Knowledge

Hazen–Williams equation

Source 📝

1313: 992: 1308:{\displaystyle S={4^{1.167}\,4^{1.852}\,Q^{1.852} \over \pi ^{1.852}\,k^{1.852}\,C^{1.852}\,d^{1.167}\,d^{3.7034}}={4^{3.019}\,Q^{1.852} \over \pi ^{1.852}\,k^{1.852}\,C^{1.852}\,d^{4.8704}}={4^{3.019} \over \pi ^{1.852}\,k^{1.852}}{Q^{1.852} \over C^{1.852}\,d^{4.8704}}={7.8828 \over k^{1.852}}{Q^{1.852} \over C^{1.852}\,d^{4.8704}}} 1537:
Caution with U S Customary Units is advised. The equation for head loss in pipes, also referred to as slope, S, expressed in "feet per foot of length" vs. in 'psi per foot of length' as described above, with the inside pipe diameter, d, being entered in feet vs. inches, and the flow rate, Q, being
2139:
Hydraulic tables: the elements of gagings and the friction of water flowing in pipes, aqueducts, sewers, etc., as determined by the Hazen and Williams formula and the flow of water over sharp-edged and irregular weirs, and the quantity discharged as determined by Bazin's formula and experimental
2128:
Hydraulic tables: the elements of gagings and the friction of water flowing in pipes, aqueducts, sewers, etc., as determined by the Hazen and Williams formula and the flow of water over sharp-edged and irregular weirs, and the quantity discharged as determined by Bazin's formula and experimental
947: 1538:
entered in cubic feet per second, cfs, vs. gallons per minute, gpm, appears very similar. However, the constant is 4.73 vs. the 4.52 constant as shown above in the formula as arranged by NFPA for sprinkler system design. The exponents and the Hazen-Williams "C" values are unchanged.
1460: 1647: 1798: 796: 772: 695: 322:
The equation is similar to the Chézy formula but the exponents have been adjusted to better fit data from typical engineering situations. A result of adjusting the exponents is that the value of
169: 619: 270: 1333: 1802: 2047: 217:
that was easy to use. The general form of the equation relates the mean velocity of water in a pipe with the geometric properties of the pipe and slope of the energy line.
77:
discovered that the velocity of a fluid was proportional to the square root of its head in the early 18th century. It takes energy to push a fluid through a pipe, and
1562: 2188:
States pocket calculators and computers make calculations easier. H-W is good for smooth pipes, but Manning better for rough pipes (compared to D-W model).
27:
which relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of
942:{\displaystyle S={V^{1.852}A^{1.852} \over k^{1.852}\,C^{1.852}\,R^{1.167}\,A^{1.852}}={Q^{1.852} \over k^{1.852}\,C^{1.852}\,R^{1.167}\,A^{1.852}}} 213:
The Darcy-Weisbach equation was difficult to use because the friction factor was difficult to estimate. In 1906, Hazen and Williams provided an
1772: 2112:
Hydraulic tables: showing the loss of head due to the friction of water flowing in pipes, aqueducts, sewers, etc. and the discharge over weirs
706: 2054: 634: 2430: 1859: 436: 1958:, p. 1, stating "Exponents can be selected, however, representing approximate average conditions, so that the value of 2435: 2213: 110: 2399: 1833: 187: 1455:{\displaystyle S_{\mathrm {psi\ per\ foot} }={\frac {P_{d}}{L}}={\frac {4.52\ Q^{1.852}}{C^{1.852}\ d^{4.8704}}}} 572: 223: 2404: 1549: 195: 2165: 2015: 2272: 1718: 1496: 1476: 207: 352:
factors used in design, which take into account some increase in roughness as pipe ages are as follows:
2409: 1883: 2037:
2007 version of NFPA 13: Standard for the Installation of Sprinkler Systems, page 13-213, eqn 22.4.2.1
288:
is a conversion factor for the unit system (k = 1.318 for US customary units, k = 0.849 for SI units)
2287: 2277: 1738: 2160: 1776: 2267: 2206: 544: 2358: 2455: 2378: 2343: 214: 24: 2185: 2180: 2323: 2302: 2251: 32: 2126: 1854:. Jones, Garr M. (3rd ed.). Burlington, MA: Butterworth-Heinemann. 2006. p. 3.4. 1753: 66:
of the water, and therefore is only valid at room temperature and conventional velocities.
