Knowledge

GRB 970228

Source 📝

440: 125: 64: 44: 161: 288:, an Italian–Dutch satellite originally designed to study X-rays. The burst lasted around 80 seconds and had multiple peaks in its light curve. Gamma-ray bursts have very diverse time profiles, and it is not fully understood why some bursts have multiple peaks and some have only one. One possible explanation is that multiple peaks are formed when the source of the gamma-ray burst undergoes 1125:
Costa, E.; Frontera, F.; Heise, J.; Feroci, M.; In 't Zand, J.; Fiore, F.; Cinti, M. N.; Dal Fiume, D.; Nicastro, L.; Orlandini, M.; Palazzi, E.; Rapisarda, M.; Zavattini, G.; Jager, R.; Parmar, A.; Owens, A.; Molendi, S.; Cusumano, G.; MacCarone, M. C.; Giarrusso, S.; Coletta, A.; Antonelli, L. A.;
1272:
Galama, T. J.; Tanvir, N.; Vreeswijk, P. M.; Wijers, R. A. M. J.; Groot, P. J.; Rol, E.; Van Paradijs, J.; Kouveliotou, C.; Fruchter, A. S.; Masetti, N.; Pedersen, H.; Margon, B.; Deutsch, E. W.; Metzger, M.; Armus, L.; Klose, S.; Stecklum, B. (10 June 2000). "Evidence for a Supernova in Reanalyzed
1814:
van Paradijs, J.; Groot, P. J.; Galama, T.; Kouveliotou, C.; Strom, R. G.; Telting, J.; Rutten, R. G. M.; Fishman, G. J.; Meegan, C. A.; Pettini, M.; Tanvir, N.; Bloom, J.; Pedersen, H.; Nørdgaard-Nielsen, H. U.; Linden-Vørnle, M.; Melnick, J.; Van Der Steene, G.; Bremer, M.; Naber, R.; Heise, J.;
476:
Galama analyzed the light curve of the burst and found that its luminosity decayed at different rates at different times. The luminosity decayed more slowly between March 6 and April 7 than it did before and after these dates. Galama concluded that the earlier light curve had been dominated by the
1060:
Butler, Nathaniel R.; Marshall, Herman L.; Ricker, George R.; Vanderspek, Roland K.; Ford, Peter G.; Crew, Geoffrey B.; Lamb, Donald Q.; Jernigan, J. Garrett (10 November 2003). "The X-ray Afterglows of GRB 020813 and GRB 021004 with Chandra HETGS: Possible Evidence for a Supernova prior to GRB
1012:
Bloom, J. S.; Kulkarni, S. R.; Djorgovski, S. G.; Eichelberger, A. C.; Côté, P.; Blakeslee, J. P.; Odewahn, S. C.; Harrison, F. A.; Frail, D. A.; Filippenko, A. V.; Leonard, D. C.; Riess, A. G.; Spinrad, H.; Stern, D.; Bunker, A.; Dey, A.; Grossan, B.; Perlmutter, S.; Knop, R. A.; Hook, I. M.;
501:. Although GRB 980326 did not provide enough information to definitively rule out this explanation, Reichart showed that the light curve of GRB 970228 could only have been caused by a supernova. Definitive evidence linking gamma-ray bursts and supernovae was eventually found in the 27: 326:
Later images after the point source faded revealed a faint galaxy at almost the same position, the presumed host galaxy of the burst; a chance position coincidence was unlikely but possible, so the cosmological origin of GRBs was not conclusive until observations of
533:
patch at the burst's position, almost certainly a distant galaxy. Although there was a remote chance that the burst and this galaxy were unrelated, their positional coincidence provided strong evidence that GRBs occur in distant galaxies rather than within the
406:
showed that the afterglow coincided with a distant, small galaxy: the first evidence of the extragalactic, cosmological nature of Gamma-ray bursts. After the gamma-ray bursts itself had faded away, very deep observations taken with the
1765:
Stanek, Krzysztof Z.; Matheson, T.; Garnavich, P. M.; Martini, P.; Berlind, P.; Caldwell, N.; Challis, P.; Brown, W. R.; et al. (12 June 2003). "Spectroscopic Discovery of the Supernova 2003dh Associated with GRB0303291".
