Knowledge

Fatigue limit

Source 📝

20: 363:
is typically 0.4 times the ultimate tensile strength. Maximum typical values for irons are 170 MPa (24 ksi), aluminums 130 MPa (19 ksi), and coppers 97 MPa (14 ksi). Note that these values are for smooth "un-notched" test specimens. The endurance limit for notched
367:
For polymeric materials, the fatigue limit has been shown to reflect the intrinsic strength of the covalent bonds in polymer chains that must be ruptured in order to extend a crack. So long as other thermo chemical processes do not break the polymer chain (i.e. ageing or
301:, for the stress at which failure occurs after a specified number of loading cycles, such as 500 million, as in the case of aluminium. Other authors do not differentiate between the expressions even if they do differentiate between the two types of materials. 990:. However, recent research suggests that endurance limits do not exist for metallic materials, that if enough stress cycles are performed, even the smallest stress will eventually produce fatigue failure. 717: 1004: 833: 503: 972: 937: 902: 653: 583: 137: 1455: 867: 618: 450: 774: 745: 540: 420: 361: 334: 299: 260: 222: 195: 164: 1015: 387:
The fatigue limit of a machine component, Se, is influenced by a series of elements named modifying factors. Some of these factors are listed below.
1483: 83:
the maximum value of completely reversed bending stress that a material can withstand for a specified number of cycles without a fatigue failure
336:) for steels are one half the ultimate tensile strength, to a maximum of 290 MPa (42 ksi). For iron, aluminium, and copper alloys, 1086: 1009: 262:, for the stress below which failure never occurs, even for an indefinitely large number of loading cycles, as in the case of 228:, the stress value below which the material will withstand many load cycles, but implies that it is similar to fatigue limit. 1368: 1343: 1318: 1293: 1265: 1232: 1165: 1138: 1067: 1466: 73:
do not and will eventually fail even from small stress amplitudes. Where materials do not have a distinct limit the term
668: 1570: 1560: 372:), a polymer may operate indefinitely without crack growth when loads are kept below the intrinsic strength. 515:
Besides taking into account the surface finish, it is also important to consider the size gradient factor
1565: 1494: 542:. When it comes to bending and torsional loading, the gradient factor is also taken into consideration. 789: 457: 53:
level below which an infinite number of loading cycles can be applied to a material without causing
944: 909: 874: 625: 555: 1257: 1059: 375:
The concept of fatigue limit, and thus standards based on a fatigue limit such as ISO 281:2007
108: 1224: 1090: 839: 590: 1249: 1216: 425: 1420: 1020: 752: 723: 518: 398: 339: 312: 277: 238: 200: 173: 142: 8: 507:
Where factor a and exponent b present in the equation are related to the surface finish.
1424: 1436: 1155: 1052: 999: 98: 54: 50: 1540: 1440: 1364: 1339: 1314: 1289: 1261: 1250: 1228: 1217: 1161: 1134: 1063: 1536: 1428: 1393: 1197: 1515: 987: 364:
specimens (and thus for many practical design situations) is significantly lower.
1157:
The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method
376: 1413:
Proceedings of the Royal Society of London A: Mathematical and Physical Sciences
1527:
Bathias, C. (1999). "There is no infinite fatigue life in metallic materials".
1397: 1047: 369: 1411:
Lake, G. J.; A. G. Thomas (1967). "The strength of highly elastic materials".
1384:
Lake, G. J.; P. B. Lindley (1965). "The mechanical fatigue limit for rubber".
1201: 1554: 1432: 1126: 85:. For polymeric materials, the fatigue limit is also commonly known as the 66: 1456:"In search of a fatigue limit: A critique of ISO standard 281:2007" 452:, of the material and the surface finish of the machine component. 62: 58: 1529:
Fatigue & Fracture of Engineering Materials & Structures
379:
lifetime prediction, remains controversial, at least in the US.
23:
Representative curves of applied stress vs number of cycles for
70: 197:, as "the limiting value of stress at which failure occurs as 263: 19: 1188:
Bhowmick, A. K. (1988). "Threshold fracture of elastomers".
1154:
Robertson, C.G.; Stocek, R.; Mars, W.V. (27 November 2020).
