Knowledge

HY-80

Source šŸ“

1051:- hydrogen induced or hydrogen assisted cracking is a real weldability concern that must be addressed in HY-80 steels. Hydrogen embrittlement is a high risk under all conditions for HY-80 and falls into zone 3 for the AWS method. HAC/HIC can occur in either the Fusion Zone or the Heat Affected Zone. As mentioned previously the HAZ and FZ are both susceptible to the formation of martensite and thus are at risk for HAC/HIC. The Fusion Zone HIC/HAC can be addressed with the use of a proper filler metal, while the HAZ HIC/HAC must be addressed with preheat and weld procedures. Low hydrogen practice is always recommended when welding on HY-80 steels. 20: 71:(80,000 psi, 100,000 psi and 130,000 psi). HY-80 and HY-100 are both weldable grades, whereas the HY-130 is generally considered unweldable. Modern steel manufacturing methods that can precisely control time/temperature during processing of HY steels has made the cost to manufacture more economical. HY-80 is considered to have good corrosion resistance and has good formability to supplement being weldable. Using HY-80 steel requires careful consideration of the welding processes, filler metal selection and joint design to account for microstructure changes, distortion and stress concentration. 1100:) can have a significant influence of the fracture toughness of the material. SAW as an example can temper previous weld passes due to its generally high heat input characteristics. The detailed hardness profiles of HY-80 weldments varies with different processes (gradients vary dramatically), but the peak values for hardness remains constant among the different processes. This holds true for both HAZ and weld metal. 91:, their new independence from the surface for an air supply for their diesel engines meant that they could focus on hidden operation at depth, rather than operating largely as surface-cruising submersibles. The increased power of a nuclear reactor allowed their hulls to become larger and faster. Developments in sonar made them able to hunt effectively at depth, rather than relying on visual observations from 1059:
cooling rates. Slow cooling rates can be as detrimental as rapid cooling rates in the HAZ. Rapid cooling will form untempered martensite; however, very slow cooling rates caused by high preheat or a combination of preheat and high heat input from the weld procedures can create a very brittle martensite due to high carbon concentrations that form in the HAZ.
1114:
due to non-uniform expansion and contraction. This mechanical effect can cause residual stresses that can lead to a variety of failures immediately after the weld or in service failures when put under load. In HY-80 steels the level of distortion is proportional to the level of weld heat input, the
1062:
Preheating should be considered to allow diffusible hydrogen to diffuse and to reduce the cooling temperature gradient. The slower cooling rate will reduce the likelihood of martensite formation. If the preheat temperature is not high enough the cooling temperature gradient will be too steep and it
1058:
HY-80 due to the formation of untempered martensite. Use of filler metals is required to introduce alloying materials that serve to form oxides that promote the nucleation of acicular ferrite. The HAZ is still a concern that must be addressed with proper preheat and weld procedures to control the
257:
The final microstructure of the weldment will be directly related to the composition of the material and the thermal cycle(s) it has endured, which will vary across the base material, Heat Affected Zone (HAZ) and Fusion Zone (FZ). The microstructure of the material will directly correlate to the
1087:
The selection of the welding process can have a significant impact on the areas affected by welding. The heat input can alter the microstructure in HAZ and the fusion zone alike and weld metal/HAZ toughness is a key consideration/requirement for HY-80 weldments. It is important to consider the
173:
Although the operating depths of submarines are highly secret, their crush depth limits can be calculated approximately, solely from knowledge of the steel strength. With the stronger HY-80 steel, this depth increased to 1,800 feet (550 m) and with HY-100 a depth of 2,250 feet (690 m).
191:, the lead boat of this class, was lost in an accident in 1963. At the time, this unexplained accident raised much controversy about its cause and the new HY-80 steel used was looked at suspiciously, especially for theories about weld cracking having been the cause of the loss. 301:
Manganese ā€“ Cleans impurities in steels (most commonly used to tie up sulfur) and also forms oxides that are necessary for the nucleation of acicular ferrite. Acicular ferrite is desirable in HY-80 steels because it promotes excellent yield strength and toughness.
277:
The alloy content will vary slightly according to the thickness of the plate material. Thicker plate will be more restrictive in its compositional alloy ranges due to the added weldability challenges created by enhanced stress concentrations in connective joints.
98:
The strength of a submarine hull is constrained not merely by yield strength, but also fatigue strength. As well as the obvious need for a hull strong enough not to be crushed at depth, the cyclical effect of hundreds of dives over a submarine's lifetime mean that
286:
Carbon ā€“ Controls the peak hardness of the material and is an austenite stabiliser, which is necessary for martensite formation. HY-80 is prone to the formation of martensite and martensite's peak hardness is dependent on its carbon content. HY-80 is an
1063:
will create brittle welds. Multipass welds require a minimum and maximum inter-pass temperature with the purpose to maintain yield strength and to prevent cracking. The preheat and inter-pass temperatures will depend on the thickness of the material.