485:
than the early afterglow, an observation which conflicted with the then-preferred relativistic fireball model for the gamma-ray burst emission mechanism. He also observed that the only GRB with a similar temporal profile was
382:
was the first GRB afterglow ever detected. Power-law decays have since been recognized as a common feature in GRB afterglows, although most afterglows decay at differing rates during different phases of their lifetimes.
363:, a phenomenon that would later be referred to as a radio afterglow. Jonathan Katz later concluded that this lower-energy emission would not be limited to radio waves, but should range in frequency from radio waves to 411:
showed the underlying galaxy to have a redshift of 0.695. The predicted radio afterglow was never detected for this burst. At the time of this burst's discovery, GRBs were believed to emit radiation
374:
The Narrow Field Instruments on board BeppoSAX began making observations of the GRB 970228's position within eight hours of its detection. A transient x-ray source was detected which faded with a
343:
and James E. Rhoads published an article arguing that, regardless of the type of explosion that causes GRBs, the extreme energetics of GRBs meant that matter from the host body must be ejected at
513:. However, supernova-like features only become apparent in the weeks following a burst, leaving the possibility that very early luminosity variations could be explained by dust echoes. 1697:
Reichart, Daniel E. (2001). "Light Curves and Spectra of Dust Echoes from Gamma-Ray Bursts and Their Afterglows: Continued Evidence That GRB 970228 Is Associated with a Supernova".
292:. Within a few hours, the BeppoSAX team used the X-ray detection to determine the burst's position with an error box—a small area around the specific position to account for the 617:"GRB" indicates that the event was a gamma-ray burst, and the numbers follow a YYMMDD format corresponding to the date on which the burst occurred: 28 February 1997. 1650:
Reichart, Daniel E. (1999). "GRB 970228 Revisited: Evidence for a Supernova in the Light Curve and Late Spectral Energy Distribution of the Afterglow".
1889: 1974: 1126:
Giommi, P.; Muller, J. M.; Piro, L.; Butler, R. C. (1997b). "Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997".
522: 462: 487: 1815:
In't Zand, J.; Costa, E.; Feroci, M.; Piro, L.; Frontera, F.; Zavattini, G.; Nicastro, L.; Palazzi, E.; Bennet, K.; et al. (1997).
1354:
Huang, Yong-feng; Tan, Chang-yi; Dai, Zi-gao; Lu, Tan (2002). "Are Gamma-ray Bursts Due to Isotropic Fireballs or Cylindrical Jets?".
1013:
Feroci, M. (30 September 1999). "The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection".
1953: 1979: 557:. The redshift of the galaxy was later determined to be z = 0.695, which corresponds to a distance of approximately 1873: 1447:
Moran, Jane A.; Reichart, Daniel E. (10 October 2005). "Gamma-Ray Burst Dust Echoes Revisited: Expectations at Early Times".
323:
of +11° 46′ 53.0″, providing the first arcsecond-accuracy localization of any Gamma-ray burst.
1755: 965:
Bloom, J. S.; Djorgovski, S. G.; Kulkarni, S. R. (2001). "The redshift and the ordinary host galaxy of GRB 970228".
469:
independently analyzed GRB 970228's optical light curve, both concluding that the host object may have undergone a
1885:"Precessing jets interacting with interstellar material as the origin for the light curves of gamma-ray bursts" 198:. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow (in wavelengths such as 1984: 1989: 447:
as it goes supernova, collapses into a black hole, and emits a gamma-ray burst along its axis of rotation
229:
and lasted approximately 80 seconds. Peculiarities in the light curve of GRB 970228 suggested that a
379: 355:. Should this shock front occur in a magnetic field, accelerated electrons in it would emit long-lasting 191: 164: 387: 308: 270: 219: 1541:
Panaitescu, A. (15 May 2007). "Decay phases of Swift X-ray afterglows and the forward-shock model".
124: 526: 403: 63: 43: 554: 466: 293: 391: 1200: 458: 356: 57: 1367: 1908: 1831: 1785: 1716: 1669: 1622: 1550: 1513: 1466: 1419: 1363: 1292: 1219: 1186: 1145: 1080: 1032: 984: 553:
of the host galaxy, effectively ruling out the possibility that the burst originated in an
301: 222:); this resulted in large positional uncertainties which left their nature very unclear. 8: 428: 348: 1912: 1835: 1789: 1720: 1673: 1626: 1591: 1554: 1517: 1494:
Paczyński, Bohdan; Rhoads, James E. (1993). "Radio Transients from Gamma-Ray Bursters".