1115:(Wiley International ed.). John Wiley & Sons, Inc. 1046: 784:
We can calculate the reliability factor using the equation
1484:"ISO 281:2007 bearing life standard – and the answer is?" 1283: 139:, as "the value of stress at which failure occurs after 1313:(5th ed.). Pearson Education, Inc. p. 110. 947: 912: 877: 842: 792: 755: 726: 671: 628: 593: 558: 521: 460: 428: 401: 382: 342: 315: 280: 241: 203: 176: 145: 111: 65:
alloys have a distinct limit, whereas others such as
1223:(2nd ed.). John Wiley & Sons, Inc. p.  1153: 1051: 966: 931: 896: 861: 827: 768: 739: 711: 647: 612: 577: 534: 497: 444: 414: 355: 328: 293: 254: 216: 189: 158: 131: 1453: 1383: 1338:(2nd ed.). Printice-Hall, Inc. p. 365. 1552: 1410: 16:Maximum stress that won't cause fatigue failure 1447: 1284:Askeland, Donald R.; Pradeep P. Phule (2003). 1113:Nature and Properties of Engineering Materials 1252:Advanced Strength and Applied Stress Analysis 747:is tensile strength at operating temperature 1476: 712:{\displaystyle k_{T}={\frac {S_{o}}{S_{r}}}} 550:Load modifying factor can be identified as. 1377: 1256:(2nd ed.). McGraw-Hill, Inc. pp.  1110: 1014:, a diagram by British mechanical engineer 422:, is related to both the tensile strength, 1404: 1288:(4th ed.). Brooks/Cole. p. 248. 1279: 1277: 224:becomes very large". ASTM does not define 1510:W. Schutz (1996). A history of fatigue. 1308: 1302: 1286:The Science and Engineering of Materials 1214: 1187: 1081: 1079: 1058:(2 ed.). McGraw-Hill, Inc. p.  776:is tensile strength at room temperature 663:The temperature factor is calculated as 18: 1526: 1520: 1333: 1327: 1274: 1247: 1208: 1119: 1042: 1040: 1038: 30:steel (showing an endurance limit) and 1553: 1504: 1491:Tribology & Lubrication Technology 1463:Tribology & Lubrication Technology 1358: 1352: 1241: 1125: 1076: 779: 658: 1035: 1361:Intermediate Mechanics of Materials 13: 1493:: 34–43. July 2010. Archived from 1386:Journal of Applied Polymer Science 1050:; E. Russell Johnston Jr. (1992). 510: 383:Modifying factors of fatigue limit 37:aluminium (showing no such limit). 14: 1582: 1454:Erwin V. Zaretsky (August 2010). 828:{\displaystyle k_{R}=1-0.08Z_{a}} 498:{\displaystyle k_{S}=aS_{ut}^{b}} 390: 304: 1541:10.1046/j.1460-2695.1999.00183.x 1336:Mechanical Behavior of Materials 1512:Engineering Fracture Mechanics 1181: 1147: 1133:. Cambridge University Press. 1104: 1005:Smith fatigue strength diagram 545: 395:The surface modifying factor, 92: 1: 1087:"Metal Fatigue and Endurance" 1028: 309:Typical values of the limit ( 57:failure. Some metals such as 1248:Budynas, Richard G. (1999). 1219:Metal Fatigue in Engineering 1160:. Springer. pp. 57–83. 7: 1363:. McGraw-Hill. p. 65. 1334:Dowling, Norman E. (1998). 1215:Stephens, Ralph I. (2001). 993: 967:{\displaystyle z_{a}=2.326} 932:{\displaystyle z_{a}=1.645} 897:{\displaystyle z_{a}=1.288} 10: 1587: 1398:10.1002/app.1965.070090405 986:was introduced in 1870 by 977: 648:{\displaystyle k_{L}=0.59} 578:{\displaystyle k_{L}=0.85} 81:is used and is defined as 1202:10.1080/15583728808085379 132:{\displaystyle S_{N_{f}}} 1309:Hibbeler, R. C. (2003). 