Knowledge

Geodesic curvature

Source đź“ť

1336: 1980: 1554: 535: 1887: 1044: 2075: 1828: 907: 2101: 689: 2010: 759: 1632: 645: 298: 205: 108: 1112: 1104: 998: 779: 616: 588: 428: 378: 338: 269: 229: 156: 136: 68: 1793: 1739: 1689: 1425: 1398: 975: 941: 875: 837: 475: 408: 48: 1499: 1451: 2030: 1759: 1709: 1655: 1603: 1583: 1471: 1371: 1084: 1064: 799: 713: 555: 448: 358: 318: 249: 176: 1892: 1714:
On the other hand the normal curvature depends strongly on how the submanifold lies in the ambient space, but marginally on the curve:
1565:
The geodesic curvature is none other than the usual curvature of the curve when computed intrinsically in the submanifold
1504: 2180: 2159: 480: 692: 2244: 1833: 75: 2201: 2039: 78:, it is the curvature of the curve projected onto the surface's tangent plane. More generally, in a given 2196: 2134: 2191: 1003: 1804: 883: 2080: 2111: 654: 1985: 2104: 2033: 718: 1608: 1331:{\displaystyle k_{g}=\gamma ''(s)\cdot {\Big (}N(\gamma (s))\times \gamma '(s){\Big )}=\left\,,} 621: 274: 181: 84: 1799: 1453:, so they have zero geodesic curvature, and are therefore geodesics. Smaller circles of radius 2168: 1089: 983: 764: 601: 560: 413: 363: 323: 254: 214: 141: 121: 53: 590:, which explains why they appear to be curved in ambient space whenever the submanifold is. 1764: 1717: 1660: 1403: 1376: 946: 912: 846: 808: 453: 386: 26: 1427:
is identically 1, independently of the direction considered. Great circles have curvature
8: 1476: 1430: 17: 208: 2249: 2220: 2015: 1744: 1694: 1640: 1588: 1568: 1456: 1356: 1069: 1049: 784: 698: 540: 433: 343: 303: 234: 161: 2217: 2176: 2155: 2147: 1975:{\displaystyle {\bar {\nabla }}_{T}T=\nabla _{T}T+({\bar {\nabla }}_{T}T)^{\perp }} 381: 1342: 2238: 2129: 410:), which depends only on the direction of the curve, and the curvature of 1889:. It splits into a tangent part and a normal part to the submanifold: 2225: 2124: 1798:
In general Riemannian geometry, the derivative is computed using the
648: 477:), which is a second order quantity. The relation between these is 79: 71: 1657:
have zero geodesic curvature, which is equivalent to saying that
877:
on the normal bundle to the submanifold at the point considered.
1741:
only depends on the point on the submanifold and the direction
1400:
in three-dimensional Euclidean space. The normal curvature of
1559: 557:
have zero geodesic curvature (they are "straight"), so that
2215: 805:
is the norm of the projection of the covariant derivative
340:
depends on two factors: the curvature of the submanifold
839:
on the tangent space to the submanifold. Conversely the