1470: 1423: 1342: 1325: 1296: 1260: 1223: 1190: 1149: 1113: 1084: 1036: 988: 394:. Comparison of the images revealed an object which had decreased in luminosity in both 340: 284:
by the Gamma-Ray Burst Monitor (GRBM) and one of the Wide Field Cameras (WFCs) on board
1950: 1926: 1898: 1847: 1816: 1801: 1775: 1732: 1706: 1685: 1659: 1638: 1612: 1574: 1529: 1503: 1482: 1456: 1435: 1409: 1308: 1282: 1243: 1209: 1161: 1135: 1096: 1070: 1048: 1022: 1000: 974: 344: 1817:"Transient optical emission from the error box of the γ-ray burst of 28 February 1997" 1375: 497:
An alternative explanation for the light curves of GRB 970228 and GRB 980326 involved
16:
Gamma-ray burst detected on 28 Feb 1997, the first for which an afterglow was observed
1921: 1884: 1869: 1751: 1642: 1566: 1235: 1052: 478: 360: 94: 1578: 1533: 1439: 1312: 1247: 1004: 1930: 1916: 1851: 1839: 1805: 1793: 1736: 1724: 1689: 1677: 1630: 1558: 1521: 1486: 1474: 1427: 1371: 1300: 1227: 1165: 1153: 1100: 1088: 1040: 992: 645: 502: 307:
About one and nine days later, optical images of the error box were taken with the
427:
jets, a characteristic which lowers the total energy output of a burst by several
402:. This was the burst's optical afterglow. Deeper follow-up observations using the 311:
on La Palma; comparison of the images revealed a fading point source located at a
245:
of z = 0.695), providing early evidence that GRBs occur well beyond the
1957: 1861: 1745: 482: 454: 408: 347:
during the explosion. They predicted that the interaction between the ejecta and
312: 274: 187: 72: 37: 1388: 1951:
BeppoSAX follow-up observations of the region of the Gamma-ray burst GRB 970228
399: 386:
Optical images were taken of GRB 970228's position on 1 and 8 March using the
1968: 395: 368: 207: 52: 1945: 1570: 1562: 1239: 491: 477:
burst itself, whereas the later light curve was produced by the underlying
1903: 1780: 1711: 1664: 1617: 1508: 1461: 1414: 1287: 1214: 1174: 1140: 1075: 1027: 979: 444: 352: 320: 226: 199: 84: 1198:
Esin, A. A.; Blandford, R. (2000). "Dust Echoes from Gamma-Ray Bursts".
173: 564: 539: 510: 506: 498: 424: 420: 416: 328: 289: 262: 250: 238: 211: 1603:
Reichart, Daniel E. (19 February 1998). "The Redshift of GRB 970508".
249:; this was proven decisively two months later with a subsequent burst 233:
may have occurred as well. The position of the burst coincided with a
1843: 580: 549:
The position of the burst's afterglow was measurably offset from the
535: 470: 412: 375: 297: 266: 246: 230: 215: 641:
Converting of the redshift into the distance done by on-line tools:
1797: 1728: 1681: 1634: 1525: 1478: 1431: 1304: 1231: 1092: 996: 550: 543: 285: 242: 116: 1157: 1044: 439: 1400:
Katz, J. I. (1994). "Low-Frequency Spectra of Gamma-Ray Bursts".
277:, a series of spacecraft designed to detect nuclear explosions. 530: 234: 210:), but until this event, GRBs had only been observed in highly 203: 160: 1883:
Zwart, Simon F. Portegies; Totani, Tomonori (17 August 2001).
490:, for which a supernova relation had already been proposed by 575: 568:. At this distance, the burst would have released a total of 473:
explosion several weeks before the gamma-ray burst occurred.
