Knowledge

Thermal conduction

Source 📝

381:
metal, and the interest lies in analyzing this spatial change of temperature within the object over time until all gradients disappear entirely (the ball has reached the same temperature as the oil). Mathematically, this condition is also approached exponentially; in theory, it takes infinite time, but in practice, it is over, for all intents and purposes, in a much shorter period. At the end of this process with no heat sink but the internal parts of the ball (which are finite), there is no steady-state heat conduction to reach. Such a state never occurs in this situation, but rather the end of the process is when there is no heat conduction at all.
4932:, such as evaporation or fusion, at the temperature at which it must conduct heat. But when only thermal equilibrium is considered and time is not urgent, so that the conductivity of the material does not matter too much, one suitable heat conductor is as good as another. Conversely, another aspect of the zeroth law is that, subject again to suitable restrictions, a given diathermal wall is indifferent to the nature of the heat bath to which it is connected. For example, the glass bulb of a thermometer acts as a diathermal wall whether exposed to a gas or a liquid, provided that they do not corrode or melt it. 3949: 1291: 1184: 1075: 5425: 377:
steady-state, in which a constant temperature gradient along the bar is finally set up, and this gradient then stays constant in time. Typically, such a new steady-state gradient is approached exponentially with time after a new temperature-or-heat source or sink, has been introduced. When a "transient conduction" phase is over, heat flow may continue at high power, so long as temperatures do not change.
4899:, varies in practice. In steel, the quenching temperature range is generally from 600 Â°C to 200 Â°C. To control the quenching time and to select suitable quenching media, it is necessary to determine the Fourier number from the desired quenching time, the relative temperature drop, and the relevant Biot number. Usually, the correct figures are read from a standard 1030: 4113:. If the system has a Biot number of less than 0.1, the material behaves according to Newtonian cooling, i.e. with negligible temperature gradient within the body. If the Biot number is greater than 0.1, the system behaves as a series solution. The temperature profile in terms of time can be derived from the equation 2294: 373:. In this state of steady-state equilibrium, temperatures vary greatly from the engine cylinders to other parts of the automobile, but at no point in space within the automobile does temperature increase or decrease. After establishing this state, the transient conduction phase of heat transfer is over. 4976:
Working: if the same gas is present around all the Wheatstone bridge filaments, then the same temperature is maintained in all the filaments and hence same resistances are also maintained; resulting in a balanced Wheatstone bridge. However, If the dissimilar gas sample (or gas mixture) is passed over
356:
Another term is "non-steady-state" conduction, referring to the time-dependence of temperature fields in an object. Non-steady-state situations appear after an imposed change in temperature at a boundary of an object. They may also occur with temperature changes inside an object, as a result of a new
4964:
containing four filaments whose resistances are matched. Whenever a certain gas is passed over such network of filaments, their resistance changes due to the altered thermal conductivity of the filaments and thereby changing the net voltage output from the Wheatstone Bridge. This voltage output will
422:
during transient cooling (or the reverse during heating). The equivalent thermal circuit consists of a simple capacitor in series with a resistor. In such cases, the remainder of the system with a high thermal resistance (comparatively low conductivity) plays the role of the resistor in the circuit.
4980:
Using this technique many unknown gas samples can be identified by comparing their thermal conductivity with other reference gas of known thermal conductivity. The most commonly used reference gas is nitrogen; as the thermal conductivity of most common gases (except hydrogen and helium) are similar
495:
in the temperature and to the area, at right angles to that gradient, through which the heat flows. We can state this law in two equivalent forms: the integral form, in which we look at the amount of energy flowing into or out of a body as a whole, and the differential form, in which we look at the
368:
An example of a new source of heat "turning on" within an object, causing transient conduction, is an engine starting in an automobile. In this case, the transient thermal conduction phase for the entire machine is over, and the steady-state phase appears, as soon as the engine reaches steady-state
217:
In gases, heat transfer occurs through collisions of gas molecules with one another. In the absence of convection, which relates to a moving fluid or gas phase, thermal conduction through a gas phase is highly dependent on the composition and pressure of this phase, and in particular, the mean free
135:
Conduction is the main mode of heat transfer for solid materials because the strong inter-molecular forces allow the vibrations of particles to be easily transmitted, in comparison to liquids and gases. Liquids have weaker inter-molecular forces and more space between the particles, which makes the
435:
is a model that is compatible with the theory of special relativity. For most of the last century, it was recognized that the Fourier equation is in contradiction with the theory of relativity because it admits an infinite speed of propagation of heat signals. For example, according to the Fourier
380:
An example of transient conduction that does not end with steady-state conduction, but rather no conduction, occurs when a hot copper ball is dropped into oil at a low temperature. Here, the temperature field within the object begins to change as a function of time, as the heat is removed from the
360:
When a new perturbation of temperature of this type happens, temperatures within the system change in time toward a new equilibrium with the new conditions, provided that these do not change. After equilibrium, heat flow into the system once again equals the heat flow out, and temperatures at each
322:
For example, a bar may be cold at one end and hot at the other, but after a state of steady-state conduction is reached, the spatial gradient of temperatures along the bar does not change any further, as time proceeds. Instead, the temperature remains constant at any given cross-section of the rod
309:
Steady-state conduction is the form of conduction that happens when the temperature difference(s) driving the conduction are constant, so that (after an equilibration time), the spatial distribution of temperatures (temperature field) in the conducting object does not change any further. Thus, all
147:
is a measure of an interface's resistance to thermal flow. This thermal resistance differs from contact resistance, as it exists even at atomically perfect interfaces. Understanding the thermal resistance at the interface between two materials is of primary significance in the study of its thermal
417:
across their extent, during the process (as compared to the rest of the system). This is due to their far higher conductance. During transient conduction, therefore, the temperature across their conductive regions changes uniformly in space, and as a simple exponential in time. An example of such
330:. In such cases, temperature plays the role of voltage, and heat transferred per unit time (heat power) is the analog of electric current. Steady-state systems can be modeled by networks of such thermal resistances in series and parallel, in exact analogy to electrical networks of resistors. See 105:
A region with greater thermal energy (heat) corresponds with greater molecular agitation. Thus when a hot object touches a cooler surface, the highly agitated molecules from the hot object bump the calm molecules of the cooler surface, transferring the microscopic kinetic energy and causing the
75:
is heat transfer through stationary matter by physical contact. (The matter is stationary on a macroscopic scale—we know there is thermal motion of the atoms and molecules at any temperature above absolute zero.) Heat transferred between the electric burner of a stove and the bottom of a pan is
376:
New external conditions also cause this process: for example, the copper bar in the example steady-state conduction experiences transient conduction as soon as one end is subjected to a different temperature from the other. Over time, the field of temperatures inside the bar reaches a new
4956:
Thermal conduction property of any gas under standard conditions of pressure and temperature is a fixed quantity. This property of a known reference gas or known reference gas mixtures can, therefore, be used for certain sensory applications, such as the thermal conductivity analyzer.
40:
is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.
874: 364:
If changes in external temperatures or internal heat generation changes are too rapid for the equilibrium of temperatures in space to take place, then the system never reaches a state of unchanging temperature distribution in time, and the system remains in a transient state.
3923: 142:
is the study of heat conduction between solid bodies in contact. A temperature drop is often observed at the interface between the two surfaces in contact. This phenomenon is said to be a result of a thermal contact resistance existing between the contacting surfaces.
49:, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. Heat spontaneously flows along a 4977:
one set of two filaments and the reference gas on the other set of two filaments, then the Wheatstone bridge becomes unbalanced. And the resulting net voltage output of the circuit will be correlated with the database to identify the constituents of the sample gas.
4786: 318:
are uniformly zero. In steady-state conduction, the amount of heat entering any region of an object is equal to the amount of heat coming out (if this were not so, the temperature would be rising or falling, as thermal energy was tapped or trapped in a region).
2130: 1951: 4652:
as the boundary conditions. Splat cooling rapidly ends in a steady state temperature, and is similar in form to the Gaussian diffusion equation. The temperature profile, with respect to the position and time of this type of cooling, varies with:
89:
occurs when microwaves, infrared radiation, visible light, or another form of electromagnetic radiation is emitted or absorbed. An obvious example is the warming of the Earth by the Sun. A less obvious example is thermal radiation from the human
3173: 749:
is often treated as a constant, though this is not always true. While the thermal conductivity of a material generally varies with temperature, the variation can be small over a significant range of temperatures for some common materials. In
2123: 4270: 436:
equation, a pulse of heat at the origin would be felt at infinity instantaneously. The speed of information propagation is faster than the speed of light in vacuum, which is physically inadmissible within the framework of relativity.