36: 2175: 2170: 8: 2460: 2450: 2318: 2199: 1667: 78: 2348: 2338: 1914: 1910: 1877: 1513: 1324: 528: 1642:{\displaystyle S={\frac {h_{f}}{L}}={\frac {10.67\ Q^{1.852}}{C^{1.852}\ d^{4.8704}}}} 2445: 2333: 2292: 2143: 1918: 1865: 1855: 1829: 1962:
for a given condition of surface will vary so little as to be practically constant."
1906: 953: 301: 98: 86: 2440: 2363: 2353: 2328: 2296: 2241: 2119: 2110: 566:
The general form can be specialized for full pipe flows. Taking the general form
498: 199: 55: 2383: 2368: 1824:
Brater, Ernest F.; King, Horace W.; Lindell, James E.; Wei, C. Y. (1996). "6".
1728: 1722: 183: 82: 2424: 2373: 1869: 2147: 513: 191: 1849: 2246: 337:
were the same as in the Chézy formula for the typical hydraulic slope of
203: 74: 44: 326:
appears more like a constant over a wide range of the other parameters.
2236: 2222: 40: 28: 1475:= frictional resistance (pressure drop per foot of pipe) in psig/ft ( 420: 404: 388: 311: 63: 1897:
Walski, Thomas M. (March 2006), "A history of water distribution",
1748: 1743: 1733: 767:{\displaystyle S={V^{1.852} \over k^{1.852}\,C^{1.852}\,R^{1.167}}} 452: 50:
The Hazen–Williams equation has the advantage that the coefficient
2132:(2nd revised and enlarged ed.), New York: John Wiley and Sons 85:
loss was proportional to the velocity squared. Consequently, the
372: 282:
is velocity (in ft/s for US customary units, in m/s for SI units)
2048:"Comparison of Pipe Flow Equations and Head Losses in Fittings" 467: 2191: 482: 59: 690:{\displaystyle V^{1.852}=k^{1.852}\,C^{1.852}\,R^{1.167}\,S} 2186:
https://books.google.com/books?id=RAMX5xuXSrUC&pg=PA145
2181:
https://books.google.com/books?id=DxoMAQAAIAAJ&pg=PA736
1707:× the unit weight of water (e.g., 9810 N/m at 4 deg C) 1828:(Seventh ed.). New York: McGraw Hill. p. 6.29. 58:, but it has the disadvantage that it is only valid for 2176:
Online Hazen–Williams calculator for pressurized pipes.
2171:
Online Hazen–Williams calculator for gravity-fed pipes.
1700:
Note: pressure drop can be computed from head loss as
1682:= volumetric flow rate, m/s (cubic meters per second) 1565: 1336: 995: 799: 709: 637: 575: 226: 113: 1823: 1799:"Hazen–Williams equation in fire protection systems" 62:. Also, it does not account for the temperature or 2040: 1323:When used to calculate the pressure drop using the 164:{\displaystyle V=C{\sqrt {RS}}=C\,R^{0.5}\,S^{0.5}} 1641: 1454: 1318: 1307: 941: 766: 689: 613: 264: 190:independently determined a head loss equation for 163: 93:(head loss per unit length) to the fluid velocity 2081: 1495:= pressure drop over the length of pipe in psig ( 304:(in ft for US customary units, in m for SI units) 2422: 2137:Williams, Gardner Stewart; Hazen, Allen (1920), 2125:Williams, Gardner Stewart; Hazen, Allen (1914), 2109:Williams, Gardner Stewart; Hazen, Allen (1905), 2082:Finnemore, E. John; Franzini, Joseph B. (2002), 1905:(3), American Water Works