Knowledge

Functional near-infrared spectroscopy

Source šŸ“

1273: 1223: 99: 1025:ā€”around 70 ps. Through time-of-flight measurements, photon path-length may be directly observed by dividing resolved time by the speed of light. Information about hemodynamic changes can be found in the attenuation, decay, and time profile of the back-scattered signal. For this photon-counting technology is introduced, which counts 1 photon for every 100 pulses to maintain linearity. TD-fNIRS does have a slow sampling rate as well as a limited number of wavelengths. Because of the need for a photon-counting device, high-speed detection, and high-speed emitters, time-resolved methods are the most expensive and technically complicated. 1139:. Multi-channel fNIRS measurements create a topographical map of neural activation, whereby temporal correlation between spatially separated events can be analyzed. Functional connectivity is typically assessed in terms correlations between the hemodynamic responses of spatially distinct regions of interest (ROIs). In brain studies, functional connectivity measurements are commonly taken for resting state patient data, as well as data recorded over stimulus paradigms. A study led by Alessandro Crimi team highlighted that the functional connectivity measures obtained with fNIRS measurements are quite different from those obtained via 1118: 230:. Transillumination (forward-scattering) was of limited utility in adults because of light attenuation and was quickly replaced by reflectance-mode based techniques - resulting in development of NIRS systems proceeding rapidly. Then, by 1985, the first studies on cerebral oxygenation were conducted by M. Ferrari. Later, in 1989, following work with David Delpy at University College London, Hamamatsu developed the first commercial NIRS system: NIR-1000 cerebral oxygenation monitor. NIRS methods were initially used for cerebral oximetry in the 1990s. In 1993, four publications by Chance et al. 1168: 1325:
has a higher degree of mobility than MEG has. When looking at fNIRS, they are similar to an EEG. They have a high degree of mobility as well as temporal resolution, and they have low spatial resolution. PET scans and fMRIs are grouped together, however they are distinctly different from the other neuroimaging scans. They have a high degree of immobility, medium/high spatial resolution, and a low temporal resolution. All of these neuroimaging scans have important characteristics and are valuable, however they have distinct characteristics.
983: 274:. The idea had been successfully implemented in launching their first fNIRS (or Optical Topography, as they call it) device based on Frequency Domain in 2001: Hitachi ETG-100. Later, Harumi Oishi (大ēŸ³ ꙓē¾Ž), a PhD-to-be at Nagoya University, published her doctoral dissertation in 2003 with the subject of "language learners' cortical activation patterns measured by ETG-100" under the supervision of Professor Toru Kinoshita (ęœØäø‹ å¾®)ā€”presenting a new prospect on the use of fNIRS. The company has been advancing the ETG series ever since. 68: 257: 695: 20: 1278: 1277: 1274: 1228: 1224: 1279: 1225: 1260: 978:{\displaystyle {\begin{pmatrix}\Delta {\text{OD}}_{\lambda _{1}}\\\Delta {\text{OD}}_{\lambda _{2}}\end{pmatrix}}={\begin{pmatrix}\epsilon _{\lambda _{1}}^{\text{Hb}}d&\epsilon _{\lambda _{1}}^{{\text{HbO}}_{2}}d\\\epsilon _{\lambda _{2}}^{\text{Hb}}d&\epsilon _{\lambda _{2}}^{{\text{HbO}}_{2}}d\end{pmatrix}}{\begin{pmatrix}\Delta ^{\text{Hb}}\\\Delta ^{{\text{HbO}}_{2}}\end{pmatrix}}} 1276: 1227: 1037:
dynamic scattering from moving cells causes the detected intensity to temporally fluctuate. These fluctuations can be quantified by the temporal intensity autocorrelation curve of a single speckle. The decay of the autocorrelation curve is fitted with the solution of the correlation diffusion equation to obtain an index of cerebral blood flow.
1185:
separation channels measure the signal coming from the scalp, they allow the removal of the signal of superficial layers. This leaves behind the actual brain response. Short separation channel detectors are usually placed 8mm away from a source. They do not need to be in a specific direction or in the same direction as a detector.
1311:
fNIRS devices have many attractive features - they are small, lightweight, portable and wearable. They have the potential to be used in clinics, global health, a natural environment, and as a health tracker. Nevertheless, the negatives are salient and must be considered when interpreting the signal.
269:
Meanwhile, in the mid-80's, Japanese researchers at the central research laboratory of Hitachi Ltd set out to build a NIRS-based brain monitoring system using a pulse of 70-picosecond rays. This effort came into light when the team, along with their leading expert, Dr Hideaki Koizumi (å°ę³‰ č‹±ę˜Ž), held an
106:
There are six different ways for infrared light to interact with the brain tissue: direct transmission, diffuse transmission, specular reflection, diffuse reflection, scattering, and absorption. fNIRS focuses primarily on absorption: differences in the absorption spectra of deoxy-Hb and oxy-Hb allow
1324:
When comparing and contrasting neuroimaging devices it is important to look at the temporal resolution, spatial resolution, and the degree of immobility. In particular, EEG (electroencephalograph) and MEG (magnetoencephalography) have high temporal resolution, but a low spatial resolution. EEG also
1302:
Disadvantages of fNIRS include: low brain sensitivity given that it can only detect changes on the cortical surface and low spatial resolution. Importantly, the signal is sensitive to hair and skin pigment differences, making it difficult to do between-subject designs. Dense or extremely curly hair
987:
Due to their simplicity and cost-effectiveness, CW-fNIRS is by far the most common form of functional NIRS since it is the cheapest to make, applicable with more channels, and ensures a high temporal resolution. However, it does not distinguish between absorption and scattering changes, and cannot
299:
Continuous wave (CW) system uses light sources with constant frequency and amplitude. In fact, to measure absolute changes in HbO concentration with the mBLL, we need to know photon path-length. However, CW-fNIRS does not provide any knowledge of photon path-length, so changes in HbO concentration
1151:
NIRS monitoring is helpful in a number of ways. Preterm infants can be monitored reducing cerebral hypoxia and hyperoxia with different patterns of activities. It is an effective aid in Cardiopulmonary bypass, is strongly considered to improve patient outcomes and reduce costs and extended stays.
1036:
Diffuse correlation spectroscopy (DCS) is a non-invasive optical imaging technique that utilizes coherent near-infrared light to measure local microvascular cerebral blood flow by quantifying the temporal light intensity fluctuations generated by dynamic scattering of moving red blood cells. This
1008:
Changes in the back-scattered signal's amplitude and phase provide a direct measurement of absorption and scattering coefficients of the tissue, thus obviating the need for information about photon path-length; and from the coefficients we determine the changes in the concentration of hemodynamic
995:
Still, the simplicity and cost-effectiveness of CW-based devices prove themselves to be the most favorable for a number of clinical applications: neonatal care, patient monitoring systems, diffuse optical tomography, and so forth. Moreover, thanks to its portability, wireless CW systems have been
1113:
With our constant need for oxygen, our body has developed multiple mechanisms that detect oxygen levels, which in turn can activate appropriate responses to counter hypoxia and generate a higher oxygen supply. Moreover, understanding the physiological mechanism underlying the bodily response to
126:
Typically, the light emitter and detector are placed ipsilaterally (each emitter/detector pair on the same side) on the subject's skull so recorded measurements are due to back-scattered (reflected) light following elliptical pathways. fNIRS is most sensitive to hemodynamic changes which occur
76:
changes in absorbed light can be used to reliably measure changes in hemoglobin concentration. Different fNIRS techniques can also use the way in which light propagates to estimate blood volume and oxygenation. The technique is safe, non-invasive, and can be used with other imaging modalities.