3397: 393:
within the shape (i.e., most complex objects, mechanisms or machines in engineering) often the application of approximate theories is required, and/or numerical analysis by computer. One popular graphical method involves the use of
384:
The analysis of non-steady-state conduction systems is more complex than that of steady-state systems. If the conducting body has a simple shape, then exact analytical mathematical expressions and solutions may be possible (see
3045: 3285: 3505: 106:
colder part or object to heat up. Mathematically, thermal conduction works just like diffusion. As temperature difference goes up, the distance traveled gets shorter or the area goes up thermal conduction increases:
3721: 4656: 1823: 3603: 1349: 1133: 4386: 4879:(TTT). It is possible to manipulate the cooling process to adjust the phase of a suitable material. For example, appropriate quenching of steel can convert a desirable proportion of its content of 4009:
The heat transfer at an interface is considered a transient heat flow. To analyze this problem, the Biot number is important to understand how the system behaves. The Biot number is determined by:
1243: 4922:
is a physical connection between two bodies that allows the passage of heat between them. Bailyn is referring to diathermal walls that exclusively connect two bodies, especially conductive walls.
1856: 1478: 326:
In steady-state conduction, all the laws of direct current electrical conduction can be applied to "heat currents". In such cases, it is possible to take "thermal resistances" as the analog to
4323:, and represents the transfer of heat at an interface between two materials. This value is different at every interface and is an important concept in understanding heat flow at an interface. 1025:{\displaystyle {\frac {\partial T}{\partial t}}=\alpha \left({\frac {\partial ^{2}T}{\partial x^{2}}}+{\frac {\partial ^{2}T}{\partial y^{2}}}+{\frac {\partial ^{2}T}{\partial z^{2}}}\right)} 4861: 2728: 4049: 1644: 4111: 4321: 3050: 2030: 4650: 2556: 864: 1751: 1406: 635: 2608: 2035: 1696: 4458:
is a method for quenching small droplets of molten materials by rapid contact with a cold surface. The particles undergo a characteristic cooling process, with the heat profile at
4155: 3290: 2934: 4150: 1314: 1207: 1098: 3714: 136:
vibrations of particles harder to transmit. Gases have even more space, and therefore infrequent particle collisions. This makes liquids and gases poor conductors of heat.
664: 546: 4925:
This statement of the "zeroth law" belongs to an idealized theoretical discourse, and actual physical walls may have peculiarities that do not conform to its generality.
2889: 1287: 4563: 2491: 2440: 2289:{\displaystyle {\frac {\Delta Q}{\Delta t}}={\frac {A\,(-\Delta T)}{{\frac {\Delta x_{1}}{k_{1}}}+{\frac {\Delta x_{2}}{k_{2}}}+{\frac {\Delta x_{3}}{k_{3}}}+\cdots }}.} 4615: 4589: 2400: 2364: 1851: 595: 1571: 1504: 723: 4816: 2941: 2765: 2302:
of fluid that remains stationary next to the barrier. This thin film of fluid is difficult to quantify because its characteristics depend upon complex conditions of
4436: 3665: 3638: 2849: 2829: 2802: 2674: 2642: 1157: 246: 57:
of an electric stove to the bottom of a saucepan in contact with it. In the absence of an opposing external driving energy source, within a body or between bodies,
3178: 4534: 4508: 4482: 361:
point inside the system no longer change. Once this happens, transient conduction is ended, although steady-state conduction may continue if heat flow continues.
1180: 4069: 1593: 1546: 1524: 1377: 1066: 796: 772: 747: 690: 569: 82:
is the heat transfer by the macroscopic movement of a fluid. This type of transfer takes place in a forced-air furnace and in weather systems, for example.
401:
Occasionally, transient conduction problems may be considerably simplified if regions of the object being heated or cooled can be identified, for which
4915:
is directly focused on the idea of conduction of heat. Bailyn (1994) writes that "the zeroth law may be stated: All diathermal walls are equivalent".
190:
metallic solid conducts most of the heat flux through the solid. Phonon flux is still present but carries less of the energy. Electrons also conduct
1763: 405:
is very much greater than that for heat paths leading into the region. In this case, the region with high conductivity can often be treated in the
323:
normal to the direction of heat transfer, and this temperature varies linearly in space in the case where there is no heat generation in the rod.
5194:
contains a variety of transient expressions for heat conduction, along with algorithms and computer code for obtaining precise numerical values.
467:. It is known as "second sound" because the wave motion of heat is similar to the propagation of sound in air.this is called Quantum conduction 4339: 3402: 151:
The inter-molecular transfer of energy could be primarily by elastic impact, as in fluids, or by free-electron diffusion, as in metals, or
5097: 1427: 4390:
The Biot number increases as the Fourier number decreases. There are five steps to determine a temperature profile in terms of time.
2685: 331: 4973:
The principle of thermal conductivity of gases can also be used to measure the concentration of a gas in a binary mixture of gases.
4012: 2769:
The rules for combining resistances and conductances (in series and parallel) are the same for both heat flow and electric current.
1606: 4074: 4903:. By calculating the heat transfer coefficient from this Biot number, one can find a liquid medium suitable for the application. 1970: 3918:{\displaystyle {\dot {Q}}=4k\pi {\frac {T_{1}-T_{2}}{1/{r_{1}}-1/{r_{2}}}}=4k\pi {\frac {(T_{1}-T_{2})r_{1}r_{2}}{r_{2}-r_{1}}}} 1319: 1103: 3510: 2515: 810: 2298:
For heat conduction from one fluid to another through a barrier, it is sometimes important to consider the conductance of the
1967:
are the same for all layers. In a multilayer partition, the total conductance is related to the conductance of its layers by:
1715: 600: 5344: 5310: 5276: 5242: 5215: 2568: 357:
source or sink of heat suddenly introduced within an object, causing temperatures near the source or sink to change in time.
301:
is a quantity derived from conductivity, which is a measure of its ability to exchange thermal energy with its surroundings.
1659: 1212: 4781:{\displaystyle T(x,t)-T_{i}={\frac {T_{i}\Delta X}{2{\sqrt {\pi \alpha t}}}}\exp \left(-{\frac {x^{2}}{4\alpha t}}\right)} 3970: 210:
is caused by the interaction of heat flux and electric current. Heat conduction within a solid is directly analogous to
5406: 2323: 2319: 1424:
for a homogeneous material of 1-D geometry between two endpoints at constant temperature, gives the heat flow rate as
5395:
Liqiu Wang, Xuesheng Zhou, Xiaohao Wei, 'Heat Conduction: Mathematical Models and Analytical Solutions' Springer 2008
5392:
Jan Taler, Piotr Duda, 'Solving Direct and Inverse Heat Conduction Problems' Springer-Verlag Berlin Heidelberg 2005
5375: 5167: 5050: 4876: 4821: 4116: 3996: 3978: 17: 5429: 5411:
John H Lienhard IV and John H Lienhard V, 'A Heat Transfer Textbook', Fifth Edition, Dover Pub., Mineola, NY, 2019
5025: 119:
Thermal conduction (power) is the heat per unit time transferred some distance ℓ between the two temperatures.
4287: 2326:. Ideally, the formulae for conductance should produce a quantity with dimensions independent of distance, like 5435: 5389:
F. Dehghani, CHNG2801 – 'Conservation and Transport Processes: Course Notes', University of Sydney, Sydney 2007
4620: 5449: 4990: 3974: 144: 1384: 5000: 488: 1946:{\displaystyle R={\frac {1}{U}}={\frac {\Delta x}{k}}={\frac {A\,(-\Delta T)}{\frac {\Delta Q}{\Delta t}}}.} 5480: 5475: 5020: 4912: 432: 511: 139: 31: 4887:, creating a very hard and strong product. To achieve this, it is necessary to quench at the "nose" (or 5015: 2897: 503: 419: 4275: 3168:{\displaystyle {\dot {Q}}\int _{r_{1}}^{r_{2}}{\frac {1}{r}}\,dr=-2k\pi \ell \int _{T_{1}}^{T_{2}}dT} 801:
For many simple applications, Fourier's law is used in its one-dimensional form, for example, in the
4919: 1955:
Resistance is additive when several conducting layers lie between the hot and cool regions, because
1297: 1190: 1081: 5465: 3959: 3677: 1033: 406: 294: 148:
properties. Interfaces often contribute significantly to the observed properties of the materials.