Association: 110–121, 178:expresses the proportionality, but the value of 2166:Engineering toolbox Hazen–Williams coefficients 2142:(3rd ed.), New York: John Wiley and Sons, 2115:(first ed.), New York: John Wiley and Sons 1899:Journal of the American Water Works Association 1548:When used to calculate the head loss with the 959:(which is different from the geometric radius 2207: 2136: 2124: 2108: 1983: 1971: 1955: 1801:. Canute LLP. 27 January 2009. Archived from 628:gives (rounding exponents to 3–4 decimals) 2214: 2200: 614:{\displaystyle V=k\,C\,R^{0.63}\,S^{0.54}} 265:{\displaystyle V=k\,C\,R^{0.63}\,S^{0.54}} 1670:in meters (water) over the length of pipe 1291: 1234: 1197: 1157: 1146: 1135: 1112: 1082: 1071: 1060: 1049: 1026: 1015: 925: 914: 903: 863: 852: 841: 750: 739: 683: 672: 661: 600: 589: 585: 251: 240: 236: 150: 139: 2120:Williams and Hazen, Second edition, 1909 963:) for a full pipe of geometric diameter 2099: 2423: 1943: 1931: 1896: 2195: 2010: 2008: 2006: 2004: 2002: 2000: 1998: 1996: 1994: 1992: 1497:pounds per square inch gauge pressure 1477:pounds per square inch gauge pressure 437:Cement-Mortar Lined Ductile Iron Pipe 182:is not a constant. In 1838 and 1839, 2090: 1528:= inside pipe diameter, in (inches) 13: 2075: 1989: 1911:10.1002/j.1551-8833.2006.tb07611.x 1694:= inside pipe diameter, m (meters) 1376: 1373: 1370: 1367: 1361: 1358: 1355: 1349: 1346: 1343: 974:; the pipe's cross sectional area 333:was chosen so that the values for 14: 2472: 2154: 2140:investigations upon large models. 2129:investigations upon large models. 310:is the slope of the energy line ( 1552:, the equation will then become 624:and exponentiating each side by 561: 2031: 1977: 1319:U.S. customary units (Imperial) 69: 16:Equation on water flow in pipes 2431:Eponymous equations of physics 2221: 1965: 1949: 1937: 1925: 1890: 1842: 1817: 1791: 1765: 1486:foot of water per foot of pipe 47:and Gardner Stewart Williams. 1: 2161:Engineering Toolbox reference 1759: 1550:International System of Units 188:Jean Léonard Marie Poiseuille 2086:(10th ed.), McGraw Hill 1688:= pipe roughness coefficient 1522:= pipe roughness coefficient 7: 2436:Equations of fluid dynamics 2017:Hazen-Williams Coefficients 1712: 1543: 43:systems. It is named after 10: 2477: 2100:Watkins, James A. (1987), 1676:= length of pipe in meters 294:is a roughness coefficient 2392: 2311: 2288:Hydrological optimization 2278:Groundwater flow equation 2260: 2229: 2093:Hydraulic Design Handbook 1984:Williams & Hazen 1914 1972:Williams & Hazen 1914 1956:Williams & Hazen 1914 1739:Minor losses in pipe flow 1327:system, the equation is: 196:Hagen–Poiseuille equation 54:is not a function of the 1773:"Hazen–Williams Formula" 1506:= length of pipe in feet 545:Fibre-reinforced plastic 89:relates hydraulic slope 2283:Hazen–Williams equation 2273:Darcy–Weisbach equation 2091:Mays, Larry W. (1999), 1719:Darcy–Weisbach equation 314:per