1071:
Generally, HY-80 is welded with an AWS ER100S-1 welding wire. The ER100S-1 has a lower Carbon and Nickel content to assist in the dilutive effect during welding discussed previously. An important function of the filler metal is to nucleate
244:
s construction suffered setbacks in 1991 and an estimated 15% or two years' work on hull construction had to be abandoned. Although later solved, these extra costs (and the post-Soviet peace dividend) were a factor in reducing the planned 29
258:
mechanical properties, weldability and service life/performance of the material/weldment. Alloying elements, weld procedures and weldment design all need to be coordinated and considered when looking to use HY-80 steel.
327:
The precise range of permitted alloy content varies slightly according to the thickness of the sheet. The figures here are for thicker sheets, 3 inches (76 mm) and over, which are the more restrictive compositions.
503:
A further steel, HY-130, also includes vanadium as an alloying element. Welding of HY-130 is considered to be more restricted, as it is difficult to obtain filler materials that can provide comparable performance.
159:, became known as "Low-carbon STS"; this steel showed the best combination of all the desirable properties. Low-carbon STS became the forerunner of HY-80, and was first used in 1953 for the construction of 1911: 1088:
totality of the weldment when selecting a process because thick plate generally requires multi-pass welds and additional passes can alter previously deposited weld metal. Different methods (
1115:
higher the heat input the higher levels of distortion. HY-80 has been found to have less in-plane weld shrinkage and less out-of-plane distortion than the common ABS Grade DH-36.
1142:
The ultimate tensile strength of these steels is considered secondary to their yield strength. Where this is required to meet a particular value, it is specified for each order.
764: 700: 934: 67:(strength in resisting permanent plastic deformation). HY-80 is accompanied by HY-100 and HY-130 with each of the 80, 100 and 130 referring to their yield strength in 1028: 974: 1999: 881: 801: 640: 135:, although of the new Albacore 'teardrop' hull form, also used these earlier steels. Such boats had normal operating depths of some 700 feet (210 m), and a 839: 604: 1079:
Acicular ferrite is formed with the presence of oxides and the composition of the filler metal can increase the formation of these critical nucleation sites.
1127:
to explosion bulge can be performed. Destructive testing is not practical for inspecting completed weldments prior to being placed in service; therefore,
2390: 1431: 1108:
Given the compositional differences between the base material and the composite zone of the weld it is reasonable to expect that there will be potential
1918: 1797: 1650:"Strength and Fracture Characteristics of HY-80, HY-100, and HY-130 Steels Subjected to Various Strains, Strain Rates, Temperatures, and Pressures" 1123:
The testing of HY-80 steel can be divided into the categories of destructive and non-destructive evaluation. A variety of destructive tests from
2260: 1288:
Heller, Captain S. R. Jr.; Fioriti, Ivo; Vasta, John (February 1965). "An Evaluation of HY-80 Steel as a Structural Material for Submarines".
1992: 1131:
is preferred for this case. Non-destructive evaluation includes many techniques or methods: visual inspection, X-ray, ultrasonic inspection,
2385: 320:
and suppress local melting temperatures. This is an increasing problem with the increased used of scrap in the making of steel in the
103:
is also important. To provide sufficient resistance to fatigue, the hull must be designed so that the steel always operates below its
1536: 143:
conducted a research program for developing higher strength steel for ship and submarine construction. During testing, a variant of
1985: 1656: 308:
Chromium ā€“ Is a ferrite stabilizer and can combine with carbon to form chromium carbides for increased strength of the material.
1491: 316:
Antimony, tin and arsenic are potentially dangerous elements to have in the compositional makeup due to their ability to form
184:. These reportedly had a normal operating depth of 1,300 feet, roughly two-thirds the crush depth limit imposed by the steel. 1842: 1826: 1681: 1632: 1599: 1562: 1475: 1445: 1315: 226:
is officially claimed to have a normal operating depth of "greater than 800 feet". Based on the reported operating depth of
1519: 107:; that is, the stress due to pressure at depth remains less than the fatigue strength for an indefinite number of cycles. 2300: 2056: 2024: 52:. It was developed for use in naval applications, specifically the development of pressure hulls for the US nuclear 2252: 2120: 1435: 1867:"Tensile Properties of HY80 Steel Welds Containing Defects Correlated With Ultrasonic And Radiographic Evaluation" 1465: 79:
The need to develop improved steels was driven by a desire for deeper-diving submarines. To avoid detection by
2416: 2048: 1367: 1232:
Yayla, P (Summer 2007). "Effects of Welding Processes on the Mechanical Properties of HY80 Steel Weldments".
87:. World War II submarines operated at a total depth of rarely more than 100 metres. With the development of 1619: 1132: 170:
tested its eponymous teardrop hull shape, which would form a pattern for the following US nuclear classes.