647: 529: 3963: 2854: 1260: 199: 4539: 2457: 2408: 5470: 5386:
H. S. Carslaw and J. C. Jaeger 'Conduction of heat in solids' Oxford University Press, USA 1959
5073: 4594: 4568: 2777:
Conduction through cylindrical shells (e.g. pipes) can be calculated from the internal radius,
2369: 2333: 2118:{\displaystyle {\frac {1}{U}}={\frac {1}{U_{1}}}+{\frac {1}{U_{2}}}+{\frac {1}{U_{3}}}+\cdots } 1830: 869: 574: 5334: 5300: 5266: 5232: 4790:
Splat cooling is a fundamental concept that has been adapted for practical use in the form of
1553: 1486: 705: 597:. The heat flux density is the amount of energy that flows through a unit area per unit time. 389:
for the analytical approach). However, most often, because of complicated shapes with varying
5132: 4995: 4801: 4265:{\displaystyle {\frac {T-T_{f}}{T_{i}-T_{f}}}=\exp \left({\frac {-hAt}{\rho C_{p}V}}\right).} 2310:—but when dealing with thin high-conductance barriers it can sometimes be quite significant. 1417: 370: 327: 2733: 5005: 4414: 3643: 3616: 2834: 2807: 2780: 2647: 2613: 1836: 1138: 693: 549: 464: 402: 390: 314:
may either be zero or have nonzero values, but all derivatives of temperature at any point
260: 252: 224: 195: 187: 50: 3392:{\displaystyle R_{c}={\frac {\Delta T}{\dot {Q}}}={\frac {\ln(r_{2}/r_{1})}{2\pi k\ell }}} 8: 5441: 5207:
Science of Sintering: New Directions for Materials Processing and Microstructural Control
4795: 4513: 4487: 4461: 1653: 182:) have free-moving electrons that transfer thermal energy rapidly through the metal. The 62: 1162: 409:, as a "lump" of material with a simple thermal capacitance consisting of its aggregate 5136: 4940: 4054: 1600: 1578: 1531: 1509: 1362: 1051: 781: 757: 732: 675: 554: 448: 298: 156: 5402: 5401:
Latif M. Jiji, Amir H. Danesh-Yazdi, 'Heat Conduction' Springer, Fourth Edition 2024
5371: 5340: 5306: 5272: 5238: 5211: 5173: 5163: 5140: 5116: 4961: 2127:
So, when dealing with a multilayer partition, the following formula is usually used:
289: 207: 754:
materials, the thermal conductivity typically varies with orientation; in this case
463:. Heat takes the place of pressure in normal sound waves. This leads to a very high 53:(i.e. from a hotter body to a colder body). For example, heat is conducted from the 5128: 4929: 4791: 476: 251:
To quantify the ease with which a particular medium conducts, engineers employ the
191: 522:
The differential form of Fourier's law of thermal conduction shows that the local
5445: 5205: 5155: 5045: 5040: 4888: 214:
of particles within a fluid, in the situation where there are no fluid currents.
167: 3040:{\displaystyle {\dot {Q}}=-kA_{r}{\frac {dT}{dr}}=-2k\pi r\ell {\frac {dT}{dr}}} 5098:"5.6 Heat Transfer Methods – Conduction, Convection and Radiation Introduction" 5030: 4896: 219: 202:
of most metals have about the same ratio. A good electrical conductor, such as
175: 5459: 5177: 4936: 4455: 3933: 3718:
Solving in a similar manner as for a cylindrical shell (see above) produces:
3280:{\displaystyle {\dot {Q}}=2k\pi \ell {\frac {T_{1}-T_{2}}{\ln(r_{2}/r_{1})}}} 1701: 1353: 484: 480: 456: 452: 410: 395: 386: 343: 171: 100: 5412: 5298: 3671: 2327: 1649: 507: 444: 218:
path of gas molecules relative to the size of the gas gap, as given by the
4441:
Compared required to point to trace specified Biot number on the nomogram.
3500:{\textstyle {\dot {Q}}=2\pi k\ell r_{m}{\frac {T_{1}-T_{2}}{r_{2}-r_{1}}}} 5035: 4892: 1409: 1037: 352:
at any place within an object, the mode of thermal energy flow is termed
179: 68:
Every process involving heat transfer takes place by only three methods:
58: 5398:
W. Kelly, 'Understanding Heat Conduction' Nova Science Publischer, 2010
5117:"Effective Thermal Conductivity of Submicron Powders: A Numerical Study" 1648:
With a simple 1-D steady heat conduction equation which is analogous to
4884: 2303: 1048:
By integrating the differential form over the material's total surface
751: 170:
of thermal energy. This is due to the way that metals bond chemically:
5204:
III, H. Palmour; Spriggs, R. M.; Uskokovic, D. P. (11 November 2013).
5010: 4880: 4872: 2307: 2299: 1356:
transferred by conduction (in W), time derivative of the transferred
523: 497: 460: 255:, also known as the conductivity constant or conduction coefficient, 211: 3948: 3667:, can be calculated in a similar manner as for a cylindrical shell. 4900: 4327: 2851:, and the temperature difference between the inner and outer wall, 1421: 492: 54: 5299:
Rajiv Asthana; Ashok Kumar; Narendra B. Dahotre (9 January 2006).
413:. Such regions warm or cool, but show no significant temperature 5424: 3613:
The conduction through a spherical shell with internal radius,
775: 697: 203: 160: 152: 128:ΔT is the difference in temperature from one side to the other. 1818:{\displaystyle {\frac {\Delta Q}{\Delta t}}=UA\,(-\Delta T).} 166:
Metals (e.g., copper, platinum, gold, etc.) are usually good
5153: 4965:
be correlated with the database to identify the gas sample.
4960:
The working of this instrument is by principle based on the
4935:
These differences are among the defining characteristics of
3605:. It is important to note that this is the log-mean radius. 1357: 667: 131:ℓ is the length of the path the heat has to be transferred. 4336:
coordinate and the Fourier number, which is calculated by
3598:{\textstyle r_{m}={\frac {r_{2}-r_{1}}{\ln(r_{2}/r_{1})}}} 1344:{\displaystyle \mathbf {q} \cdot \mathrm {d} \mathbf {S} } 1128:{\displaystyle \mathbf {q} \cdot \mathrm {d} \mathbf {S} } 5292: 4928:
For example, the material of the wall must not undergo a
4381:{\displaystyle {\textit {Fo}}={\frac {\alpha t}{L^{2}}}.} 459:-like motion, rather than by the more usual mechanism of 2318:
The previous conductance equations, written in terms of
5230: 5191: 4895:, the time it takes for the material to quench, or the 1250: 638: 5210:. Springer Science & Business Media. p. 164. 4891:) of the TTT diagram. Since materials differ in their 3513: 3405: 1301: 1238:{\displaystyle \nabla T\cdot \mathrm {d} \mathbf {S} } 1194: 1085: 4875:
is a transient heat transfer process in terms of the
4824: 4804: 4659: 4623: 4597: 4571: 4542: 4516: 4490: 4464: 4438:
to relative temperature with the boundary conditions.