2083: 2042: 2018: 1988: 1895: 1836: 1807: 1767: 1747: 1720: 1697: 1663: 1643: 1611: 1591: 1571: 1507: 1479: 1459: 1433: 1406: 1379: 1359: 1115: 1092: 1072: 1052: 1006: 986: 949: 915: 886: 849: 811: 787: 767: 721: 701: 657: 624: 604: 563: 543: 483: 456: 436: 416: 389: 366: 346: 326: 306: 277: 257: 251:
and it is different in general from the curvature of
237: 217: 184: 164: 144: 124: 87: 56: 29: 2095: 2069: 2032:(it is a particular case of Gauss equation in the 2024: 2004: 1974: 1881: 1822: 1787: 1753: 1733: 1703: 1683: 1649: 1626: 1597: 1577: 1549:{\displaystyle k_{g}={\frac {\sqrt {1-r^{2}}}{r}}} 1548: 1493: 1465: 1445: 1419: 1392: 1365: 1330: 1098: 1078: 1058: 1038: 992: 969: 935: 901: 869: 831: 793: 773: 753: 707: 683: 639: 610: 582: 549: 529: 469: 442: 422: 402: 372: 352: 332: 312: 292: 263: 243: 223: 199: 170: 150: 130: 102: 62: 42: 2088: 2047: 1199: 1151: 211:), geodesic curvature refers to the curvature of 2236: 1585:. It does not depend on the way the submanifold 880:If the ambient manifold is the euclidean space 530:{\displaystyle k={\sqrt {k_{g}^{2}+k_{n}^{2}}}} 76:1D curves on a 2D surface embedded in 3D space 2167: 2152:Differential Geometry of Curves and Surfaces 1341:where the square brackets denote the scalar 1027: 1007: 748: 728: 1982:. The tangent part is the usual derivative 1882:{\displaystyle DT/ds={\bar {\nabla }}_{T}T} 70:measures how far the curve is from being a 2189: 1560:Some results involving geodesic curvature 1324: 889: 2146: 2237: 1691:is orthogonal to the tangent space to 158:is restricted to lie on a submanifold 2216: 1106:, the geodesic curvature is given by 138:(see below). However, when the curve 2070:{\displaystyle \mathrm {I\!I} (T,T)} 1066:designates the unit normal field of 691:. Its curvature is the norm of the 13: 2089: 2085: 2048: 2044: 1990: 1944: 1922: 1900: 1861: 1811: 1309: 1290: 1242: 1217: 14: 2261: 2209: 1039:{\displaystyle \|\gamma '(s)\|=1} 843:is the norm of the projection of 1823:{\displaystyle {\bar {\nabla }}} 909:, then the covariant derivative 902:{\displaystyle \mathbb {R} ^{n}} 2096:{\displaystyle \mathrm {I\!I} } 2064: 2052: 1963: 1947: 1937: 1903: 1864: 1814: 1618: 1303: 1297: 1280: 1277: 1271: 1265: 1236: 1230: 1194: 1188: 1174: 1171: 1165: 1159: 1143: 1137: 1024: 1018: 631: 284: 191: 94: 1: 2140: 943:is just the usual derivative 684:{\displaystyle T=d\gamma /ds} 593: 537:. In particular geodesics on 2036:), while the normal part is 2005:{\displaystyle \nabla _{T}T} 7: 2197:Encyclopedia of Mathematics 2118: 754:{\displaystyle k=\|DT/ds\|} 651:, with unit tangent vector 10: 2266: 2190:Slobodyan, Yu.S. (2001) , 1627:{\displaystyle {\bar {M}}} 1348: 640:{\displaystyle {\bar {M}}} 300:. The (ambient) curvature 293:{\displaystyle {\bar {M}}} 200:{\displaystyle {\bar {M}}} 103:{\displaystyle {\bar {M}}} 1830:of the ambient manifold: 271:in the ambient manifold 450:(the geodesic curvature 2135:Gauss–Codazzi equations 2105:second fundamental form 2034:Gauss-Codazzi equations 1501:and geodesic curvature 1099:{\displaystyle \gamma } 993:{\displaystyle \gamma } 774:{\displaystyle \gamma } 611:{\displaystyle \gamma } 583:{\displaystyle k=k_{n}} 423:{\displaystyle \gamma } 373:{\displaystyle \gamma } 333:{\displaystyle \gamma } 264:{\displaystyle \gamma } 224:{\displaystyle \gamma } 151:{\displaystyle \gamma } 131:{\displaystyle \gamma } 63:{\displaystyle \gamma } 2245:Geodesic (mathematics) 2169:Guggenheimer, Heinrich 2097: 2071: 2026: 2006: 1976: 1883: 1824: 1800:Levi-Civita connection 1789: 1755: 1735: 1705: 1685: 1651: 1628: 1599: 1579: 1550: 1495: 1467: 1447: 1421: 1394: 1367: 1332: 1100: 1080: 1060: 1040: 994: 971: 937: 903: 871: 833: 795: 775: 755: 709: 685: 641: 612: 584: 551: 531: 471: 444: 424: 404: 374: 354: 334: 314: 294: 265: 245: 225: 201: 172: 152: 132: 104: 64: 44: 2173:Differential Geometry 2148:do Carmo, Manfredo P. 2098: 2072: 2027: 2007: 1977: 1884: 1825: 1790: 1788:{\displaystyle DT/ds} 1756: 1736: 1734:{\displaystyle k_{n}} 1706: 1686: 1684:{\displaystyle DT/ds} 1652: 1629: 1600: 1580: 1551: 1496: 1468: 1448: 1422: 1420:{\displaystyle S^{2}} 1395: 1393:{\displaystyle S^{2}} 1368: 1333: 1101: 1081: 1061: 1041: 995: 972: 970:{\displaystyle dT/ds} 938: 936:{\displaystyle DT/ds} 904: 872: 870:{\displaystyle DT/ds} 834: 832:{\displaystyle DT/ds} 796: 776: 756: 710: 686: 642: 613: 585: 552: 532: 472: 470:{\displaystyle k_{g}} 445: 425: 405: 403:{\displaystyle k_{n}} 375: 355: 335: 315: 295: 266: 246: 226: 202: 173: 153: 133: 105: 65: 45: 43:{\displaystyle k_{g}} 2221:"Geodesic curvature" 2192:"Geodesic curvature" 2171:(1977), "Surfaces", 2112:Gauss–Bonnet theorem 2081: 2040: 2016: 1986: 1893: 1834: 1805: 1765: 1745: 1718: 1695: 1661: 1641: 1609: 1589: 1569: 1505: 1477: 1473:will have curvature 1457: 1431: 1404: 1377: 1357: 1113: 1090: 1070: 1050: 1004: 1000:is unit-speed, i.e. 984: 947: 913: 884: 847: 809: 785: 765: 719: 699: 693:covariant derivative 655: 622: 602: 561: 541: 481: 454: 434: 414: 387: 364: 360:in the direction of 344: 324: 304: 275: 255: 235: 215: 182: 162: 142: 122: 85: 54: 27: 1494:{\displaystyle 1/r} 1446:{\displaystyle k=1} 1373:be the unit sphere 524: 506: 74:. For example, for 18:Riemannian geometry 2218:Weisstein, Eric W. 2093: 2067: 2022: 2002: 1972: 1879: 1820: 1785: 1751: 1731: 