1111:Jastrzebski, D. (1959). 1465:: 30–40. Archived from 862:{\displaystyle z_{a}=0} 613:{\displaystyle k_{L}=1} 1433:10.1098/rspa.1967.0160 1359:Barber, J. R. (2001). 1311:Mechanics of Materials 1054:Mechanics of Materials 968: 933: 898: 863: 829: 770: 741: 713: 649: 614: 579: 536: 499: 446: 445:{\displaystyle S_{ut}} 416: 357: 330: 295: 256: 218: 191: 160: 133: 38: 1571:Materials degradation 969: 934: 899: 864: 830: 771: 769:{\displaystyle S_{r}} 742: 740:{\displaystyle S_{o}} 714: 650: 615: 580: 537: 535:{\displaystyle k_{G}} 500: 447: 417: 415:{\displaystyle k_{S}} 358: 356:{\displaystyle S_{e}} 331: 329:{\displaystyle S_{e}} 296: 294:{\displaystyle S_{f}} 257: 255:{\displaystyle S_{e}} 219: 217:{\displaystyle N_{f}} 192: 190:{\displaystyle S_{f}} 161: 159:{\displaystyle N_{f}} 134: 22: 1561:Elasticity (physics) 1131:Fatigue of Materials 974:for 99% reliability 945: 939:for 95% reliability 910: 904:for 90% reliability 875: 869:for 50% reliability 840: 790: 753: 724: 669: 626: 591: 556: 519: 458: 426: 399: 340: 313: 278: 239: 201: 174: 143: 109: 1425:1967RSPSA.300..108L 494: 1566:Fracture mechanics 1048:Beer, Ferdinand P. 1000:Fatigue (material) 964: 929: 894: 859: 825: 780:Reliability factor 766: 737: 709: 659:Temperature factor 645: 610: 575: 532: 495: 477: 442: 412: 353: 326: 291: 252: 214: 187: 156: 129: 87:intrinsic strength 79:endurance strength 39: 1419:(1460): 108–119. 1370:978-0-07-232519-5 1345:978-0-13-905720-5 1320:978-0-13-008181-0 1295:978-0-534-95373-7 1267:978-0-07-008985-3 1234:978-0-471-51059-8 1167:978-3-030-68920-9 1140:978-0-521-57046-6 1069:978-0-07-837340-4 1016:James Henry Smith 707: 655:for pure torsion 231:Some authors use 1578: 1545: 1544: 1524: 1518: 1508: 1502: 1501: 1499: 1488: 1480: 1474: 1473: 1471: 1460: 1451: 1445: 1444: 1408: 1402: 1401: 1392:(4): 1233–1251. 1381: 1375: 1374: 1356: 1350: 1349: 1331: 1325: 1324: 1306: 1300: 1299: 1281: 1272: 1271: 1255: 1245: 1239: 1238: 1222: 1212: 1206: 1205: 1196:(3–4): 339–370. 1185: 1179: 1178: 1176: 1174: 1151: 1145: 1144: 1123: 1117: 1116: 1108: 1102: 1101: 1099: 1098: 1089:. Archived from 1083: 1074: 1073: 1057: 1044: 1024: 1013: 973: 971: 970: 965: 957: 956: 938: 936: 935: 930: 922: 921: 903: 901: 900: 895: 887: 886: 868: 866: 865: 860: 852: 851: 834: 832: 831: 826: 824: 823: 802: 801: 775: 773: 772: 767: 765: 764: 746: 744: 743: 738: 736: 735: 718: 716: 715: 710: 708: 706: 705: 696: 695: 686: 681: 680: 654: 652: 651: 646: 638: 637: 619: 617: 616: 611: 603: 602: 584: 582: 581: 576: 568: 567: 541: 539: 538: 533: 531: 530: 504: 502: 501: 496: 493: 488: 470: 469: 451: 449: 448: 443: 441: 440: 421: 419: 418: 413: 411: 410: 362: 360: 359: 354: 352: 351: 335: 333: 332: 327: 325: 324: 300: 298: 297: 292: 290: 289: 272:fatigue strength 261: 259: 258: 253: 251: 250: 223: 221: 220: 215: 213: 212: 196: 194: 193: 188: 186: 185: 165: 163: 162: 157: 155: 154: 138: 136: 135: 130: 128: 127: 