4417: 4342: 4290: 4158: 4119: 4077: 4057: 4015: 3724: 3680: 3646: 3619: 3293: 3181: 3053: 2944: 2900: 2857: 2837: 2810: 2783: 2736: 2688: 2650: 2616: 2571: 2518: 2460: 2411: 2372: 2336: 2133: 2038: 1973: 1859: 1833: 1766: 1718: 1662: 1609: 1581: 1556: 1534: 1512: 1506:
is the time interval during which the amount of heat
1489: 1430: 1387: 1365: 1322: 1300: 1263: 1215: 1193: 1165: 1141: 1106: 1084: 1054: 877: 813: 784: 760: 735: 708: 678: 650: 603: 577: 557: 532: 227: 27:
Process by which heat is transferred within an object
5336:
Handbook of Residual Stress and Deformation of Steel
4071:, is introduced in this formula, and is measured in 2313: 5203: 1700:This law forms the basis for the derivation of the 1473:{\displaystyle Q=-k{\frac {A\Delta t}{L}}\Delta T,} 1068:, we arrive at the integral form of Fourier's law: 868:In an isotropic medium, Fourier's law leads to the 4855: 4810: 4780: 4644: 4609: 4583: 4557: 4528: 4502: 4476: 4430: 4380: 4315: 4264: 4144: 4105: 4063: 4043: 3917: 3708: 3659: 3632: 3597: 3499: 3391: 3279: 3167: 3039: 2928: 2883: 2843: 2823: 2796: 2759: 2722: 2668: 2636: 2602: 2550: 2485: 2434: 2394: 2358: 2288: 2117: 2024: 1945: 1845: 1817: 1745: 1690: 1638: 1587: 1565: 1540: 1518: 1498: 1472: 1400: 1371: 1343: 1308: 1281: 1237: 1201: 1174: 1151: 1127: 1092: 1060: 1024: 858: 790: 766: 741: 717: 684: 658: 629: 589: 563: 540: 240: 65:is approached, temperature becoming more uniform. 2482: 2391: 2355: 5457: 5332: 5158:; Incropera, Frank P.; Dewitt, David P. (2011). 4951: 510:is the electrical analogue of Fourier's law and 348:During any period in which temperatures changes 4906: 4856:{\displaystyle \alpha ={\frac {k}{\rho C_{p}}}} 4397:Determine which relative depth matters, either 4330:. A nomogram has a relative temperature as the 3927: 2723:{\displaystyle R={\frac {\Delta T}{\dot {Q}}},} 1573:is the temperature difference between the ends, 506:is a discrete analogue of Fourier's law, while 297:, temperature, density, and molecular bonding. 279:), in a direction normal to a surface of area ( 5302:Materials Processing and Manufacturing Science 5231:Sam Zhang; Dongliang Zhao (19 November 2012). 4044:{\displaystyle {\textit {Bi}}={\frac {hL}{k}}} 1639:{\displaystyle R={\frac {1}{k}}{\frac {L}{A}}} 1526:flows through a cross-section of the material, 159:, the heat flux is carried almost entirely by 5234:Aeronautical and Aerospace Materials Handbook 4106:{\displaystyle \mathrm {\frac {J}{m^{2}sK}} } 2678:The reciprocal of conductance is resistance, 1827:The reciprocal of conductance is resistance, 122:Îș is the thermal conductivity of the material 5224: 4316:{\displaystyle \mathrm {\frac {W}{m^{2}K}} } 571:and the negative local temperature gradient 293:that is primarily dependent on the medium's 5370:, American Institute of Physics, New York, 5264: 4326:The series solution can be analyzed with a 3977:. Unsourced material may be challenged and 2025:{\displaystyle R=R_{1}+R_{2}+R_{3}+\cdots } 125:A is the cross-sectional area of the object 5326: 4645:{\displaystyle -\infty \leq x\leq \infty } 4484:for initial temperature as the maximum at 3938: 475:The law of heat conduction, also known as 426: 304: 4863:. This varies according to the material. 4132: 3997:Learn how and when to remove this message 3105: 2590: 2551:{\displaystyle U={\frac {kA}{\Delta x}},} 2481: 2390: 2354: 2163: 1903: 1796: 1675: 859:{\displaystyle q_{x}=-k{\frac {dT}{dx}}.} 5305:. Butterworth–Heinemann. pp. 158–. 1746:{\displaystyle U={\frac {k}{\Delta x}},} 1401:{\displaystyle \mathrm {d} \mathbf {S} } 630:{\displaystyle \mathbf {q} =-k\nabla T,} 287:) ". Thermal conductivity is a material 5258: 2603:{\displaystyle {\dot {Q}}=U\,\Delta T,} 337: 14: 5458: 5160:Fundamentals of heat and mass transfer 5133:10.4028/www.scientific.net/AMM.846.500 1691:{\displaystyle \Delta T=R\,{\dot {Q}}} 5444:by Jeff Bryant based on a program by 4345: 4018: 2772: 2565:Fourier's law can also be stated as: 1760:Fourier's law can also be stated as: 439: 283:), due to a temperature difference (Δ 267:is defined as "the quantity of heat, 5339:. ASM International. pp. 322–. 5192:Exact Analytical Conduction Toolbox 5162:(7th ed.). Hoboken, NJ: Wiley. 5068: 5066: 3975:adding citations to reliable sources 3942: 2938:When Fourier's equation is applied: 2894:The surface area of the cylinder is 1548:is the cross-sectional surface area, 517: 5114: 4408:Convert time to the Fourier number. 3175:then the rate of heat transfer is: 310:partial derivatives of temperature 194:through conductive solids, and the 24: 4866: 4707: 4639: 4627: 4604: 4578: 4552: 4307: 4298: 4293: 4133: 4097: 4094: 4085: 4080: 3310: 2698: 2591: 2536: 2322:, can be reformulated in terms of 2248: 2216: 2184: 2170: 2145: 2137: 1930: 1922: 1910: 1882: 1803: 1778: 1770: 1731: 1663: 1557: 1490: 1461: 1449: 1389: 1332: 1226: 1216: 1116: 1001: 987: 964: 950: 927: 913: 889: 881: 709: 618: 581: 334:for an example of such a network. 25: 5492: 5417: 5063: 5051:General equation of heat transfer 2929:{\displaystyle A_{r}=2\pi r\ell } 2454:is cross-sectional area, we have 2314:Intensive-property representation 1603:of the 1-D homogeneous material: 1599:One can define the (macroscopic) 1595:is the distance between the ends. 774:is represented by a second-order 725:is the temperature gradient, K/m. 332:purely resistive thermal circuits 61:differences decay over time, and 5423: 4450: 3947: 1757:is the conductance, in W/(m K). 1394: 1337: 1324: 1289: 1231: 1182: 1121: 1108: 1073: 1043: 666:is the local heat flux density, 652: 605: 534: 470: 5360: 5121:Applied Mechanics and Materials 4911:One statement of the so-called 4877:time temperature transformation 4445: 4145:{\displaystyle q=-h\,\Delta T,} 5450:Wolfram Demonstrations Project 5197: 5184: 5147: 5108: 5090: 4991:List of thermal conductivities 4946: 4675: 4663: 4051:The heat transfer coefficient 3864: 3838: 3589: 3561: 3369: 3341: 3271: 3243: 2176: 2164: 1916: 1904: 1809: 1797: 1707: 1309:{\displaystyle \scriptstyle S} 1202:{\displaystyle \scriptstyle S} 1093:{\displaystyle \scriptstyle S} 798:varies with spatial location. 