155:
in 1910 and commonly used for deck protection, with modifications in carbon and nickel and the addition of
2195: 2032: 2015: 1766: 1149:, a steel's ability to resist further tearing from a pre-existing notch. It is usually evaluated as the 292: 114:. Their steel was also improved and was the equivalent of "HY-42". Boats of this construction included 36: 1748: 2040: 1413: 1399:. National Research Council (U.S.). Committee on Accelerated Utilization of New Materials. pp. 77ā€“78. 110:
US submarines post-WWII, both conventional and nuclear, had improved designs compared to the earlier
717: 2308: 2238: 2211: 2173: 2150: 2086: 2072: 948: 656: 129: 57: 1942: 901: 2356: 2342: 2203: 2188: 195: 160: 144: 1960: 1520:"Military Specification: Steel Plate, Alloy, Structural, High Yield Strength (HY-80 and HY-100)" 305:
Silicon ā€“ Oxide former that serves to clean and provide nucleation points for acicular ferrite.
2349: 2283: 2219: 2165: 2158: 2128: 2095: 1184: 1165: 1161: 1128: 1046: 185: 178: 115: 23: 19: 997: 2411: 2316: 2181: 2142: 2135: 1816: 1234: 1097: 1093: 959: 122: 29: 128:, which were the first nuclear submarines, with the then-conventional hull shape. The later 2268: 2102: 2064: 1136: 859: 818: 786: 321: 298:
Nickel ā€“ Adds to toughness and ductility to the HY-80 and is also an austenite stabilizer.
220: 213: 206: 625: 8: 2334: 2276: 1749:"A Review of Welding Processes, Mechanical Properties, and Weldability of HY-80 Castings" 895: 1883: 1866: 1795:
Yang, YP (November 2014). "Material Strength Effect on Weld Shrinkage and Distortion".
1649: 1383: 1301: 1124: 824: 619: 589: 288: 100: 56:
program and is still currently used in many naval applications. It is valued for its
1822: 1677: 1628: 1595: 1558: 1502: 1471: 1441: 561: 88: 84: 1676:. Vol. 6. United States of America: ASM International. 1993. pp. 184ā€“188. 2116: 1717: 1379: 1297: 1243: 1150: 1074: 1977: 1849: 1323: 291:
material that allows carbon to more readily diffuse than in FCC materials such as
95:. All these factors drove a need for improved steels for stronger pressure hulls. 1498: 1247: 1146: 1055: 583: 140: 111: 92: 1368:"An Evaluation of HY-80 Steel. As a Structural Material for Submarines. Part II" 1270: 1089: 532: 152: 64: 1344: 2405: 1461: 1157: 991: 853: 650: 104: 2296: 711: 148: 261:
HY-80 and HY-100 are covered in the following US military specifications:
136: 1818:
Fracture Resistance of Aluminum Alloys: Notch Toughness, Tear Resistance
1110: 952: 607: 422: 372: 156: 68: 1897: 1191: 362: 53: 1754:. Graduate Program Rensselaer Polytechnic Institute. pp. 13ā€“14. 557: 472: 447: 437: 412: 317: 780: 482: 392: 1594:. United States of America: Wiley-Interscience. pp. 74ā€“84. 457: 402: 382: 349: 1537:"Military Specification: Steel (HY-80 and HY-100) Bars, Alloy" 80: 49: 46: 177:
The first production submarines to use HY-80 steel were the
83:, submarines ideally operate at least 100 metres below the 1690: 492: 513:
Physical Properties of HY-80, HY-100, and HY-130 Steel
230:, it may be assumed that the normal operating depth of 1571: 1281: 1156:
Wrought HY-80 steels are produced by, amongst others,
281: 1627:. American Society for testing and Materials (ASTM). 1557:. United States of America: Wiley. pp. 288ā€“300. 1277:. Federation of American Scientists. 8 December 1998. 1000: 962: 904: 862: 827: 789: 720: 659: 628: 592: 2232:
Conventional-powered cruise missile submarines - SSG
1776: 237:
HY-100 too was dogged by problems of weld cracking.
