2398: 2394: 2393:) and water (H 2390: 2386: 2366: 2363: 2346: 2326: 2298: 2294: 2290: 2273: 2270: 2261: 2258: 2253: 2249: 2245: 2238: 2231: 2227: 2214: 2203: 2199: 2175: 2172: 2166: 2162: 2159: 2153: 2150: 2127: 2123: 2118: 2115: 2109: 2105: 2101: 2097: 2094: 2073: 2056: 2053: 2043: 2040: 2037: 2036: 2033: 2031: 2029: 2025: 2022: 2018: 2015: 2012: 2008: 2007: 2004: 2002: 2000: 1997: 1994: 1991: 1987: 1986: 1983: 1980: 1977: 1974: 1968: 1965: 1961: 1960: 1953:graphene oxide 1941: 1938: 1936: 1933: 1926: 1923: 1919: 1918: 1910: 1906: 1899: 1897: 1894: 1891: 1885: 1882: 1878: 1877: 1874: 1872: 1870: 1867: 1864: 1861: 1857: 1856: 1849: 1846: 1844: 1841: 1838: 1835: 1831: 1830: 1827: 1824: 1822: 1819: 1816: 1813: 1809: 1808: 1797: 1794: 1791: 1787: 1780: 1775: 1770: 1767: 1763: 1762: 1758: 1752: 1747: 1745: 1743: 1739: 1736: 1733: 1729: 1728: 1725: 1722: 1720: 1717: 1711: 1708: 1704: 1703: 1700: 1697: 1694: 1691: 1685: 1682: 1678: 1677: 1674: 1671: 1669: 1666: 1663: 1660: 1656: 1655: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1629: 1628: 1621: 1618: 1615: 1612: 1606: 1603: 1599: 1598: 1591: 1586: 1583: 1580: 1577: 1574: 1570: 1569: 1566: 1563: 1561: 1558: 1552: 1549: 1545: 1544: 1533: 1528: 1522: 1519: 1513: 1510: 1506: 1505: 1503: 1498: 1496: 1490: 1483: 1480: 1477: 1473: 1472: 1470: 1467: 1464: 1461: 1455: 1452: 1448: 1447: 1445: 1442: 1439: 1436: 1430: 1427: 1423: 1422: 1419: 1416: 1413: 1406: 1403: 1400: 1396: 1395: 1388: 1385: 1382: 1379: 1377: 1374: 1370: 1369: 1362: 1359: 1356: 1353: 1348: 1343: 1340: 1337: 1333: 1332: 1324: 1320: 1313: 1310: 1307: 1304: 1293: 1290: 1287: 1283: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1250: 1247: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1208: 1204: 1200: 1196: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1150: 1147: 1142: 1138: 1134: 1130: 1126: 1123: 1120: 1115: 1111: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1045: 1042: 1027: 1023: 1019: 1015: 1011: 1008: 1005: 1000: 997: 993: 989: 985: 981: 978: 975: 970: 966: 939: 936: 931: 924: 921: 916: 913: 910: 905: 901: 897: 894: 891: 888: 884: 880: 877: 874: 871: 868: 836: 833: 830: 826: 822: 819: 816: 813: 810: 807: 804: 799: 795: 791: 787: 783: 780: 777: 774: 771: 768: 763: 759: 732: 727: 723: 719: 715: 711: 708: 705: 700: 696: 692: 688: 684: 680: 676: 673: 668: 664: 660: 656: 637: 630: 609: 606: 599: 594: 591: 586: 568: 548: 545: 532: 529: 526: 523: 520: 517: 514: 511: 508: 495: 492: 473: 453: 450: 438: 434:hydrogen bonds 342: 339: 323:superionic ice 310: 307: 295:classification 242: 239: 234: 222: 215: 200:hydrogen bonds 183: 159: 151: 148: 125: 122: 116: 90:Roman numerals 88:of water. The 73: 72: 52:the key points 42: 40: 33: 26: 9: 6: 4: 3: 2: 12490: 12479: 12476: 12474: 12471: 12469: 12466: 12464: 12461: 12460: 12458: 12443: 12439: 12434: 12432: 12423: 12421: 12412: 12411: 12408: 12402: 12399: 12397: 12394: 12392: 12389: 12387: 12384: 12383: 12381: 12379: 12375: 12369: 12366: 12364: 12361: 12359: 12356: 12354: 12351: 12349: 12346: 12345: 12343: 12339: 12333: 12330: 12328: 12325: 12323: 12320: 12318: 12315: 12313: 12310: 12308: 12305: 12303: 12300: 12299: 12297: 12293: 12287: 12284: 12282: 12279: 12277: 12274: 12272: 12269: 12267: 12264: 12262: 12259: 12257: 12254: 12252: 12249: 12247: 12244: 12243: 12241: 12239:Constructions 12237: 12227: 12224: 12222: 12219: 12217: 12216:Speed skating 12214: 12212: 12209: 12207: 12204: 12202: 12199: 12197: 12194: 12192: 12189: 12187: 12184: 12182: 12179: 12177: 12174: 12173: 12171: 12169: 12165: 12159: 12156: 12154: 12151: 12149: 12146: 12144: 12141: 12139: 12136: 12134: 12131: 12129: 12126: 12124: 12121: 12120: 12117: 12114: 12108: 12102: 12099: 12097: 12094: 12092: 12089: 12087: 12084: 12082: 12079: 12077: 12074: 12072: 12069: 12067: 12064: 12062: 12059: 12057: 12054: 12052: 12049: 12047: 12044: 12042: 12039: 12037: 12034: 12031: 12027: 12024: 12022: 12019: 12017: 12014: 12012: 12009: 12007: 12004: 12002: 11999: 11997: 11994: 11992: 11989: 11987: 11984: 11982: 11979: 11977: 11974: 11973: 11971: 11967: 11961: 11958: 11956: 11953: 11951: 11948: 11946: 11943: 11941: 11938: 11936: 11933: 11931: 11928: 11925: 11921: 11918: 11916: 11913: 11911: 11908: 11906: 11903: 11901: 11898: 11896: 11893: 11891: 11888: 11887: 11885: 11881: 11875: 11872: 11870: 11867: 11865: 11862: 11861: 11859: 11855: 11851: 11847: 11844: 11838: 11834: 11827: 11822: 11820: 11815: 11813: 11808: 11807: 11804: 11798: 11795: 11793: 11790: 11788: 11785: 11782: 11778: 11774: 11771: 11768: 11764: 11761: 11758: 11754: 11751: 11747: 11746: 11741: 11736: 11732: 11728: 11724: 11723: 11718: 11713: 11712: 11703: 11700: 11698: 11695: 11691: 11687: 11683: 11678: 11674: 11672:9780191581342 11668: 11664: 11663: 11657: 11653: 11651:9780521112307 11647: 11643: 11642: 11636: 11633: 11630: 11629: 11616: 11612: 11607: 11602: 11598: 11594: 11590: 11586: 11582: 11575: 11567: 11563: 11558: 11553: 11549: 11545: 11541: 11537: 11536: 11531: 11524: 11516: 11512: 11508: 11504: 11500: 11496: 11491: 11486: 11482: 11478: 11471: 11455: 11448: 11433: 11432: 11427: 11420: 11411: 11406: 11402: 11398: 11394: 11390: 11386: 11379: 11370: 11365: 11358: 11350: 11346: 11342: 11338: 11334: 11330: 11323: 11314: 11309: 11305: 11301: 11297: 11293: 11289: 11282: 11267: 11266:New Scientist 11263: 11256: 11240: 11236: 11229: 11214: 11210: 11203: 11195: 11191: 11187: 11183: 11176: 11174: 11172: 11156: 11152: 11146: 11138: 11134: 11130: 11126: 11122: 11118: 11111: 11104: 11096: 11092: 11088: 11084: 11080: 11076: 11072: 11068: 11061: 11059: 11050: 11046: 11042: 11038: 11034: 11030: 11026: 11022: 11015: 11007: 11003: 10999: 10995: 10991: 10987: 10983: 10979: 10975: 10971: 10964: 10955: 10950: 10946: 10942: 10938: 10934: 10930: 10923: 10914: 10909: 10905: 10901: 10897: 10893: 10889: 10882: 10874: 10870: 10866: 10862: 10858: 10854: 10849: 10844: 10840: 10836: 10829: 10820: 10815: 10811: 10807: 10803: 10799: 10795: 10788: 10779: 10774: 10770: 10766: 10762: 10758: 10754: 10747: 10739: 10735: 10731: 10727: 10720: 10712: 10708: 10704: 10700: 10696: 10692: 10685: 10676: 10669: 10665: 10660: 10655: 10651: 10647: 10643: 10639: 10631: 10623: 10619: 10614: 10609: 10605: 10601: 10597: 10593: 10589: 10585: 10578: 10570: 10566: 10562: 10558: 10554: 10550: 10546: 10542: 10535: 10524: 10520: 10516: 10512: 10508: 10501: 10494: 10492: 10490: 10481: 10474: 10472: 10463: 10459: 10455: 10451: 10447: 10443: 10436: 