364: 142: 26: 415:. The afterglows from this burst and several others—such as 194:
was observed. It was detected on 28 February 1997 at 02:58
1747:
Flash! The Hunt for the Biggest Explosions in the Universe
538:. This conclusion was later supported by observations of 281: 195: 1175:"GRB 970228: Redshift and properties of the host galaxy" 423:—provided early evidence that GRBs emit radiation in 280:
GRB 970228 was detected on 28 February 1997 at 02:58
378:slope in the days following the burst. This x-ray 1890:Monthly Notices of the Royal Astronomical Society 1543:Philosophical Transactions of the Royal Society A 1273:Optical and Near-Infrared Images of GRB 970228". 1966: 648:. UCLA Division of Astronomy & Astrophysics 690: 688: 686: 646:"Ned Wright's Javascript Cosmology Calculator" 613: 611: 845: 843: 716: 714: 481:. Reichart noted that the late afterglow was 792: 443:Artist's illustration showing the life of a 683: 608: 840: 711: 521:During the night between 12 and 13 March, 273:. GRBs were first detected in 1967 by the 123: 62: 42: 25: 1920: 1902: 1779: 1750:. Cambridge: Cambridge University Press. 1710: 1663: 1616: 1507: 1460: 1413: 1286: 1213: 1139: 1074: 1026: 978: 525:made observations of the region with the 89:+11° 46′ 53.0″ 1592:IAU Circular 6635: GRB 970228; C/1995 O1 808: 806: 438: 1975:Astronomical objects discovered in 1997 637: 635: 599: 597: 595: 1967: 1611:(2). University of Chicago: L99–L101. 781: 643: 1261:IAU Circular 6643: GRB 970228; 1997by 1114:IAU Circular 6572: GRB 970228; 1997aa 803: 434: 300:. The burst was also detected by the 632: 592: 261:A gamma-ray burst (GRB) is a highly 225:The burst had multiple peaks in its 13: 1812: 1356:Chinese Astronomy and Astrophysics 798: 14: 2001: 1939: 1173:Djorgovski, George (3 May 1999). 1124: 694: 1922:10.1046/j.1365-8711.2001.04913.x 1596:International Astronomical Union 1395:. Retrieved on 23 February 2010. 1393:International Astronomical Union 1347:International Astronomical Union 1330:International Astronomical Union 1265:International Astronomical Union 1118:International Astronomical Union 644:Wright, Edward L. (9 May 2008). 449:Credit: Nicolle Rager Fuller/NSF 159: 1864:. In Volken Schönfelder (ed.). 1696: 1649: 1602: 1540: 1336: 1172: 949: 943: 938: 932: 920: 909: 898: 887: 882: 876: 865: 854: 849: 828: 817: 787: 775: 769: 758: 747: 736: 725: 256: 1980:Long-duration gamma-ray bursts 1859: 1743: 1585: 1319: 1107: 926: 834: 720: 705: 699: 677: 671: 665: 659: 626: 620: 603: 542:, the first burst to have its 516: 1: 1813: 1605:Astrophysical Journal Letters 1389:IAU Circular 6578: GRB 970228 1376:10.1016/S0275-1062(02)00092-9 1343:IAU Circular 6588: GRB 970228 1326:IAU Circular 6584: GRB 970228 957: 269:, the most energetic form of 1011: 871: 334: 237:about 8.1 billion  218:(the most energetic form of 107:8,123,000,000 ly (2.491 7: 1868:. Berlin: Springer-Verlag. 1764: 1382: 1271: 1059: 904: 893: 860: 742: 10: 2006: 1882: 1866:The Universe in Gamma Rays 1860:Varendoff, Martin (2001). 1744:Schilling, Govert (2002). 