2391:
List of submarine classes of the United States Navy
2007: 1843:"Properties of HY-100 Steel for Naval Construction" 1492:"HY-80 Steel Fabrication in Submarine Construction" 1365: 1287: 1153:, the ratio of tear resistance to yield strength. 1022: 968: 928: 875: 833: 795: 758: 694: 634: 598: 194:HY-100 steel was introduced for the deeper diving 1366:Heller, S. R.; Fioriti, Ivo; Vasta, John (1965). 1205: 1203: 1197:, a diesel training submarine, made 11,884 dives. 2403: 1617: 1613: 1611: 1454: 2251:Conventional-powered attack submarines - SS or 1711: 1709: 1707: 1705: 1618:Flax, R.W.; Keith, R.E.; Randall, M.D. (1971). 1424: 1407: 1405: 63:The "HY" steels are designed to possess a high 1200: 1160:in the USA, forgings and castings in HY-80 by 1993: 1904: 1608: 1546: 1227: 1225: 1223: 1221: 2386:List of submarines of the United States Navy 1764: 1702: 1402: 45:is a high-tensile, high yield strength, low 1808: 1641: 1529: 1512: 1190:, 730 dives during her time in commission. 2000: 1986: 1218: 219:(1988), had trialled HY-100 construction. 1718:"Hybrid Laser Arc Welding of HY-80 Steel" 1637:. ASTM Special Technical Publication 494. 1411: 1397:Accelerating Utilization of New Materials 1430: 1103: 18: 1890: 1814: 1746: 1696: 1647: 1577: 1552: 1066: 234:is roughly double the official figure. 2404: 1742: 1740: 1738: 1715: 1460: 249:submarines to just three constructed. 201:, although two of the preceding HY-80 1981: 1943:"Sheffield Forgemasters Steel Grades" 1265: 1263: 1261: 1259: 1257: 1231: 166:, a small diesel research submarine. 1912:"Armor: Steels for National Defense" 1794: 1082: 1917:. ArcelorMittal USA. Archived from 1788: 1782: 1735: 1589: 282:Importance of key alloying elements 13: 2328:Auxiliary submarines - AGSS or SSA 1876: 1859: 1835: 1747:Patella, Gregory (December 2014). 1662:from the original on May 21, 2015. 1555:Welding Metallurgy and Weldability 1501:. 21ā€“22 March 1960. Archived from 1484: 1384:10.1111/j.1559-3584.1965.tb05346.x 1302:10.1111/j.1559-3584.1965.tb05644.x 1254: 507: 14: 2428: 1821:. ASM International. p. 38. 1648:Holmquist, T.J (September 1987). 1414:"Subs' Hull Problems Resurfacing" 311: 1145:Notch toughness is a measure of 272: 2008:US submarine classes after 1945 1953: 1935: 1758: 1666: 1583: 1209:Elements not added deliberately 1961:"GSC Defence supply materials" 1815:Kaufman, John Gilbert (2001). 1470:. Globe Pequot. pp. 1ā€“2. 1412:Lyn Bixby (8 September 1991). 1390: 1359: 1337: 1308: 1178: 1040: 759:{\displaystyle K=E/3(1-2\nu )} 753: 738: 689: 677: 1: 1467:The Death of the USS Thresher 1171: 695:{\displaystyle G=E/2(1+\nu )} 252: 74: 2016:ballistic missile submarines 1525:. 19 June 1987. MIL-S-16216. 1248:10.1016/j.matdes.2006.03.028 1133:magnetic particle inspection 929:{\displaystyle k/\rho c_{p}} 139:of 1,100 feet (340 m). 7: 1898:"HY 80 / 100 (MIL-S-16216)" 1542:. 5 June 2003. MIL S-21952. 10: 2433: 1968:Goodwin Steel Castings Ltd 1440:. iUniverse. p. 316. 1118: 293:austenitic stainless steel 2381: 2367: 2327: 2295: 2250: 2231: 2114: 2087:cruise missile submarines 2084: 2013: 1716:Roepke, C (August 2009). 1275:Military Analysis Network 1033: 939: 886: 844: 774: 769: 705: 644: 613: 577: 496: 486: 476: 466: 461: 451: 441: 431: 426: 416: 406: 396: 386: 376: 366: 343: 1164:and castings in HY80 by 1023:{\displaystyle T_{melt}} 949:Coefficient of expansion 58:strength to weight ratio 35:on the building ways at 1900:. American Alloy Steel. 1767:"Technical Data Sheets" 1372:Naval Engineers Journal 1290:Naval Engineers Journal 969:{\displaystyle \alpha } 145:special treatment steel 1947:Sheffield Forgemasters 1553:Lippold, John (2015). 