145:Interfacial thermal resistance 13: 1: 5056: 5001:Convection diffusion equation 4968: 4952:Thermal conductivity analyzer 3709:{\displaystyle A=4\pi r^{2}.} 2405:From the electrical formula: 1410:oriented surface area element 418:systems is those that follow 5237:. CRC Press. pp. 304–. 5026:Churchill–Bernstein equation 5021:Relativistic heat conduction 4913:zeroth law of thermodynamics 4907:Zeroth law of thermodynamics 4798:coefficient, represented as 3928:Transient thermal conduction 3608: 778:. In non-uniform materials, 659:{\displaystyle \mathbf {q} } 541:{\displaystyle \mathbf {q} } 433:relativistic heat conduction 45:, frequently represented by 7: 5271:. Springer. pp. 174–. 4984: 3287:the thermal resistance is: 2884:{\displaystyle T_{2}-T_{1}} 2330:for electrical resistance, 1282:{\displaystyle {\dot {Q}}=} 548:is equal to the product of 483:), states that the rate of 206:, also conducts heat well. 140:Thermal contact conductance 110:Thermal conduction (power)= 94: 32:Conduction (disambiguation) 10: 5497: 5368:A Survey of Thermodynamics 4591:, and the heat profile at 4558:{\displaystyle x=-\infty } 3931: 2486:{\displaystyle G=kA/x\,\!} 2435:{\displaystyle R=\rho x/A} 514:is its chemical analogue. 341: 98: 76:transferred by conduction. 29: 5333:George E. Totten (2002). 5268:Drop-Surface Interactions 5115:Dai; et al. (2015). 4610:{\displaystyle t=\infty } 4584:{\displaystyle x=\infty } 4394:Calculate the Biot number 4276:heat transfer coefficient 2509:is cross-sectional area. 2395:{\displaystyle G=I/V\,\!} 2359:{\displaystyle R=V/I\,\!} 1846:{\displaystyle {\big .}R} 729:The thermal conductivity 590:{\displaystyle -\nabla T} 200:electrical conductivities 2730:analogous to Ohm's law, 2610:analogous to Ohm's law, 1566:{\displaystyle \Delta T} 1499:{\displaystyle \Delta t} 718:{\displaystyle \nabla T} 512:Fick's laws of diffusion 407:lumped capacitance model 5442:Newton's Law of Cooling 5102:Douglas College Physics 5016:Fick's law of diffusion 4939:. In a sense, they are 4811:{\displaystyle \alpha } 3939:Interface heat transfer 3640:, and external radius, 2804:, the external radius, 504:Newton's law of cooling 427:Relativistic conduction 420:Newton's law of cooling 305:Steady-state conduction 275:) through a thickness ( 271:, transmitted in time ( 155:, as in insulators. In 5154:Bergman, Theodore L.; 4857: 4812: 4782: 4646: 4611: 4585: 4559: 4530: 4504: 4478: 4432: 4382: 4317: 4266: 4146: 4107: 4065: 4045: 3919: 3710: 3661: 3634: 3599: 3501: 3393: 3281: 3169: 3041: 2930: 2885: 2845: 2825: 2798: 2761: 2760:{\displaystyle R=V/I.} 2724: 2670: 2638: 2604: 2552: 2487: 2436: 2396: 2360: 2290: 2119: 2026: 1947: 1847: 1819: 1747: 1692: 1640: 1589: 1567: 1542: 1520: 1500: 1474: 1402: 1373: 1345: 1310: 1283: 1239: 1203: 1176: 1153: 1129: 1094: 1062: 1036:famously known as the 1026: 860: 792: 768: 743: 719: 686: 660: 631: 591: 565: 542: 487:through a material is 391:thermal conductivities 328:electrical resistances 242: 5438:– Thermal-FluidsPedia 4996:Electrical conduction 4981:to that of nitrogen. 4858: 4813: 4783: 4647: 4612: 4586: 4560: 4531: 4505: 4479: 4433: 4431:{\displaystyle T_{i}} 4383: 4318: 4267: 4147: 4108: 4066: 4046: 3920: 3711: 3662: 3660:{\displaystyle r_{2}} 3635: 3633:{\displaystyle r_{1}} 3600: 3502: 3394: 3282: 3170: 3042: 2931: 2886: 2846: 2844:{\displaystyle \ell } 2826: 2824:{\displaystyle r_{2}} 2799: 2797:{\displaystyle r_{1}} 2762: 2725: 2671: 2669:{\displaystyle I=VG.} 2639: 2637:{\displaystyle I=V/R} 2605: 2553: 2488: 2437: 2397: 2361: 2291: 2120: 2027: 1948: 1848: 1820: 1748: 1693: 1641: 1590: 1568: 1543: 1521: 1501: 1475: 1418:differential equation 1403: 1374: 1346: 1311: 1284: 1249:where (including the 1240: 1204: 1177: 1154: 1152:{\displaystyle {}={}} 1130: 1095: 1063: 1027: 861: 793: 769: 744: 720: 687: 661: 637:where (including the 632: 592: 566: 543: 371:operating temperature 354:transient conduction. 243: 241:{\displaystyle K_{n}} 5432:at Wikimedia Commons 5265:Martin Eein (2002). 5006:R-value (insulation) 4822: 4818:, can be written as 4802: 4657: 4621: 4595: 4569: 4540: 4514: 4488: 4462: 4415: 4340: 4288: 4156: 4117: 4075: 4055: 4013: 3971:improve this section 3722: 3678: 3644: 3617: 3511: 3403: 3291: 3179: 3051: 2942: 2898: 2855: 2835: 2808: 2781: 2734: 2686: 2648: 2614: 2569: 2562:is the conductance. 2516: 2458: 2409: 2370: 2334: 2324:intensive properties 2320:extensive properties 2131: 2036: 1971: 1857: 1831: 1764: 1716: 1660: 1607: 1579: 1554: 1532: 1510: 1487: 1428: 1385: 1363: 1320: 1298: 1261: 1213: 1191: 1163: 1139: 1104: 1082: 1052: 1034:fundamental solution 875: 811: 782: 758: 733: 706: 676: 648: 601: 575: 555: 550:thermal conductivity 530: 465:thermal conductivity 451:phenomenon in which 403:thermal conductivity 338:Transient conduction 261:thermal conductivity 253:thermal conductivity 225: 51:temperature gradient 43:Thermal conductivity 30:For other uses, see 5481:Transport phenomena 5476:Physical quantities 5366:Bailyn, M. (1994). 5156:Lavine, Adrienne S. 4796:thermal diffusivity 4529:{\displaystyle T=0} 4503:{\displaystyle x=0} 4477:{\displaystyle t=0} 3158: 3094: 2366:, and conductance, 1654:electric resistance 500:of energy locally. 479:(compare Fourier's 63:thermal equilibrium 5078:energyeducation.ca 5074:"Energy Education" 4943:of heat transfer. 