1446: 1353: 964: 915: 823: 812: 731: 388:William Herschel Telescope 309:William Herschel Telescope 296:in the position—of 3  1399: 1275:The Astrophysical Journal 1197: 1063:The Astrophysical Journal 799:Van Paradijs et al., 1997 764: 271:electromagnetic radiation 220:electromagnetic radiation 170: 157: 149: 132: 115: 103: 93: 83: 71: 51: 33: 24: 1493: 1254: 753: 586: 529:. He discovered a faint 527:New Technology Telescope 404:New Technology Telescope 331:about two months later. 165:Related media on Commons 1368:2002ChA&A..26..414H 555:active galactic nucleus 467:University of Amsterdam 1946:Gamma-ray Burst 970228 1563:10.1098/rsta.2006.1985 451: 392:Isaac Newton Telescope 214:bursts of high-energy 1768:Astrophysical Journal 1699:Astrophysical Journal 1652:Astrophysical Journal 1496:Astrophysical Journal 1449:Astrophysical Journal 1402:Astrophysical Journal 1201:Astrophysical Journal 967:Astrophysical Journal 509:and the afterglow of 459:University of Chicago 442: 357:synchrotron radiation 1985:February 1997 events 1990:Astronomical events 1913:2001MNRAS.328..951P 1836:1997Natur.386..686V 1790:2003ApJ...591L..17S 1721:2001ApJ...554..643R 1674:1999ApJ...521L.111R 1627:1998ApJ...495L..99R 1590:. (22 April 1997) " 1555:2007RSPTA.365.1197P 1549:(1854): 1197–1205. 1518:1993ApJ...418L...5P 1471:2005ApJ...632..438M 1424:1994ApJ...432L.107K 1341:. (14 March 1997) " 1324:. (12 March 1997) " 1297:2000ApJ...536..185G 1224:2000ApJ...534L.151E 1191:1999GCN...289....1D 1150:1997Natur.387..783C 1085:2003ApJ...597.1010B 1037:1999Natur.401..453B 989:2001ApJ...554..678B 788:Groot 14 March 1997 604:Groot 12 March 1997 429:orders of magnitude 349:interstellar matter 345:relativistic speeds 190:(GRB) for which an 133:Total energy output 21: 1956:2011-03-03 at the 1862:"Gamma-Ray Bursts" 1387:. (8 March 1997) " 452: 435:Supernova relation 150:Other designations 121:0.695, 0.695  19: 1875:978-3-540-67874-8 1830:(6626): 686–689. 1134:(6635): 783–785. 1021:(6752): 453–456. 479:Type Ic supernova 361:radio frequencies 181: 180: 1997: 1934: 1924: 1906: 1904:astro-ph/0006143 1879: 1856: 1855: 1844:10.1038/386686a0 1821: 1809: 1783: 1781:astro-ph/0304173 1761: 1740: 1714: 1712:astro-ph/0012091 1693: 1667: 1665:astro-ph/9906079 1658:(2): L111–L115. 1646: 1620: 1618:astro-ph/9712134 1599: 1582: 1537: 1511: 1509:astro-ph/9307024 1490: 1464: 1462:astro-ph/0409390 1443: 1417: 1415:astro-ph/9312034 1408:(2): L107–L109. 1396: 1379: 1350: 1333: 1316: 1290: 1288:astro-ph/9907264 1268: 1259:. (6 May 1997) " 1251: 1217: 1215:astro-ph/0003415 1208:(2): L151–L154. 1194: 1169: 1143: 1141:astro-ph/9706065 1121: 1104: 1078: 1076:astro-ph/0303539 1069:(2): 1010–1016. 1056: 1030: 1028:astro-ph/9905301 1008: 982: 980:astro-ph/0007244 952: 947: 941: 936: 930: 924: 918: 913: 907: 902: 896: 891: 885: 880: 874: 869: 863: 858: 852: 847: 838: 832: 826: 821: 815: 810: 801: 796: 790: 785: 779: 773: 767: 762: 756: 751: 745: 740: 734: 729: 723: 718: 709: 703: 697: 692: 681: 675: 669: 663: 657: 656: 654: 653: 639: 630: 624: 618: 615: 606: 601: 578: 573: 567: 562: 341:Bohdan Paczyński 318: 174:edit on Wikidata 163: 145: 140: 128: 127: 110: 79: 67: 66: 47: 46: 29: 22: 18: 2005: 2004: 2000: 1999: 1998: 1996: 1995: 1994: 1965: 1964: 1958:Wayback Machine 1942: 1937: 1876: 1819: 1758: 960: 955: 950:Djorgovski 1999 948: 944: 937: 