1271:"Run Silent, Run Deep" 1235:Materials & Design 1166:Goodwin Steel Castings 1162:Sheffield Forgemasters 1054:It is not possible to 1024: 970: 930: 877: 835: 797: 760: 696: 636: 600: 39: 1725:Supplement to Weld. J 1621:Welding the HY Steels 1104:Distortion and stress 1025: 971: 931: 878: 876:{\displaystyle c_{p}} 836: 798: 796:{\displaystyle \rho } 761: 697: 637: 601: 147:(STS), a homogeneous 22: 2417:Submarine components 2374:Single ship of class 2299:submarines - SSR or 1067:Welding filler metal 998: 960: 902: 860: 825: 787: 718: 657: 635:{\displaystyle \nu } 626: 590: 322:electric arc furnace 2190:Glenard P. Lipscomb 1884:"Alloy Steels HY80" 1699:, pp. 213ā€“262. 1674:ASM Metals Handbook 1590:Kou, Sindo (2003). 1437:The Rickover Effect 775:Thermal Properties 578:Elastic Properties 514: 151:steel developed by 1765:Washington Alloy. 1592:Welding Metallurgy 1432:Rockwell, Theodore 1020: 966: 926: 873: 831: 793: 756: 692: 632: 596: 512: 432:Residual elements 344:Alloying elements 89:nuclear submarines 40: 2399: 2398: 2117:attack submarines 2058:Benjamin Franklin 2026:George Washington 1828:978-0-87170-732-1 1785:, pp. 66ā€“97. 1683:978-0-87170-377-4 1634:978-0-8031-0073-2 1601:978-0-471-43491-7 1564:978-1-118-23070-1 1477:978-0-7627-9613-7 1447:978-0-595-25270-1 1083:Welding processes 1038: 1037: 834:{\displaystyle k} 599:{\displaystyle E} 501: 500: 85:sonic layer depth 2424: 2115:Nuclear-powered 2085:Nuclear-powered 2014:Nuclear-powered 2002: 1995: 1988: 1979: 1978: 1972: 1971: 1965: 1957: 1951: 1950: 1939: 1933: 1932: 1930: 1929: 1923: 1916: 1908: 1902: 1901: 1894: 1888: 1887: 1880: 1874: 1873: 1871: 1863: 1857: 1856: 1855:on May 21, 2015. 1854: 1848:. Archived from 1847: 1839: 1833: 1832: 1812: 1806: 1805: 1792: 1786: 1780: 1774: 1773: 1771: 1762: 1756: 1755: 1753: 1744: 1733: 1732: 1722: 1713: 1700: 1694: 1688: 1687: 1670: 1664: 1663: 1661: 1654: 1645: 1639: 1638: 1626: 1615: 1606: 1605: 1587: 1581: 1575: 1569: 1568: 1550: 1544: 1543: 1541: 1533: 1527: 1526: 1524: 1516: 1510: 1509: 1508:on May 21, 2015. 1507: 1496: 1488: 1482: 1481: 1458: 1452: 1451: 1428: 1422: 1421: 1418:Hartford Courant 1409: 1400: 1394: 1388: 1387: 1363: 1357: 1356: 1345:"History of USS 1341: 1335: 1334: 1332: 1331: 1322:. Archived from 1312: 1306: 1305: 1285: 1279: 1278: 1267: 1252: 1251: 1242:(6): 1898ā€“1906. 1229: 1210: 1207: 1198: 1182: 1151:tear-yield ratio 1075:acicular ferrite 1029: 1027: 1026: 1021: 1019: 1018: 975: 973: 972: 967: 935: 933: 932: 927: 925: 924: 912: 882: 880: 879: 874: 872: 871: 840: 838: 837: 832: 802: 800: 799: 794: 765: 763: 762: 757: 734: 701: 699: 698: 693: 673: 641: 639: 638: 633: 605: 603: 602: 597: 515: 511: 331: 330: 243: 149:Krupp-type armor 112:fleet submarines 101:fatigue strength 2432: 2431: 2427: 2426: 2425: 2423: 2422: 2421: 2402: 2401: 2400: 2395: 2377: 2363: 2323: 2291: 2246: 2227: 2110: 2080: 2009: 2006: 1976: 1975: 1963: 1959: 1958: 1954: 1941: 1940: 1936: 1927: 1925: 1921: 1914: 1910: 1909: 1905: 1896: 1895: 1891: 1882: 1881: 1877: 1869: 1865: 1864: 1860: 1852: 1845: 1841: 1840: 1836: 1829: 1813: 1809: 1793: 1789: 1781: 1777: 1769: 1763: 1759: 1751: 1745: 1736: 1720: 1714: 1703: 1695: 1691: 1684: 1672: 1671: 1667: 1659: 1655:. AD-A233 061. 