4853: 4808: 4778: 4642: 4607: 4581: 4555: 4526: 4500: 4474: 4428: 4378: 4313: 4262: 4142: 4103: 4061: 4041: 3915: 3706: 3674:of the sphere is: 3657: 3630: 3595: 3497: 3389: 3277: 3165: 3130: 3066: 3037: 2926: 2881: 2841: 2821: 2794: 2773:Cylindrical shells 2757: 2720: 2666: 2634: 2600: 2548: 2483: 2432: 2392: 2356: 2286: 2115: 2022: 1943: 1843: 1815: 1743: 1688: 1636: 1601:thermal resistance 1585: 1563: 1538: 1516: 1496: 1470: 1398: 1369: 1341: 1306: 1305: 1279: 1235: 1199: 1198: 1175:{\displaystyle -k} 1172: 1149: 1125: 1090: 1089: 1058: 1022: 856: 788: 764: 739: 715: 692:is the material's 682: 656: 627: 587: 561: 538: 449:quantum mechanical 440:Quantum conduction 299:Thermal effusivity 238: 38:Thermal conduction 18:Fourier's law 5428:Media related to 5346:978-1-61503-227-3 5312:978-0-08-046488-6 5278:978-3-211-83692-7 5244:978-1-4398-7329-8 5217:978-1-4899-0933-6 4962:Wheatstone bridge 4851: 4771: 4732: 4729: 4373: 4347: 4311: 4284:, is measured in 4253: 4204: 4101: 4064:{\displaystyle h} 4039: 4020: 4007: 4006: 3999: 3913: 3821: 3734: 3593: 3495: 3415: 3387: 3327: 3325: 3275: 3191: 3103: 3063: 3035: 2994: 2954: 2715: 2713: 2581: 2543: 2501:is conductivity, 2281: 2272: 2240: 2208: 2152: 2107: 2087: 2067: 2047: 1938: 1937: 1892: 1874: 1785: 1738: 1685: 1634: 1624: 1588:{\displaystyle L} 1541:{\displaystyle A} 1519:{\displaystyle Q} 1459: 1372:{\displaystyle Q} 1273: 1061:{\displaystyle S} 1015: 978: 941: 896: 851: 791:{\displaystyle k} 767:{\displaystyle k} 742:{\displaystyle k} 685:{\displaystyle k} 564:{\displaystyle k} 518:Differential form 208:Thermoelectricity 85:Heat transfer by 16:(Redirected from 5488: 5427: 5379: 5364: 5358: 5357: 5355: 5353: 5330: 5324: 5323: 5321: 5319: 5296: 5290: 5289: 5287: 5285: 5262: 5256: 5255: 5253: 5251: 5228: 5222: 5221: 5201: 5195: 5188: 5182: 5181: 5151: 5145: 5144: 5112: 5106: 5105: 5094: 5088: 5087: 5085: 5084: 5070: 4930:phase transition 4862: 4860: 4859: 4854: 4852: 4850: 4849: 4848: 4832: 4817: 4815: 4814: 4809: 4792:thermal spraying 4787: 4785: 4784: 4779: 4777: 4773: 4772: 4770: 4759: 4758: 4749: 4733: 4731: 4730: 4719: 4713: 4706: 4705: 4695: 4690: 4689: 4651: 4649: 4648: 4643: 4616: 4614: 4613: 4608: 4590: 4588: 4587: 4582: 4564: 4562: 4561: 4556: 4535: 4533: 4532: 4527: 4509: 4507: 4506: 4501: 4483: 4481: 4480: 4475: 4437: 4435: 4434: 4429: 4427: 4426: 4387: 4385: 4384: 4379: 4374: 4372: 4371: 4362: 4354: 4349: 4348: 4335: 4322: 4320: 4319: 4314: 4312: 4310: 4306: 4305: 4292: 4283: 4271: 4269: 4268: 4263: 4258: 4254: 4252: 4248: 4247: 4234: 4220: 4205: 4203: 4202: 4201: 4189: 4188: 4178: 4177: 4176: 4160: 4151: 4149: 4148: 4143: 4112: 4110: 4109: 4104: 4102: 4100: 4093: 4092: 4079: 4070: 4068: 4067: 4062: 4050: 4048: 4047: 4042: 4040: 4035: 4027: 4022: 4021: 4002: 3995: 3991: 3988: 3982: 3951: 3943: 3924: 3922: 3921: 3916: 3914: 3912: 3911: 3910: 3898: 3897: 3887: 3886: 3885: 3876: 3875: 3863: 3862: 3850: 3849: 3836: 3822: 3820: 3819: 3818: 3817: 3807: 3796: 3795: 3794: 3784: 3775: 3774: 3773: 3761: 3760: 3750: 3736: 3735: 3727: 3715: 3713: 3712: 3707: 3702: 3701: 3666: 3664: 3663: 3658: 3656: 3655: 3639: 3637: 3636: 3631: 3629: 3628: 3604: 3602: 3601: 3596: 3594: 3592: 3588: 3587: 3578: 3573: 3572: 3553: 3552: 3551: 3539: 3538: 3528: 3523: 3522: 3506: 3504: 3503: 3498: 3496: 3494: 3493: 3492: 3480: 3479: 3469: 3468: 3467: 3455: 3454: 3444: 3442: 3441: 3417: 3416: 3408: 3398: 3396: 3395: 3390: 3388: 3386: 3372: 3368: 3367: 3358: 3353: 3352: 3333: 3328: 3326: 3318: 3316: 3308: 3303: 3302: 3286: 3284: 3283: 3278: 3276: 3274: 3270: 3269: 3260: 3255: 3254: 3235: 3234: 3233: 3221: 3220: 3210: 3193: 3192: 3184: 3174: 3172: 3171: 3166: 3157: 3156: 3155: 3145: 3144: 3143: 3104: 3096: 3093: 3092: 3091: 3081: 3080: 3079: 3065: 3064: 3056: 3047:and rearranged: 3046: 3044: 3043: 3038: 3036: 3034: 3026: 3018: 2995: 2993: 2985: 2977: 2975: 2974: 2956: 2955: 2947: 2935: 2933: 2932: 2927: 2910: 2909: 2890: 2888: 2887: 2882: 2880: 2879: 2867: 2866: 2850: 2848: 2847: 2842: 2830: 2828: 2827: 2822: 2820: 2819: 2803: 2801: 2800: 2795: 2793: 2792: 2766: 2764: 2763: 2758: 2750: 2729: 2727: 2726: 2721: 2716: 2714: 2706: 2704: 2696: 2675: 2673: 2672: 2667: 2643: 2641: 2640: 2635: 2630: 2609: 2607: 2606: 2601: 2583: 2582: 2574: 2561: 2557: 2555: 2554: 2549: 2544: 2542: 2534: 2526: 2497:is conductance, 2492: 2490: 2489: 2484: 2477: 2446:is resistivity, 2441: 2439: 2438: 2433: 2428: 2401: 2399: 2398: 2393: 2386: 2365: 2363: 2362: 2357: 2350: 2295: 2293: 2292: 2287: 2282: 2280: 2273: 2271: 2270: 2261: 2260: 2259: 2246: 2241: 2239: 2238: 2229: 2228: 2227: 2214: 2209: 2207: 2206: 2197: 2196: 2195: 2182: 2179: 2158: 2153: 2151: 2143: 2135: 2124: 2122: 2121: 2116: 2108: 2106: 2105: 2093: 2088: 2086: 2085: 2073: 2068: 2066: 2065: 2053: 2048: 2040: 2032:or equivalently 2031: 2029: 2028: 2023: 2015: 2014: 2002: 2001: 1989: 1988: 1966: 1960: 1952: 1950: 1949: 1944: 1939: 1936: 1928: 1920: 1919: 1898: 1893: 1888: 1880: 1875: 1867: 1852: 1850: 1849: 1844: 1839: 1838: 1824: 1822: 1821: 1816: 1786: 1784: 1776: 1768: 1756: 1752: 1750: 1749: 1744: 1739: 1737: 1726: 1697: 1695: 1694: 1689: 1687: 1686: 1678: 1645: 1643: 1642: 1637: 1635: 1627: 1625: 1617: 1594: 1592: 1591: 1586: 1572: 1570: 1569: 1564: 1547: 1545: 1544: 1539: 1525: 1523: 1522: 1517: 1505: 1503: 1502: 1497: 1479: 1477: 1476: 1471: 1460: 1455: 1444: 1407: 1405: 1404: 1399: 1397: 1392: 1378: 1376: 1375: 1370: 1351: 1350: 1348: 1347: 1342: 1340: 1335: 1327: 1316: 1315: 1313: 1312: 1307: 1293: 1292: 1288: 1286: 1285: 1280: 1275: 1274: 1266: 1245: 1244: 1242: 1241: 1236: 1234: 1229: 1209: 1208: 1206: 1205: 1200: 1186: 1185: 1181: 1179: 1178: 1173: 1158: 1156: 1155: 1150: 1148: 1143: 1135: 1134: 1132: 1131: 1126: 1124: 1119: 1111: 1100: 1099: 1097: 1096: 1091: 1077: 1076: 1067: 1065: 1064: 1059: 1031: 1029: 1028: 1023: 1021: 1017: 1016: 1014: 1013: 1012: 999: 995: 994: 984: 979: 977: 976: 975: 962: 958: 957: 947: 942: 940: 939: 938: 925: 921: 920: 910: 897: 895: 887: 879: 865: 863: 862: 857: 852: 850: 842: 834: 823: 822: 806: 797: 795: 794: 789: 773: 771: 770: 765: 748: 746: 745: 740: 724: 722: 721: 716: 691: 689: 688: 683: 665: 663: 662: 657: 655: 636: 634: 633: 628: 608: 596: 594: 593: 588: 570: 568: 567: 562: 547: 545: 544: 539: 537: 491:to the negative 312:concerning space 247: 245: 244: 239: 237: 236: 192:electric current 153:phonon vibration 48: 21: 5496: 5495: 5491: 5490: 5489: 5487: 5486: 5485: 5466:Heat conduction 5456: 5455: 5446:Stephen