75:
fNIRS estimates the concentration of hemoglobin from changes in absorption of near infrared light. As light moves or propagates through the head, it is alternately scattered or absorbed by the tissue through which it travels. Because hemoglobin is a significant absorber of near-infrared light,
1184:
as well as other layouts that are specifically optimized to maintain a consistent 30mm distance between each location. In addition to the standard positions of electrodes, short separation channels can be added. Short separation channels allow the measurement of scalp signals. Since the short
1079:
This toolbox is a set of Matlab-based tools for the analysis of functional near-infrared spectroscopy (fNIRS). This toolbox defines the +nirs namespace and includes a series of tools for signal processing, display, and statistics of fNIRS data. This toolbox is built around an object-oriented
2326:
Sitaram, Ranganatha; Zhang, Haihong; Guan, Cuntai; Thulasidas, Manoj; Hoshi, Yoko; Ishikawa, Akihiro; Shimizu, Koji; Birbaumer, Niels (February 2007). "Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brainā€“computer interface".
1012:
Because of the need for modulated lasers as well as phasic measurements, FD system-based devices are more technically complex (therefore more expensive and much less portable) than CW-based ones. However, the system is capable of providing absolute concentrations of HbO and HbR.
1210:
results in cognitive tasks. fNIRS has several advantages in cost and portability over fMRI, but cannot be used to measure cortical activity more than 4 cm deep due to limitations in light emitter power and has more limited spatial resolution. fNIRS includes the use of
1070:
HOMER3 allows users to obtain estimates and maps of brain activation. It is a set of matlab scripts used for analyzing fNIRS data. This set of scripts has evolved since the early 1990s first as the Photon Migration Imaging toolbox, then HOMER1 and HOMER2, and now HOMER3.
1275: 1226: 1205:
techniques. Through neuro-vascular coupling, neuronal activity is linked to related changes in localized cerebral blood flow. fNIRS and fMRI are sensitive to similar physiologic changes and are often comparative methods. Studies relating fMRI and fNIRS show highly
1247:
Hyperscanning involves two or more brains monitored simultaneously to investigate interpersonal (across-brains) neural correlates in various social situations, which proves fNIRS to be a suitable modality for investigating live brain-to-brain social interactions.
1215:(DOT/NIRDOT) for functional purposes. Multiplexing fNIRS channels can allow 2D topographic functional maps of brain activity (e.g. with Hitachi ETG-4000, Artinis Oxymon, NIRx NIRScout, etc.) while using multiple emitter spacings may be used to build 3D 1163:
Diffuse optical tomography is the 3D version of Diffuse optical imaging. Diffuse optical images are obtained using NIRS or fluorescence-based methods. These images can be used to develop a 3D volumetric model which is known as the Diffuse Optical
58:
and is capable of measuring changes both in oxy- and deoxyhemoglobin concentration, but can only measure from regions near the cortical surface. fNIRS may also be referred to as Optical Topography (OT) and is sometimes referred to simply as NIRS.
397: 1004:
Frequency domain (FD) system comprises NIR laser sources which provide an amplitude-modulated sinusoid at frequencies near 100 MHz. FD-fNIRS measures attenuation, phase shift and the average path length of light through the tissue.
270:
open symposium to announce the principle of "Optical Topography" in January 1995. In fact, the term "Optical Topography" derives from the concept of using light on "2-Dimensional mapping combined with 1-Dimensional information", or
2457:
Shaw, Keely; Singh, Jyotpal; Sirant, Luke; Neary, J. Patrick; Chilibeck, Philip D. (November 2020). "Effect of Dark Chocolate Supplementation on Tissue Oxygenation, Metabolism, and Performance in Trained Cyclists at Altitude".
2413:
Naseer, Noman; Hong, Keum-Shik (October 2013). "Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brainā€“computer interface".
2795:
Kim, Gyoung; Buntain, Noah; Hirshfield, Leanne; Costa, Mark R.; Chock, T. Makana (2019). "Processing Racial Stereotypes in Virtual Reality: An Exploratory Study Using Functional Near-Infrared Spectroscopy (FNIRS)".
1965:
Sutin, Jason; Zimmerman, Bernhard; Tyulmankov, Danil; Tamborini, Davide; Wu, Kuan Cheng; Selb, Juliette; Gulinatti, Angelo; Rech, Ivan; Tosi, Alberto; Boas, David A.; Franceschini, Maria Angela (20 September 2016).
2746:"Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)" 1880:
Quaresima, Valentina; Ferrari, Marco (January 2019). "Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review".
139:(mBLL). The Beer lambert-law has to deal with concentration of hemoglobin. This technique also measures relative changes in light attenuation as well as using mBLL to quantify hemoglobin concentration changes. 659: 2370:
Naseer, Noman; Hong, Melissa Jiyoun; Hong, Keum-Shik (February 2014). "Online binary decision decoding using functional near-infrared spectroscopy for the development of brainā€“computer interface".
2623:"Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses" 2170:
Aasted, Christopher M.; YĆ¼cel, Meryem A.; Cooper, Robert J.; Dubb, Jay; Tsuzuki, Daisuke; Becerra, Lino; Petkov, Mike P.; Borsook, David; Dan, Ippeita; Boas, David A. (5 May 2015).
2530:"A case-study of NIRS application for infant cerebral hemodynamic monitoring: A report of data analysis for feature extraction and infant classification into healthy and unhealthy" 1402:
Ferrari, Marco; Quaresima, Valentina (November 2012). "A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application".
1121:
Measurement of brain oxyhemoglobin and deoxyhemoglobin concentration changes at high alltitude induced hypoxia with a portable fNIRS device (PortaLite, Artinis Medical Systems)
1088:
AtlasViewer allows fNIRS data to be visualized on a model of the brain. In addition, it also allows the user to design probes which can eventually be placed onto a subject.
560: 127:
nearest to the scalp and these superficial artifacts are often addressed using additional light detectors located closer to the light source (short-separation detectors).
2221:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
421: 309: 2023:
Carp, S. A.; Tamborini, D.; Mazumder, D.; Wu, K. C.; Robinson, M. R.; Stephens, K. A.; Shatrovoy, O.; Lue, N.; Ozana, N.; Blackwell, M. H.; Franceschini, M. A. (2020).
603: 488: 448: 2695:
Piper, Sophie K.; Krueger, Arne; Koch, Stefan P.; Mehnert, Jan; Habermehl, Christina; Steinbrink, Jens; Obrig, Hellmuth; Schmitz, Christoph H. (15 January 2014).
681: 580: 538: 468: 1798:
Piper, Sophie K.; Krueger, Arne; Koch, Stefan P.; Mehnert, Jan; Habermehl, Christina; Steinbrink, Jens; Obrig, Hellmuth; Schmitz, Christoph H. (January 2014).