1652: 1646: 1642: 1635: 1624: 1616: 1609: 1602: 1588: 1584: 1576: 1572: 1565: 1551: 1547: 1539: 1535: 1534: 1530: 1522: 1518: 1517: 1513: 1505: 1494: 1490: 1489: 1485: 1478: 1459: 1455: 1448: 1429: 1425: 1410: 1403: 1395: 1391: 1364: 1360: 1343: 1342: 1338: 1329: 1327: 1314: 1313: 1309: 1286: 1282: 1269: 1268: 1255: 1230: 1219: 1214: 1213: 1208: 1201: 1183: 1179: 1174: 1147:tear resistance 1121: 1106: 1085: 1069: 1056:autogenous weld 1043: 1005: 1001: 999: 996: 995: 961: 958: 957: 920: 916: 908: 903: 900: 899: 867: 863: 861: 858: 857: 826: 823: 822: 788: 785: 784: 730: 719: 716: 715: 669: 658: 655: 654: 627: 624: 623: 620:Poisson's Ratio 591: 588: 587: 584:Elastic modulus 551:(900 MPa) 545:(690 MPa) 539:(550 MPa) 510: 508:Characteristics 467:Trace elements 324:(EAF) process. 314: 284: 275: 255: 241: 141:Bureau of Ships 105:endurance limit 93:periscope depth 77: 17: 12: 11: 5: 2430: 2420: 2419: 2414: 2397: 2396: 2394: 2393: 2388: 2382: 2379: 2378: 2376: 2375: 2372: 2368: 2365: 2364: 2362: 2361: 2354: 2347: 2340: 2331: 2329: 2325: 2324: 2322: 2321: 2314: 2305: 2303: 2293: 2292: 2290: 2289: 2281: 2274: 2266: 2257: 2255: 2248: 2247: 2245: 2244: 2235: 2233: 2229: 2228: 2226: 2225: 2217: 2209: 2201: 2193: 2186: 2179: 2171: 2163: 2156: 2148: 2140: 2133: 2125: 2123: 2112: 2111: 2109: 2108: 2100: 2092: 2090: 2082: 2081: 2079: 2078: 2070: 2062: 2054: 2046: 2038: 2030: 2021: 2019: 2011: 2010: 2005: 2004: 1997: 1990: 1982: 1974: 1973: 1952: 1934: 1903: 1889: 1875: 1858: 1834: 1827: 1807: 1787: 1775: 1757: 1734: 1701: 1697:Lippold (2015) 1689: 1682: 1665: 1640: 1633: 1607: 1600: 1582: 1580:, p. 226. 1578:Lippold (2015) 1570: 1563: 1545: 1528: 1511: 1483: 1476: 1462:Polmar, Norman 1453: 1446: 1423: 1401: 1389: 1378:(2): 193ā€“200. 1358: 1336: 1307: 1280: 1253: 1216: 1215: 1212: 1211: 1199: 1176: 1175: 1173: 1170: 1125:Charpy V-notch 1120: 1117: 1105: 1102: 1084: 1081: 1068: 1065: 1042: 1039: 1036: 1035: 1032: 1017: 1014: 1011: 1008: 1004: 988: 987: 984: 981: 978: 965: 945: 944: 941: 938: 923: 919: 915: 911: 907: 892: 891: 888: 885: 870: 866: 850: 849: 846: 843: 830: 815: 814: 811: 808: 805: 792: 777: 776: 772: 771: 768: 755: 752: 749: 746: 743: 740: 737: 733: 729: 726: 723: 708: 707: 704: 691: 688: 685: 682: 679: 676: 672: 668: 665: 662: 647: 646: 643: 631: 616: 615: 612: 595: 580: 579: 575: 574: 571: 568: 565: 554: 553: 547: 541: 535: 533:yield strength 528: 527: 524: 521: 518: 509: 506: 499: 498: 495: 489: 488: 485: 479: 478: 475: 469: 468: 464: 463: 460: 454: 453: 450: 444: 443: 440: 434: 433: 429: 428: 425: 419: 418: 415: 409: 408: 405: 399: 398: 395: 389: 388: 385: 379: 378: 375: 369: 368: 365: 359: 358: 355: 352: 346: 345: 341: 340: 337: 334: 313: 312:Trace elements 310: 283: 280: 274: 271: 270: 269: 266: 254: 251: 153:Carnegie Steel 76: 73: 65:yield strength 15: 9: 6: 4: 3: 2: 2429: 2418: 2415: 2413: 2410: 2409: 2407: 2392: 2389: 2387: 2384: 2383: 2380: 2373: 2370: 2369: 2366: 2360: 2359: 2355: 2353: 2352: 2348: 2346: 2345: 2341: 2339: 2337: 2333: 2332: 2330: 2326: 2320: 2319: 2315: 2313: 2311: 2307: 2306: 2304: 2302: 2298: 2294: 2288: 2286: 2282: 2280: 2279: 2275: 2273: 2271: 2267: 2265: 2263: 2259: 2258: 2256: 2254: 2249: 2243: 2241: 2237: 2236: 2234: 2230: 2224: 2222: 2218: 2216: 2214: 2210: 2208: 2206: 2202: 2200: 2198: 2194: 2192: 2191: 2187: 2185: 2184: 2180: 2178: 2176: 2172: 2170: 2168: 2164: 2162: 2161: 2157: 2155: 2153: 2149: 2147: 2145: 2141: 2139: 2138: 2134: 2132: 2131: 2127: 2126: 2124: 2122: 2118: 2113: 2107: 2105: 2101: 2099: 2098: 2094: 2093: 2091: 2088: 2083: 2077: 2075: 2071: 2069: 2067: 2063: 2061: 2059: 2055: 2053: 2051: 2050:James Madison 2047: 2045: 2043: 2039: 2037: 2035: 2031: 2029: 2027: 2023: 2022: 2020: 2017: 2012: 2003: 1998: 1996: 1991: 1989: 1984: 1983: 1980: 1969: 1962: 1956: 1948: 1944: 1938: 1924:on 2015-05-20 1920: 1913: 1907: 1899: 1893: 1885: 1879: 1872:. April 1972. 