933: 925: 921: 914: 910: 903: 899: 892: 888: 881: 877: 870: 866: 859: 855: 848: 841: 833: 829: 822: 818: 811: 804: 797: 793: 786: 782: 776:Panaitescu 2007 774: 770: 763: 759: 752: 748: 741: 737: 730: 726: 719: 712: 704: 700: 693: 684: 676: 672: 664: 660: 651: 649: 642: 640: 633: 625: 621: 616: 609: 602: 593: 589: 571: 569: 560: 558: 519: 455:Daniel Reichart 437: 409:Keck telescopes 351:would create a 337: 316: 313:right ascension 275:Vela satellites 259: 188:gamma-ray burst 177: 138: 136: 122: 108: 77: 73:Right ascension 61: 41: 38:Gamma-ray burst 17: 12: 11: 5: 2003: 1993: 1992: 1987: 1982: 1977: 1961: 1960: 1948: 1941: 1940:External links 1938: 1936: 1935: 1897:(3): 951–957. 1880: 1874: 1857: 1810: 1798:10.1086/376976 1774:(1): L17–L20. 1762: 1756: 1741: 1729:10.1086/321428 1705:(2): 649–659. 1694: 1682:10.1086/312203 1647: 1635:10.1086/311222 1600: 1586:Pedichini, F. 1583: 1538: 1526:10.1086/187102 1491: 1479:10.1086/432634 1455:(1): 438–442. 1444: 1432:10.1086/187523 1397: 1380: 1362:(4): 414–423. 1351: 1334: 1317: 1305:10.1086/308909 1281:(1): 185–194. 1269: 1252: 1232:10.1086/312670 1195: 1170: 1122: 1105: 1093:10.1086/378511 1057: 1009: 997:10.1086/321398 973:(2): 678–683. 961: 959: 956: 954: 953: 942: 931: 927:Schilling 2002 919: 908: 897: 886: 875: 864: 853: 839: 835:Schilling 2002 827: 816: 802: 791: 780: 768: 757: 754:Paczyński 1993 746: 735: 724: 710: 706:Schilling 2002 698: 682: 678:Varendoff 2001 670: 666:Schilling 2002 658: 631: 627:Schilling 2002 619: 607: 590: 588: 585: 518: 515: 436: 433: 400:infrared light 336: 333: 258: 255: 186:was the first 179: 178: 171: 168: 167: 155: 154: 151: 147: 146: 134: 130: 129: 119: 113: 112: 105: 101: 100: 97: 91: 90: 87: 81: 80: 75: 69: 68: 55: 49: 48: 35: 31: 30: 15: 9: 6: 4: 3: 2: 2002: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1972: 1970: 1963: 1959: 1955: 1952: 1949: 1947: 1944: 1943: 1932: 1928: 1923: 1918: 1914: 1910: 1905: 1900: 1896: 1892: 1891: 1886: 1881: 1877: 1871: 1867: 1863: 1858: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1818: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1782: 1777: 1773: 1769: 1763: 1759: 1757:0-521-80053-6 1753: 1749: 1748: 1742: 1738: 1734: 1730: 1726: 1722: 1718: 1713: 1708: 1704: 1700: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1666: 1661: 1657: 1653: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1619: 1614: 1610: 1606: 1601: 1597: 1593: 1589: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1463: 1458: 1454: 1450: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1416: 1411: 1407: 1403: 1398: 1394: 1390: 1386: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1352: 1348: 1344: 1340: 1337:Groot, P. J. 1335: 1331: 1327: 1323: 1320:Groot, P. J. 