518: 1028:
TD-based devices have the highest depth sensitivity and are capable of presenting most accurate values of baseline hemoglobin concentration and oxygenation.
1328:
Among all other facts, what makes fNIRS a special point of interest is that it is compatible with some of these modalities, including: MRI, EEG, and MEG.
1155:
There are inconclusive results for use of NIRS with patients with traumatic brain injury, so it has been concluded that it should remain a research tool.
1256:
Modern fNIRS systems are combined with virtual or augmented reality in studies on brain-computer interfaces, neurorehabilitation or social perception.
50:, fNIRS is one of the most common non-invasive neuroimaging techniques which can be used in portable contexts. The signal is often compared with the 226:
In 1977, Jƶbsis reported that brain tissue transparency to NIR light allowed a non-invasive and continuous method of tissue oxygen saturation using
2944:
Lloyd-Fox, Sarah; Papademetriou, M.; Darboe, M. K.; Everdell, N. L.; Wegmuller, R.; Prentice, A. M.; Moore, S. E.; Elwell, C. E. (22 April 2014).
2501:
Blanco, R; Koba, C; Crimi, A (2024). "Investigating the interaction between EEG and fNIRS: a multimodal network analysis of brain connectivity".
2837: 2621:
YĆ¼cel, Meryem A.; Selb, Juliette; Aasted, Christopher M.; Petkov, Mike P.; Becerra, Lino; Borsook, David; Boas, David A. (11 September 2015).
1849:"The Age of Neuroergonomics: Towards Ubiquitous and Continuous Measurement of Brain Function with fNIRS: The age of neuroergonomics and fNIRS" 1592:
Kohno, Satoru; Miyai, Ichiro; Seiyama, Akitoshi; Oda, Ichiro; Ishikawa, Akihiro; Tsuneishi, Shoichi; Amita, Takashi; Shimizu, Koji (2007).
300:
are relative to an unknown path-length. Many CW-fNIRS commercial systems use estimations of photon path-length derived from computerized
1594:"Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis" 614: 249:
demonstrated the feasibility of fNIRS in adult humans. NIRS techniques were further expanded on by the work of Randall Barbour,
2813: 2236: 1643:"How short is short? Optimum sourceā€“detector distance for short-separation channels in functional near-infrared spectroscopy" 1180:
fNIRS electrode locations can be defined using a variety of layouts, including names and locations that are specified by the
55: 1716:
Jƶbsis (1997). "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters".
1751:
Ayaz, Hasan; Shewokis, Patricia A.; Curtin, Adrian; Izzetoglu, Meltem; Izzetoglu, Kurtulus; Onaral, Banu (8 October 2011).
51: 2918: 2892: 2866: 2219:
Ayaz, H.; Shewokis, P. A.; Bunce, S.; Onaral, B. (2011). "An optical brain computer interface for environmental control".
1193:
The use of fNIRS as a functional neuroimaging method relies on the principle of neuro-vascular coupling also known as the
1303:
may prohibit placement of electrodes close to the scalp, limiting the ability to use the technique with all individuals.
88: 2160:
Santosa, H., Zhai, X., Fishburn, F., & Huppert, T. (2018). The NIRS Brain AnalyzIR Toolbox. Algorithms, 11(5), 73.
1263:
Mobile and wireless fNIRS and EEG systems synchronized with all-in-one head mounted display (PhotonCap, Cortivision)
1114:
oxygen deprivation is of major importance and NIRS devices have shown to be a great tool in this field of research.
253:, Arno Villringer, M. Cope, D. T. Delpy, Enrico Gratton, and others. Currently, wearable fNIRS are being developed. 91:
in which (a) skin, tissue, and bone are mostly transparent to NIR light (700ā€“900 nm spectral interval) and (b)
135:
Changes in light intensity can be related to changes in relative concentrations of hemoglobin through the modified
107:
the measurement of relative changes in hemoglobin concentration through the use of light attenuation at multiple
2080:
Buckley, Erin M.; Parthasarathy, Ashwin B.; Grant, P. Ellen; Yodh, Arjun G.; Franceschini, Maria Angela (2014).
2744:
Holper, Lisa; Muehlemann, Thomas; Scholkmann, Felix; Eng, Kynan; Kiper, Daniel; Wolf, Martin (December 2010).
1545:"Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy" 1295:
The advantages of fNIRS are, among other things: noninvasiveness, low-cost modalities, perfect safety, high
98: 1198: 1102: 2946:"Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa" 1342: 1337: 1212: 123:(mBLL), relative changes in concentration can be calculated as a function of total photon path length. 35: 2269: 3101: 1918:"Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement" 1753:"Using MazeSuite and Functional Near Infrared Spectroscopy to Study Learning in Spatial Navigation" 609:
loss is assumed, and the measurements are treated differentially in time, the equation reduces to:
392:{\displaystyle {\text{OD}}=\operatorname {ln} (I_{0}/I)=\epsilon \cdot \cdot l\cdot {\text{DPF}}+G} 543: 2924: 2898: 2872: 2845: 1696: 1347: 1242: 1136: 1021:
Time domain (TD) system introduces a short NIR pulse with a pulse length usually in the order of
491: 404: 39: 1117: 996:
developedā€”allowing individuals to be monitored in ambulatory, clinical and sports environments.
1352: 588: 473: 3011:"Performance enhancement of a brain-computer interface using high-density multi-distance NIRS" 3096: 1194: 43: 1377: 42:. Using fNIRS, brain activity is measured by using near-infrared light to estimate cortical 3022: 2957: 2574: 2284: 2082:"Diffuse correlation spectroscopy for measurement of cerebral blood flow: Future prospects" 2036: 1979: 1605: 1556: 1445:
Cui, Xu; Bray, Signe; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L. (February 2011).
426: 136: 120: 2270:"Brainā€“computer interface using a simplified functional near-infrared spectroscopy system" 1287:
fNIRS can be used to monitor musicians' brain activity while playing musical instruments.
304:
and physical models, to approximate absolute quantification of hemoglobin concentrations.
8: 1296: 1167: 3026: 2961: 2586: 2578: 2288: 2040: 1983: 1609: 1560: 3043: 3010: 2991: 2978: 2945: 2819: 2772: 2745: 2721: 2696: 2647: 2622: 2595: 2562: 2483: 2439: 2395: 2352: 2308: 2250: 2196: 2171: 2119: 2106: 2081: 2057: 2024: 2000: 1967: 1942: 1917: 1898: 1824: 1799: 1775: 1752: 1667: 1642: 1525: 1471: 1446: 1427: 1216: 1181: 666: 565: 523: 453: 301: 2671: 1512: 1495: 497: 3048: 2983: 2823: 2809: 2777: 2726: 2712: 2652: 2600: 2487: 2475: 2431: 2387: 2344: 2340: 2300: 2242: 2232: 2201: 2172:"Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial" 2111: 2062: 2005: 1947: 1933: 1902: 1829: 1815: 1780: 1733: 1672: 1623: 1574: 1517: 1476: 1462: 1419: 1415: 227: 2399: 2356: 2312: 2296: 2123: 1529: 1431: 1299:, compatibility with other imaging modalities, and multiple hemodynamic biomarkers. 111:. Two or more wavelengths are selected, with one wavelength above and one below the 3038: 3030: 2995: 2973: 2965: 2801: 2767: 2757: 2716: 2708: 2697:"A wearable multi-channel fNIRS system for brain imaging in freely moving subjects" 2642: 2634: 2590: 2582: 2541: 2510: 2467: 2423: 2379: 2336: 2292: 2254: 2224: 2191: 2183: 2101: 2093: 2052: 2044: 1995: 1987: 1937: 1929: 1890: 1860: 1819: 1811: 1800:"A wearable multi-channel fNIRS system for brain imaging in freely moving subjects" 1770: 1760: 1725: 1662: 1654: 1613: 1564: 1507: 1466: 1458: 1411: 1382: 606: 112: 2443: 1367: 2805: 2427: 2025:"Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light" 67: 3009:
Shin, Jaeyoung; Kwon, Jinuk; Choi, Jongkwan; Im, Chang-Hwan (29 November 2017).