10428: 10424: 10420: 10416: 10412: 10408: 10404: 10400: 10393: 10384: 10379: 10375: 10371: 10367: 10363: 10359: 10352: 10344: 10340: 10336: 10332: 10328: 10324: 10317: 10315: 10313: 10304: 10300: 10296: 10292: 10288: 10284: 10277: 10269: 10265: 10261: 10257: 10253: 10249: 10238: 10229: 10228:1721.1/114323 10224: 10220: 10216: 10212: 10208: 10204: 10200: 10193: 10186: 10184: 10182: 10166: 10162: 10158: 10154: 10150: 10146: 10145:Physics Today 10139: 10132: 10116: 10112: 10108: 10101: 10092: 10087: 10083: 10079: 10075: 10068: 10066: 10064: 10062: 10060: 10058: 10049: 10045: 10041: 10037: 10033: 10029: 10025: 10021: 10014: 10007: 9999: 9995: 9991: 9987: 9983: 9979: 9975: 9971: 9966: 9961: 9957: 9953: 9942: 9934: 9930: 9926: 9922: 9918: 9914: 9907: 9891: 9887: 9883: 9879: 9875: 9871: 9867: 9863: 9859: 9855: 9848: 9840: 9836: 9832: 9828: 9824: 9820: 9813: 9797: 9793: 9789: 9782: 9766: 9762: 9758: 9751: 9743: 9739: 9735: 9731: 9726: 9721: 9717: 9713: 9709: 9705: 9701: 9694: 9685: 9680: 9676: 9672: 9668: 9664: 9660: 9653: 9645: 9641: 9637: 9633: 9629: 9625: 9618: 9610: 9606: 9602: 9598: 9594: 9590: 9583: 9575: 9571: 9566: 9561: 9556: 9551: 9547: 9543: 9539: 9535: 9531: 9520: 9512: 9508: 9503: 9498: 9494: 9490: 9486: 9479: 9471: 9467: 9463: 9452: 9444: 9440: 9436: 9432: 9428: 9424: 9417: 9410: 9402: 9398: 9394: 9390: 9386: 9382: 9378: 9374: 9363: 9355: 9351: 9347: 9343: 9339: 9335: 9331: 9327: 9323: 9319: 9312: 9304: 9298: 9294: 9293: 9285: 9274: 9267: 9260: 9252: 9246: 9238: 9234: 9229: 9224: 9220: 9216: 9212: 9208: 9204: 9200: 9196: 9189: 9181: 9175: 9167: 9163: 9158: 9153: 9149: 9145: 9141: 9137: 9133: 9129: 9125: 9118: 9110: 9104: 9096: 9092: 9087: 9082: 9078: 9074: 9070: 9066: 9062: 9055: 9047: 9043: 9039: 9035: 9030: 9025: 9021: 9017: 9013: 9009: 9005: 9001: 8994: 8986: 8982: 8977: 8972: 8968: 8964: 8960: 8956: 8952: 8945: 8930: 8926: 8919: 8905: 8901: 8897: 8893: 8886: 8884: 8875: 8871: 8864: 8862: 8860: 8851: 8847: 8843: 8836: 8834: 8825: 8821: 8817: 8813: 8809: 8805: 8801: 8797: 8790: 8783: 8769: 8765: 8761: 8757: 8750: 8748: 8739: 8735: 8731: 8727: 8723: 8719: 8715: 8711: 8707: 8703: 8702: 8697: 8690: 8688: 8686: 8678: 8673: 8665: 8661: 8657: 8653: 8649: 8645: 8641: 8637: 8630: 8623: 8615: 8611: 8606: 8601: 8597: 8593: 8589: 8585: 8580: 8575: 8571: 8567: 8563: 8556: 8554: 8545: 8539: 8524: 8517: 8509: 8505: 8500: 8495: 8490: 8485: 8481: 8477: 8473: 8469: 8465: 8458: 8456: 8454: 8445: 8441: 8437: 8433: 8429: 8425: 8421: 8417: 8412: 8407: 8403: 8399: 8391: 8383: 8379: 8374: 8369: 8365: 8361: 8357: 8353: 8349: 8345: 8341: 8337: 8333: 8326: 8318: 8314: 8310: 8306: 8302: 8298: 8294: 8290: 8285: 8280: 8276: 8272: 8265: 8257: 8253: 8249: 8245: 8241: 8237: 8232: 8227: 8223: 8219: 8212: 8204: 8200: 8196: 8192: 8188: 8184: 8180: 8176: 8171: 8166: 8162: 8158: 8151: 8136: 8132: 8131: 8126: 8119: 8111: 8107: 8103: 8099: 8095: 8091: 8087: 8083: 8076: 8068: 8064: 8059: 8054: 8049: 8044: 8040: 8036: 8032: 8028: 8024: 8017: 8009: 8005: 8001: 7997: 7993: 7989: 7985: 7981: 7974: 7966: 7962: 7958: 7954: 7950: 7946: 7939: 7931: 7927: 7922: 7921:10.1038/16594 7917: 7913: 7909: 7905: 7901: 7897: 7890: 7882: 7878: 7874: 7870: 7866: 7862: 7858: 7854: 7850: 7846: 7839: 7831: 7827: 7823: 7819: 7815: 7811: 7807: 7803: 7796: 7789: 7783: 7774: 7769: 7765: 7761: 7757: 7753: 7749: 7742: 7740: 7738: 7736: 7727: 7723: 7719: 7715: 7711: 7707: 7700: 7692: 7688: 7684: 7680: 7676: 7672: 7667: 7662: 7659:(2): 024302. 7658: 7654: 7647: 7639: 7635: 7631: 7627: 7623: 7619: 7604: 7596: 7592: 7588: 7584: 7580: 7576: 7569: 7561: 7557: 7553: 7549: 7545: 7541: 7534: 7526: 7522: 7518: 7514: 7510: 7506: 7499: 7480: 7476: 7472: 7468: 7464: 7457: 7446: 7438: 7434: 7430: 7426: 7422: 7418: 7414: 7410: 7406: 7399: 7391: 7387: 7383: 7379: 7375: 7371: 7367: 7363: 7362: 7357: 7346: 7337: 7333: 7329: 7325: 7321: 7317: 7310: 7303: 7299: 7295: 7291: 7287: 7283: 7279: 7275: 7271: 7264: 7257: 7253: 7249: 7245: 7241: 7237: 7233: 7229: 7225: 7218: 7211: 7207: 7203: 7199: 7195: 7191: 7184: 7177: 7173: 7169: 7165: 7161: 7157: 7153: 7146: 7139: 7135: 7131: 7127: 7123: 7119: 7115: 7108: 7101: 7097: 7093: 7089: 7085: 7081: 7077: 7073: 7069: 7062: 7055: 7051: 7047: 7046: 7038: 7031: 7027: 7023: 7019: 7015: 7008: 7001: 6997: 6993: 6989: 6985: 6978: 6971: 6967: 6963: 6959: 6955: 6951: 6946: 6941: 6937: 6933: 6929: 6922: 6915: 6911: 6907: 6903: 6899: 6895: 6891: 6884: 6877: 6873: 6869: 6865: 6861: 6857: 6853: 6846: 6839: 6835: 6831: 6827: 6823: 6819: 6815: 6811: 6807: 6800: 6792: 6786: 6778: 6774: 6769: 6764: 6760: 6756: 6752: 6748: 6744: 6740: 6736: 6729: 6727: 6718: 6714: 6707: 6705: 6703: 6694: 6690: 6685: 6680: 6676: 6672: 6668: 6664: 6660: 6653: 6651: 6649: 6640: 6636: 6632: 6628: 6624: 6620: 6616: 6612: 6608: 6604: 6600: 6596: 6592: 6585: 6583: 6581: 6579: 6570: 6566: 6562: 6555: 6553: 6551: 6549: 6547: 6538: 6534: 6529: 6524: 6520: 6516: 6512: 6508: 6503: 6498: 6494: 6490: 6486: 6479: 6477: 6475: 6473: 6471: 6469: 6467: 6465: 6463: 6447: 6443: 6437: 6435: 6426: 6422: 6418: 6414: 6410: 6406: 6402: 6398: 6393: 6388: 6384: 6380: 6373: 6365: 6358: 6354: 6349: 6344: 6340: 6336: 6335: 6330: 6323: 6315: 6308: 6304: 6300: 6296: 6292: 6288: 6284: 6280: 6276: 6272: 6265: 6263: 6246: 6242: 6238: 6231: 6223: 6217: 6209: 6205: 6201: 6197: 6193: 6189: 6185: 6181: 6177: 6173: 6169: 6162: 6154: 6150: 6146: 6139: 6137: 6135: 6133: 6131: 6129: 6127: 6118: 6114: 6110: 6106: 6102: 6098: 6094: 6090: 6086: 6082: 6075: 6073: 6063: 6055: 6051: 6047: 6040: 6032: 6028: 6023: 6018: 6013: 6008: 6004: 6000: 5996: 5992: 5988: 5981: 5973: 5969: 5962: 5954: 5950: 5943: 5935: 5931: 5927: 5923: 5919: 5915: 5911: 5907: 5900: 5892: 5888: 5884: 5880: 5876: 5872: 5865: 5863: 5854: 5850: 5846: 5842: 5838: 5834: 5827: 5819: 5815: 5811: 5807: 5803: 5799: 5795: 5791: 5787: 5783: 5776: 5774: 5765: 5759: 5751: 5747: 5742: 5737: 5732: 5727: 5723: 5719: 5715: 5711: 5707: 5700: 5691: 5686: 5682: 5678: 5674: 5670: 5666: 5659: 5651: 5647: 5643: 5636: 5629: 5628: 5622: 5614: 5610: 5606: 5602: 5598: 5594: 5587: 5579: 5575: 5571: 5567: 5563: 5559: 5555: 5548: 5540: 5536: 5532: 5525: 5517: 5513: 5509: 5505: 5502:(3907): 861. 