1701: 1681: 1647: 1624: 1595: 1575: 1546: 1491: 1463: 1443: 1417: 1390: 1363: 1328: 1096: 1076: 1056: 1036: 990: 967: 933: 899: 867: 829: 803:geodesic curvature 791: 771: 751: 705: 681: 647:, parametrized by 637: 608: 580: 547: 527: 510: 492: 467: 440: 420: 400: 370: 350: 330: 310: 290: 261: 241: 221: 209:curves on surfaces 197: 168: 148: 128: 114:is just the usual 112:geodesic curvature 100: 60: 40: 22:geodesic curvature 2154:, Prentice-Hall, 2025:{\displaystyle M} 1950: 1906: 1867: 1817: 1754:{\displaystyle T} 1704:{\displaystyle M} 1650:{\displaystyle M} 1621: 1598:{\displaystyle M} 1578:{\displaystyle M} 1544: 1540: 1466:{\displaystyle r} 1366:{\displaystyle M} 1317: 1257: 1079:{\displaystyle M} 1059:{\displaystyle N} 794:{\displaystyle M} 708:{\displaystyle T} 634: 598:Consider a curve 550:{\displaystyle M} 525: 443:{\displaystyle M} 353:{\displaystyle M} 313:{\displaystyle k} 287: 244:{\displaystyle M} 194: 171:{\displaystyle M} 97: 2257: 2231: 2230: 2204: 2185: 2164: 2102: 2100: 2099: 2094: 2092: 2076: 2074: 2073: 2068: 2051: 2031: 2029: 2028: 2023: 2011: 2009: 2008: 2003: 1998: 1997: 1981: 1979: 1978: 1973: 1971: 1970: 1958: 1957: 1952: 1951: 1943: 1930: 1929: 1914: 1913: 1908: 1907: 1899: 1888: 1886: 1885: 1880: 1875: 1874: 1869: 1868: 1860: 1847: 1829: 1827: 1826: 1821: 1819: 1818: 1810: 1794: 1792: 1791: 1786: 1778: 1760: 1758: 1757: 1752: 1740: 1738: 1737: 1732: 1730: 1729: 1710: 1708: 1707: 1702: 1690: 1688: 1687: 1682: 1674: 1656: 1654: 1653: 1648: 1633: 1631: 1630: 1625: 1623: 1622: 1614: 1604: 1602: 1601: 1596: 1584: 1582: 1581: 1576: 1555: 1553: 1552: 1547: 1545: 1539: 1538: 1523: 1522: 1517: 1516: 1500: 1498: 1497: 1492: 1487: 1472: 1470: 1469: 1464: 1452: 1450: 1449: 1444: 1426: 1424: 1423: 1418: 1416: 1415: 1399: 1397: 1396: 1391: 1389: 1388: 1372: 1370: 1369: 1364: 1337: 1335: 1334: 1329: 1323: 1319: 1318: 1316: 1312: 1306: 1293: 1287: 1258: 1256: 1255: 1254: 1245: 1239: 1226: 1225: 1220: 1213: 1203: 1202: 1187: 1155: 1154: 1136: 1125: 1124: 1105: 1103: 1102: 1097: 1085: 1083: 1082: 1077: 1065: 1063: 1062: 1057: 1045: 1043: 1042: 1037: 1017: 999: 997: 996: 991: 976: 974: 973: 968: 960: 942: 940: 939: 934: 926: 908: 906: 905: 900: 898: 897: 892: 876: 874: 873: 868: 860: 841:normal curvature 838: 836: 835: 830: 822: 800: 798: 797: 792: 780: 778: 777: 772: 760: 758: 757: 752: 741: 714: 712: 711: 706: 690: 688: 687: 682: 674: 646: 644: 643: 638: 636: 635: 627: 617: 615: 614: 609: 589: 587: 586: 581: 579: 578: 556: 554: 553: 548: 536: 534: 533: 528: 526: 523: 518: 505: 500: 491: 476: 474: 473: 468: 466: 465: 449: 447: 446: 441: 429: 427: 426: 421: 409: 407: 406: 