87:
attenuation or temporal or phasic changes. The technique takes advantage of the
3034: 2514: 2228: 256: 250: 2546: 2529: 2383: 2048: 1690: 1372: 3090: 2638: 2471: 2187: 2097: 1894: 1658: 988:
measure absolute absorption values: which means that it is only sensitive to
1991: 1447:"A quantitative comparison of NIRS and fMRI across multiple cognitive tasks" 115:
point of 810 nmā€”at which deoxy-Hb and oxy-Hb have identical absorption
3052: 2987: 2781: 2762: 2730: 2656: 2604: 2479: 2435: 2391: 2348: 2304: 2246: 2205: 2115: 2066: 2009: 1951: 1833: 1784: 1729: 1676: 1627: 1578: 1480: 1423: 1368:
An example of a mobile fNIRS system designed for studies in VR environments
95:(Hb) and deoxygenated-hemoglobin (deoxy-Hb) are strong absorbers of light. 1521: 1737: 1316:
Now there are fully wireless research grade fNIRS systems in the market.
1207: 116: 80: 2800:. Lecture Notes in Computer Science. Vol. 11580. pp. 407ā€“417. 2672:"fNIRS Hyperscanning: A door to real-world social neuroscience research" 102:
Absorption spectra for oxy-Hb and deoxy-Hb for near-infrared wavelengths
1496:"Non-invasive optical spectroscopy and imaging of human brain function" 1022: 108: 92: 79:
fNIRS is a non-invasive imaging method involving the quantification of
2969: 2268:
Coyle, Shirley M; Ward, TomƔs E; Markham, Charles M (September 2007).
1865: 1848: 1618: 1593: 1569: 1544: 2943: 1319: 19: 2528:
Rahimpour, Ali; Noubari, Hosein Ahmadi; Kazemian, Mohammad (2018).
83:
concentration resolved from the measurement of near infrared (NIR)
145:
Basic functional near infrared spectroscopy (fNIRS) abbreviations
1964: 1765: 2460:
International Journal of Sport Nutrition and Exercise Metabolism
1358:
The Society for Functional Near Infrared Society (external link)
1259: 1135:
fNIRS measurements can be used to calculate a limited degree of
1101:
fNIRS has been successfully implemented as a control signal for
2616: 2614: 2561:
Durduran, T.; Choe, R.; Baker, W. B.; Yodh, A. G. (July 2010).
1362: 2163: 654:{\displaystyle \Delta =\Delta {\frac {\text{OD}}{\epsilon d}}} 2743: 2079: 84: 2611: 1045:
At least two open-source fNIRS models are available online:
282:
Currently, there are three modalities of fNIR spectroscopy:
2137: 1750: 1202: 2325: 1049: 2794: 1140: 1054: 47: 2527: 2694: 2218: 2022: 1797: 1201:(BOLD) response. This principle also forms the core of 913: 771: 704: 46:
which occur in response to neural activity. Alongside
34:) is an optical brain monitoring technique which uses 2676:
The Society for functional Near Infrared Spectroscopy
2620: 2563:"Diffuse Optics for Tissue Monitoring and Tomography" 2560: 2169: 1357: 698: 669: 617: 591: 568: 546: 526: 500: 476: 456: 429: 407: 312: 3066: 2456: 1873: 1641:
Brigadoi, Sabrina; Cooper, Robert J. (26 May 2015).
1591: 686:
Using a dual wavelength system, measurements for HbO
1543:Li, Ting; Gong, Hui; Luo, Qingming (1 April 2011). 1444: 1395: 1031: 977: 675: 653: 597: 582:is a geometric factor associated with scattering. 574: 554: 532: 512: 482: 462: 442: 415: 391: 1634: 1320:fNIRS compared with other neuroimaging techniques 1108: 3088: 2267: 1879: 1791: 1493: 1401: 1251: 540:is the distance between source and detector and 2500: 1744: 1290: 690:and Hb can be solved from the matrix equation: 16:Optical technique for monitoring brain activity 3008: 2750:Journal of NeuroEngineering and Rehabilitation 2369: 1968:"Time-domain diffuse correlation spectroscopy" 1840: 1640: 1585: 1158: 1915: 1847:Curtin, Adrian; Ayaz, Hasan (October 2018). 1080:framework of Matlab classes and namespaces. 562:is the differential path length factor, and 130: 2319: 1487: 1096: 683:is the total corrected photon path-length. 277: 2412: 1846: 1438: 1188: 1130: 3042: 2977: 2771: 2761: 2720: 2646: 2594: 2545: 2261: 2195: 2105: 2056: 1999: 1941: 1864: 1823: 1774: 1764: 1666: 1617: 1568: 1542: 1536: 1511: 1470: 1060: 2212: 1271: 1258: 1221: 1166: 1116: 255: 97: 66: 18: 1232:fNIRS hyperscanning with two violinists 423:is the optical density or attenuation, 166:DCS = diffuse correlation spectroscopy 3089: 2223:. Vol. 2011. pp. 6327ā€“6330. 1715: 1267: 71:Oxygenated and deoxygenated hemoglobin 3067:"NIRx | fNIRS Systems | NIRS Devices" 1243:Neural synchrony Ā§ Hyperscanning 28:Functional near-infrared spectroscopy 2669: 1306: 1146: 182:HbT= total hemoglobin concentration 1494:Villringer, A.; Chance, B. (1997). 999: 13: 1916:Durduran, T.; Yodh, A. G. (2013). 