126: 125: 103:fatigue strength 75:fatigue strength 36: 33: 29: 26: 1586: 1585: 1581: 1580: 1579: 1577: 1576: 1575: 1551: 1550: 1549: 1548: 1525: 1521: 1509: 1505: 1497: 1486: 1482: 1481: 1477: 1469: 1458: 1452: 1448: 1409: 1405: 1382: 1378: 1371: 1357: 1353: 1346: 1332: 1328: 1321: 1307: 1303: 1296: 1282: 1275: 1268: 1246: 1242: 1235: 1213: 1209: 1190:Polymer Reviews 1186: 1182: 1172: 1170: 1168: 1152: 1148: 1141: 1124: 1120: 1109: 1105: 1096: 1094: 1085: 1084: 1077: 1070: 1045: 1036: 1031: 1018: 1007: 996: 984:endurance limit 982:The concept of 980: 952: 948: 946: 943: 942: 917: 913: 911: 908: 907: 882: 878: 876: 873: 872: 847: 843: 841: 838: 837: 819: 815: 797: 793: 791: 788: 787: 782: 760: 756: 754: 751: 750: 731: 727: 725: 722: 721: 701: 697: 691: 687: 685: 676: 672: 670: 667: 666: 661: 633: 629: 627: 624: 623: 598: 594: 592: 589: 588: 563: 559: 557: 554: 553: 548: 526: 522: 520: 517: 516: 513: 511:Gradient factor 489: 481: 465: 461: 459: 456: 455: 433: 429: 427: 424: 423: 406: 402: 400: 397: 396: 393: 385: 377:rolling bearing 347: 343: 341: 338: 337: 320: 316: 314: 311: 310: 307: 285: 281: 279: 276: 275: 246: 242: 240: 237: 236: 233:endurance limit 226:endurance limit 208: 204: 202: 199: 198: 181: 177: 175: 172: 171: 150: 146: 144: 141: 140: 121: 117: 116: 112: 110: 107: 106: 95: 47:endurance limit 34: 31: 27: 24: 17: 12: 11: 5: 1584: 1574: 1573: 1568: 1563: 1547: 1546: 1535:(7): 559–565. 1519: 1503: 1500:on 2013-10-24. 1475: 1472:on 2015-05-18. 1446: 1403: 1376: 1369: 1351: 1344: 1326: 1319: 1301: 1294: 1273: 1266: 1240: 1233: 1207: 1180: 1166: 1146: 1139: 1118: 1103: 1075: 1068: 1033: 1032: 1030: 1027: 1026: 1025: 1002: 995: 992: 979: 976: 963: 960: 955: 951: 928: 925: 920: 916: 893: 890: 885: 881: 858: 855: 850: 846: 822: 818: 814: 811: 808: 805: 800: 796: 781: 778: 763: 759: 734: 730: 704: 700: 694: 690: 684: 679: 675: 660: 657: 644: 641: 636: 632: 609: 606: 601: 597: 574: 571: 566: 562: 547: 544: 529: 525: 512: 509: 492: 487: 484: 480: 476: 473: 468: 464: 439: 436: 432: 409: 405: 392: 391:Surface factor 389: 384: 381: 350: 346: 323: 319: 306: 305:Typical values 303: 288: 284: 249: 245: 211: 207: 184: 180: 153: 149: 124: 120: 115: 94: 91: 15: 9: 6: 4: 3: 2: 1583: 1572: 1569: 1567: 1564: 1562: 1559: 1558: 1556: 1542: 1538: 1534: 1530: 1523: 1517: 1514:54: 263-300. 1513: 1507: 1496: 1492: 1485: 1479: 1468: 1464: 1457: 1450: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1407: 1399: 1395: 1391: 1387: 1380: 1372: 1366: 1362: 1355: 1347: 1341: 1337: 1330: 1322: 1316: 1312: 1305: 1297: 1291: 1287: 1280: 1278: 1269: 1263: 1259: 1254: 1253: 1244: 1236: 1230: 1226: 1221: 1220: 1211: 1203: 1199: 1195: 1191: 1184: 1169: 1163: 1159: 1158: 1150: 1142: 1136: 1132: 1128: 1122: 1114: 1107: 1093:on 2012-04-15 1092: 1088: 1082: 1080: 1071: 1065: 1061: 1056: 1055: 1049: 1043: 1041: 1039: 1034: 1022: 1017: 1011: 1006: 1003: 1001: 998: 997: 991: 989: 988:August Wöhler 985: 975: 961: 958: 953: 949: 940: 926: 923: 918: 914: 905: 891: 888: 883: 879: 870: 856: 853: 