length of pipe or h 208:Darcy–Weisbach equation 21:Hazen–Williams equation 2104:(5th ed.), Telsco 2102:Turf Irrigation Manual 1882:: CS1 maint: others ( 1851:Pumping station design 1826:Handbook of Hydraulics 1643: 1456: 1309: 943: 768: 691: 615: 341:=0.001. The value of 329:The conversion factor 266: 165: 33:fire sprinkler systems 25:empirical relationship 2303:Pipe network analysis 2268:Bernoulli's principle 2252:Hydraulic engineering 2020:, Engineering ToolBox 1644: 1457: 1310: 944: 769: 692: 616: 267: 166: 37:water supply networks 1754:Volumetric flow rate 1563: 1334: 993: 797: 707: 635: 573: 224: 111: 81:discovered that the 2060:on 21 January 2022 1639: 1514:gallons per minute 1452: 1325:US customary units 1305: 939: 764: 700:Rearranging gives 687: 611: 529:Polyvinyl chloride 262: 161: 2418: 2417: 2293:Open-channel flow 1861:978-0-08-094106-6 1779:on 22 August 2008 1708: 1659:= Hydraulic slope 1637: 1625: 1600: 1587: 1539: 1450: 1438: 1413: 1400: 1366: 1354: 1303: 1266: 1246: 1209: 1169: 1094: 937: 875: 762: 559: 558: 215:empirical formula 131: 2468: 2216: 2209: 2202: 2193: 2192: 2150: 2133: 2116: 2105: 2096: 2087: 2070: 2069: 2067: 2065: 2059: 2053:. Archived from 2052: 2044: 2038: 2035: 2029: 2028: 2027: 2025: 2012: 1987: 1981: 1975: 1969: 1963: 1953: 1947: 1941: 1935: 1929: 1923: 1921: 1894: 1888: 1887: 1881: 1873: 1846: 1840: 1839: 1821: 1815: 1814: 1812: 1810: 1795: 1789: 1788: 1786: 1784: 1775:. Archived from 1769: 1725:for alternatives 1699: 1648: 1646: 1645: 1640: 1638: 1636: 1635: 1634: 1623: 1622: 1621: 1611: 1610: 1609: 1598: 1593: 1588: 1583: 1582: 1573: 1533: 1461: 1459: 1458: 1453: 1451: 1449: 1448: 1447: 1436: 1435: 1434: 1424: 1423: 1422: 1411: 1406: 1401: 1396: 1395: 1386: 1381: 1380: 1379: 1364: 1352: 1314: 1312: 1311: 1306: 1304: 1302: 1301: 1300: 1290: 1289: 1279: 1278: 1269: 1267: 1265: 1264: 1252: 1247: 1245: 1244: 1243: 1233: 1232: 1222: 1221: 1212: 1210: 1208: 1207: 1206: 1196: 1195: 1185: 1184: 1175: 1170: 1168: 1167: 1166: 1156: 1155: 1145: 1144: 1134: 1133: 1123: 1122: 1121: 1111: 1110: 1100: 1095: 1093: 1092: 1091: 1081: 1080: 1070: 1069: 1059: 1058: 1048: 1047: 1037: 1036: 1035: 1025: 1024: 1014: 1013: 1003: 985: 977: 973: 966: 962: 958: 954:hydraulic radius 948: 946: 945: 940: 938: 936: 935: 934: 924: 923: 913: 912: 902: 901: 891: 890: 881: 876: 874: 873: 872: 862: 861: 851: 850: 840: 839: 829: 828: 827: 818: 817: 807: 789: 773: 771: 770: 765: 763: 761: 760: 759: 749: 748: 738: 737: 727: 726: 717: 696: 694: 693: 688: 682: 681: 671: 670: 660: 659: 647: 646: 627: 620: 618: 617: 612: 610: 609: 599: 598: 355: 354: 302:hydraulic radius 271: 269: 268: 263: 261: 260: 250: 249: 170: 168: 167: 162: 160: 159: 149: 148: 132: 124: 99:hydraulic radius 79:Antoine de Chézy 31:systems such as 2476: 2475: 2471: 2470: 2469: 2467: 2466: 2465: 2421: 2420: 2419: 2414: 2393:Public networks 2388: 2307: 2297:Manning formula 2256: 2242:Hydraulic