939: 916: 733: 707: 633: 618: 585:When the attenuation coefficients 520:is the chromophore concentration, 294: 14: 3113: 1757:Journal of Visualized Experiments 172:Hb, HbR= deoxygenated hemoglobin 23:fNIRS with a Gowerlabs NTS system 2713:10.1016/j.neuroimage.2013.06.062 2534:Informatics in Medicine Unlocked 2503:Journal of Computational Science 2341:10.1016/j.neuroimage.2006.11.005 1934:10.1016/j.neuroimage.2013.06.017 1816:10.1016/j.neuroimage.2013.06.062 1463:10.1016/j.neuroimage.2010.10.069 1416:10.1016/j.neuroimage.2012.03.049 1236: 1125: 1040: 1032:Diffuse correlation spectroscopy 3059: 3002: 2937: 2927:from the original on 2021-12-21 2911: 2901:from the original on 2021-12-21 2885: 2875:from the original on 2021-12-21 2859: 2848:from the original on 2021-12-21 2830: 2788: 2737: 2688: 2663: 2554: 2521: 2494: 2450: 2406: 2363: 2154: 2130: 2073: 2016: 1958: 1909: 1883:Organizational Research Methods 1853:Japanese Psychological Research 1699:from the original on 2021-12-21 1074: 2567:Reports on Progress in Physics 1709: 1683: 1109:Hypoxia & altitude studies 1091: 1083: 1016: 949: 942: 926: 919: 627: 621: 507: 501: 366: 360: 348: 327: 221: 62: 1: 2587:10.1088/0034-4885/73/7/076701 2277:Journal of Neural Engineering 1513:10.1016/S0166-2236(97)01132-6 1388: 1252:Virtual and augmented reality 992:change in HbO concentration. 470:is measured light intensity, 2806:10.1007/978-3-030-22419-6_29 2428:10.1016/j.neulet.2013.08.021 2029:Journal of Biomedical Optics 1598:Journal of Biomedical Optics 1549:Journal of Biomedical Optics 1363:Global fNIRS (external Link) 1291:Advantages and disadvantages 1199:blood-oxygen-level dependent 1175: 555:{\displaystyle {\text{DPF}}} 450:is emitted light intensity, 153:CBV = cerebral blood volume 7: 2372:Experimental Brain Research 1331: 416:{\displaystyle {\text{OD}}} 160:= metabolic rate of oxygen 10: 3118: 3035:10.1038/s41598-017-16639-0 2515:10.1016/j.jocs.2024.102416 2229:10.1109/IEMBS.2011.6091561 1343:Diffuse optical tomography 1338:Near-infrared spectroscopy 1240: 1213:diffuse optical tomography 1182:International 10ā€“20 system 1159:Diffuse optical tomography 216: 150:CBF = cerebral blood flow 36:near-infrared spectroscopy 3071:NIRx Medical Technologies 2547:10.1016/j.imu.2018.04.001 2384:10.1007/s00221-013-3764-1 2297:10.1088/1741-2560/4/3/007 2049:10.1117/1.JBO.25.9.097003 1692:Modified Beer Lambert Law 1065: 598:{\displaystyle \epsilon } 483:{\displaystyle \epsilon } 131:Modified Beerā€“Lambert law 2639:10.1117/1.NPh.2.3.035005 2472:10.1123/ijsnem.2020-0051 2188:10.1117/1.NPh.2.2.020801 2098:10.1117/1.NPh.1.1.011009 1895:10.1177/1094428116658959 1659:10.1117/1.NPh.2.2.025005 1103:brainā€“computer interface 1097:Brainā€“computer interface 278:Spectroscopic techniques 264: 199:= hemoglobin saturation 179:= oxygenated hemoglobin 1992:10.1364/OPTICA.3.001006 1500:Trends in Neurosciences 1378:Cortech Solutions fNIRS 1348:Functional neuroimaging 1189:Functional neuroimaging 1137:functional connectivity 1131:Functional connectivity 1050:http://www.opennirs.org 492:attenuation coefficient 302:Monte-Carlo simulations 185:HGB = blood hemoglobin 147:BFi = blood flow index 40:functional neuroimaging 2868:fNIRS of playing piano 2763:10.1186/1743-0003-7-57 1730:10.1126/science.929199 1353:Cognitive neuroscience 1284: 1264: 1233: 1172: 1122: 1061:Data analysis software 1055:https://openfnirs.org/ 979: 677: 655: 599: 576: 556: 534: 514: 484: 464: 444: 417: 393: 261: 192:= arterial saturation 169:FD = frequency-domain 103: 72: 24: 1373:Soterix Medical fNIRS 1282: 1262: 1231: 1195:haemodynamic response 1170: 1120: 980: 678: 656: 600: 577: 557: 535: 515: 485: 465: 445: 443:{\displaystyle I_{0}} 418: 394: 259: 234:, Hoshi & Tamura 119:. Using the modified 101: 70: 22: 2894:fNIRS of Observation 2416:Neuroscience Letters 1283:fNIRS with a pianist 696: 667: 615: 605:are known, constant 589: 566: 544: 524: 498: 474: 454: 427: 405: 310: 288:2. Frequency domain 238:,  Kato et al. 206:= venous saturation 163:CW= continuous wave 44:hemodynamic activity 3027:2017NatSR...716545S 2962:2014NatSR...4E4740L 2798:Augmented Cognition 2670:mari (2018-02-04). 2579:2010RPPh...73g6701D 2289:2007JNEng...4..219C 2041:2020JBO....25i7003C 1984:2016Optic...3.1006S 1724:(4323): 1264ā€“1267. 1610:2007JBO....12f2111K 1561:2011JBO....16d5001L 1297:temporal resolution 1268:Music and the brain 896: 860: 831: 795: 285:1. Continuous wave 54:signal measured by 38:for the purpose of 3015:Scientific Reports 2950:Scientific Reports 1285: 1265: 1234: 1173: 1123: 975: 969: 902: 866: 839: 801: 774: 757: 673: 651: 595: 572: 552: 530: 510: 480: 460: 440: 413: 389: 262: 104: 73: 25: 2970:10.1038/srep04740 2815:978-3-030-22418-9 2238:978-1-4577-1589-1 1866:10.1111/jpr.12227 1619:10.1117/1.2814249 1570:10.1117/1.3567085 1307:Future directions 1280: 1229: 1147:Cerebral oximetry 957: 932: 887: 858: 822: 793: 740: 714: 676:{\displaystyle d} 649: 640: 575:{\displaystyle G} 550: 533:{\displaystyle l} 463:{\displaystyle I} 411: 381: 316: 228:transillumination 214: 213: 3109: 3081: 3080: 3078: 3077: 3063: 3057: 3056: 3046: 3006: 3000: 2999: 2981: 2941: 2935: 2934: 2933: 2932: 2920:fNIRS of Imagery 2915: 2909: 2908: 2907: 2906: 2889: 2883: 2882: 2881: 2880: 2863: 2857: 2856: 2854: 2853: 2834: 2828: 2827: 2792: 2786: 2785: 2775: 2765: 2741: 2735: 2734: 2724: 2692: 2686: 2685: 2683: 2682: 2667: 2661: 2660: 2650: 2618: 2609: 2608: 2598: 2558: 2552: 2551: 2549: 2525: 2519: 2518: 2498: 2492: 2491: 2454: 2448: 2447: 2410: 2404: 2403: 2367: 2361: 2360: 2335:(4): 1416ā€“1427. 