5501: 5497: 5490: 5482: 5478: 5474: 5467: 5465: 5456: 5452: 5448: 5444: 5440: 5436: 5432: 5428: 5424: 5420: 5412: 5404: 5400: 5396: 5389: 5381: 5377: 5373: 5366: 5358: 5354: 5350: 5343: 5341: 5325: 5323:9780199587711 5319: 5315: 5311: 5310: 5302: 5300: 5298: 5296: 5294: 5292: 5290: 5281: 5277: 5273: 5269: 5265: 5261: 5257: 5253: 5249: 5243: 5235: 5231: 5227: 5223: 5219: 5215: 5211: 5207: 5200: 5192: 5188: 5184: 5180: 5176: 5172: 5168: 5164: 5157: 5149: 5145: 5140: 5135: 5131: 5127: 5123: 5119: 5115: 5111: 5104: 5102: 5093: 5089: 5085: 5081: 5077: 5073: 5069: 5065: 5058: 5056: 5054: 5052: 5036: 5035: 5030: 5023: 5015: 5011: 5005: 4997: 4993: 4989: 4985: 4981: 4977: 4973: 4969: 4962: 4954: 4950: 4946: 4942: 4937: 4932: 4928: 4924: 4920: 4916: 4912: 4905: 4897: 4893: 4889: 4885: 4881: 4877: 4873: 4869: 4865: 4858: 4856: 4854: 4852: 4843: 4839: 4832: 4830: 4828: 4819: 4815: 4811: 4807: 4803: 4799: 4795: 4791: 4787: 4783: 4776: 4767: 4762: 4758: 4754: 4751:(2): 025008. 4750: 4746: 4742: 4735: 4727: 4723: 4718: 4713: 4709: 4705: 4701: 4697: 4693: 4689: 4685: 4678: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4642: 4638: 4634: 4627: 4625: 4616: 4612: 4608: 4604: 4600: 4596: 4592: 4588: 4583: 4578: 4574: 4570: 4563: 4561: 4559: 4557: 4541: 4537: 4530: 4522: 4518: 4514: 4510: 4506: 4502: 4498: 4494: 4490: 4483: 4475: 4471: 4467: 4463: 4459: 4455: 4451: 4447: 4443: 4436: 4428: 4422: 4418: 4414: 4410: 4409: 4401: 4393: 4389: 4385: 4381: 4377: 4371: 4363: 4359: 4355: 4351: 4347: 4343: 4338: 4333: 4330:(9): 092202. 4329: 4325: 4321: 4314: 4306: 4302: 4298: 4294: 4290: 4286: 4279: 4271: 4267: 4263: 4259: 4255: 4251: 4247: 4243: 4239: 4235: 4231: 4227: 4223: 4216: 4214: 4212: 4203: 4199: 4195: 4191: 4186: 4181: 4177: 4173: 4169: 4165: 4161: 4157: 4150: 4142: 4136: 4128: 4124: 4119: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4079: 4071: 4067: 4063: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4028: 4009: 4002: 3996: 3980: 3976: 3970: 3962: 3958: 3953: 3948: 3944: 3940: 3936: 3932: 3928: 3921: 3913: 3909: 3905: 3901: 3897: 3893: 3886: 3878: 3874: 3867: 3859: 3855: 3851: 3847: 3843: 3839: 3835: 3831: 3826: 3821: 3817: 3813: 3806: 3798: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3762: 3754: 3752: 3743: 3739: 3735: 3731: 3727: 3723: 3718: 3717:11573/1440448 3713: 3709: 3705: 3701: 3697: 3693: 3689: 3685: 3678: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3637: 3632: 3628: 3624: 3620: 3613: 3605: 3601: 3597: 3593: 3589: 3585: 3581: 3577: 3573: 3569: 3562: 3554: 3550: 3546: 3542: 3538: 3534: 3527: 3519: 3513: 3505: 3501: 3496: 3491: 3487: 3483: 3479: 3475: 3471: 3456: 3454: 3445: 3441: 3437: 3433: 3429: 3425: 3406: 3404: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3367: 3360: 3344: 3340: 3333: 3325: 3321: 3317: 3316:10.1038/19480 3313: 3309: 3305: 3301: 3297: 3290: 3282: 3278: 3274: 3270: 3266: 3262: 3255: 3251: 3235: 3231: 3223: 3221: 3216: 3212: 3208: 3204: 3200: 3196: 3191: 3189: 3188: 3183: 3177: 3175: 3171: 3167: 3163: 3158: 3156: 3152: 3148: 3144: 3133: 3129: 3127: 3123: 3118: 3113: 3111: 3107: 3103: 3093: 3091: 3080: 3078: 3067: 3063: 3060: 3055: 3046: 3043: 3039: 3035: 3033: 3032:cryovolcanism 3027: 3024: 3013: 3009: 3006: 3002: 3001:near-infrared 2997: 2995: 2985: 2982: 2978: 2964: 2962: 2961:physisorption 2958: 2954: 2953:chemisorption 2950: 2949:liquification 2946: 2941: 2939: 2935: 2931: 2926: 2921: 2919: 2909: 2894: 2892: 2888: 2884: 2880: 2876: 2871: 2869: 2864: 2860: 2855: 2853: 2842:Besides ice I 2840: 2838: 2825: 2821: 2817: 2809: 2808:ice-phase-one 2805: 2802:(pronounced: 2797: 2784: 2772: 2758: 2755: 2750: 2730: 2728: 2724: 2708: 2705: 2700: 2695: 2690: 2680: 2676: 2672: 2666: 2662: 2660: 2651: 2645: 2642: 2638: 2634: 2630: 2620: 2619:in May 2019. 2618: 2614: 2610: 2606: 2602: 2597: 2595: 2591: 2587: 2582: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2549: 2547: 2543: 2539: 2535: 2534:hydrogen ions 2531: 2521: 2511: 2504: 2495: 2491: 2484: 2470: 2448: 2438: 2437:10 in). 2428: 2424: 2416: 2412: 2383: 2381: 2371: 2362: 2360: 2356: 2352: 2344: 2340: 2336: 2330: 2323: 2319: 2314: 2312: 2311:ferroelectric 2308: 2302: 2288: 2284: 2280: 2269: 2267: 2266:ferroelectric 2257: 2242: 2235: 2225: 2220: 2211: 2209: 2197: 2188: 2180: 2171: 2158: 2149: 2146: 2142: 2136: 2132: 2114: 2093: 2083: 2077: 2071: 2067: 2062: 2048: 2034: 2032: 2030: 2023: 2016: 2013: 2010: 2009: 2005: 2003: 2001: 1998: 1995: 1992: 1989: 1988: 1984: 1981: 1978: 1975: 1973: 1969: 1966: 1963: 1962: 1958: 1954: 1950: 1946: 1942: 1939: 1937: 1934: 1931: 1927: 1924: 1921: 1920: 1916: 1904: 1900: 1898: 1895: 1892: 1890: 1886: 1883: 1880: 1879: 1875: 1873: 1871: 1868: 1865: 1862: 1859: 1858: 1854: 1850: 1848:Orthorhombic 1847: 1845: 1842: 1839: 1836: 1833: 1832: 1828: 1825: 1823: 1820: 1817: 1814: 1811: 1810: 1806: 1802: 1798: 1795: 1792: 1785: 1781: 1779: 1771: 1768: 1765: 1764: 1756: 1755:Ferroelectric 1753: 1751: 1748: 1746: 1744: 1737: 1734: 1731: 1730: 1726: 1723: 1721: 1718: 1716: 1712: 1709: 1706: 1705: 1701: 1698: 1695: 1692: 1690: 1686: 1683: 1680: 1679: 1675: 1672: 1670: 1667: 1664: 1661: 1658: 1657: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1630: 1626: 1622: 1619: 1616: 1613: 1611: 1607: 1604: 1601: 1600: 1596: 1592: 1590: 1587: 1584: 1581: 1578: 1575: 1572: 1571: 1567: 1565:Rhombohedral 1564: 1562: 1559: 1557: 1553: 1550: 1547: 1546: 1542: 1538: 1534: 1532: 1529: 1527:(at 350 MPa) 1523: 1520: 1518: 1514: 1511: 1508: 1507: 1504: 1502: 1499: 1497: 1495: 1491: 1489: 1481: 1478: 1475: 1474: 1471: 1468: 1465: 1462: 1460: 1456: 1453: 1450: 1449: 1446: 1443: 1440: 1437: 1435: 1431: 1428: 1425: 1424: 1420: 1417: 1414: 1411: 1408:NA (requires 1407: 1404: 1401: 1398: 1397: 1393: 1389: 1386: 1383: 1380: 1378: 1375: 1372: 1371: 1367: 1364:A metastable 1363: 1360: 1357: 1354: 1352: 1344: 1341: 1335: 1334: 1330: 1318: 1314: 1311: 1308: 1305: 1303:) (freezing) 1302: 1298: 1294: 1291: 1285: 1284: 1280: 1278:Crystal form 1277: 1274: 1271: 1268: 1265: 1262: 1261: 1258: 1256: 1246: 1229: 1223: 1220: 1217: 1214: 1206: 1198: 1194: 1190: 1184: 1181: 1175: 1172: 1169: 1148: 1145: 1140: 1132: 1128: 1124: 1118: 1113: 1109: 1099: 1082: 1079: 1076: 1070: 1067: 1064: 1050: 1041: 1040:, as before. 