Wolfram 5436:Heat conduction 5430:Heat conduction 5420: 5383: 5382: 5365: 5361: 5351: 5349: 5347: 5331: 5327: 5317: 5315: 5313: 5297: 5293: 5283: 5281: 5279: 5263: 5259: 5249: 5247: 5245: 5229: 5225: 5218: 5202: 5198: 5189: 5185: 5170: 5152: 5148: 5113: 5109: 5096: 5095: 5091: 5082: 5080: 5072: 5071: 5064: 5059: 5046:Heat Conduction 5041:False diffusion 4987: 4971: 4954: 4949: 4920:diathermal wall 4909: 4869: 4867:Metal quenching 4844: 4840: 4836: 4831: 4823: 4820: 4819: 4803: 4800: 4799: 4760: 4754: 4750: 4748: 4744: 4740: 4718: 4714: 4701: 4697: 4696: 4694: 4685: 4681: 4658: 4655: 4654: 4622: 4619: 4618: 4596: 4593: 4592: 4570: 4567: 4566: 4541: 4538: 4537: 4515: 4512: 4511: 4489: 4486: 4485: 4463: 4460: 4459: 4453: 4448: 4422: 4418: 4416: 4413: 4412: 4367: 4363: 4355: 4353: 4344: 4343: 4341: 4338: 4337: 4331: 4301: 4297: 4296: 4291: 4289: 4286: 4285: 4279: 4243: 4239: 4235: 4221: 4219: 4215: 4197: 4193: 4184: 4180: 4179: 4172: 4168: 4161: 4159: 4157: 4154: 4153: 4118: 4115: 4114: 4088: 4084: 4083: 4078: 4076: 4073: 4072: 4056: 4053: 4052: 4028: 4026: 4017: 4016: 4014: 4011: 4010: 4003: 3992: 3986: 3983: 3968: 3952: 3941: 3936: 3930: 3906: 3902: 3893: 3889: 3888: 3881: 3877: 3871: 3867: 3858: 3854: 3845: 3841: 3837: 3835: 3813: 3809: 3808: 3803: 3790: 3786: 3785: 3780: 3776: 3769: 3765: 3756: 3752: 3751: 3749: 3726: 3725: 3723: 3720: 3719: 3697: 3693: 3679: 3676: 3675: 3651: 3647: 3645: 3642: 3641: 3624: 3620: 3618: 3615: 3614: 3611: 3583: 3579: 3574: 3568: 3564: 3554: 3547: 3543: 3534: 3530: 3529: 3527: 3518: 3514: 3512: 3509: 3508: 3488: 3484: 3475: 3471: 3470: 3463: 3459: 3450: 3446: 3445: 3443: 3437: 3433: 3407: 3406: 3404: 3401: 3400: 3373: 3363: 3359: 3354: 3348: 3344: 3334: 3332: 3317: 3309: 3307: 3298: 3294: 3292: 3289: 3288: 3265: 3261: 3256: 3250: 3246: 3236: 3229: 3225: 3216: 3212: 3211: 3209: 3183: 3182: 3180: 3177: 3176: 3151: 3147: 3146: 3139: 3135: 3134: 3095: 3087: 3083: 3082: 3075: 3071: 3070: 3055: 3054: 3052: 3049: 3048: 3027: 3019: 3017: 2986: 2978: 2976: 2970: 2966: 2946: 2945: 2943: 2940: 2939: 2905: 2901: 2899: 2896: 2895: 2875: 2871: 2862: 2858: 2856: 2853: 2852: 2836: 2833: 2832: 2815: 2811: 2809: 2806: 2805: 2788: 2784: 2782: 2779: 2778: 2775: 2746: 2735: 2732: 2731: 2705: 2697: 2695: 2687: 2684: 2683: 2649: 2646: 2645: 2626: 2615: 2612: 2611: 2573: 2572: 2570: 2567: 2566: 2559: 2535: 2527: 2525: 2517: 2514: 2513: 2505:is length, and 2473: 2459: 2456: 2455: 2450:is length, and 2424: 2410: 2407: 2406: 2382: 2371: 2368: 2367: 2346: 2335: 2332: 2331: 2316: 2266: 2262: 2255: 2251: 2247: 2245: 2234: 2230: 2223: 2219: 2215: 2213: 2202: 2198: 2191: 2187: 2183: 2181: 2180: 2159: 2157: 2144: 2136: 2134: 2132: 2129: 2128: 2101: 2097: 2092: 2081: 2077: 2072: 2061: 2057: 2052: 2039: 2037: 2034: 2033: 2010: 2006: 1997: 1993: 1984: 1980: 1972: 1969: 1968: 1962: 1956: 1929: 1921: 1899: 1897: 1881: 1879: 1866: 1858: 1855: 1854: 1835: 1834: 1832: 1829: 1828: 1777: 1769: 1767: 1765: 1762: 1761: 1754: 1730: 1725: 1717: 1714: 1713: 1710: 1677: 1676: 1661: 1658: 1657: 1626: 1616: 1608: 1605: 1604: 1580: 1577: 1576: 1555: 1552: 1551: 1533: 1530: 1529: 1511: 1508: 1507: 1488: 1485: 1484: 1445: 1443: 1429: 1426: 1425: 1393: 1388: 1386: 1383: 1382: 1364: 1361: 1360: 1336: 1331: 1323: 1321: 1318: 1317: 1299: 1296: 1295: 1294: 1290: 1265: 1264: 1262: 1259: 1258: 1257: 1230: 1225: 1214: 1211: 1210: 1192: 1189: 1188: 1187: 1183: 1164: 1161: 1160: 1159: 1147: 1142: 1140: 1137: 1136: 1120: 1115: 1107: 1105: 1102: 1101: 1083: 1080: 1079: 1078: 1074: 1072: 1053: 1050: 1049: 1046: 1008: 1004: 1000: 990: 986: 985: 983: 971: 967: 963: 953: 949: 948: 946: 934: 930: 926: 916: 912: 911: 909: 908: 904: 888: 880: 878: 876: 873: 872: 843: 835: 833: 818: 814: 812: 809: 808: 802: 783: 780: 779: 759: 756: 755: 734: 731: 730: 707: 704: 703: 677: 674: 673: 651: 649: 646: 645: 604: 602: 599: 598: 576: 573: 572: 556: 553: 552: 533: 531: 528: 527: 520: 473: 442: 429: 346: 340: 316:concerning time 307: 232: 228: 226: 223: 222: 174:(as opposed to 113: 111: 103: 97: 46: 35: 28: 23: 22: 15: 12: 11: 5: 5494: 5484: 5483: 5478: 5473: 5468: 5454: 5453: 5439: 5433: 5419: 5418:External links 5416: 5415: 5414: 5409: 5407:978-3031437397 5399: 5396: 5393: 5390: 5387: 5381: 5380: 5359: 5345: 5325: 5311: 5291: 5277: 5257: 5243: 5223: 5216: 5196: 5183: 5168: 5146: 5107: 5089: 5061: 5060: 5058: 5055: 5054: 5053: 5048: 5043: 5038: 5033: 5031:Fourier number 5028: 5023: 5018: 5013: 5008: 5003: 4998: 4993: 4986: 4983: 4970: 4967: 4953: 4950: 4948: 4945: 4908: 4905: 4897:Fourier number 4868: 4865: 4847: 4843: 4839: 4835: 4830: 4827: 4807: 4776: 4769: 4766: 4763: 4757: 4753: 4747: 4743: 4739: 4736: 4728: 4725: 4722: 4717: 4712: 4709: 4704: 4700: 4693: 4688: 4684: 4680: 4677: 4674: 4671: 4668: 4665: 4662: 4641: 4638: 4635: 4632: 4629: 4626: 4606: 4603: 4600: 4580: 4577: 4574: 4554: 4551: 4548: 4545: 4525: 4522: 4519: 4499: 4496: 4493: 4473: 4470: 4467: 4452: 4449: 4447: 4444: 4443: 4442: 4439: 4425: 4421: 4409: 4406: 4395: 4377: 4370: 4366: 4361: 4358: 4352: 4309: 4304: 4300: 4295: 4261: 4257: 4251: 4246: 4242: 4238: 4233: 4230: 4227: 4224: 4218: 4214: 4211: 4208: 4200: 4196: 4192: 4187: 4183: 4175: 4171: 4167: 4164: 4152:which becomes 4141: 4138: 4135: 4131: 4128: 4125: 4122: 4099: 4096: 4091: 4087: 4082: 4060: 4038: 4034: 4031: 4025: 4005: 4004: 3955: 3953: 3946: 3940: 3937: 3932:Main article: 3929: 3926: 3909: 3905: 3901: 3896: 3892: 3884: 3880: 3874: 3870: 3866: 3861: 3857: 3853: 3848: 3844: 3840: 3834: 3831: 3828: 3825: 3816: 3812: 3806: 3802: 3799: 3793: 3789: 3783: 3779: 3772: 3768: 3764: 3759: 3755: 3748: 3745: 3742: 3739: 3733: 3730: 3705: 3700: 3696: 3692: 3689: 3686: 3683: 3654: 3650: 3627: 3623: 3610: 3607: 3591: 3586: 3582: 3577: 3571: 3567: 3563: 3560: 3557: 3550: 3546: 3542: 3537: 3533: 3526: 3521: 3517: 3491: 3487: 3483: 3478: 3474: 3466: 3462: 3458: 3453: 3449: 3440: 3436: 3432: 3429: 3426: 3423: 3420: 3414: 3411: 3385: 3382: 3379: 3376: 3371: 3366: 