Knowledge

Quadratic residue code

Source đź“ť

1683:
of the quadratic residue codes with the code length up to 113. However, decoding of long binary quadratic residue codes and non-binary quadratic residue codes continue to be a challenge. Currently, decoding quadratic residue codes is still an active research area in the theory of error-correcting
1637:
Since late 1980, there are many algebraic decoding algorithms were developed for correcting errors on quadratic residue codes. These algorithms can achieve the (true) error-correcting capacity
486: 1387: 960: 1681: 1159: 579: 1472: 1588: 1001: 850: 1627: 1514: 1748:
Y. Li, Y. Duan, H. C. Chang, H. Liu, T. K. Truong, Using the difference of syndromes to decode quadratic residue codes, IEEE Trans. Inf. Theory 64(7), 5179-5190 (2018)
1192: 783: 147: 1082: 803: 599: 214: 743: 651: 309: 249: 182: 115: 80: 1416: 1324: 1027: 1215: 1534: 1448: 1295: 1275: 1255: 1235: 1102: 1047: 890: 870: 823: 711: 691: 671: 619: 529: 509: 413: 389: 369: 349: 329: 277: 1730:
Reed, I.S., Truong, T.K., Chen, X., Yin, X., The algebraic decoding of the (41, 21, 9) quadratic residue code. IEEE Trans. Inf. Theory 38(3), 974–986 (1992)
1724:
M. Elia, Algebraic decoding of the (23,12,7) Golay code, IEEE Transactions on Information Theory, Volume: 33, Issue: 1, pg. 150-151, January 1987.
1727:
Reed, I.S., Yin, X., Truong, T.K., Algebraic decoding of the (32, 16, 8) quadratic residue code. IEEE Trans. Inf. Theory 36(4), 876–880 (1990)
1742:
He, R., Reed, I.S., Truong, T.K., Chen, X., Decoding the (47, 24, 11) quadratic residue code. IEEE Trans. Inf. Theory 47(3), 1181–1186 (2001)
1736:
Chen, X., Reed, I.S., Truong, T.K., Decoding the (73, 37, 13) quadratic-residue code. IEE Proc., Comput. Digit. Tech. 141(5), 253–258 (1994)
1733:
Humphreys, J.F. Algebraic decoding of the ternary (13, 7, 5) quadratic-residue code. IEEE Trans. Inf. Theory 38(3), 1122–1125 (May 1992)
17: 1739:
Higgs, R.J., Humphreys, J.F.: Decoding the ternary (23, 12, 8) quadratic-residue code. IEE Proc., Comm. 142(3), 129–134 (June 1995)
421: 1329: 1536:) an extended quadratic residue code is self-dual; otherwise it is equivalent but not equal to its dual. By the 901: 1640: 1548:), the automorphism group of an extended quadratic residue code has a subgroup which is isomorphic to either 1107: 534: 1761: 1453: 1551: 968: 828: 1766: 1593: 1493: 1427: 1164: 748: 120: 1052: 788: 584: 187: 716: 624: 282: 222: 155: 88: 53: 1392: 1300: 8: 1006: 1197: 1519: 1433: 1280: 1260: 1240: 1220: 1087: 1032: 875: 855: 808: 696: 676: 656: 604: 514: 494: 398: 374: 354: 334: 314: 262: 216: 392: 149: 1713: 852:
either results in the same code or an equivalent code, according to whether or not
1541: 1755: 1545: 1701: 82: 1486:
Adding an overall parity-check digit to a quadratic residue code gives an
39: 1717: 1326:
also generates a quadratic residue code; more precisely the ideal of
28: 1697:, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. 895:
An alternative construction avoids roots of unity. Define
415:. Its generator polynomial as a cyclic code is given by 1643: 1596: 1554: 1522: 1496: 1456: 1436: 1395: 1332: 1303: 1283: 1263: 1243: 1223: 1200: 1167: 1110: 1090: 1055: 1035: 1009: 971: 904: 878: 858: 831: 811: 791: 751: 719: 699: 679: 659: 627: 607: 587: 537: 517: 497: 424: 401: 377: 357: 337: 317: 285: 265: 225: 190: 158: 123: 91: 56: 621:th root of unity in some finite extension field of 1675: 1621: 1582: 1528: 1508: 1466: 1442: 1410: 1381: 1318: 1289: 1269: 1249: 1229: 1209: 1186: 1153: 1096: 1076: 1041: 1021: 995: 954: 884: 864: 844: 817: 797: 777: 737: 705: 685: 665: 645: 613: 593: 573: 523: 503: 481:{\displaystyle f(x)=\prod _{j\in Q}(x-\zeta ^{j})} 480: 407: 383: 363: 343: 323: 303: 271: 243: 208: 176: 141: 109: 74: 1712:(5), Piscataway, NJ, USA: IEEE Press: 1269–1273, 1753: 1704:(September 2006), "The Gleason-Prange theorem", 50:Examples of quadratic residue codes include the 1382:{\displaystyle F_{l}/\langle X^{p}-1\rangle } 1670: 1644: 1376: 1357: 568: 538: 259:There is a quadratic residue code of length 1418:corresponds to the quadratic residue code. 955:{\displaystyle g(x)=c+\sum _{j\in Q}x^{j}} 1693:F. J. MacWilliams and N. J. A. Sloane, 1676:{\displaystyle \lfloor (d-1)/2\rfloor } 1154:{\displaystyle c=(1+{\sqrt {p^{*}}})/2} 14: 1754: 1700: 1430:of a quadratic residue code of length 1695:The Theory of Error-Correcting Codes 511:is the set of quadratic residues of 574:{\displaystyle \{1,2,\ldots ,p-1\}} 24: 1632: 25: 1778: 693:ensures that the coefficients of 1481: 254: 1488:extended quadratic residue code 745:. The dimension of the code is 1659: 1647: 1616: 1610: 1577: 1571: 1405: 1399: 1349: 1343: 1313: 1307: 1140: 1117: 1065: 1059: 990: 984: 914: 908: 764: 752: 732: 726: 640: 634: 475: 456: 434: 428: 298: 292: 238: 232: 203: 191: 171: 165: 136: 124: 104: 98: 69: 57: 13: 1: 1687: 7: 1467:{\displaystyle {\sqrt {p}}} 45: 10: 1783: 1583:{\displaystyle PSL_{2}(p)} 996:{\displaystyle c\in GF(l)} 872:is a quadratic residue of 845:{\displaystyle \zeta ^{r}} 673:is a quadratic residue of 26: 1622:{\displaystyle SL_{2}(p)} 1509:{\displaystyle p\equiv 3} 1421: 27:Not to be confused with 1706:IEEE Trans. Inf. Theory 1187:{\displaystyle p^{*}=p} 778:{\displaystyle (p+1)/2} 142:{\displaystyle (23,12)} 1677: 1623: 1584: 1538:Gleason–Prange theorem 1530: 1510: 1468: 1444: 1412: 1383: 1320: 1291: 1271: 1251: 1231: 1211: 1188: 1155: 1098: 1078: 1077:{\displaystyle g(1)=1} 1043: 1023: 997: 956: 886: 866: 846: 819: 799: 798:{\displaystyle \zeta } 779: 739: 707: 687: 667: 647: 615: 595: 594:{\displaystyle \zeta } 575: 525: 505: 482: 409: 385: 365: 345: 325: 305: 279:over the finite field 273: 245: 210: 209:{\displaystyle (11,6)} 178: 143: 111: 76: 36:quadratic residue code 18:Gleason–Prange theorem 1678: 1624: 1585: 1531: 1511: 1469: 1445: 1413: 1384: 1321: 1292: 1272: 1252: 1232: 1217:according to whether 1212: 1189: 1156: 1099: 1079: 1044: 1024: 998: 957: 887: 867: 847: 820: 805:by another primitive 800: 