2323: 2317: 2316: 2274: 2265: 2259: 2258: 2216: 2210: 2209: 2199: 2167: 2161: 2158: 2152: 2151: 2149: 2148: 2134: 2128: 2127: 2109: 2077: 2071: 2070: 2060: 2020: 2014: 2013: 2003: 1978:(9): 1006ā€“1013. 1962: 1956: 1955: 1945: 1913: 1907: 1906: 1877: 1871: 1870: 1868: 1844: 1838: 1837: 1827: 1795: 1789: 1788: 1778: 1768: 1748: 1742: 1741: 1713: 1707: 1706: 1705: 1704: 1687: 1681: 1680: 1670: 1638: 1632: 1631: 1621: 1589: 1583: 1582: 1572: 1540: 1534: 1533: 1515: 1491: 1485: 1484: 1474: 1457:(4): 2808ā€“2821. 1442: 1436: 1435: 1399: 1383:Neural synchrony 1281: 1230: 1000:Frequency domain 984: 982: 981: 976: 974: 973: 966: 965: 964: 963: 958: 955: 934: 933: 930: 907: 906: 895: 894: 893: 888: 885: 881: 880: 879: 859: 856: 854: 853: 852: 830: 829: 828: 823: 820: 816: 815: 814: 794: 791: 789: 788: 787: 762: 761: 754: 753: 752: 751: 741: 738: 728: 727: 726: 725: 715: 712: 682: 680: 679: 674: 660: 658: 657: 652: 650: 648: 638: 637: 604: 602: 601: 596: 581: 579: 578: 573: 561: 559: 558: 553: 551: 548: 539: 537: 536: 531: 519: 517: 516: 513:{\displaystyle } 511: 489: 487: 486: 481: 469: 467: 466: 461: 449: 447: 446: 441: 439: 438: 422: 420: 419: 414: 412: 409: 398: 396: 395: 390: 382: 379: 344: 339: 338: 317: 314: 260:Hitachi ETG-4000 142: 141: 137:Beerā€“Lambert law 121:Beer-Lambert law 3117: 3116: 3112: 3111: 3110: 3108: 3107: 3106: 3102:Optical imaging 3087: 3086: 3085: 3084: 3075: 3073: 3065: 3064: 3060: 3007: 3003: 2942: 2938: 2930: 2928: 2917: 2916: 2912: 2904: 2902: 2891: 2890: 2886: 2878: 2876: 2865: 2864: 2860: 2851: 2849: 2842:www.youtube.com 2836: 2835: 2831: 2816: 2793: 2789: 2742: 2738: 2693: 2689: 2680: 2678: 2668: 2664: 2619: 2612: 2559: 2555: 2526: 2522: 2499: 2495: 2455: 2451: 2411: 2407: 2368: 2364: 2324: 2320: 2272: 2266: 2262: 2239: 2217: 2213: 2168: 2164: 2159: 2155: 2146: 2144: 2136: 2135: 2131: 2078: 2074: 2021: 2017: 1963: 1959: 1914: 1910: 1878: 1874: 1845: 1841: 1796: 1792: 1749: 1745: 1714: 1710: 1702: 1700: 1689: 1688: 1684: 1639: 1635: 1590: 1586: 1541: 1537: 1506:(10): 435ā€“442. 1492: 1488: 1443: 1439: 1400: 1396: 1391: 1334: 1322: 1315: 1309: 1293: 1272: 1270: 1254: 1245: 1239: 1222: 1191: 1178: 1161: 1149: 1133: 1128: 1111: 1099: 1094: 1086: 1077: 1068: 1063: 1043: 1034: 1019: 1002: 968: 967: 959: 954: 953: 952: 948: 936: 935: 929: 925: 909: 908: 901: 900: 889: 884: 883: 882: 875: 871: 870: 864: 855: 848: 844: 843: 836: 835: 824: 819: 818: 817: 810: 806: 805: 799: 790: 783: 779: 778: 767: 766: 756: 755: 747: 743: 742: 737: 736: 730: 729: 721: 717: 716: 711: 710: 700: 699: 697: 694: 693: 689: 668: 665: 664: 641: 636: 616: 613: 612: 590: 587: 586: 567: 564: 563: 547: 545: 542: 541: 525: 522: 521: 499: 496: 495: 475: 472: 471: 455: 452: 451: 434: 430: 428: 425: 424: 408: 406: 403: 402: 378: 340: 334: 330: 313: 311: 308: 307: 297: 295:Continuous wave 291:3. Time-domain 280: 267: 224: 219: 209:TD=time-domain 205: 198: 191: 178: 159: 133: 65: 17: 12: 11: 5: 3115: 3105: 3104: 3099: 3083: 3082: 3058: 3001: 2936: 2910: 2884: 2858: 2829: 2814: 2787: 2736: 2687: 2662: 2627:Neurophotonics 2610: 2553: 2520: 2493: 2466:(6): 420ā€“426. 2449: 2405: 2378:(2): 555ā€“564. 2362: 2318: 2283:(3): 219ā€“226. 2260: 2237: 2211: 2176:Neurophotonics 2162: 2153: 2129: 2086:Neurophotonics 2072: 2015: 1957: 1908: 1872: 1859:(4): 374ā€“386. 1839: 1790: 1743: 1708: 1682: 1647:Neurophotonics 1633: 1584: 1535: 1486: 1437: 1410:(2): 921ā€“935. 1393: 1392: 1390: 1387: 1386: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1333: 1330: 1321: 1318: 1308: 1305: 1292: 1289: 1269: 1266: 1253: 1250: 1238: 1235: 1190: 1187: 1177: 1174: 1160: 1157: 1148: 1145: 1132: 1129: 1127: 1124: 1110: 1107: 1098: 1095: 1093: 1090: 1085: 1082: 1076: 1073: 1067: 1064: 1062: 1059: 1058: 1057: 1052: 1042: 1039: 1033: 1030: 1018: 1015: 1001: 998: 972: 962: 951: 947: 944: 941: 938: 937: 928: 924: 921: 918: 915: 914: 912: 905: 899: 892: 878: 874: 869: 865: 863: 851: 847: 842: 838: 837: 834: 827: 813: 809: 804: 800: 798: 786: 782: 777: 773: 772: 770: 765: 760: 750: 746: 735: 732: 731: 724: 720: 709: 706: 705: 703: 687: 672: 647: 644: 635: 632: 629: 626: 623: 620: 594: 571: 529: 509: 506: 503: 479: 459: 437: 433: 388: 385: 377: 374: 371: 368: 365: 362: 359: 356: 353: 350: 347: 343: 337: 333: 329: 326: 323: 320: 296: 293: 279: 276: 266: 263: 251:Britton Chance 236:J Appl Physiol 223: 220: 218: 215: 212: 211: 203: 196: 189: 176: 157: 132: 129: 89:optical window 64: 61: 15: 9: 6: 4: 3: 2: 3114: 3103: 3100: 3098: 3095: 3094: 3092: 3072: 3068: 3062: 3054: 3050: 3045: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3005: 2997: 2993: 2989: 2985: 2980: 2975: 2971: 2967: 2963: 2959: 2955: 2951: 2947: 2940: 2926: 2922: 2921: 2914: 2900: 2896: 2895: 2888: 2874: 2870: 2869: 2862: 2847: 2843: 2839: 2833: 2825: 2821: 2817: 2811: 2807: 2803: 2799: 2791: 2783: 2779: 2774: 2769: 2764: 2759: 2755: 2751: 2747: 2740: 2732: 2728: 2723: 2718: 2714: 2710: 2706: 2702: 2698: 2691: 2677: 2673: 2666: 2658: 2654: 2649: 2644: 2640: 2636: 2633:(3): 035005. 