1025: 1017: 1013: 1009: 1003: 998: 995: 987: 983: 979: 973: 968: 964: 953: 937: 934: 922: 919: 903: 895: 892: 886: 882: 878: 872: 869: 866: 858: 855:and R is the 854: 834: 828: 824: 820: 814: 811: 808: 805: 802: 797: 789: 785: 781: 775: 772: 769: 766: 761: 757: 748: 743: 730: 725: 717: 713: 709: 703: 698: 694: 690: 682: 678: 674: 666: 662: 658: 654: 623: 607: 604: 592: 589: 564: 556: 554: 553:Linus Pauling 544: 527: 524: 521: 515: 512: 509: 506: 488: 483: 470: 466: 463: 459: 449: 445: 442: 435: 423: 415: 406: 402: 400: 396: 392: 388: 387:absolute zero 368: 364: 360: 356: 347: 338: 336: 332: 328: 324: 315: 306: 304: 300: 296: 292: 287: 284: 280: 276: 272: 268: 264: 260: 256: 252: 251:rapid cooling 248: 241:Amorphous ice 238: 232: 228: 219: 211: 209: 205: 201: 197: 193: 189: 181: 180:Linus Pauling 177: 174:The accepted 168: 156: 147: 145: 141: 136: 131: 121: 113: 111: 107: 103: 99: 98:phases of ice 91: 87: 86:phase diagram 83: 79: 69: 59: 53: 51: 46: 41: 37: 32: 31: 19: 12226:Tour skating 12026:Frost flower 11857:Major phases 11792:HDA in space 11773:Glassy Water 11743: 11720: 11685: 11661: 11640: 11588: 11584: 11574: 11539: 11533: 11523: 11480: 11476: 11470: 11458:. Retrieved 11447: 11435:. Retrieved 11429: 11419: 11392: 11388: 11378: 11357: 11332: 11328: 11322: 11295: 11291: 11281: 11269:. Retrieved 11255: 11243:. Retrieved 11228: 11217:. Retrieved 11202: 11185: 11181: 11158:. Retrieved 11154: 11145: 11120: 11116: 11103: 11070: 11066: 11024: 11020: 11014: 10973: 10969: 10963: 10936: 10932: 10922: 10895: 10891: 10881: 10838: 10834: 10828: 10801: 10797: 10787: 10760: 10756: 10746: 10729: 10725: 10719: 10694: 10690: 10684: 10675: 10641: 10637: 10630: 10587: 10583: 10577: 10544: 10540: 10534: 10510: 10506: 10479: 10448:(1): 51–61. 10445: 10441: 10435: 10402: 10398: 10392: 10365: 10361: 10351: 10326: 10322: 10286: 10282: 10276: 10251: 10247: 10237: 10202: 10198: 10170:19 September 10168:. Retrieved 10151:(6): 40–46. 10148: 10144: 10131: 10119:. Retrieved 10110: 10100: 10081: 10077: 10023: 10019: 10006: 9955: 9951: 9941: 9916: 9912: 9906: 9894:. Retrieved 9890:the original 9861: 9857: 9847: 9822: 9818: 9812: 9800:. Retrieved 9791: 9781: 9769:. Retrieved 9760: 9750: 9707: 9703: 9693: 9666: 9662: 9652: 9630:(1): 51–61. 9627: 9623: 9617: 9592: 9588: 9582: 9537: 9533: 9519: 9495:(1): 60–76. 9492: 9488: 9478: 9465: 9451: 9426: 9422: 9409: 9376: 9372: 9362: 9321: 9317: 9311: 9291: 9284: 9273:the original 9259: 9245:cite journal 9202: 9198: 9188: 9174:cite journal 9131: 9127: 9117: 9103:cite journal 9068: 9064: 9054: 9011: 9007: 8993: 8958: 8954: 8944: 8932:. Retrieved 8928: 8918: 8907:. Retrieved 8895: 8873: 8841: 8799: 8795: 8782: 8771:. Retrieved 8759: 8705: 8699: 8672: 8639: 8635: 8622: 8569: 8565: 8527:. Retrieved 8516: 8471: 8467: 8401: 8397: 8390: 8339: 8335: 8325: 8274: 8270: 8264: 8221: 8217: 8211: 8160: 8156: 8150: 8140:13 September 8138:. Retrieved 8128: 8118: 8085: 8081: 8075: 8030: 8026: 8016: 7983: 7979: 7973: 7948: 7944: 7938: 7903: 7899: 7889: 7848: 7844: 7838: 7805: 7801: 7795: 7787: 7782: 7755: 7751: 7709: 7705: 7699: 7656: 7652: 7646: 7621: 7617: 7603: 7578: 7574: 7568: 7543: 7539: 7533: 7508: 7504: 7498: 7486:. Retrieved 7479:the original 7466: 7462: 7445: 7404: 7398: 7365: 7359: 7345: 7319: 7315: 7309: 7277: 7273: 7263: 7231: 7227: 7217: 7201: 7197: 7190:Loerting, T. 7183: 7159: 7155: 7145: 7121: 7117: 7107: 7075: 7071: 7061: 7044: 7037: 7021: 7017: 7007: 6991: 6987: 6977: 6935: 6931: 6921: 6897: 6893: 6883: 6859: 6855: 6845: 6813: 6809: 6799: 6785:cite journal 6742: 6738: 6717:Live Science 6716: 6666: 6662: 6598: 6594: 6564: 6495:(1): 13394. 6492: 6488: 6450:. Retrieved 6448:. 2015-03-27 6445: 6382: 6378: 6372: 6338: 6332: 6322: 6274: 6270: 6251:11 September 6249:. Retrieved 6241:Science News 6240: 6230: 6216:cite journal 6175: 6171: 6161: 6148: 6084: 6080: 6062: 6049: 6039: 5994: 5990: 5980: 5961: 5952: 5942: 5909: 5905: 5899: 5874: 5870: 5836: 5832: 5826: 5785: 5781: 5758: 5713: 5709: 5699: 5672: 5668: 5658: 5645: 5635: 5626: 5621: 5596: 5592: 5586: 5561: 5557: 5547: 5534: 5524: 5499: 5495: 5489: 5476: 5422: 5418: 5411: 5398: 5388: 5375: 5365: 5352: 5327:. Retrieved 5308: 5255: 5251: 5242: 5209: 5205: 5199: 5166: 5162: 5156: 5113: 5109: 5067: 5063: 5038:. Retrieved 5032: 5022: 5013: 5004: 4971: 4967: 4961: 4918: 4914: 4904: 4871: 4867: 4842:Live Science 4841: 4785: 4781: 4775: 4748: 4744: 4734: 4691: 4687: 4677: 4636: 4632: 4572: 4568: 4544:. Retrieved 4539: 4529: 4496: 4492: 4482: 4449: 4445: 4435: 4407: 4400: 4383: 4379: 4370: 4327: 4323: 4313: 4288: 4284: 4278: 4229: 4225: 4167: 4163: 4149: 4135:cite journal 4092: 4088: 4078: 4037: 4033: 4027: 4015:. Retrieved 4008:the original 3995: 3983:. Retrieved 3969: 3934: 3930: 3920: 3895: 3891: 3885: 3876: 3866: 3815: 3811: 3805: 3765: 3759: 3691: 3687: 3677: 3626: 3622: 3612: 3571: 3567: 3561: 3536: 3532: 3526: 3512:cite journal 3477: 3473: 3427: 3423: 3369: 3365: 3359: 3347:. Retrieved 3343:the original 3332: 3299: 3295: 3289: 3264: 3260: 3254: 3234: 3211:close-packed 3192: 3187:Cat's Cradle 3185: 3178: 3159: 3139: 3130: 3122:tiger stripe 3114: 3099: 3090:50000 Quaoar 3086: 3073: 3064: 3052: 3040: 3036: 3028: 3019: 3010: 2998: 2991: 2965: 2942: 2922: 2915: 2895: 2872: 2856: 2841: 2820:liquid water 2807: 2803: 2793: 2753: 2751: 2731: 2722: 2674: 2670: 2667: 2663: 2658: 2646: 2626: 2616: 2598: 2583: 2550: 2527: 2444: 2384: 2376: 2358: 2354: 2350: 2342: 2338: 2334: 2331: 2321: 2315: 2309:rather than 2303: 2286: 2282: 2275: 2263: 2243: 2236: 2224:triple point 2212: 2193: 2164: 2155: 2141:reproducibly 2140: 2137: 2133: 2120: 2099: 2078: 2058: 1971: 1888: 1773: 1750:Orthorhombic 1714: 1688: 1609: 1555: 1537:permittivity 1516: 1501:Rhombohedral 1487: 1458: 1433: 1346: 1295:273.15  1252: 1249:Known phases 1100: 1055: 954: 744: 565: 557: 550: 547:Calculations 479: 465: 446: 443: 411: 359:triple point 355:water vapour 352: 337:properties. 322: 320: 291:hyperuniform 288: 274: 244: 220: 212: 192:tessellating 173: 134: 129: 127: 114: 97: 95: 63: 47: 45:lead section 12396:Pleistocene 12110:Ice-related 12021:Frost heave 11955:Stalactites 11759:'s website. 11460:24 December 11245:January 23, 10898:(1): L101. 10644:: L27–L30, 9205:(1): 3162. 9134:(1): 1128. 7758:(16): n/a. 7546:(5): 1442. 6745:(1): 1129. 6446:ZME Science 5997:(1): 3161. 5782:APS Physics 5329:December 6, 5309:Ice Physics 4542:(in German) 3164:as well as 2988:Outer space 2977:molar ratio 2945:compression 2546:ionic water 2530:crystallize 2447:heavy water 1949:water vapor 1922:Square ice 1826:Monoclinic 1796:Tetragonal 1784:gigapascals 1699:Tetragonal 1673:Tetragonal 1620:Tetragonal 1410:shear force 1309:0.917 g/cm 1044:Refinements 430: J/mol 412:The latent 399:picoseconds 271:outer space 231:tetrahedral 12473:Cryosphere 12468:Glaciology 12457:Categories 12442:Wiktionary 12386:Glaciology 12341:Other uses 12211:Ice racing 12206:Ice hockey 12181:Iceboating 12112:activities 11883:Formations 11874:Superionic 11632:Ice phases 11490:2103.09035 11456:. Llnl.gov 11437:5 February 11219:2018-04-22 10939:(2): L43. 