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1289: 1284: 1280: 1276: 1270: 1266: 1262: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1216: 1211: 1207: 1203: 1202: 1196: 1192: 1188: 1184: 1180: 1179:GCN Circulars 1176: 1171: 1167: 1163: 1159: 1158:10.1038/42885 1155: 1151: 1147: 1142: 1137: 1133: 1129: 1123: 1119: 1115: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1077: 1072: 1068: 1064: 1058: 1054: 1050: 1046: 1045:10.1038/46744 1042: 1038: 1034: 1029: 1024: 1020: 1016: 1010: 1006: 1002: 998: 994: 990: 986: 981: 976: 972: 968: 963: 962: 951: 946: 940: 939:Reichart 1998 935: 928: 923: 917: 912: 906: 901: 895: 890: 884: 883:Reichart 2001 879: 873: 868: 862: 857: 851: 850:Reichart 1999 846: 844: 836: 831: 825: 820: 814: 809: 807: 800: 795: 789: 784: 777: 772: 766: 761: 755: 750: 744: 739: 733: 728: 722: 717: 715: 707: 702: 696: 691: 689: 687: 679: 674: 667: 662: 647: 638: 636: 628: 623: 614: 612: 605: 600: 598: 596: 591: 584: 582: 577: 566: 556: 552: 547: 545: 541: 537: 532: 528: 524: 523:Jorge Melnick 514: 512: 508: 504: 500: 495: 493: 489: 484: 480: 474: 472: 468: 464: 460: 456: 450: 446: 441: 432: 430: 426: 422: 418: 414: 413:isotropically 410: 405: 401: 397: 396:visible light 393: 389: 384: 381: 377: 372: 370: 369:visible light 366: 362: 358: 354: 350: 346: 342: 332: 330: 324: 322: 314: 310: 305: 304:space probe. 303: 299: 295: 291: 287: 283: 278: 276: 272: 268: 264: 254: 252: 248: 244: 240: 236: 232: 228: 223: 221: 217: 213: 209: 208:visible light 205: 201: 197: 193: 189: 185: 175: 169: 166: 162: 156: 152: 148: 144: 135: 131: 126: 120: 118: 114: 106: 102: 98: 96: 92: 88: 86: 82: 76: 74: 70: 65: 59: 56: 54: 53:Constellation 50: 45: 39: 36: 32: 28: 23: 1962: 1894: 1888: 1865: 1827: 1823: 1771: 1767: 1746: 1702: 1698: 1655: 1651: 1608: 1604: 1595: 1587: 1546: 1542: 1499: 1495: 1452: 1448: 1405: 1401: 1392: 1384: 1359: 1355: 1346: 1338: 1329: 1321: 1278: 1274: 1264: 1256: 1205: 1199: 1182: 1178: 1131: 1127: 1117: 1109: 1066: 1062: 1018: 1014: 970: 966: 945: 934: 922: 911: 900: 889: 878: 867: 856: 830: 819: 794: 783: 771: 760: 749: 738: 727: 701: 673: 661: 650:. Retrieved 622: 548: 546:determined. 520: 496: 492:Joshua Bloom 475: 463:Titus Galama 453: 448: 445:massive star 385: 373: 367:, including 338: 325: 306: 279: 260: 257:Observations 224: 183: 182: 1383:Hurley, K. 1255:Fox, D. W. 1112:. (1997a) " 905:Stanek 2003 894:Butler 2003 861:Galama 2000 743:Hurley 1997 721:Costa 1997a 708:, pp. 58–60 695:Costa 1997b 668:, pp. 12–16 517:Host galaxy 499:dust echoes 353:shock front 321:declination 239:light-years 227:light curve 206:, and even 200:radio waves 111:10 pc) 85:Declination 1969:Categories 1108:Costa, E. 958:References 916:Moran 2005 872:Bloom 1999 824:Huang 2002 813:Bloom 2001 732:Zwart 2001 652:2010-06-11 583:emission. 540:GRB 970508 511:GRB 030329 507:GRB 020813 488:GRB 980326 425:collimated 421:GRB 971214 417:GRB 970508 329:GRB 970508 317:05 01 46.7 298:arcminutes 290:precession 267:gamma rays 251:GRB 970508 216:gamma rays 184:GRB 970228 153:GRB 970228 78:05 01 46.7 34:Event type 20:GRB 970228 1643:119394440 1502:: L5–L8. 1061:020813". 1053:205058997 765:Katz 1994 581:isotropic 579:assuming 536:Milky Way 471:supernova 380:afterglow 376:power-law 339:In 1993, 335:Afterglow 265:flash of 247:Milky Way 231:supernova 192:afterglow 1954:Archived 1579:12425394 1571:17293326 1534:17567870 1440:15787149 1313:34690851 1248:14962603 1240:10813670 1005:16648604 929:, p. 102 837:, p. 173 680:, p. 381 629:, p. 101 574:10  563:10  551:centroid 544:redshift 503:spectrum 390:and the 286:BeppoSAX 263:luminous 243:redshift 241:away (a 212:luminous 141:10  