fluid 2225: 2220: 2157: 2084:Fluid Mechanics 2078: 2076:Further reading 2073: 2063: 2061: 2057: 2050: 2046: 2045: 2041: 2036: 2032: 2023: 2021: 2014: 2013: 1990: 1982: 1978: 1970: 1966: 1954: 1950: 1942: 1938: 1930: 1926: 1895: 1891: 1875: 1874: 1862: 1848: 1847: 1843: 1836: 1822: 1818: 1808: 1806: 1805:on 6 April 2013 1797: 1796: 1792: 1782: 1780: 1771: 1770: 1766: 1762: 1715: 1705: 1665: 1630: 1626: 1617: 1613: 1612: 1605: 1601: 1594: 1592: 1578: 1574: 1572: 1564: 1561: 1560: 1546: 1494: 1487: 1474: 1443: 1439: 1430: 1426: 1425: 1418: 1414: 1407: 1405: 1391: 1387: 1385: 1342: 1341: 1337: 1335: 1332: 1331: 1321: 1296: 1292: 1285: 1281: 1280: 1274: 1270: 1268: 1260: 1256: 1251: 1239: 1235: 1228: 1224: 1223: 1217: 1213: 1211: 1202: 1198: 1191: 1187: 1186: 1180: 1176: 1174: 1162: 1158: 1151: 1147: 1140: 1136: 1129: 1125: 1124: 1117: 1113: 1106: 1102: 1101: 1099: 1087: 1083: 1076: 1072: 1065: 1061: 1054: 1050: 1043: 1039: 1038: 1031: 1027: 1020: 1016: 1009: 1005: 1004: 1002: 994: 991: 990: 979: 975: 968: 964: 960: 956: 930: 926: 919: 915: 908: 904: 897: 893: 892: 886: 882: 880: 868: 864: 857: 853: 846: 842: 835: 831: 830: 823: 819: 813: 809: 808: 806: 798: 795: 794: 778: 755: 751: 744: 740: 733: 729: 728: 722: 718: 716: 708: 705: 704: 677: 673: 666: 662: 655: 651: 642: 638: 636: 633: 632: 625: 605: 601: 594: 590: 574: 571: 570: 564: 499:Galvanized iron 373:Asbestos-cement 317: 256: 252: 245: 241: 225: 222: 221: 200:Julius Weisbach 198:. Around 1845, 155: 151: 144: 140: 123: 112: 109: 108: 72: 56:Reynolds number 17: 12: 11: 5: 2474: 2464: 2463: 2458: 2453: 2448: 2443: 2438: 2433: 2416: 2415: 2413: 2412: 2407: 2402: 2396: 2394: 2390: 2389: 2387: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2326: 2321: 2315: 2313: 2309: 2308: 2306: 2305: 2300: 2290: 2285: 2280: 2275: 2270: 2264: 2262: 2258: 2257: 2255: 2254: 2249: 2244: 2239: 2233: 2231: 2227: 2226: 2219: 2218: 2211: 2204: 2196: 2190: 2189: 2183: 2178: 2173: 2168: 2163: 2156: 2155:External links 2153: 2152: 2151: 2134: 2122: 2117: 2106: 2097: 2088: 2077: 2074: 2072: 2071: 2039: 2030: 1988: 1986:, pp. 1–2 1976: 1964: 1948: 1936: 1924: 1922:, p. 112. 1889: 1860: 1841: 1834: 1816: 1790: 1763: 1761: 1758: 1757: 1756: 1751: 1746: 1741: 1736: 1731: 1729:Fluid dynamics 1726: 1723:Prony equation 1714: 1711: 1710: 1709: 1703: 1696: 1695: 1689: 1683: 1677: 1671: 1663: 1660: 1650: 1649: 1633: 1629: 1620: 1616: 1608: 1604: 1597: 1591: 1586: 1581: 1577: 1571: 1568: 1557: 1556: 1545: 1542: 1541: 1540: 1530: 1529: 1523: 1517: 1507: 1501: 1492: 1488: 1485: 1480: 1472: 1463: 1462: 1446: 1442: 1433: 1429: 1421: 1417: 1410: 1404: 1399: 1394: 1390: 1384: 1378: 1375: 1372: 1369: 1363: 1360: 1357: 1351: 1348: 1345: 1340: 1320: 1317: 1316: 1315: 1299: 1295: 1288: 1284: 1277: 1273: 1263: 1259: 1255: 1250: 1242: 1238: 1231: 1227: 1220: 1216: 1205: 1201: 1194: 1190: 1183: 1179: 1173: 1165: 1161: 1154: 1150: 1143: 1139: 1132: 1128: 