10804:(5): 122. 10078:Challenges 9965:1503.01830 9199:Nat Commun 9128:Nat Commun 9000:Loerting T 8909:2018-02-13 8773:2019-05-13 8579:1909.03400 8572:(1): 464. 8529:2022-09-11 8411:1607.04794 8284:1801.03812 8231:1507.02665 8135:Condé Nast 7054:1752797359 6945:1701.05398 6739:Nat Commun 6502:1607.07617 6452:2018-05-02 5040:4 February 4717:2429/33770 4582:1907.02915 4546:2021-02-18 4291:(8): 515. 4156:Loerting T 4089:Nat Commun 3636:1705.09961 3246:References 2875:inclusions 2863:deposition 2659:disordered 2538:conductive 2415:metastable 2264:Ice XI is 2070:liquid air 1990:Ice XVIII 1982:Hexagonal 1896:0.81 g/cm 1644:1.65 g/cm 1617:1.31 g/cm 1589:Monoclinic 1539:at 117. A 1531:Tetragonal 1342:1943/2020 1312:Hexagonal 456:See also: 279:micrometer 229:with near 144:metastable 140:metastable 12463:Water ice 12153:Sculpture 11969:Phenomena 11515:232240463 11369:1007.1792 11349:1520-6106 11095:140162310 10668:0004-637X 10622:122950585 10427:121008219 9742:206662912 9669:: 78–82. 9046:195764029 8904:0362-4331 8768:1059-1028 8738:256703104 8436:0021-9606 8364:2045-2322 8309:0021-9606 8256:0009-2614 8170:0906.2489 8102:1520-6106 8008:121266617 7930:204990667 7691:102581583 7302:245597764 6639:256768272 6392:1412.7498 5934:0021-9606 5818:247530544 5516:0036-8075 5447:0021-9606 5148:122950585 4810:0028-0836 4669:218913209 4615:195820566 4521:0370-1328 4474:0022-2488 4362:1098-0121 4270:256504172 4254:0036-8075 4095:: 16189. 4017:6 January 3985:31 August 3961:122365938 3825:1009.4722 3742:221746507 3726:0021-9606 3470:O Ice Ih" 3195:ice giant 3174:Enaiposha 3168:(such as 3117:Enceladus 3096:Icy moons 2804:ice one h 2796:biosphere 2706:× 2696:× 2650:deuterium 2613:ice giant 2596:lattice. 2520:conductor 2492:, H ions 2441:Cubic ice 1964:Ice XVII 1812:Ice XIII 1659:Ice VIII 1623:Exhibits 1595:molecules 1525:1.16 g/cm 1331:of 1.31. 1317:biosphere 1224:⁡ 1185:× 1176:⁡ 1119:× 1080:± 1071:⁡ 974:× 935:− 920:− 904:⋅ 873:⁡ 815:⁡ 776:⁡ 525:± 516:⁡ 458:Ice rules 395:superheat 110:amorphous 50:summarize 12420:Category 12378:Ice ages 12332:Yakhchāl 12312:Icehouse 12138:Climbing 12133:Blocking 12128:Blasting 12046:Hair ice 11996:Crystals 11727:Archived 11615:22127059 11566:21343921 11239:Archived 11213:Archived 11160:25 April 11049:10348736 10998:15592406 10873:35561353 10523:Archived 10513:: 1009. 10246:O ice". 10115:Archived 10084:(1): 3. 9990:25912948 9950:O ice". 9896:22 April 9886:15268170 9802:12 March 9796:Archived 9771:March 8, 9765:Archived 9734:29590042 9574:23236184 9511:25380218 9401:17748273 9346:15758996 9237:34039987 9166:33602946 9095:31972078 9038:31257365 9002:(2019). 8985:30713649 8955:Chem Sci 8874:Phys.org 8824:15903935 8664:10038311 8614:32015342 8538:cite web 8508:31182582 8444:27908115 8382:27375120 8317:29960300 8203:13999983 8195:19792330 8110:16853726 8067:21321232 7965:97894870 7881:31673433 7873:22009223 7830:21405174 7488:24 April 7437:38999963 7429:11847334 7256:21946782 7100:96109290 7050:ProQuest 6970:13662778 6962:28323429 6876:26595233 6838:54544973 6777:33602936 6693:29780552 6663:Chem Sci 6631:31068720 6537:27819265 6417:25810206 6357:19585976 6299:25503235 6245:Archived 6208:44522271 6200:16556840 6117:44522271 6109:16556840 6031:34039991 5750:16591242 5613:20022754 5455:33832256 5280:59485355 4996:11542399 4953:33622340 4945:11539415 4896:11539186 4726:16482260 4661:32461682 4607:32015533 4262:36730416 4202:51969440 4194:30101255 4158:(2018). 4127:29923547 4062:16407948 3979:Archived 3858:15761164 3850:21231184 3790:19624212 3734:32933306 3669:44864111 3661:29341697 3604:43859537 3596:11743196 3553:20022754 3504:30444387 3394:17741864 3197:planets 3182:ice-nine 3110:Callisto 3106:Ganymede 2930:desorbed 2879:diamonds 2810:). Ice I 2798:is ice I 2745:O into D 2661:ice VI. 2561:diamonds 2365:Ice XVII 2219:hydrogen 2011:Ice XIX 1930:graphene 1881:Ice XVI 1855:doping. 1834:Ice XIV 1766:Ice XII 1632:Ice VII 1509:Ice III 1361:Diamond 1327:. Has a 1319:is ice I 1299:(0  1275:Density 1255:Bridgman 482:hydrogen 335:metallic 66:May 2024 12302:Cutting 12276:Pykrete 12196:Cycling 12191:Curling 12186:Cricket 12158:Skating 12148:Rafting 12143:Fishing 12123:Bathing 12066:Nucleus 12051:Jacking 12030:sea ice 12028: ( 11960:Volcano 11924:calving 11922: ( 11920:Iceberg 11915:Glacier 11777:Science 11731:YouTube 11593:Bibcode 11591:: 563. 11544:Bibcode 11495:Bibcode 11397:Bibcode 11300:Bibcode 11271:7 April 11190:Bibcode 11125:Bibcode 11075:Bibcode 11029:Bibcode 11021:Science 11006:4334385 10978:Bibcode 10941:Bibcode 10900:Bibcode 10853:Bibcode 10806:Bibcode 10765:Bibcode 10734:Bibcode 10732:: 659. 10699:Bibcode 10646:Bibcode 10592:Bibcode 10590:: 389. 10569:4306842 10549:Bibcode 10515:Bibcode 10450:Bibcode 10407:Bibcode 10370:Bibcode 10331:Bibcode 10329:: 353. 10291:Bibcode 10256:Bibcode 10207:Bibcode 10153:Bibcode 10121:30 July 10048:2741633 10040:3043536 9998:7736338 9970:Bibcode 9921:Bibcode 9866:Bibcode 9827:Bibcode 9761:Science 9712:Bibcode 9704:Science 9671:Bibcode 9632:Bibcode 9597:Bibcode 9565:3535660 9542:Bibcode 9431:Bibcode 9381:Bibcode 9373:Science 9354:4427815 9326:Bibcode 9228:8155070 9207:Bibcode 9157:7892819 9136:Bibcode 9086:7008458 9016:Bibcode 8976:6334492 8929:Science 8804:Bibcode 8730:1542614 8710:Bibcode 8644:Bibcode 8605:6997176 8584:Bibcode 8499:6600908 8476:Bibcode 8416:Bibcode 8373:4931510 8344:Bibcode 8289:Bibcode 8236:Bibcode 8175:Bibcode 8058:3048133 8035:Bibcode 7988:Bibcode 7908:Bibcode 7853:Bibcode 7810:Bibcode 7760:Bibcode 7714:Bibcode 7671:Bibcode 7626:Bibcode 7612:O ice I 7583:Bibcode 7548:Bibcode 7513:Bibcode 7409:Bibcode 7405:Science 7390:4265919 7370:Bibcode 7324:Bibcode 7282:Bibcode 7236:Bibcode 7164:Bibcode 7126:Bibcode 7080:Bibcode 6902:Bibcode 6818:Bibcode 6768:7893076 6747:Bibcode 6684:5942039 6623:1568026 6603:Bibcode 6528:5103070 6507:Bibcode 6425:4462633 6397:Bibcode 6307:4464711 6279:Bibcode 6180:Bibcode 6172:Science 6089:Bibcode 6081:Science 6022:8154907 5999:Bibcode 5914:Bibcode 5879:Bibcode 5841:Bibcode 5810:1989084 5790:Bibcode 5718:Bibcode 5677:Bibcode 5566:Bibcode 5496:Science 5427:Bibcode 5260:Bibcode 5234:4274283 5214:Bibcode 5191:4241205 5171:Bibcode 5118:Bibcode 5116:: 389. 