117:Redshift 104:Distance 1931:9509367 1909:Bibcode 1852:4248753 1832:Bibcode 1806:2561943 1786:Bibcode 1737:7492485 1717:Bibcode 1690:7344802 1670:Bibcode 1623:Bibcode 1551:Bibcode 1514:Bibcode 1487:7506509 1467:Bibcode 1420:Bibcode 1364:Bibcode 1293:Bibcode 1220:Bibcode 1187:Bibcode 1166:9505956 1146:Bibcode 1101:6171688 1081:Bibcode 1033:Bibcode 985:Bibcode 531:nebular 465:of the 457:of the 359:in the 302:Ulysses 1929:  1872:  1850:  1824:Nature 1804:  1754:  1735:  1688:  1641:  1577:  1569:  1532:  1485:  1438:  1311:  1246:  1238:  1164:  1128:Nature 1099:  1051:  1015:Nature 1003:  483:redder 365:x-rays 319:and a 235:galaxy 204:x-rays 158:  60:  40:  1927:S2CID 1899:arXiv 1848:S2CID 1820:(PDF) 1802:S2CID 1776:arXiv 1733:S2CID 1707:arXiv 1686:S2CID 1660:arXiv 1639:S2CID 1613:arXiv 1588:et al 1575:S2CID 1530:S2CID 1504:arXiv 1483:S2CID 1457:arXiv 1436:S2CID 1410:arXiv 1385:et al 1339:et al 1322:et al 1309:S2CID 1283:arXiv 1257:et al 1244:S2CID 1210:arXiv 1185:: 1. 1162:S2CID 1136:arXiv 1110:et al 1097:S2CID 1071:arXiv 1049:S2CID 1023:arXiv 1001:S2CID 975:arXiv 587:Notes 559:8.123 294:error 172:[ 99:J2000 95:Epoch 58:Orion 1870:ISBN 1752:ISBN 1567:PMID 1236:PMID 778:, §2 461:and 419:and 398:and 1917:doi 1895:328 1840:doi 1828:386 1794:doi 1772:591 1725:doi 1703:554 1678:doi 1656:521 1631:doi 1609:495 1594:". 1559:doi 1547:365 1522:doi 1500:418 1475:doi 1453:632 1428:doi 1406:432 1391:". 1372:doi 1345:". 1328:". 1301:doi 1279:536 1263:". 1228:doi 1206:534 1183:289 1154:doi 1132:387 1116:". 1089:doi 1067:597 1041:doi 1019:401 993:doi 971:554 570:5.2 505:of 315:of 282:UTC 196:UTC 137:5.2 1971:: 1925:. 1915:. 1907:. 1893:. 1887:. 1846:. 1838:. 1826:. 1822:. 1800:. 1792:. 1784:. 1770:. 1731:. 1723:. 1715:. 1701:. 1684:. 1676:. 1668:. 1654:. 1637:. 1629:. 1621:. 1607:. 1573:. 1565:. 1557:. 1545:. 1528:. 1520:. 1512:. 1498:. 1481:. 1473:. 1465:. 1451:. 1434:. 1426:. 1418:. 1404:. 1370:. 1360:26 1358:. 1307:. 1299:. 1291:. 1277:. 1242:. 1234:. 1226:. 1218:. 1204:. 1181:. 1177:. 1160:. 1152:. 1144:. 1130:. 1095:. 1087:. 1079:. 1065:. 1047:. 1039:. 1031:. 1017:. 999:. 991:. 983:. 969:. 842:^ 805:^ 713:^ 685:^ 634:^ 610:^ 594:^ 565:ly 494:. 431:. 371:. 253:. 202:, 1933:. 1919:: 1911:: 1901:: 1878:. 1854:. 1842:: 1834:: 1808:. 1796:: 1788:: 1778:: 1760:. 1739:. 1727:: 1719:: 1709:: 1692:. 1680:: 1672:: 1662:: 1645:. 1633:: 1625:: 1615:: 1598:. 1581:. 1561:: 1553:: 1536:. 1524:: 1516:: 1506:: 1489:. 1477:: 1469:: 1459:: 1442:. 1430:: 1422:: 1412:: 1378:. 1374:: 1366:: 1349:. 1332:. 1315:. 1303:: 1295:: 1285:: 1267:. 1250:. 1230:: 1222:: 1212:: 1193:. 1189:: 1168:. 1156:: 1148:: 1138:: 1120:. 1103:. 1091:: 1083:: 1073:: 1055:. 1043:: 1035:: 1025:: 1007:. 995:: 987:: 977:: 655:. 576:J 572:× 561:× 176:] 143:J 139:× 109:×

Index


Gamma-ray burst
Edit this on Wikidata
Constellation
Orion
Edit this on Wikidata
Right ascension
Declination
Epoch
Redshift
Edit this on Wikidata
J

Related media on Commons
edit on Wikidata
gamma-ray burst
afterglow
UTC
radio waves
x-rays
visible light
luminous
gamma rays
electromagnetic radiation
light curve
supernova
galaxy
light-years
redshift
Milky Way

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.