2632: 2628: 2624: 2617: 2615: 2606: 2602: 2597: 2592: 2588: 2584: 2580: 2576: 2573:(7): 076701. 2572: 2568: 2564: 2557: 2548: 2543: 2539: 2535: 2531: 2524: 2516: 2512: 2508: 2504: 2497: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2453: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2409: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2366: 2358: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2322: 2314: 2310: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2271: 2264: 2256: 2252: 2248: 2244: 2240: 2234: 2230: 2226: 2222: 2215: 2207: 2203: 2198: 2193: 2189: 2185: 2182:(2): 020801. 2181: 2177: 2173: 2166: 2157: 2143: 2139: 2133: 2125: 2121: 2117: 2113: 2108: 2103: 2099: 2095: 2092:(1): 011009. 2091: 2087: 2083: 2076: 2068: 2064: 2059: 2054: 2050: 2046: 2042: 2038: 2035:(9): 097003. 2034: 2030: 2026: 2019: 2011: 2007: 2002: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1961: 1953: 1949: 1944: 1939: 1935: 1931: 1927: 1923: 1919: 1912: 1904: 1900: 1896: 1892: 1888: 1884: 1876: 1867: 1862: 1858: 1854: 1850: 1843: 1835: 1831: 1826: 1821: 1817: 1813: 1809: 1805: 1801: 1794: 1786: 1782: 1777: 1772: 1767: 1762: 1758: 1754: 1747: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1698: 1694: 1693: 1686: 1678: 1674: 1669: 1664: 1660: 1656: 1653:(2): 025005. 1652: 1648: 1644: 1637: 1629: 1625: 1620: 1615: 1611: 1607: 1604:(6): 062111. 1603: 1599: 1595: 1588: 1580: 1576: 1571: 1566: 1562: 1558: 1555:(4): 045001. 1554: 1550: 1546: 1539: 1531: 1527: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1490: 1482: 1478: 1473: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1394: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1335: 1329: 1326: 1317: 1313: 1304: 1300: 1298: 1288: 1261: 1257: 1249: 1244: 1237:Hyperscanning 1220: 1218: 1214: 1209: 1204: 1200: 1196: 1186: 1183: 1169: 1165: 1156: 1153: 1144: 1142: 1138: 1126:Brain mapping 1119: 1115: 1106: 1104: 1089: 1081: 1072: 1056: 1053: 1051: 1048: 1047: 1046: 1041:System design 1038: 1029: 1026: 1024: 1014: 1010: 1006: 997: 993: 991: 985: 970: 960: 945: 922: 910: 903: 897: 890: 876: 872: 867: 861: 849: 845: 840: 832: 825: 811: 807: 802: 796: 784: 780: 775: 768: 763: 758: 748: 744: 722: 718: 701: 691: 684: 670: 661: 645: 642: 630: 624: 610: 608: 592: 583: 569: 527: 504: 493: 477: 457: 435: 431: 399: 386: 383: 375: 372: 369: 363: 357: 354: 351: 345: 341: 335: 331: 324: 321: 318: 305: 303: 292: 289: 286: 283: 275: 273: 258: 254: 252: 248: 247:Neuros. Lett. 245: 241: 237: 233: 229: 210: 207: 200: 193: 186: 183: 180: 173: 170: 167: 164: 161: 154: 151: 148: 144: 143: 140: 138: 128: 124: 122: 118: 114: 110: 100: 96: 94: 90: 86: 82: 77: 69: 60: 57: 53: 49: 45: 41: 37: 33: 29: 21: 3097:Neuroimaging 3074:. Retrieved 3070: 3061: 3021:(1): 16545. 3018: 3014: 3004: 2953: 2949: 2939: 2929:, retrieved 2919: 2913: 2903:, retrieved 2893: 2887: 2877:, retrieved 2867: 2861: 2850:. Retrieved 2841: 2832: 2797: 2790: 2753: 2749: 2739: 2707:(1): 64ā€“71. 2704: 2700: 2690: 2679:. Retrieved 2675: 2665: 2630: 2626: 2570: 2566: 2556: 2537: 2533: 2523: 2506: 2502: 2496: 2463: 2459: 2452: 2419: 2415: 2408: 2375: 2371: 2365: 2332: 2328: 2321: 2280: 2276: 2263: 2220: 2214: 2179: 2175: 2165: 2156: 2145:. Retrieved 2141: 2132: 2089: 2085: 2075: 2032: 2028: 2018: 1975: 1971: 1960: 1928:(1): 51ā€“63. 1925: 1921: 1911: 1889:(1): 46ā€“68. 1886: 1882: 1875: 1856: 1852: 1842: 1810:(1): 64ā€“71. 1807: 1803: 1793: 1766:10.3791/3443 1759:(56): 3443. 1756: 1746: 1721: 1717: 1711: 1701:, retrieved 1691: 1685: 1650: 1646: 1636: 1601: 1597: 1587: 1552: 1548: 1538: 1503: 1499: 1489: 1454: 1450: 1440: 1407: 1403: 1397: 1327: 1323: 1314: 1310: 1301: 1294: 1286: 1255: 1246: 1192: 1179: 1171:10-20 system 1162: 1154: 1150: 1134: 1112: 1100: 1087: 1078: 1075:NIRS toolbox 1069: 1044: 1035: 1027: 1020: 1011: 1009:parameters. 1007: 1003: 994: 989: 986: 692: 685: 662: 611: 584: 400: 306: 298: 290: 287: 284: 281: 271: 268: 246: 243: 239: 235: 231: 225: 208: 201: 194: 187: 184: 181: 174: 171: 168: 165: 162: 155: 152: 149: 146: 134: 125: 117:coefficients 105: 78: 74: 31: 27: 26: 2956:(1): 4740. 1217:tomographic 1164:Tomography. 1092:Application 1084:AtlasViewer 1023:picoseconds 1017:Time domain 242:Villringer 222:US & UK 109:wavelengths 81:chromophore 63:Description 3091:Categories 3076:2019-11-26 2931:2020-03-26 2905:2020-03-26 2879:2020-03-26 2852:2020-03-26 2701:NeuroImage 2681:2020-03-26 2509:: 102416. 2329:NeuroImage 2147:2019-11-26 1922:NeuroImage 1804:NeuroImage 1703:2020-03-26 1451:NeuroImage 1404:NeuroImage 1389:References 1241:See also: 1208:correlated 607:scattering 272:topography 113:isosbestic 93:hemoglobin 2838:"YouTube" 2824:195891659 2756:(1): 57. 2540:: 44ā€“50. 2488:221635672 2422:: 84ā€“89. 1903:148042299 1176:fNIRS cap 1105:systems. 