401: 399: 398: 382:normal curvature 379: 377: 376: 371: 359: 357: 356: 351: 339: 337: 336: 331: 319: 317: 316: 311: 299: 297: 296: 291: 289: 288: 280: 270: 268: 267: 262: 250: 248: 247: 242: 230: 228: 227: 222: 206: 204: 203: 198: 196: 195: 187: 177: 175: 174: 169: 157: 155: 154: 149: 137: 135: 134: 129: 109: 107: 106: 101: 99: 98: 90: 69: 67: 66: 61: 49: 47: 46: 41: 39: 38: 2265: 2264: 2260: 2259: 2258: 2256: 2255: 2254: 2235: 2234: 2212: 2183: 2162: 2143: 2121: 2084: 2082: 2079: 2078: 2043: 2041: 2038: 2037: 2017: 2014: 2013: 1993: 1989: 1987: 1984: 1983: 1966: 1962: 1953: 1942: 1941: 1940: 1925: 1921: 1909: 1898: 1897: 1896: 1894: 1891: 1890: 1870: 1859: 1858: 1857: 1843: 1835: 1832: 1831: 1809: 1808: 1806: 1803: 1802: 1774: 1766: 1763: 1762: 1746: 1743: 1742: 1725: 1721: 1719: 1716: 1715: 1696: 1693: 1692: 1670: 1662: 1659: 1658: 1642: 1639: 1638: 1613: 1612: 1610: 1607: 1606: 1590: 1587: 1586: 1570: 1567: 1566: 1562: 1534: 1530: 1521: 1512: 1508: 1506: 1503: 1502: 1483: 1478: 1475: 1474: 1458: 1455: 1454: 1432: 1429: 1428: 1411: 1407: 1405: 1402: 1401: 1384: 1380: 1378: 1375: 1374: 1358: 1355: 1354: 1351: 1308: 1307: 1289: 1288: 1286: 1250: 1246: 1241: 1240: 1221: 1216: 1215: 1214: 1212: 1211: 1207: 1198: 1197: 1180: 1150: 1149: 1129: 1120: 1116: 1114: 1111: 1110: 1091: 1088: 1087: 1071: 1068: 1067: 1051: 1048: 1047: 1010: 1005: 1002: 1001: 985: 982: 981: 956: 948: 945: 944: 922: 914: 911: 910: 893: 888: 887: 885: 882: 881: 856: 848: 845: 844: 818: 810: 807: 806: 786: 783: 782: 766: 763: 762: 737: 720: 717: 716: 700: 697: 696: 670: 656: 653: 652: 626: 625: 623: 620: 619: 603: 600: 599: 596: 574: 570: 562: 559: 558: 542: 539: 538: 519: 514: 501: 496: 490: 482: 479: 478: 461: 457: 455: 452: 451: 435: 432: 431: 415: 412: 411: 394: 390: 388: 385: 384: 365: 362: 361: 345: 342: 341: 325: 322: 321: 305: 302: 301: 279: 278: 276: 273: 272: 256: 253: 252: 236: 233: 232: 216: 213: 212: 186: 185: 183: 180: 179: 163: 160: 159: 143: 140: 139: 123: 120: 119: 89: 88: 86: 83: 82: 55: 52: 51: 34: 30: 28: 25: 24: 12: 11: 5: 2263: 2253: 2252: 2247: 2233: 2232: 2211: 2210:External links 2208: 2207: 2206: 2187: 2181: 2165: 2160: 2142: 2139: 2138: 2137: 2132: 2127: 2120: 2117: 2116: 2115: 2108: 2091: 2087: 2066: 2063: 2060: 2057: 2054: 2050: 2046: 2021: 2001: 1996: 1992: 1969: 1965: 1961: 1956: 1949: 1946: 1939: 1936: 1933: 1928: 1924: 1920: 1917: 1912: 1905: 1902: 1878: 1873: 1866: 1863: 1856: 1853: 1850: 1846: 1842: 1839: 1816: 1813: 1796: 1784: 1781: 1777: 1773: 1770: 1750: 1728: 1724: 1712: 1700: 1680: 1677: 1673: 1669: 1666: 1646: 1635: 1620: 1617: 1594: 1574: 1561: 1558: 1543: 1537: 1533: 