780: 740: 738:{\displaystyle GF(l)} 708: 688: 668: 653:. The condition that 648: 646:{\displaystyle GF(l)} 616: 596: 576: 526: 506: 483: 410: 386: 366: 346: 326: 306: 304:{\displaystyle GF(l)} 274: 246: 244:{\displaystyle GF(3)} 211: 179: 177:{\displaystyle GF(2)} 144: 112: 110:{\displaystyle GF(2)} 77: 75:{\displaystyle (7,4)} 1641: 1594: 1552: 1520: 1494: 1454: 1434: 1411:{\displaystyle g(x)} 1393: 1330: 1319:{\displaystyle g(x)} 1301: 1281: 1261: 1241: 1221: 1198: 1165: 1108: 1088: 1053: 1033: 1007: 969: 902: 876: 856: 829: 809: 789: 749: 717: 697: 677: 657: 625: 605: 585: 535: 515: 495: 422: 399: 375: 355: 335: 315: 283: 263: 223: 188: 156: 121: 89: 54: 1022:{\displaystyle l=2} 1673: 1619: 1580: 1526: 1506: 1464: 1440: 1408: 1379: 1316: 1287: 1267: 1247: 1227: 1210:{\displaystyle -p} 1207: 1184: 1151: 1094: 1074: 1039: 1019: 993: 952: 941: 882: 862: 842: 825:-th root of unity 815: 795: 775: 735: 703: 683: 663: 643: 611: 591: 571: 521: 501: 478: 455: 405: 381: 361: 341: 321: 301: 269: 241: 217:ternary Golay code 206: 174: 139: 107: 72: 1762:Quadratic residue 1718:10.1109/18.133245 1529:{\displaystyle 4} 1476:square root bound 1462: 1443:{\displaystyle p} 1290:{\displaystyle 4} 1270:{\displaystyle 3} 1250:{\displaystyle 1} 1230:{\displaystyle p} 1138: 1097:{\displaystyle l} 1042:{\displaystyle c} 926: 885:{\displaystyle p} 865:{\displaystyle r} 818:{\displaystyle p} 706:{\displaystyle f} 686:{\displaystyle p} 666:{\displaystyle l} 614:{\displaystyle p} 524:{\displaystyle p} 504:{\displaystyle Q} 440: 408:{\displaystyle p} 393:quadratic residue 384:{\displaystyle l} 364:{\displaystyle p} 344:{\displaystyle l} 324:{\displaystyle p} 272:{\displaystyle p} 150:binary Golay code 16:(Redirected from 1774: 1720: 1682: 1680: 1679: 1674: 1666: 1628: 1626: 1625: 1620: 1609: 1608: 1589: 1587: 1586: 1581: 1570: 1569: 1535: 1533: 1532: 1527: 1515: 1513: 1512: 1507: 1473: 1471: 1470: 1465: 1463: 1458: 1450:is greater than 1449: 1447: 1446: 1441: 1417: 1415: 1414: 1409: 1388: 1386: 1385: 1380: 1369: 1368: 1356: 1342: 1341: 1325: 1323: 1322: 1317: 1296: 1294: 1293: 1288: 1276: 1274: 1273: 1268: 1256: 1254: 1253: 1248: 1237:is congruent to 1236: 1234: 1233: 1228: 1216: 1214: 1213: 1208: 1193: 1191: 1190: 1185: 1177: 1176: 1160: 1158: 1157: 1152: 1147: 1139: 1137: 1136: 1127: 1104:is odd, choose 1103: 1101: 1100: 1095: 1083: 1081: 1080: 1075: 1048: 1046: 1045: 1040: 1028: 1026: 1025: 1020: 1002: 1000: 999: 994: 961: 959: 958: 953: 951: 950: 940: 891: 889: 888: 883: 871: 869: 868: 863: 851: 849: 848: 843: 841: 840: 824: 822: 821: 816: 804: 802: 801: 796: 784: 782: 781: 776: 771: 744: 742: 741: 736: 712: 710: 709: 704: 692: 690: 689: 684: 672: 670: 669: 664: 652: 650: 649: 644: 620: 618: 617: 612: 600: 598: 597: 592: 580: 578: 577: 572: 530: 528: 527: 522: 510: 508: 507: 502: 487: 485: 484: 479: 474: 473: 454: 414: 412: 411: 406: 390: 388: 387: 382: 370: 368: 367: 362: 350: 348: 347: 342: 330: 328: 327: 322: 310: 308: 307: 302: 278: 276: 275: 270: 250: 