1120: 1116: 1109: 1105: 1098: 1090: 1086: 1079: 1075: 1068: 1064: 1057: 1053: 1046: 1042: 1034: 1030: 1023: 1019: 1012: 1008: 1001: 998: 950: 949: 933: 929: 922: 918: 911: 907: 900: 896: 889: 885: 879: 871: 867: 860: 856: 849: 845: 838: 834: 826: 822: 816: 812: 805: 802: 777:The flow rate 775: 774: 758: 754: 747: 743: 736: 732: 725: 721: 715: 712: 698: 697: 686: 680: 676: 669: 665: 658: 654: 650: 645: 641: 622: 621: 608: 604: 597: 593: 588: 584: 581: 578: 563: 560: 557: 556: 554: 551: 548: 541: 540: 538: 535: 532: 525: 524: 522: 519: 516: 510: 509: 507: 504: 501: 495: 494: 491: 488: 485: 479: 478: 476: 473: 470: 464: 463: 461: 458: 455: 449: 448: 445: 442: 439: 433: 432: 430: 427: 424: 417: 416: 414: 411: 408: 401: 400: 398: 395: 392: 385: 384: 381: 378: 375: 369: 368: 365: 362: 359: 320: 319: 315: 305: 295: 289: 283: 273: 272: 259: 255: 248: 244: 239: 235: 232: 229: 206:developed the 184:Gotthilf Hagen 172: 171: 158: 154: 147: 143: 138: 135: 130: 127: 122: 119: 116: 83:hydraulic head 71: 68: 15: 9: 6: 4: 3: 2: 2473: 2462: 2459: 2457: 2456:Hydrodynamics 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2428: 2426: 2411: 2408: 2406: 2403: 2401: 2398: 2397: 2395: 2391: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2359:Power network 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2316: 2314: 2310: 2304: 2301: 2298: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2265: 2263: 2259: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2234: 2232: 2228: 2224: 2217: 2212: 2210: 2205: 2203: 2198: 2197: 2194: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2167: 2164: 2162: 2159: 2158: 2149: 2145: 2141: 2135: 2131: 2130: 2123: 2121: 2118: 2114: 2113: 2107: 2103: 2098: 2095:, McGraw Hill 2094: 2089: 2085: 2080: 2079: 2056: 2049: 2043: 2034: 2019: 2018: 2011: 2009: 2007: 2005: 2003: 2001: 1999: 1997: 1995: 1993: 1985: 1980: 1973: 1968: 1961: 1957: 1952: 1946:, p. 113 1945: 1940: 1934:, p. 112 1933: 1928: 1920: 1916: 1912: 1908: 1904: 1900: 1893: 1885: 1879: 1871: 1867: 1863: 1857: 1853: 1852: 1845: 1837: 1835:0-07-007247-7 1831: 1827: 1820: 1804: 1800: 1794: 1778: 1774: 1768: 1764: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1724: 1720: 1717: 1716: 1706: 1698: 1697: 1693: 1690: 1687: 1684: 1681: 1678: 1675: 1672: 1669: 1661: 1658: 1655: 1654: 1653: 1631: 1627: 1618: 1614: 1606: 1602: 1595: 1589: 1584: 1579: 1575: 1569: 1566: 1559: 1558: 1555: 1554: 1553: 1551: 1536: 1532: 1531: 1527: 1524: 1521: 1518: 1515: 1512:= flow, gpm ( 1511: 1508: 1505: 1502: 1500: 1498: 1489: 1484: 1481: 1478: 1471: 1468: 1467: 1466: 1444: 1440: 1431: 1427: 1419: 1415: 1408: 1402: 1397: 1392: 1388: 1382: 1338: 1330: 1329: 1328: 1326: 1297: 1293: 1286: 1282: 1275: 1271: 1261: 1257: 1253: 1248: 1240: 1236: 1229: 1225: 1218: 1214: 1203: 1199: 1192: 1188: 1181: 1177: 1171: 1163: 1159: 1152: 1148: 1141: 1137: 1130: 1126: 1118: 1114: 1107: 1103: 1096: 1088: 1084: 1077: 1073: 