1868: 1862: 1851: 1844: 1838: 1830: 1824: 1820: 1819: 1811: 1803: 1800: 1799: 1791: 1784: 1779: 1768: 1761: 1750: 1743: 1741: 1739: 1730: 1726: 1719: 1712: 1710: 1708: 1706: 1698: 1693: 1685: 1679: 1675: 1669: 1658: 1651: 1644: 1636: 1630: 1623: 1622: 1614: 1612: 1603: 1597: 1593: 1586: 1579: 1574: 1566: 1560: 1556: 1549: 1538: 1532: 1521: 1515: 1504: 1500: 1493: 1487: 1479: 1473: 1469: 1468: 1463: 1457: 1449: 1443: 1439: 1438: 1433: 1427: 1419: 1415: 1408: 1406: 1398: 1393: 1385: 1381: 1377: 1373: 1369: 1362: 1354: 1350: 1348: 1340: 1326:on 2014-05-17 1325: 1321: 1319: 1311: 1303: 1299: 1295: 1291: 1284: 1276: 1272: 1266: 1264: 1262: 1260: 1258: 1249: 1245: 1241: 1237: 1236: 1228: 1226: 1224: 1222: 1217: 1206: 1204: 1196: 1195: 1189: 1188: 1181: 1177: 1169: 1167: 1163: 1159: 1158:ArcelorMittal 1154: 1152: 1148: 1143: 1140: 1138: 1134: 1130: 1126: 1116: 1113: 1112: 1101: 1099: 1095: 1091: 1080: 1078: 1076: 1064: 1060: 1057: 1052: 1050: 1049: 1031: 1015: 1012: 1009: 1006: 1002: 993: 992:Melting point 990: 989: 985: 982: 979: 977: 963: 954: 950: 947: 946: 942: 937: 921: 917: 913: 909: 905: 897: 894: 893: 889: 884: 868: 864: 855: 854:Specific heat 852: 851: 847: 842: 828: 820: 817: 816: 812: 809: 806: 804: 790: 782: 779: 778: 773: 767: 750: 747: 744: 741: 735: 731: 727: 724: 721: 713: 710: 709: 703: 686: 683: 680: 674: 670: 666: 663: 660: 652: 651:Shear modulus 649: 648: 642: 629: 621: 618: 617: 611: 609: 593: 585: 582: 581: 576: 572: 569: 566: 563: 559: 556: 555: 552: 548: 546: 542: 540: 536: 534: 530: 529: 526:HY-130 steel 525: 523:HY-100 steel 522: 519: 517: 516: 505: 494: 491: 490: 484: 481: 480: 474: 471: 470: 465: 459: 456: 455: 449: 446: 445: 439: 436: 435: 430: 424: 421: 420: 414: 411: 410: 404: 401: 400: 394: 391: 390: 384: 381: 380: 374: 371: 370: 364: 361: 360: 356: 353: 351: 348: 347: 342: 338: 335: 333: 332: 329: 325: 323: 319: 309: 306: 303: 299: 296: 294: 290: 279: 273:Alloy content 267: 264: 263: 262: 259: 250: 248: 240: 235: 233: 229: 225: 224: 218: 217: 211: 210: 204: 200: 198: 192: 190: 189: 183: 181: 175: 171: 169: 165: 164: 158: 154: 150: 146: 142: 138: 134: 132: 127: 125: 120: 119: 113: 108: 106: 102: 96: 94: 90: 86: 82: 72: 70: 66: 61: 59: 55: 51: 48: 44: 38: 34: 33: 28: 26: 21: 2412:Steel alloys 2357: 2350: 2343: 2335: 2317: 2309: 2297:Radar picket 2284: 2277: 2269: 2261: 2239: 2220: 2212: 2204: 2196: 2189: 2182: 2174: 2166: 2159: 2151: 2143: 2136: 2129: 2103: 2096: 2073: 2065: 2057: 2049: 2041: 2033: 2025: 1967: 1955: 1946: 1937: 1926:. Retrieved 1919:the original 1906: 1892: 1878: 1861: 1850:the original 1837: 1817: 1810: 1804:: 421sā€“430s. 1801: 1796: 1790: 1778: 1760: 1728: 1724: 1692: 1673: 1668: 1643: 1620: 1591: 1585: 1573: 1554: 1548: 1531: 1514: 1503:the original 1486: 1466: 1456: 1436: 1426: 1417: 1396: 1392: 1375: 1371: 1361: 1353:usstorsk.org 1352: 1346: 1339: 1328:. Retrieved 1324:the original 1317: 1310: 1296:(1): 29ā€“44. 1293: 1289: 1283: 1274: 1239: 1233: 1193: 1186: 1180: 1155: 1144: 1141: 1139:inspection. 1137:eddy-current 1122: 1109: 1107: 1086: 1073: 1070: 1061: 1053: 1047: 1044: 994: 956: 898: 856: 821: 819:Conductivity 783: 714: 712:Bulk modulus 653: 622: 586: 550: 544: 538: 520:HY-80 steel 502: 326: 315: 307: 304: 300: 297: 285: 276: 260: 256: 246: 238: 236: 231: 227: 222: 215: 208: 202: 196: 193: 187: 179: 176: 172: 167: 162: 130: 123: 117: 109: 97: 78: 62: 42: 41: 31: 24: 2197:Los Angeles 2034:Ethan Allen 1168:in the UK. 1041:Weldability 896:Diffusivity 497:0.030% max 487:0.025% max 477:0.025% max 427:0.50ā€“0.65% 417:1.50ā€“1.90% 407:3.00ā€“3.50% 397:0.15ā€“0.38% 387:0.008% max 377:0.015% max 367:0.10ā€“0.40% 357:0.14ā€“0.20% 268:MIL S-21952 265:MIL S-16216 212:(1987) and 203:Los Angeles 137:crush depth 37:Mare Island 16:Alloy steel 2406:Categories 1928:2015-05-20 1783:Kou (2003) 1731:: 159ā€“167. 