248: 247: 242: 215: 213: 212: 207: 183: 181: 180: 175: 148: 146: 145: 140: 116: 114: 113: 108: 81: 79: 78: 73: 21: 1782: 1781: 1777: 1776: 1775: 1773: 1772: 1771: 1752: 1751: 1690: 1662: 1642: 1639: 1638: 1635: 1633:Decoding Method 1604: 1600: 1595: 1592: 1591: 1565: 1561: 1553: 1550: 1549: 1521: 1518: 1517: 1495: 1492: 1491: 1484: 1457: 1455: 1452: 1451: 1435: 1432: 1431: 1424: 1394: 1391: 1390: 1364: 1360: 1352: 1337: 1333: 1331: 1328: 1327: 1302: 1299: 1298: 1282: 1279: 1278: 1262: 1259: 1258: 1242: 1239: 1238: 1222: 1219: 1218: 1199: 1196: 1195: 1172: 1168: 1166: 1163: 1162: 1143: 1132: 1128: 1126: 1109: 1106: 1105: 1089: 1086: 1085: 1054: 1051: 1050: 1049:to ensure that 1034: 1031: 1030: 1008: 1005: 1004: 970: 967: 966: 965:for a suitable 946: 942: 930: 903: 900: 899: 877: 874: 873: 857: 854: 853: 836: 832: 830: 827: 826: 810: 807: 806: 790: 787: 786: 767: 750: 747: 746: 718: 715: 714: 698: 695: 694: 678: 675: 674: 658: 655: 654: 626: 623: 622: 606: 603: 602: 601:is a primitive 586: 583: 582: 536: 533: 532: 516: 513: 512: 496: 493: 492: 469: 465: 444: 423: 420: 419: 400: 397: 396: 376: 373: 372: 356: 353: 352: 336: 333: 332: 316: 313: 312: 284: 281: 280: 264: 261: 260: 257: 224: 221: 220: 189: 186: 185: 157: 154: 153: 122: 119: 118: 90: 87: 86: 55: 52: 51: 48: 32: 23: 22: 15: 12: 11: 5: 1780: 1770: 1769: 1764: 1750: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1698: 1689: 1686: 1672: 1669: 1665: 1661: 1658: 1655: 1652: 1649: 1646: 1634: 1631: 1618: 1615: 1612: 1607: 1603: 1599: 1579: 1576: 1573: 1568: 1564: 1560: 1557: 1542:Andrew Gleason 1525: 1505: 1502: 1499: 1483: 1480: 1474:; this is the 1461: 1439: 1428:minimum weight 1423: 1420: 1407: 1404: 1401: 1398: 1378: 1375: 1372: 1367: 1363: 1359: 1355: 1351: 1348: 1345: 1340: 1336: 1315: 1312: 1309: 1306: 1286: 1266: 1246: 1226: 1206: 1203: 1183: 1180: 1175: 1171: 1150: 1146: 1142: 1135: 1131: 1125: 1122: 1119: 1116: 1113: 1093: 1073: 1070: 1067: 1064: 1061: 1058: 1038: 1018: 1015: 1012: 992: 989: 986: 983: 980: 977: 974: 963: 962: 949: 945: 939: 936: 933: 929: 925: 922: 919: 916: 913: 910: 907: 881: 861: 839: 835: 814: 794: 774: 770: 766: 763: 760: 757: 754: 734: 731: 728: 725: 722: 702: 682: 662: 642: 639: 636: 633: 630: 610: 590: 570: 567: 564: 561: 558: 555: 552: 549: 546: 543: 540: 520: 500: 489: 488: 477: 472: 468: 464: 461: 458: 453: 450: 447: 443: 439: 436: 433: 430: 427: 404: 380: 360: 340: 320: 300: 297: 294: 291: 288: 268: 256: 253: 240: 237: 234: 231: 228: 205: 202: 199: 196: 193: 173: 170: 167: 164: 161: 138: 135: 132: 129: 126: 106: 103: 100: 97: 94: 71: 68: 65: 62: 59: 47: 44: 9: 6: 4: 3: 2: 1779: 1768: 1767:Coding theory 1765: 1763: 1760: 1759: 1757: 1747: 1744: 1741: 1738: 1735: 1732: 1729: 1726: 1723: 1719: 1715: 1711: 1707: 1703: 1702:Blahut, R. E. 1699: 1696: 1692: 1691: 1685: 1667: 1663: 1656: 1653: 1650: 1630: 1613: 1605: 1601: 1597: 1574: 1566: 1562: 1558: 1555: 1547: 1546:Eugene Prange 1543: 1539: 1523: 1503: 1500: 1497: 1489: 1482:Extended code 1479: 