1529: 1526: 1520: 1515: 1511: 1490: 1486: 1482: 1462: 1442: 1439: 1436: 1414: 1410: 1387: 1383: 1362: 1350: 1347: 1343:triple product 1339: 1338: 1327: 1322: 1315: 1311: 1305: 1302: 1299: 1296: 1292: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1253: 1249: 1244: 1238: 1235: 1232: 1229: 1224: 1219: 1210: 1206: 1201: 1196: 1193: 1190: 1186: 1183: 1179: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1153: 1148: 1145: 1142: 1139: 1135: 1132: 1128: 1123: 1119: 1095: 1075: 1055: 1035: 1032: 1029: 1026: 1023: 1020: 1016: 1013: 1009: 989: 966: 963: 959: 955: 952: 932: 929: 925: 921: 918: 896: 891: 866: 863: 859: 855: 852: 828: 825: 821: 817: 814: 790: 770: 750: 747: 744: 740: 736: 733: 730: 727: 724: 704: 680: 677: 673: 669: 666: 663: 660: 633: 630: 618:in a manifold 607: 595: 592: 577: 573: 569: 566: 546: 522: 517: 513: 509: 504: 499: 495: 489: 486: 464: 460: 439: 419: 397: 393: 369: 349: 329: 309: 286: 283: 260: 240: 220: 193: 190: 167: 147: 127: 96: 93: 59: 37: 33: 9: 6: 4: 3: 2: 2262: 2251: 2248: 2246: 2243: 2242: 2240: 2228: 2227: 2222: 2219: 2214: 2213: 2203: 2199: 2198: 2193: 2188: 2184: 2182:0-486-63433-7 2178: 2174: 2170: 2166: 2163: 2161:0-13-212589-7 2157: 2153: 2149: 2145: 2144: 2136: 2133: 2131: 2130:Darboux frame 2128: 2126: 2123: 2122: 2113: 2109: 2106: 2061: 2058: 2055: 2035: 2019: 1999: 1994: 1967: 1959: 1954: 1934: 1931: 1926: 1918: 1915: 1910: 1876: 1871: 1854: 1851: 1848: 1844: 1840: 1837: 1801: 1797: 1782: 1779: 1775: 1771: 1768: 1761:, but not on 1748: 1726: 1722: 1713: 1698: 1678: 1675: 1671: 1667: 1664: 1644: 1637:Geodesics of 1636: 1615: 1592: 1572: 1564: 1563: 1557: 1541: 1535: 1531: 1527: 1524: 1518: 1513: 1509: 1488: 1484: 1480: 1460: 1440: 1437: 1434: 1412: 1408: 1385: 1381: 1360: 1346: 1344: 1325: 1320: 1313: 1300: 1294: 1283: 1274: 1268: 1262: 1259: 1251: 1247: 1233: 1227: 1222: 1208: 1204: 1191: 1184: 1181: 1177: 1168: 1162: 1156: 1146: 1140: 1133: 1130: 1126: 1121: 1117: 1109: 1108: 1107: 1093: 1073: 1053: 1033: 1030: 1021: 1014: 1011: 987: 978: 964: 961: 957: 953: 950: 930: 927: 923: 919: 916: 894: 878: 864: 861: 857: 853: 850: 842: 826: 823: 819: 815: 812: 804: 788: 768: 745: 742: 738: 734: 731: 725: 722: 702: 694: 678: 675: 671: 667: 664: 661: 658: 650: 628: 605: 591: 575: 571: 567: 564: 544: 520: 515: 511: 507: 502: 497: 493: 487: 484: 462: 458: 437: 417: 395: 391: 383: 367: 347: 327: 307: 281: 258: 238: 218: 210: 188: 165: 145: 125: 117: 113: 91: 81: 77: 73: 57: 35: 31: 23: 19: 2224: 2195: 2172: 2151: 2103:denotes the 1352: 1340: 979: 879: 840: 802: 597: 115: 111: 21: 15: 50:of a curve 2239:Categories 2141:References 594:Definition 