1066: 1062: 1055: 1051: 1044: 1040: 1032: 1028: 1021: 1017: 1010: 1006: 999: 996: 989: 988: 987: 983: 971: 955: 931: 927: 920: 916: 909: 905: 898: 894: 887: 883: 877: 869: 865: 858: 854: 847: 843: 836: 832: 824: 820: 814: 810: 803: 800: 793: 792: 791: 788: 785: 781: 756: 752: 745: 741: 734: 730: 723: 719: 713: 710: 703: 702: 701: 684: 678: 674: 667: 663: 656: 652: 648: 643: 639: 631: 630: 629: 606: 602: 595: 591: 586: 582: 579: 576: 569: 568: 567: 562:Pipe equation 555: 552: 549: 546: 543: 542: 539: 536: 533: 530: 527: 526: 523: 520: 517: 515: 512: 511: 508: 505: 502: 500: 497: 496: 492: 489: 486: 484: 481: 480: 477: 474: 471: 469: 466: 465: 462: 459: 456: 454: 451: 450: 446: 443: 440: 438: 435: 434: 431: 428: 425: 422: 419: 418: 415: 412: 409: 406: 403: 402: 399: 396: 393: 390: 387: 386: 382: 379: 376: 374: 371: 370: 366: 364:C Factor high 363: 360: 357: 356: 353: 351: 346: 344: 340: 336: 332: 327: 325: 313: 309: 306: 303: 299: 296: 293: 290: 287: 284: 281: 278: 277: 276: 257: 253: 246: 242: 237: 233: 230: 227: 220: 219: 218: 216: 211: 209: 205: 201: 197: 193: 189: 185: 181: 177: 174:The variable 156: 152: 145: 141: 136: 133: 128: 125: 120: 117: 114: 107: 106: 105: 103: 100: 96: 92: 88: 87:Chézy formula 84: 80: 76: 67: 65: 61: 57: 53: 48: 46: 42: 38: 34: 30: 26: 22: 2379:Rescue tools 2344:Drive system 2312:Technologies 2282: 2138: 2127: 2111: 2101: 2092: 2083: 2062:. Retrieved 2055:the original 2042: 2033: 2022:, retrieved 2016: 1979: 1967: 1959: 1951: 1939: 1927: 1902: 1898: 1892: 1850: 1844: 1825: 1819: 1807:. Retrieved 1803:the original 1793: 1781:. Retrieved 1777:the original 1767: 1701: 1691: 1685: 1679: 1673: 1656: 1651: 1547: 1534: 1525: 1519: 1509: 1503: 1490: 1482: 1473:psi per foot 1469: 1464: 1322: 981: 969: 951: 786: 783: 779: 776: 699: 623: 565: 514:Polyethylene 361:C Factor low 349: 347: 342: 338: 334: 330: 328: 323: 321: 307: 297: 291: 285: 279: 274: 212: 192:laminar flow 179: 175: 173: 101: 94: 90: 73: 70:General form 51: 49: 20: 18: 2324:Accumulator 2247:Fluid power 1974:, p. 1 1944:Walski 2006 1932:Walski 2006 204:Henry Darcy 75:Henri Pitot 45:Allen Hazen 2461:Irrigation 2451:Hydraulics 2425:Categories 2410:Manchester 2237:Hydraulics 2223:Hydraulics 2064:6 December 1809:27 January 1783:6 December 1760:References 367:Reference 345:is 0.001. 41:irrigation 29:water pipe 2400:Liverpool 2319:Machinery 2024:7 October 1919:108604497 1878:cite book 1870:144609617 1668:head loss 1479:per foot) 1189:π 1127:π 1041:π 421:Cast iron 405:Cast iron 389:Cast iron 312:head loss 64:viscosity 2446:Plumbing 2349:Manifold 2339:Cylinder 2261:Modeling 2230:Concepts 1749:Pressure 1744:Plumbing 1734:Friction 1713:See also 1544:SI units 453:Concrete 423:20 years 407:10 years 358:Material 348:Typical 2334:Circuit 2148:1981183 1652:where: 1465:where: 980:π 300:is the 275:where: 2441:Piping 2405:London 2146:  1917:  1868:  1858:  1832:  1632:4.8704 1624:  1599:  