1477: 1459: 1437: 1429: 1419: 1402: 1396: 1389:generated by 1373: 1370: 1365: 1361: 1353: 1346: 1338: 1334: 1310: 1304: 1284: 1264: 1244: 1224: 1204: 1201: 1181: 1178: 1173: 1169: 1148: 1144: 1133: 1129: 1123: 1120: 1114: 1111: 1091: 1071: 1068: 1062: 1056: 1036: 1016: 1013: 1010: 987: 981: 978: 975: 972: 947: 943: 937: 934: 931: 927: 923: 920: 917: 911: 905: 898: 897: 896: 893: 879: 859: 837: 833: 812: 792: 772: 768: 761: 758: 755: 729: 723: 720: 700: 680: 660: 637: 631: 628: 608: 588: 565: 562: 559: 556: 553: 550: 547: 544: 541: 518: 498: 470: 466: 462: 459: 451: 448: 445: 441: 437: 431: 425: 418: 417: 416: 402: 394: 378: 371:is odd, and 358: 338: 318: 295: 289: 286: 266: 255:Constructions 252: 235: 229: 226: 218: 200: 197: 194: 168: 162: 159: 151: 133: 130: 127: 101: 95: 92: 84: 66: 63: 60: 43: 41: 38:is a type of 37: 30: 19: 1709: 1705: 1694: 1636: 1537: 1487: 1485: 1475: 1425: 964: 894: 785:. Replacing 490: 351:are primes, 258: 83:Hamming code 49: 35: 33: 1540:(named for 531:in the set 40:cyclic code 1756:Categories 1688:References 1671:⌋ 1654:− 1645:⌊ 1501:≡ 1377:⟩ 1371:− 1358:⟨ 1202:− 1174:∗ 1134:∗ 976:∈ 935:∈ 928:∑ 834:ζ 793:ζ 589:ζ 563:− 554:… 467:ζ 463:− 449:∈ 442:∏ 311:whenever 1684:code. 1161:, where 184:and the 46:Examples 1490:. When 1297:. Then 1277:modulo 1029:choose 1003:. When 713:lie in 395:modulo 29:QR Code 1422:Weight 491:where 117:, the 1516:(mod 1084:. If 391:is a 219:over 152:over 85:over 1544:and 1426:The 581:and 331:and 1714:doi 1590:or 1257:or 1194:or 1758:: 1745:…. 1710:37 1708:, 1629:. 1478:. 892:. 251:. 195:11 134:12 128:23 42:. 34:A 1721:. 1716:: 1668:2 1664:/ 1660:) 1657:1 1651:d 1648:( 1617:) 1614:p 1611:( 1606:2 1602:L 1598:S 1578:) 1575:p 1572:( 1567:2 1563:L 1559:S 1556:P 1524:4 1504:3 1498:p 1460:p 1438:p 1406:) 1403:x 1400:( 1397:g 1374:1 1366:p 1362:X 1354:/ 1350:] 1347:X 1344:[ 1339:l 1335:F 1314:) 1311:x 1308:( 1305:g 1285:4 1265:3 1245:1 1225:p 1205:p 1182:p 1179:= 1170:p 1149:2 1145:/ 1141:) 1130:p 1124:+ 1121:1 1118:( 1115:= 1112:c 1092:l 1072:1 1069:= 1066:) 1063:1 1060:( 1057:g 1037:c 1017:2 1014:= 1011:l 991:) 988:l 985:( 982:F 979:G 973:c 948:j 944:x 938:Q 932:j 924:+ 921:c 918:= 915:) 912:x 909:( 906:g 880:p 860:r 838:r 813:p 773:2 769:/ 765:) 762:1 759:+ 756:p 753:( 733:) 730:l 727:( 724:F 721:G 701:f 681:p 661:l 641:) 638:l 635:( 632:F 629:G 609:p 569:} 566:1 560:p 557:, 551:, 548:2 545:, 542:1 539:{ 519:p 499:Q 476:) 471:j 460:x 457:( 452:Q 446:j 438:= 435:) 432:x 429:( 426:f 403:p 379:l 359:p 339:l 319:p 299:) 296:l 293:( 290:F 287:G 267:p 239:) 236:3 233:( 230:F 227:G 204:) 201:6 198:, 192:( 172:) 169:2 166:( 163:F 160:G 137:) 131:, 125:( 105:) 102:2 99:( 96:F 93:G 70:) 67:4 64:, 61:7 58:( 31:. 20:)

Index

Gleason–Prange theorem
QR Code
cyclic code
Hamming code
binary Golay code
ternary Golay code
quadratic residue
minimum weight
Andrew Gleason
Eugene Prange
Blahut, R. E.
doi
10.1109/18.133245
Categories
Quadratic residue
Coding theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