5092:4265281 5072:Bibcode 4976:Bibcode 4923:Bibcode 4876:Bibcode 4868:Science 4818:4180631 4790:Bibcode 4753:Bibcode 4696:Bibcode 4641:Bibcode 4587:Bibcode 4501:Bibcode 4454:Bibcode 4342:Bibcode 4293:Bibcode 4234:Bibcode 4226:Science 4172:Bibcode 4118:6026910 4097:Bibcode 4070:4404036 4042:Bibcode 3939:Bibcode 3900:Bibcode 3830:Bibcode 3770:Bibcode 3696:Bibcode 3641:Bibcode 3576:Bibcode 3568:Science 3482:Bibcode 3466:O and D 3432:Bibcode 3418:O Ice I 3414:O and D 3374:Bibcode 3366:Science 3349:12 July 3324:4382067 3304:Bibcode 3269:Bibcode 3203:Neptune 3170:Awohali 3149:and on 3147:Neptune 3136:Planets 2887:mineral 2754:in-situ 2723:in situ 2671:in situ 2623:Ice XIX 2494:diffuse 2423:helical 2161:Ice VII 2143:; when 1940:Square 1915:tension 1860:Ice XV 1732:Ice XI 1681:Ice IX 1602:Ice VI 1548:Ice IV 1476:Ice II 1392:viscous 1083:0.00015 1077:1.50685 851:is the 391:changed 383:⁠ 371:⁠ 303:glasses 186:is the 82:Log-lin 18:Ice one 12435:  12424:  12413:  12307:Icebox 12266:Palace 12251:Bridge 12168:Sports 12086:Slurry 12061:Needle 12011:Frazil 11930:Icicle 11890:Anchor 11767:Nature 11722:Seeker 11669:  11648:  11613:  11564:  11513:  11347:  11117:Icarus 11093:  11047:  11004:  10996:  10970:Nature 10871:  10691:Icarus 10666:  10620:  10567:  10541:Nature 10425:  10199:Icarus 10046:  10038:  9996:  9988:  9884:  9740:  9732:  9572:  9562:  9509:  9399:  9352:  9344:  9318:Nature 9299:  9235:  9225:  9164:  9154:  9093:  9083:  9044:  9036:  8983:  8973:  8934:17 May 8902:  8842:Nature 8822:  8766:  8736:  8728:  8662:  8612:  8602:  8506:  8496:  8442:  8434:  8380:  8370:  8362:  8315:  8307:  8254:  8201:  8193:  8108:  8100:  8065:  8055:  8006:  7963:  7928:  7900:Nature 7879:  7871:  7828:  7689:  7435:  7427:  7388:  7361:Nature 7300:  7254:  7098:  7052:  6968:  6960:  6874:  6836:  6775:  6765:  6691:  6681:  6637:  6629:  6621:  6595:Nature 6535:  6525:  6423:  6415:  6379:Nature 6355:  6305:  6297:  6271:Nature 6206:  6198:  6115:  6107:  6029:  6019:  5932:  5816:  5808:  5748:  5741:300465 5738:  5611:  5514:  5453:  5445:  5320:  5278:  5232:  5206:Nature 5189:  5163:Nature 5146:  5090:  5064:Nature 5014:Nature 4994:  4951:  4943:  4894:  4816:  4808:  4782:Nature 4724:  4667:  4659:  4613:  4605:  4519:  4472:  4423:  4360:  4268:  4260:  4252:  4200:  4192:  4125:  4115:  4068:  4060:  4034:Nature 3959:  3856:  3848:  3788:  3740:  3732:  3724:  3667:  3659:  3602:  3594:  3551:  3502:  3392:  3322:  3296:Nature 3220:carbon 3199:Uranus 3172:, and 3162:Europa 3155:Charon 3143:Uranus 3108:, and 3102:Europa 3070:Comets 2925:adsorb 2891:mantle 2639:, and 2617:Nature 2565:lasers 2272:Ice XV 2174:Ice XI 2117:Ice IV 2055:Ice II 1957:helium 1935:10GPa 1801:sphere 1724:Cubic 1707:Ice X 1647:Cubic 1576:1900s 1573:Ice V 1376:1930s 1263:Phase 847:where 745:Using 644:2 = 16 380:273.16 367:kelvin 365:. The 196:oxygen 130:higher 124:Theory 12358:Cream 12348:Chips 12327:Trade 12261:Igloo 12256:Hotel 12176:Bandy 12101:Storm 12091:Slush 12081:Shuga 12076:Shove 12036:Glaze 12016:Frost 11991:Clear 11981:Black 11950:Spike 11945:Sheet 11910:Field 11850:water 11846:state 11843:solid 11779:, on 11775:from 11765:from 11511:S2CID 11485:arXiv 11364:arXiv 11113:(PDF) 11091:S2CID 11002:S2CID 10869:S2CID 10843:arXiv 10618:S2CID 10565:S2CID 10526:(PDF) 10503:(PDF) 10423:S2CID 10195:(PDF) 10141:(PDF) 10044:S2CID 10016:(PDF) 9994:S2CID 9960:arXiv 9738:S2CID 9419:(PDF) 9350:S2CID 9276:(PDF) 9269:(PDF) 9042:S2CID 8792:(PDF) 8760:Wired 8734:S2CID 8632:(PDF) 8574:arXiv 8406:arXiv 8279:arXiv 8226:arXiv 8199:S2CID 8165:arXiv 8130:Wired 8004:S2CID 7961:S2CID 7926:S2CID 7877:S2CID 7687:S2CID 7661:arXiv 7482:(PDF) 7459:(PDF) 7433:S2CID 7386:S2CID 7298:S2CID 7096:S2CID 6966:S2CID 6940:arXiv 6834:S2CID 6635:S2CID 6497:arXiv 6421:S2CID 6387:arXiv 6303:S2CID 6204:S2CID 6113:S2CID 5814:S2CID 5609:JSTOR 5276:S2CID 5230:S2CID 5187:S2CID 5144:S2CID 5088:S2CID 4949:S2CID 4814:S2CID 4665:S2CID 4611:S2CID 4577:arXiv 4332:arXiv 4266:S2CID 4198:S2CID 4066:S2CID 4011:(PDF) 4004:(PDF) 3957:S2CID 3854:S2CID 3820:arXiv 3738:S2CID 3665:S2CID 3631:arXiv 3600:S2CID 3549:JSTOR 3320:S2CID 3226:Notes 3151:Pluto 3126:Titan 2510:anode 2429:(6.10 2405:and H 2244:Ice I 2087:0.000 2014:2018 1993:2019 1967:2016 1925:2014 1884:2014 1863:2009 1837:2006 1815:2006 1782:0.55 1769:1996 1735:1972 1684:1968 1662:1966 1635:1937 1605:1912 1551:1900 1512:1900 1479:1900 1454:1996 1429:1984 1402:2023 1366:cubic 1336:Ice I 1286:Ice I 1230:1.504 267:metal 135:below 106:water 12368:Pack 12363:Cube 12353:Core 12322:Pick 12295:Work 12286:Road 12281:Rink 12271:Pier 12096:Snow 12071:Rime 12056:Névé 12041:Hail 12001:Firn 11905:Dune 11900:Cave 11841:The 11757:LSBU 11667:ISBN 11646:ISBN 11611:PMID 11562:PMID 11462:2010 11439:2018 11345:ISSN 11273:2012 11247:2010 11162:2024 11045:PMID 10994:PMID 10664:ISSN 10172:2012 10123:2012 10036:PMID 9986:PMID 9898:2012 9882:PMID 9804:2018 9773:2018 9730:PMID 9570:PMID 9507:PMID 9397:PMID 9342:PMID 9297:ISBN 9251:link 9233:PMID 9180:link 9162:PMID 9109:link 9091:PMID 9034:PMID 8981:PMID 8936:2024 8900:ISSN 8820:PMID 8764:ISSN 8726:OSTI 8660:PMID 8610:PMID 8544:link 8504:PMID 8440:PMID 8432:ISSN 8378:PMID 8360:ISSN 8313:PMID 8305:ISSN 8252:ISSN 8191:PMID 8142:2009 8106:PMID 8098:ISSN 8063:PMID 7869:PMID 7826:PMID 7490:2012 7425:PMID 7252:PMID 6958:PMID 6872:PMID 6791:link 6773:PMID 6689:PMID 6627:PMID 6619:OSTI 6533:PMID 6413:PMID 6353:PMID 6295:PMID 6253:2009 6222:link 6196:PMID 6105:PMID 6027:PMID 5930:ISSN 5806:OSTI 5746:PMID 5512:ISSN 5451:PMID 5443:ISSN 5331:2014 5318:ISBN 5042:2023 4992:PMID 4941:PMID 4892:PMID 4806:ISSN 4722:PMID 4657:PMID 4603:PMID 4517:ISSN 4470:ISSN 4421:ISBN 4358:ISSN 4258:PMID 4250:ISSN 4190:PMID 4141:link 4123:PMID 4058:PMID 4019:2019 3987:2012 3846:PMID 3786:PMID 3730:PMID 3722:ISSN 3657:PMID 3592:PMID 3518:link 3500:PMID 3390:PMID 3351:2017 3201:and 3153:and 3145:and 2971:to H 2852:halo 2675:i.e. 2353:and 2335:Pmmn 2325:HClO 2322:i.e. 2089:0545 1492:300 896:3.37 528:0.02 522:1.50 480:The 460:and 104:for 96:The 12246:Bar 12006:Fog 11940:Sea 11935:Jam 11895:Cap 11848:of 11833:Ice 11755:at 11601:doi 11552:doi 11503:doi 11405:doi 11393:184 11337:doi 11333:102 11308:doi 11296:652 11133:doi 11121:129 11083:doi 11071:109 11037:doi 11025:284 10986:doi 10974:432 10949:doi 10937:422 10908:doi 10896:519 10861:doi 10839:122 10814:doi 10802:145 10773:doi 10761:328 10730:286 10707:doi 10695:201 10654:doi 10642:355 10608:hdl 10600:doi 10588:401 10557:doi 