940:Δ 917:Δ 873:λ 868:ϵ 846:λ 841:ϵ 808:λ 803:ϵ 781:λ 776:ϵ 745:λ 734:Δ 719:λ 708:Δ 643:ϵ 634:Δ 619:Δ 593:ϵ 478:ϵ 376:⋅ 370:⋅ 358:⋅ 355:ϵ 325:⁡ 3053:29185494 2988:24751935 2925:archived 2899:archived 2873:archived 2846:Archived 2782:21122154 2731:23810973 2657:26835480 2605:26120204 2480:32916656 2436:23973334 2400:15250694 2392:24258529 2357:15471179 2349:17196832 2313:18723855 2305:17873424 2247:22255785 2206:26157991 2138:"HOMER2" 2124:13208535 2116:25593978 2067:32996299 2010:28008417 1952:23770408 1834:23810973 1785:22005455 1697:archived 1677:26158009 1628:18163814 1579:21529068 1530:18077839 1481:21047559 1432:18367840 1424:22510258 1332:See also 990:relative 175:HbO, HbO 3044:5707382 3023:Bibcode 2996:8522984 2979:5381189 2958:Bibcode 2773:3014953 2722:3859838 2648:4717232 2596:4482362 2575:Bibcode 2285:Bibcode 2255:4951918 2197:4478785 2107:4292799 2058:7522668 2037:Bibcode 2001:5166986 1980:Bibcode 1943:3991554 1825:3859838 1776:3227178 1718:Science 1668:4478880 1606:Bibcode 1557:Bibcode 1522:9347608 1472:3021967 1143:caps. 490:is the 217:History 3051:  3041:  2994:  2986:  2976:  2822:  2812:  2780:  2770:  2729:  2719:  2655:  2645:  2603:  2593:  2486:  2478:  2444:220773 2442:  2434:  2398:  2390:  2355:  2347:  2311:  2303:  2253:  2245:  2235:  2204:  2194:  2142:HOMER2 2122:  2114:  2104:  2065:  2055:  2008:  1998:  1972:Optica 1950:  1940:  1901:  1832:  1822:  1783:  1773:  1738:929199 1736:  1675:  1665:  1626:  1577:  1528:  1520:  1479:  1469:  1430:  1422:  1219:maps. 1066:HOMER3 663:Where 401:Where 240:JCBFM, 2992:S2CID 2820:S2CID 2484:S2CID 2440:S2CID 2396:S2CID 2353:S2CID 2309:S2CID 2273:(PDF) 2251:S2CID 2120:S2CID 1899:S2CID 1526:S2CID 1428:S2CID 265:Japan 244:et al 85:light 32:fNIRS 3049:PMID 2984:PMID 2810:ISBN 2778:PMID 2727:PMID 2653:PMID 2601:PMID 2476:PMID 2432:PMID 2388:PMID 2345:PMID 2301:PMID 2243:PMID 2233:ISBN 2202:PMID 2112:PMID 2063:PMID 2006:PMID 1948:PMID 1830:PMID 1781:PMID 1734:PMID 1673:PMID 1624:PMID 1575:PMID 1518:PMID 1477:PMID 1420:PMID 1203:fMRI 232:PNAS 156:CMRO 56:fMRI 52:BOLD 3039:PMC 3031:doi 2974:PMC 2966:doi 2802:doi 2768:PMC 2758:doi 2717:PMC 2709:doi 2643:PMC 2635:doi 2591:PMC 2583:doi 2542:doi 2511:doi 2468:doi 2424:doi 2420:553 2380:doi 2376:232 2337:doi 2293:doi 2225:doi 2192:PMC 2184:doi 2102:PMC 2094:doi 2053:PMC 2045:doi 1996:PMC 1988:doi 1938:PMC 1930:doi 1891:doi 1861:doi 1820:PMC 1812:doi 1771:PMC 1761:doi 1726:doi 1722:198 1663:PMC 1655:doi 1614:doi 1565:doi 1508:doi 1467:PMC 1459:doi 1412:doi 1197:or 1141:EEG 956:HbO 886:HbO 821:HbO 549:DPF 380:DPF 202:SvO 188:SaO 48:EEG 3093:: 3069:. 3047:. 3037:. 3029:. 3017:. 3013:. 2990:. 2982:. 2972:. 2964:. 2952:. 2948:. 2923:, 2897:, 2871:, 2844:. 2840:. 2818:. 2808:. 2776:. 2766:. 2752:. 2748:. 2725:. 2715:. 2705:85 2703:. 2699:. 2674:. 2651:. 2641:. 2629:. 2625:. 2613:^ 2599:. 2589:. 2581:. 2571:73 2569:. 2565:. 2538:11 2536:. 2532:. 2507:82 2505:. 2482:. 2474:. 2464:30 2462:. 2438:. 2430:. 2418:. 2394:. 2386:. 2374:. 2351:. 2343:. 2333:34 2331:. 2307:. 2299:. 2291:. 2279:. 2275:. 2249:. 2241:. 2231:. 2200:. 2190:. 2178:. 2174:. 2140:. 2118:. 2110:. 2100:. 2088:. 2084:. 2061:. 2051:. 2043:. 2033:25 2031:. 2027:. 2004:. 1994:. 1986:. 1974:. 1970:. 1946:. 1936:. 1926:85 1924:. 1920:. 1897:. 1887:22 1885:. 1857:60 1855:. 1851:. 1828:. 1818:. 1808:85 1806:. 1802:. 1779:. 1769:. 1755:. 1732:. 1720:. 1695:, 1671:. 1661:. 1649:. 1645:. 1622:. 1612:. 1602:12 1600:. 1596:. 1573:. 1563:. 1553:16 1551:. 1547:. 1524:. 1516:. 1504:20 1502:. 1498:. 1475:. 1465:. 1455:54 1453:. 1449:. 1426:. 1418:. 1408:63 1406:. 931:Hb 857:Hb 792:Hb 739:OD 713:OD 639:OD 494:, 410:OD 322:ln 315:OD 195:SO 3079:. 3055:. 3033:: 3025:: 3019:7 2998:. 2968:: 2960:: 2954:4 2855:. 2826:. 2804:: 2784:. 2760:: 2754:7 2733:. 2711:: 2684:. 2659:. 2637:: 2631:2 2607:. 2585:: 2577:: 2550:. 2544:: 2517:. 2513:: 2490:. 2470:: 2446:. 2426:: 2402:. 2382:: 2359:. 2339:: 2315:. 2295:: 2287:: 2281:4 2257:. 2227:: 2208:. 2186:: 2180:2 2150:. 2126:. 2096:: 2090:1 2069:. 2047:: 2039:: 2012:. 1990:: 1982:: 1976:3 1954:. 1932:: 1905:. 1893:: 1869:. 1863:: 1836:. 1814:: 1787:. 1763:: 1740:. 1728:: 1679:. 1657:: 1651:2 1630:. 1616:: 1608:: 1581:. 1567:: 1559:: 1532:. 1510:: 1483:. 1461:: 1434:. 1414:: 971:) 961:2 950:] 946:X 943:[ 927:] 923:X 920:[ 911:( 904:) 898:d 891:2 877:2 862:d 850:2 833:d 826:2 812:1 797:d 785:1 769:( 764:= 759:) 749:2 723:1 702:( 688:2 671:d 646:d 631:= 628:] 625:X 622:[ 570:G 528:l 508:] 505:X 502:[ 458:I 436:0 432:I 387:G 384:+ 373:l 367:] 364:X 361:[ 352:= 349:) 346:I 342:/ 336:0 332:I 328:( 319:= 204:2 197:2 190:2 177:2 158:2 30:(

Index


near-infrared spectroscopy
functional neuroimaging
hemodynamic activity
EEG
BOLD
fMRI

chromophore
light
optical window
hemoglobin

wavelengths
isosbestic
coefficients
Beer-Lambert law
Beerā€“Lambert law
transillumination
Britton Chance

Monte-Carlo simulations
attenuation coefficient
scattering
picoseconds
http://www.opennirs.org
https://openfnirs.org/
brainā€“computer interface

functional connectivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