207:(e.g. for 2250:Manifolds 2226:MathWorld 2202:EMS Press 2175:, Dover, 2125:Curvature 1991:∇ 1968:⊥ 1948:¯ 1945:∇ 1923:∇ 1904:¯ 1901:∇ 1865:¯ 1862:∇ 1815:¯ 1812:∇ 1619:¯ 1528:− 1295:γ 1269:γ 1228:γ 1182:γ 1178:× 1163:γ 1147:⋅ 1131:γ 1094:γ 1028:‖ 1012:γ 1008:‖ 988:γ 769:γ 749:‖ 729:‖ 668:γ 649:arclength 632:¯ 606:γ 418:γ 368:γ 328:γ 285:¯ 259:γ 219:γ 192:¯ 146:γ 126:γ 116:curvature 95:¯ 58:γ 2150:(1976), 2119:See also 2077:, where 1605:sits in 1185:′ 1134:″ 1015:′ 781:lies on 430:seen in 80:manifold 72:geodesic 1349:Example 2179:  2158:  1086:along 1046:, and 801:, the 110:, the 20:, the 761:. If 380:(the 2177:ISBN 2156:ISBN 2110:The 1353:Let 2012:in 980:If 695:of 320:of 231:in 178:of 118:of 16:In 2241:: 2223:. 2200:, 2194:, 1556:. 1345:. 977:. 715:: 2229:. 2205:. 2186:. 2114:. 2107:. 2090:I 2086:I 2065:) 2062:T 2059:, 2056:T 2053:( 2049:I 2045:I 2020:M 2000:T 1995:T 1964:) 1960:T 1955:T 1938:( 1935:+ 1932:T 1927:T 1919:= 1916:T 1911:T 1877:T 1872:T 1855:= 1852:s 1849:d 1845:/ 1841:T 1838:D 1795:. 1783:s 1780:d 1776:/ 1772:T 1769:D 1749:T 1727:n 1723:k 1711:. 1699:M 1679:s 1676:d 1672:/ 1668:T 1665:D 1645:M 1634:. 1616:M 1593:M 1573:M 1542:r 1536:2 1532:r 1525:1 1519:= 1514:g 1510:k 1489:r 1485:/ 1481:1 1461:r 1441:1 1438:= 1435:k 1413:2 1409:S 1386:2 1382:S 1361:M 1326:, 1321:] 1314:s 1310:d 1304:) 1301:s 1298:( 1291:d 1284:, 1281:) 1278:) 1275:s 1272:( 1266:( 1263:N 1260:, 1252:2 1248:s 1243:d 1237:) 1234:s 1231:( 1223:2 1218:d 1209:[ 1205:= 1200:) 1195:) 1192:s 1189:( 1175:) 1172:) 1169:s 1166:( 1160:( 1157:N 1152:( 1144:) 1141:s 1138:( 1127:= 1122:g 1118:k 1074:M 1054:N 1034:1 1031:= 1025:) 1022:s 1019:( 965:s 962:d 958:/ 954:T 951:d 931:s 928:d 924:/ 920:T 917:D 895:n 890:R 865:s 862:d 858:/ 854:T 851:D 827:s 824:d 820:/ 816:T 813:D 789:M 746:s 743:d 739:/ 735:T 732:D 726:= 723:k 703:T 679:s 676:d 672:/ 665:d 662:= 659:T 629:M 576:n 572:k 568:= 565:k 545:M 521:2 516:n 512:k 508:+ 503:2 498:g 494:k 488:= 485:k 463:g 459:k 438:M 396:n 392:k 348:M 308:k 282:M 239:M 189:M 166:M 92:M 36:g 32:k

Index

Riemannian geometry
geodesic
1D curves on a 2D surface embedded in 3D space
manifold
curves on surfaces
normal curvature
arclength
covariant derivative
triple product
Levi-Civita connection
Gauss-Codazzi equations
second fundamental form
Gauss–Bonnet theorem
Curvature
Darboux frame
Gauss–Codazzi equations
do Carmo, Manfredo P.
ISBN
0-13-212589-7
Guggenheimer, Heinrich
ISBN
0-486-63433-7
"Geodesic curvature"
Encyclopedia of Mathematics
EMS Press
Weisstein, Eric W.
"Geodesic curvature"
MathWorld
Categories
Geodesic (mathematics)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