1330:2015-05-20 1320:ā€“ History" 1172:References 1111:Distortion 462:0.25% max 452:0.02% max 442:0.03% max 423:Molybdenum 373:Phosphorus 354:0.13ā€“0.18% 253:Metallurgy 157:molybdenum 121:, and the 75:Submarines 2262:Barracuda 2042:Lafayette 1499:Bu. Ships 1349:(SS-423)" 1192:USS  1185:USS  964:α 914:ρ 791:ρ 751:ν 745:− 687:ν 630:ν 363:Manganese 318:eutectics 221:USS  214:USS  207:USS  186:USS  161:USS  116:USS  54:submarine 30:USS  2344:Albacore 2310:Sailfish 2240:Grayback 2213:Virginia 2175:Sturgeon 2160:Tullibee 2152:Skipjack 2130:Nautilus 2074:Columbia 1798:Weld. J. 1657:Archived 1464:(2004). 1434:(2002). 1318:Tullibee 1187:Tullibee 986:.000013 983:.000014 980:.000011 943:.000007 940:.000009 883:(J/kgK) 562:Rockwell 558:Hardness 549:130 ksi 543:100 ksi 531:Tensile 473:Antimony 448:Titanium 438:Vanadium 413:Chromium 228:Thresher 188:Thresher 168:Albacore 163:Albacore 131:Skipjack 118:Nautilus 2351:Dolphin 2205:Seawolf 2183:Narwhal 2137:Seawolf 2097:Halibut 1119:Testing 1045:HIC or 841:(W/mK) 803:(kg/m) 781:Density 537:80 ksi 483:Arsenic 393:Silicon 339:HY-100 247:Seawolf 239:Seawolf 232:Seawolf 223:Seawolf 205:class, 197:Seawolf 32:Plunger 2318:Triton 2285:Barbel 2278:Darter 2221:SSN(X) 2167:Permit 2089:- SSGN 2018:- SSBN 1825:  1680:  1631:  1598:  1561:  1474:  1444:  936:(m/s) 766:(GPa) 702:(GPa) 458:Copper 403:Nickel 383:Sulfur 350:Carbon 336:HY-80 216:Topeka 209:Albany 180:Permit 126:-class 25:Permit 2338:class 2312:class 2287:class 2272:class 2264:class 2242:class 2223:class 2215:class 2207:class 2199:class 2177:class 2169:class 2154:class 2146:class 2144:Skate 2106:class 2076:class 2068:class 2060:class 2052:class 2044:class 2036:class 2028:class 1964:(PDF) 1922:(PDF) 1915:(PDF) 1870:(PDF) 1853:(PDF) 1846:(PDF) 1770:(PDF) 1752:(PDF) 1721:(PDF) 1660:(PDF) 1653:(PDF) 1625:(PDF) 1540:(PDF) 1523:(PDF) 1506:(PDF) 1495:(PDF) 1347:Torsk 1316:"USS 1194:Torsk 1034:1793 813:7885 810:7748 807:7746 573:C-30 570:C-25 567:C-21 242:' 199:class 182:class 133:class 124:Skate 81:sonar 50:steel 47:alloy 43:HY-80 27:class 2358:NR-1 2301:SSRN 2270:Tang 2104:Ohio 2066:Ohio 1823:ISBN 1678:ISBN 1629:ISBN 1596:ISBN 1559:ISBN 1472:ISBN 1442:ISBN 1135:and 1094:GMAW 1090:SMAW 1030:(K) 976:(K) 953:vol. 890:489 887:502 770:172 645:.30 614:207 2336:T-1 2253:SSK 2121:SSN 1380:doi 1298:doi 1244:doi 1129:NDE 1098:SAW 1048:HAC 848:27 845:34 706:79 608:GPa 493:Tin 289:FCC 69:ksi 2408:: 2119:- 1966:. 1945:. 1802:93 1737:^ 1729:88 1727:. 1723:. 1704:^ 1610:^ 1497:. 1416:. 1404:^ 1376:77 1374:. 1370:. 1351:. 1294:77 1292:. 1273:. 1256:^ 1240:28 1238:. 1220:^ 1202:^ 1096:, 1092:, 955:) 610:) 564:) 295:. 60:. 2371:S 2001:e 1994:t 1987:v 1970:. 1949:. 1931:. 1886:. 1831:. 1772:. 1686:. 1604:. 1567:. 1480:. 1450:. 1420:. 1386:. 1382:: 1355:. 1333:. 1304:. 1300:: 1250:. 1246:: 1077:. 1016:t 1013:l 1010:e 1007:m 1003:T 951:( 922:p 918:c 910:/ 906:k 869:p 865:c 829:k 754:) 748:2 742:1 739:( 736:3 732:/ 728:E 725:= 722:K 690:) 684:+ 681:1 678:( 675:2 671:/ 667:E 664:= 661:G 606:( 594:E 560:(

Index


Permit class
USS Plunger
Mare Island
alloy
steel
submarine
strength to weight ratio
yield strength
ksi
sonar
sonic layer depth
nuclear submarines
periscope depth
fatigue strength
endurance limit
fleet submarines
USS Nautilus
Skate-class
Skipjack class
crush depth
Bureau of Ships
special treatment steel
Krupp-type armor
Carnegie Steel
molybdenum
USS Albacore
Permit class
USS Thresher
Seawolf class

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