848: 844: 835: 820: 816: 812: 809: 806: 803: 798: 794: 785: 777: 761: 757: 748: 732: 728: 719: 702: 698: 692: 688: 682: 677: 673: 664: 656: 642: 639: 634: 630: 621: 607: 604: 599: 595: 586: 572: 569: 564: 560: 551: 543: 527: 523: 508: 505: 490: 485: 482: 478: 474: 471: 466: 462: 453: 437: 434: 430: 407: 403: 388: 380: 378: 373: 371: 365: 348: 344: 321: 317: 302: 286: 282: 273: 269: 268:fatigue limit 265: 247: 243: 234: 229: 227: 209: 205: 182: 178: 169: 168:fatigue limit 166:cycles", and 151: 147: 122: 118: 113: 104: 100: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 43:fatigue limit 21: 1532: 1528: 1522: 1511: 1506: 1495:the original 1490: 1478: 1467:the original 1462: 1449: 1416: 1412: 1406: 1389: 1385: 1379: 1360: 1354: 1335: 1329: 1310: 1304: 1285: 1251: 1243: 1218: 1210: 1193: 1189: 1183: 1171:. Retrieved 1156: 1149: 1130: 1121: 1112: 1106: 1095:. Retrieved 1091:the original 1053: 983: 981: 941: 906: 871: 836: 786: 783: 749: 720: 665: 662: 622: 620:for bending 587: 552: 549: 514: 506: 454: 394: 386: 374: 370:ozone attack 366: 308: 271: 267: 232: 230: 225: 167: 102: 96: 86: 82: 78: 74: 46: 42: 40: 1019: [ 1008: [ 546:Load factor 93:Definitions 61:alloys and 1555:Categories 1127:Suresh, S. 1097:2008-04-18 1029:References 585:for axial 1441:138395281 810:− 67:aluminium 1129:(2004). 994:See also 101:defines 63:titanium 1421:Bibcode 1173:24 July 978:History 59:ferrous 55:fatigue 49:is the 1439:  1367:  1342:  1317:  1292:  1264:  1260:–533. 1231:  1164:  1137:  1066:  266:; and 71:copper 51:stress 35:  32:  28:  25:  1498:(PDF) 1487:(PDF) 1470:(PDF) 1459:(PDF) 1437:S2CID 1023:] 1012:] 962:2.326 927:1.645 892:1.288 264:steel 1365:ISBN 1340:ISBN 1315:ISBN 1290:ISBN 1262:ISBN 1229:ISBN 1175:2024 1162:ISBN 1135:ISBN 1064:ISBN 813:0.08 643:0.59 573:0.85 99:ASTM 97:The 69:and 41:The 1537:doi 1516:DOI 1429:doi 1417:300 1394:doi 1258:532 1198:doi 270:or 89:. 77:or 45:or 1557:: 1533:22 1531:. 1489:. 1461:. 1435:. 1427:. 1415:. 1388:. 1276:^ 1227:. 1225:69 1194:28 1192:. 1078:^ 1062:. 1060:51 1037:^ 1021:de 1010:de 274:, 235:, 170:, 105:, 1543:. 1539:: 1443:. 1431:: 1423:: 1400:. 1396:: 1390:9 1373:. 1348:. 1323:. 1298:. 1270:. 1237:. 1204:. 1200:: 1177:. 1143:. 1100:. 1072:. 959:= 954:a 950:z 924:= 919:a 915:z 889:= 884:a 880:z 857:0 854:= 849:a 845:z 821:a 817:Z 807:1 804:= 799:R 795:k 762:r 758:S 733:o 729:S 703:r 699:S 693:o 689:S 683:= 678:T 674:k 640:= 635:L 631:k 608:1 605:= 600:L 596:k 570:= 565:L 561:k 528:G 524:k 491:b 486:t 483:u 479:S 475:a 472:= 467:S 463:k 438:t 435:u 431:S 408:S 404:k 349:e 345:S 322:e 318:S 287:f 283:S 248:e 244:S 210:f 206:N 183:f 179:S 152:f 148:N 123:f 119:N 114:S

Index


stress
fatigue
ferrous
titanium
aluminium
copper
ASTM
steel
ozone attack
rolling bearing
August Wöhler
Fatigue (material)
Smith fatigue strength diagram
de
James Henry Smith
de



Beer, Ferdinand P.
Mechanics of Materials
51
ISBN
978-0-07-837340-4


"Metal Fatigue and Endurance"
the original
Suresh, S.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.