1445:4.8704 1437:  1412:  1365:  1353:  1298:4.8704 1254:7.8828 1241:4.8704 1164:4.8704 1089:3.7034 626:1/0.54 468:Copper 194:, the 39:, and 23:is an 2364:Press 2354:Motor 2329:Brake 2058:(PDF) 2051:(PDF) 1915:S2CID 1619:1.852 1607:1.852 1596:10.67 1535:Note: 1432:1.852 1420:1.852 1287:1.852 1276:1.852 1262:1.852 1230:1.852 1219:1.852 1204:1.852 1193:1.852 1182:3.019 1153:1.852 1142:1.852 1131:1.852 1119:1.852 1108:3.019 1078:1.167 1067:1.852 1056:1.852 1045:1.852 1033:1.852 1022:1.852 1011:1.167 986:, so 932:1.852 921:1.167 910:1.852 899:1.852 888:1.852 870:1.852 859:1.167 848:1.852 837:1.852 825:1.852 815:1.852 790:, so 757:1.167 746:1.852 735:1.852 724:1.852 679:1.167 668:1.852 657:1.852 644:1.852 547:(FRP) 531:(PVC) 483:Steel 60:water 2384:Seal 2369:Pump 2144:OCLC 2066:2008 2026:2012 1884:link 1866:OCLC 1856:ISBN 1830:ISBN 1811:2009 1785:2008 1721:and 1409:4.52 952:The 607:0.54 596:0.63 258:0.54 247:0.63 202:and 186:and 97:and 19:The 2374:Ram 1907:doi 984:/ 4 978:is 967:is 553:150 550:150 537:150 534:150 521:140 518:140 506:120 503:120 490:110 475:140 472:130 460:140 457:100 444:140 441:140 429:100 413:113 410:107 397:130 394:130 391:new 380:140 377:140 318:/L) 157:0.5 146:0.5 2427:: 1991:^ 1913:, 1903:98 1901:, 1880:}} 1876:{{ 1864:. 1666:= 972:/4 782:= 493:– 487:90 447:– 426:89 383:- 210:. 104:: 35:, 2299:) 2295:( 2215:e 2208:t 2201:v 2068:. 1960:c 1909:: 1886:) 1872:. 1838:. 1813:. 1787:. 1704:f 1702:h 1692:d 1686:C 1680:Q 1674:L 1664:f 1662:h 1657:S 1628:d 1615:C 1603:Q 1590:= 1585:L 1580:f 1576:h 1570:= 1567:S 1526:d 1520:C 1516:) 1510:Q 1504:L 1499:) 1493:d 1491:P 1483:S 1470:S 1441:d 1428:C 1416:Q 1403:= 1398:L 1393:d 1389:P 1383:= 1377:t 1374:o 1371:o 1368:f 1362:r 1359:e 1356:p 1350:i 1347:s 1344:p 1339:S 1294:d 1283:C 1272:Q 1258:k 1249:= 1237:d 1226:C 1215:Q 1200:k 1178:4 1172:= 1160:d 1149:C 1138:k 1115:Q 1104:4 1097:= 1085:d 1074:d 1063:C 1052:k 1029:Q 1018:4 1007:4 1000:= 997:S 982:d 976:A 970:d 965:d 961:r 957:R 928:A 917:R 906:C 895:k 884:Q 878:= 866:A 855:R 844:C 833:k 821:A 811:V 804:= 801:S 787:A 784:V 780:Q 753:R 742:C 731:k 720:V 714:= 711:S 685:S 675:R 664:C 653:k 649:= 640:V 603:S 592:R 587:C 583:k 580:= 577:V 350:C 343:k 339:S 335:C 331:k 324:C 316:f 308:S 298:R 292:C 286:k 280:V 254:S 243:R 238:C 234:k 231:= 228:V 180:C 176:C 153:S 142:R 137:C 134:= 129:S 126:R 121:C 118:= 115:V 102:R 95:V 91:S 52:C

Index

empirical relationship
water pipe
fire sprinkler systems
water supply networks
irrigation
Allen Hazen
Reynolds number
water
viscosity
Henri Pitot
Antoine de Chézy
hydraulic head
Chézy formula
hydraulic radius
Gotthilf Hagen
Jean Léonard Marie Poiseuille
laminar flow
Hagen–Poiseuille equation
Julius Weisbach
Henry Darcy
Darcy–Weisbach equation
empirical formula
hydraulic radius
head loss
Asbestos-cement
Cast iron
Cast iron
Cast iron
Cement-Mortar Lined Ductile Iron Pipe
Concrete

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.