10545:344 10511:290 10458:doi 10415:doi 10378:doi 10366:271 10339:doi 10327:401 10299:doi 10264:doi 10252:103 10223:hdl 10215:doi 10203:193 10161:doi 10086:doi 10028:doi 9978:doi 9929:doi 9917:976 9874:doi 9862:120 9835:doi 9823:294 9720:doi 9708:359 9679:doi 9667:127 9640:doi 9605:doi 9560:PMC 9550:doi 9538:109 9497:doi 9439:doi 9389:doi 9377:211 9334:doi 9322:434 9223:PMC 9215:doi 9152:PMC 9144:doi 9081:PMC 9073:doi 9024:doi 8971:PMC 8963:doi 8846:doi 8812:doi 8718:doi 8652:doi 8600:PMC 8592:doi 8494:PMC 8484:doi 8472:116 8424:doi 8402:145 8368:PMC 8352:doi 8297:doi 8275:148 8244:doi 8222:637 8183:doi 8161:103 8090:doi 8086:109 8053:PMC 8043:doi 8031:108 7996:doi 7953:doi 7949:102 7916:doi 7904:397 7861:doi 7818:doi 7806:134 7768:doi 7722:doi 7710:972 7679:doi 7634:doi 7591:doi 7556:doi 7521:doi 7471:doi 7417:doi 7378:doi 7366:330 7332:doi 7290:doi 7278:789 7244:doi 7206:doi 7202:106 7172:doi 7134:doi 7088:doi 7076:218 7026:doi 7022:107 6996:doi 6950:doi 6910:doi 6864:doi 6860:120 6826:doi 6763:PMC 6755:doi 6679:PMC 6671:doi 6611:doi 6599:569 6523:PMC 6515:doi 6405:doi 6383:519 6343:doi 6339:113 6287:doi 6275:516 6188:doi 6176:311 6097:doi 6085:311 6017:PMC 6007:doi 5922:doi 5887:doi 5849:doi 5798:doi 5786:105 5736:PMC 5726:doi 5685:doi 5601:doi 5574:doi 5504:doi 5500:166 5435:doi 5423:154 5268:doi 5222:doi 5210:384 5179:doi 5167:314 5134:hdl 5126:doi 5114:455 5080:doi 5068:310 4984:doi 4972:107 4931:doi 4919:473 4884:doi 4872:265 4798:doi 4786:188 4761:doi 4712:hdl 4704:doi 4649:doi 4595:doi 4509:doi 4462:doi 4413:doi 4388:doi 4350:doi 4301:doi 4242:doi 4230:379 4180:doi 4113:PMC 4105:doi 4050:doi 4038:439 3947:doi 3935:131 3908:doi 3838:doi 3816:105 3778:doi 3766:131 3712:hdl 3704:doi 3692:153 3649:doi 3627:119 3584:doi 3572:294 3541:doi 3490:doi 3478:121 3440:doi 3428:B50 3382:doi 3370:115 3312:doi 3300:398 3277:doi 3079:1. 2981:sII 2947:or 2839:). 2601:MPa 2586:GPa 2021:); 1917:). 1853:HCl 1494:MPa 1486:); 1199:729 1191:730 1182:1.5 1149:729 428:911 424:is 416:is 12459:: 11742:. 11725:. 11719:. 11688:. 11684:. 11609:. 11599:. 11587:. 11583:. 11560:. 11550:. 11538:. 11532:. 11509:. 11501:. 11493:. 11481:17 11479:. 11428:. 11403:. 11391:. 11387:. 11343:. 11331:. 11306:. 11294:. 11290:. 11264:. 11211:. 11186:37 11184:. 11170:^ 11153:. 11131:. 11119:. 11115:. 11089:. 11081:. 11069:. 11057:^ 11043:. 11035:. 11023:. 11000:. 10992:. 10984:. 10972:. 10947:. 10935:. 10931:. 10906:. 10894:. 10890:. 10867:. 10859:. 10851:. 10837:. 10812:. 10800:. 10796:. 10771:. 10759:. 10755:. 10728:. 10705:. 10693:. 10662:, 10652:, 10640:, 10616:. 10606:. 10598:. 10586:. 10563:. 10555:. 10543:. 10521:. 10509:. 10505:. 10488:^ 10470:^ 10456:. 10446:72 10444:. 10421:. 10413:. 10403:94 10401:. 10376:. 10364:. 10360:. 10337:. 10325:. 10311:^ 10297:. 10287:56 10285:. 10262:. 10250:. 10221:. 10213:. 10201:. 10197:. 10180:^ 10159:. 10149:56 10147:. 10143:. 10113:. 10109:. 10080:. 10076:. 10056:^ 10042:. 10034:. 10024:21 10022:. 10018:. 9992:. 9984:. 9976:. 9968:. 9956:17 9954:. 9927:. 9915:. 9880:. 9872:. 9860:. 9856:. 9833:. 9821:. 9794:. 9790:. 9763:. 9759:. 9736:. 9728:. 9718:. 9706:. 9702:. 9677:. 9665:. 9661:. 9638:. 9628:72 9626:. 9603:. 9593:71 9591:. 9568:. 9558:. 9548:. 9536:. 9532:. 9530:"" 9505:. 9493:17 9491:. 9487:. 9468:. 9464:. 9460:sd 9437:. 9427:96 9425:. 9421:. 9395:. 9387:. 9375:. 9348:. 9340:. 9332:. 9320:. 9247:}} 9243:{{ 9231:. 9221:. 9213:. 9203:12 9201:. 9197:. 9176:}} 9172:{{ 9160:. 9150:. 9142:. 9132:12 9130:. 9126:. 9105:}} 9101:{{ 9089:. 9079:. 9069:11 9067:. 9063:. 9040:. 9032:. 9022:. 9012:21 9010:. 9006:. 8979:. 8969:. 8959:10 8957:. 8953:. 8927:. 8898:. 8894:. 8882:^ 8872:. 8858:^ 8844:. 8832:^ 8818:. 8810:. 8800:94 8798:. 8794:. 8762:. 8758:. 8746:^ 8732:. 8724:. 8716:. 8706:14 8704:. 8698:. 8684:^ 8658:. 8650:. 8640:60 8638:. 8634:. 8608:. 8598:. 8590:. 8582:. 8570:11 8568:. 8564:. 8552:^ 8540:}} 8536:{{ 8502:. 8492:. 8482:. 8470:. 8466:. 8452:^ 8438:. 8430:. 8422:. 8414:. 8400:. 8376:. 8366:. 8358:. 8350:. 8338:. 8334:. 8311:. 8303:. 8295:. 8287:. 8273:. 8250:. 8242:. 8234:. 8220:. 8197:. 8189:. 8181:. 8173:. 8159:. 8133:. 8127:. 8104:. 8096:. 8084:. 8061:. 8051:. 8041:. 8029:. 8025:. 8002:. 7994:. 7984:80 7982:. 7959:. 7947:. 7924:. 7914:. 7902:. 7898:. 7875:. 7867:. 7859:. 7849:13 7847:. 7824:. 7816:. 7804:. 7766:. 7756:38 7754:. 7750:. 7734:^ 7720:. 7708:. 7685:. 7677:. 7669:. 7657:74 7655:. 7632:. 7622:47 7620:. 7589:. 7579:45 7577:. 7554:. 7544:32 7542:. 7519:. 7507:. 7467:49 7465:. 7461:. 7431:. 7423:. 7415:. 7384:, 7376:, 7364:, 7358:, 7330:. 7320:99 7318:. 7296:, 7288:, 7276:, 7272:, 7250:, 7242:, 7232:13 7230:, 7226:, 7200:, 7196:, 7170:, 7160:38 7158:, 7154:, 7132:, 7120:, 7116:, 7094:, 7086:, 7074:, 7070:, 7020:, 7016:, 6992:71 6990:, 6986:, 6964:, 6956:, 6948:, 6934:, 6930:, 6908:, 6898:75 6896:, 6892:, 6870:, 6858:, 6854:, 6832:, 6824:, 6814:14 6812:, 6808:, 6787:}} 6783:{{ 6771:. 6761:. 6753:. 6743:12 6741:. 6737:. 6725:^ 6715:. 6701:^ 6687:. 6677:. 6665:. 6661:. 6647:^ 6633:. 6625:. 6617:. 6609:. 6597:. 6593:. 6577:^ 6567:. 6563:. 6545:^ 6531:. 6521:. 6513:. 6505:. 6491:. 6487:. 6461:^ 6444:. 6433:^ 6419:. 6411:. 6403:. 6395:. 6381:. 6351:. 6337:. 6331:. 6301:. 6293:. 6285:. 6273:. 6261:^ 6243:. 6239:. 6218:}} 6214:{{ 6202:. 6194:. 6186:. 6174:. 6170:. 6151:. 6147:. 6125:^ 6111:. 6103:. 6095:. 6083:. 6071:^ 6052:. 6048:. 6025:. 6015:. 6005:. 5995:12 5993:. 5989:. 5970:. 5951:. 5928:. 5920:. 5910:58 5908:. 5885:. 5875:48 5873:. 5861:^ 5847:. 5837:45 5835:. 5812:. 5804:. 5796:. 5784:. 5772:^ 5744:. 5734:. 5724:. 5714:52 5712:. 5708:. 5683:. 5671:. 5667:. 5648:. 5644:. 5607:. 5597:47 5595:. 5572:. 5562:22 5560:. 5556:. 5537:. 5533:. 5510:. 5498:. 5479:. 5475:. 5463:^ 5449:. 5441:. 5433:. 5421:. 5401:. 5397:. 5378:. 5374:. 5355:. 5351:. 5339:^ 5312:. 5288:^ 5274:. 5266:. 5254:. 5228:. 5220:. 5208:. 5185:. 5177:. 5165:. 5142:. 5132:. 5124:. 5112:. 5100:^ 5086:. 5078:. 5066:. 5050:^ 5031:. 5012:. 4990:. 4982:. 4970:. 4947:. 4939:. 4929:. 4917:. 4913:. 4890:. 4882:. 4870:. 4866:. 4850:^ 4840:. 4826:^ 4812:. 4804:. 4796:. 4784:. 4759:. 4747:. 4743:. 4720:. 4710:. 4702:. 4690:. 4686:. 4663:. 4655:. 4647:. 4637:19 4635:. 4623:^ 4609:. 4601:. 4593:. 4585:. 4573:19 4571:. 4555:^ 4538:. 4515:. 4507:. 4497:84 4495:. 4491:. 4468:. 4460:. 4448:. 4444:. 4419:. 4384:57 4382:. 4356:. 4348:. 4340:. 4328:75 4326:. 4322:. 4299:. 4287:. 4264:. 4256:. 4248:. 4240:. 4228:. 4224:. 4210:^ 4196:. 4188:. 4178:. 4168:20 4166:. 4162:. 4137:}} 4133:{{ 4121:. 4111:. 4103:. 4091:. 4087:. 4064:. 4056:. 4048:. 4036:. 3955:. 3945:. 3933:. 3929:. 3906:. 3896:23 3894:. 3875:. 3852:. 3844:. 3836:. 3828:. 3814:. 3784:. 3776:. 3764:. 3750:^ 3736:. 3728:. 3720:. 3710:. 3702:. 3690:. 3686:. 3663:. 3655:. 3647:. 3639:. 3625:. 3621:. 3598:. 3590:. 3582:. 3570:. 3547:. 3537:47 3535:. 3514:}} 3510:{{ 3498:. 3488:. 3476:. 3472:. 3452:^ 3438:. 3426:. 3402:^ 3388:. 3380:. 3368:. 3318:. 3310:. 3298:. 3275:. 3265:58 3263:. 3157:. 3104:, 3034:. 3005:μm 2975:O 2940:. 2870:. 2729:. 2635:, 2459:sd 2449:(D 2382:. 2283:Cc 2256:. 2076:. 2028:) 1959:. 1932:) 1807:. 1761:. 1742:) 1654:. 1627:. 1412:) 1351:) 1301:°C 1245:. 1221:ln 1173:ln 1098:. 1068:ln 952:. 870:ln 812:ln 773:ln 683:16 640:/2 633:/2 571:/2 555:. 543:. 513:ln 426:50 401:. 363:Pa 305:. 204:pm 12032:) 11926:) 11825:e 11818:t 11811:v 11748:. 11733:. 11692:. 11675:. 11654:. 11617:. 11603:: 11595:: 11589:2 11568:. 11554:: 11546:: 11540:2 11517:. 11505:: 11497:: 11487:: 11464:. 11441:. 11413:. 11407:: 11399:: 11372:. 11366:: 11351:. 11339:: 11316:. 11310:: 11302:: 11275:. 11249:. 11222:. 11196:. 11192:: 11164:. 11139:. 11135:: 11127:: 11097:. 11085:: 11077:: 11051:. 11039:: 11031:: 11008:. 10988:: 10980:: 10957:. 10951:: 10943:: 10916:. 10910:: 10902:: 10875:. 10863:: 10855:: 10845:: 10822:. 10816:: 10808:: 10781:. 10775:: 10767:: 10740:. 10736:: 10713:. 10709:: 10701:: 10656:: 10648:: 10624:. 10610:: 10602:: 10594:: 10571:. 10559:: 10551:: 10517:: 10464:. 10460:: 10452:: 10429:. 10417:: 10409:: 10386:. 10380:: 10372:: 10345:. 10341:: 10333:: 10305:. 10301:: 10293:: 10270:. 10266:: 10258:: 10244:2 10231:. 10225:: 10217:: 10209:: 10174:. 10163:: 10155:: 10125:. 10094:. 10088:: 10082:8 10050:. 10030:: 10000:. 9980:: 9972:: 9962:: 9948:2 9935:. 9931:: 9923:: 9900:. 9876:: 9868:: 9841:. 9837:: 9829:: 9806:. 9775:. 9744:. 9722:: 9714:: 9687:. 9681:: 9673:: 9646:. 9642:: 9634:: 9611:. 9607:: 9599:: 9576:. 9552:: 9544:: 9528:c 9513:. 9499:: 9472:. 9462:" 9445:. 9441:: 9433:: 9403:. 9391:: 9383:: 9369:c 9356:. 9336:: 9328:: 9305:. 9253:) 9239:. 9217:: 9209:: 9182:) 9168:. 9146:: 9138:: 9111:) 9097:. 9075:: 9048:. 9026:: 9018:: 8987:. 8965:: 8938:. 8912:. 8876:. 8852:. 8848:: 8826:. 8814:: 8806:: 8776:. 8740:. 8720:: 8712:: 8666:. 8654:: 8646:: 8616:. 8594:: 8586:: 8576:: 8546:) 8532:. 8510:. 8486:: 8478:: 8446:. 8426:: 8418:: 8408:: 8384:. 8354:: 8346:: 8340:6 8319:. 8299:: 8291:: 8281:: 8258:. 8246:: 8238:: 8228:: 8205:. 8185:: 8177:: 8167:: 8144:. 8112:. 8092:: 8069:. 8045:: 8037:: 8010:. 7998:: 7990:: 7967:. 7955:: 7932:. 7918:: 7910:: 7883:. 7863:: 7855:: 7832:. 7820:: 7812:: 7776:. 7770:: 7762:: 7728:. 7724:: 7716:: 7693:. 7681:: 7673:: 7663:: 7640:. 7636:: 7628:: 7614:h 7610:2 7597:. 7593:: 7585:: 7562:. 7558:: 7550:: 7527:. 7523:: 7515:: 7509:9 7492:. 7473:: 7454:h 7439:. 7419:: 7411:: 7393:. 7380:: 7372:: 7354:2 7340:. 7338:. 7334:: 7326:: 7292:: 7284:: 7246:: 7238:: 7208:: 7174:: 7166:: 7136:: 7128:: 7122:3 7090:: 7082:: 7028:: 6998:: 6952:: 6942:: 6936:8 6912:: 6904:: 6866:: 6828:: 6820:: 6793:) 6779:. 6757:: 6749:: 6719:. 6695:. 6673:: 6667:9 6641:. 6613:: 6605:: 6571:. 6539:. 6517:: 6509:: 6499:: 6493:7 6455:. 6427:. 6407:: 6399:: 6389:: 6359:. 6345:: 6309:. 6289:: 6281:: 6255:. 6224:) 6210:. 6190:: 6182:: 6155:. 6119:. 6099:: 6091:: 6056:. 6033:. 6009:: 6001:: 5974:. 5955:. 5936:. 5924:: 5916:: 5893:. 5889:: 5881:: 5855:. 5851:: 5843:: 5820:. 5800:: 5792:: 5766:. 5752:. 5728:: 5720:: 5693:. 5687:: 5679:: 5673:7 5652:. 5615:. 5603:: 5580:. 5576:: 5568:: 5541:. 5518:. 5506:: 5483:. 5457:. 5437:: 5429:: 5405:. 5382:. 5359:. 5333:. 5282:. 5270:: 5262:: 5256:3 5236:. 5224:: 5216:: 5193:. 5181:: 5173:: 5150:. 5136:: 5128:: 5120:: 5094:. 5082:: 5074:: 5044:. 4998:. 4986:: 4978:: 4955:. 4933:: 4925:: 4898:. 4886:: 4878:: 4844:. 4820:. 4800:: 4792:: 4769:. 4763:: 4755:: 4749:3 4728:. 4714:: 4706:: 4698:: 4692:8 4671:. 4651:: 4643:: 4617:. 4597:: 4589:: 4579:: 4549:. 4523:. 4511:: 4503:: 4476:. 4464:: 4456:: 4450:7 4429:. 4415:: 4394:. 4390:: 4364:. 4352:: 4344:: 4334:: 4307:. 4303:: 4295:: 4289:1 4272:. 4244:: 4236:: 4204:. 4182:: 4174:: 4143:) 4129:. 4107:: 4099:: 4093:9 4072:. 4052:: 4044:: 4021:. 3989:. 3963:. 3949:: 3941:: 3914:. 3910:: 3902:: 3879:. 3860:. 3840:: 3832:: 3822:: 3792:. 3780:: 3772:: 3744:. 3714:: 3706:: 3698:: 3671:. 3651:: 3643:: 3633:: 3606:. 3586:: 3578:: 3555:. 3543:: 3520:) 3506:. 3492:: 3484:: 3468:2 3464:2 3446:. 3442:: 3434:: 3420:h 3416:2 3412:2 3396:. 3384:: 3376:: 3353:. 3326:. 3314:: 3306:: 3283:. 3279:: 3271:: 3120:" 2973:2 2969:2 2967:H 2959:( 2906:h 2902:h 2898:h 2848:c 2844:h 2833:h 2828:h 2812:h 2800:h 2788:h 2776:h 2747:2 2743:2 2739:2 2735:2 2709:1 2701:2 2691:2 2673:( 2654:2 2522:. 2512:. 2467:2 2463:2 2455:2 2451:2 2435:× 2431:× 2427:Å 2419:h 2407:2 2403:2 2399:2 2395:2 2391:2 2387:0 2359:P 2355:c 2351:b 2347:1 2345:2 2343:P 2339:P 2327:4 2299:1 2297:2 2295:1 2293:2 2291:1 2289:2 2287:P 2254:h 2250:c 2246:c 2239:h 2232:h 2228:h 2215:h 2208:K 2204:h 2200:h 2167:h 2128:4 2124:4 2110:4 2106:4 2102:4 2074:h 2026:h 2019:h 1911:h 1907:c 1788:h 1776:h 1759:h 1740:c 1652:t 1484:h 1349:h 1338:c 1325:c 1321:h 1297:K 1288:h 1233:) 1227:( 1218:R 1215:= 1212:) 1207:2 1203:) 1195:/ 1188:( 1179:( 1170:R 1146:= 1141:6 1137:) 1133:2 1129:/ 1125:1 1122:( 1114:6 1110:6 1086:) 1074:( 1065:R 1026:N 1022:) 1018:2 1014:/ 1010:3 1007:( 1004:= 999:N 996:2 992:) 988:2 984:/ 980:1 977:( 969:N 965:6 938:1 930:K 923:1 915:l 912:o 909:m 900:J 893:= 890:) 887:2 883:/ 879:3 876:( 867:R 849:k 835:, 832:) 829:2 825:/ 821:3 818:( 809:R 806:n 803:= 798:N 794:) 790:2 786:/ 782:3 779:( 770:k 767:= 762:0 758:S 731:. 726:N 722:) 718:2 714:/ 710:3 707:( 704:= 699:2 695:/ 691:N 687:) 679:/ 675:6 672:( 667:2 663:/ 659:N 655:6 638:N 631:N 626:6 608:6 605:= 598:) 593:2 590:4 585:( 569:N 560:N 531:) 519:( 510:R 507:= 496:0 493:S 474:h 439:h 377:/ 374:1 235:h 223:h 216:h 184:h 160:h 117:h 68:) 64:( 54:. 20:)

Index

Ice one

lead section
summarize
provide an accessible overview

Log-lin
phase diagram
Roman numerals
states of matter
water
amorphous
metastable
metastable


crystal structure
Linus Pauling
wurtzite lattice
tessellating
oxygen
hydrogen bonds
pm
tetrahedral angle
hexagonal symmetry
tetrahedral
amorphous solid
rapid cooling
glass transition temperature
crystal lattice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.