3362: 3357: 3351: 3347: 3343: 3340: 3337: 3331: 3324: 3321: 3315: 3312: 3306: 3301: 3297: 3273: 3268: 3264: 3259: 3253: 3249: 3245: 3242: 3239: 3232: 3228: 3224: 3219: 3215: 3208: 3205: 3202: 3199: 3196: 3190: 3187: 3164: 3161: 3154: 3150: 3142: 3138: 3133: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3108: 3102: 3099: 3090: 3086: 3078: 3074: 3069: 3062: 3059: 3033: 3030: 3025: 3022: 3016: 3013: 3010: 3007: 3004: 3001: 2998: 2992: 2989: 2984: 2981: 2973: 2969: 2965: 2962: 2959: 2953: 2950: 2925: 2922: 2919: 2916: 2913: 2908: 2904: 2878: 2874: 2870: 2865: 2861: 2840: 2831:, the length, 2818: 2814: 2791: 2787: 2774: 2771: 2756: 2753: 2749: 2745: 2742: 2739: 2719: 2712: 2709: 2703: 2700: 2694: 2691: 2665: 2662: 2659: 2656: 2653: 2633: 2629: 2625: 2622: 2619: 2599: 2596: 2593: 2589: 2586: 2580: 2577: 2547: 2541: 2538: 2533: 2530: 2524: 2521: 2480: 2476: 2472: 2469: 2466: 2463: 2431: 2427: 2423: 2420: 2417: 2414: 2389: 2385: 2381: 2378: 2375: 2353: 2349: 2345: 2342: 2339: 2315: 2312: 2285: 2279: 2276: 2269: 2265: 2258: 2254: 2250: 2244: 2237: 2233: 2226: 2222: 2218: 2212: 2205: 2201: 2194: 2190: 2186: 2178: 2175: 2172: 2169: 2166: 2162: 2156: 2150: 2147: 2142: 2139: 2114: 2111: 2104: 2100: 2096: 2091: 2084: 2080: 2076: 2071: 2064: 2060: 2056: 2051: 2046: 2043: 2021: 2018: 2013: 2009: 2005: 2000: 1996: 1992: 1987: 1983: 1979: 1976: 1942: 1935: 1932: 1927: 1924: 1918: 1915: 1912: 1909: 1906: 1902: 1896: 1891: 1887: 1884: 1878: 1873: 1870: 1865: 1862: 1842: 1837: 1814: 1811: 1808: 1805: 1802: 1799: 1795: 1792: 1789: 1783: 1780: 1775: 1772: 1742: 1736: 1733: 1729: 1724: 1721: 1709: 1706: 1684: 1681: 1674: 1671: 1668: 1665: 1633: 1630: 1623: 1620: 1615: 1612: 1597: 1596: 1584: 1574: 1562: 1559: 1549: 1537: 1527: 1515: 1495: 1492: 1469: 1466: 1463: 1458: 1454: 1451: 1448: 1442: 1439: 1436: 1433: 1414: 1413: 1396: 1391: 1380: 1368: 1339: 1334: 1330: 1326: 1304: 1278: 1272: 1269: 1247: 1246: 1233: 1228: 1224: 1221: 1218: 1197: 1171: 1168: 1146: 1123: 1118: 1114: 1110: 1088: 1057: 1045: 1042: 1020: 1011: 1007: 1003: 998: 993: 989: 982: 974: 970: 966: 961: 956: 952: 945: 937: 933: 929: 924: 919: 915: 907: 903: 900: 894: 891: 886: 883: 855: 849: 846: 841: 838: 832: 829: 826: 821: 817: 787: 763: 738: 727: 726: 714: 711: 701: 681: 671: 654: 626: 623: 620: 617: 614: 611: 607: 586: 583: 580: 560: 536: 519: 516: 496:flow rates or 472: 469: 441: 438: 431:The theory of 428: 425: 396:Heisler Charts 342:Main article: 339: 336: 306: 303: 235: 231: 220:Knudsen number 184:electron fluid 172:metallic bonds 133: 132: 129: 126: 123: 120: 109: 108: 96: 93: 92: 91: 83: 77: 26: 9: 6: 4: 3: 2: 5493: 5482: 5479: 5477: 5474: 5472: 5471:Heat transfer 5469: 5467: 5464: 5463: 5461: 5451: 5447: 5443: 5440: 5437: 5434: 5431: 5426: 5422: 5421: 5413: 5410: 5408: 5404: 5400: 5397: 5394: 5391: 5388: 5385: 5384: 5377: 5376:0-88318-797-3 5373: 5369: 5363: 5348: 5342: 5338: 5337: 5329: 5314: 5308: 5304: 5303: 5295: 5280: 5274: 5270: 5269: 5261: 5246: 5240: 5236: 5235: 5227: 5219: 5213: 5209: 5208: 5200: 5193: 5187: 5179: 5175: 5171: 5169:9780470501979 5165: 5161: 5157: 5150: 5142: 5138: 5134: 5130: 5126: 5122: 5118: 5111: 5104:. 2016-08-22. 5103: 5099: 5093: 5079: 5075: 5069: 5067: 5062: 5052: 5049: 5047: 5044: 5042: 5039: 5037: 5034: 5032: 5029: 5027: 5024: 5022: 5019: 5017: 5014: 5012: 5009: 5007: 5004: 5002: 4999: 4997: 4994: 4992: 4989: 4988: 4982: 4978: 4974: 4966: 4963: 4958: 4944: 4942: 4938: 4937:heat transfer 4933: 4931: 4926: 4923: 4921: 4916: 4914: 4904: 4902: 4898: 4894: 4890: 4886: 4882: 4878: 4874: 4864: 4845: 4841: 4837: 4833: 4828: 4825: 4805: 4797: 4793: 4788: 4774: 4767: 4764: 4761: 4755: 4751: 4745: 4741: 4737: 4734: 4726: 4723: 4720: 4715: 4710: 4702: 4698: 4691: 4686: 4682: 4678: 4672: 4669: 4666: 4660: 4636: 4633: 4630: 4624: 4601: 4598: 4575: 4572: 4549: 4546: 4543: 4523: 4520: 4517: 4497: 4494: 4491: 4471: 4468: 4465: 4457: 4456:Splat cooling 4451:Splat cooling 4440: 4423: 4419: 4410: 4407: 4404: 4400: 4396: 4393: 4392: 4391: 4388: 4375: 4368: 4364: 4359: 4356: 4350: 4334: 4329: 4324: 4302: 4282: 4277: 4272: 4259: 4255: 4249: 4244: 4240: 4236: 4231: 4228: 4225: 4222: 4216: 4212: 4209: 4206: 4198: 4194: 4190: 4185: 4181: 4173: 4169: 4165: 4162: 4139: 4136: 4129: 4126: 4123: 4120: 4089: 4058: 4036: 4032: 4029: 4023: 4001: 3998: 3990: 3980: 3976: 3972: 3966: 3965: 3961: 3956:This section 3954: 3950: 3945: 3944: 3935: 3934:Heat equation 3925: 3907: 3903: 3899: 3894: 3890: 3882: 3878: 3872: 3868: 3859: 3855: 3851: 3846: 3842: 3832: 3829: 3826: 3823: 3814: 3810: 3804: 3800: 3797: 3791: 3787: 3781: 3777: 3770: 3766: 3762: 3757: 3753: 3746: 3743: 3740: 3737: 3731: 3728: 3716: 3703: 3698: 3694: 3690: 3687: 3684: 3681: 3673: 3668: 3652: 3648: 3625: 3621: 3606: 3584: 3580: 3575: 3569: 3565: 3558: 3555: 3548: 3544: 3540: 3535: 3531: 3524: 3519: 3515: 3489: 3485: 3481: 3476: 3472: 3464: 3460: 3456: 3451: 3447: 3438: 3434: 3430: 3427: 3424: 3421: 3418: 3412: 3409: 3383: 3380: 3377: 3374: 3364: 3360: 3355: 3349: 3345: 3338: 3335: 3329: 3322: 3319: 3313: 3304: 3299: 3295: 3266: 3262: 3257: 3251: 3247: 3240: 3237: 3230: 3226: 3222: 3217: 3213: 3206: 3203: 3200: 3197: 3194: 3188: 3185: 3162: 3159: 3152: 3148: 3140: 3136: 3131: 3127: 3124: 3121: 3118: 3115: 3112: 3109: 3106: 3100: 3097: 3088: 3084: 3076: 3072: 3067: 3060: 3057: 3031: 3028: 3023: 3020: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2990: 2987: 2982: 2979: 2971: 2967: 2963: 2960: 2957: 2951: 2948: 2936: 2923: 2920: 2917: 2914: 2911: 2906: 2902: 2892: 2876: 2872: 2868: 2863: 2859: 2838: 2816: 2812: 2789: 2785: 2770: 2767: 2754: 2751: 2747: 2743: 2740: 2737: 2717: 2710: 2707: 2701: 2692: 2689: 2681: 2676: 2663: 2660: 2657: 2654: 2651: 2631: 2627: 2623: 2620: 2617: 2597: 2594: 2587: 2584: 2578: 2575: 2563: 2545: 2539: 2531: 2528: 2522: 2519: 2510: 2508: 2504: 2500: 2496: 2478: 2474: 2470: 2467: 2464: 2461: 2453: 2449: 2445: 2429: 2425: 2421: 2418: 2415: 2412: 2403: 2387: 2383: 2379: 2376: 2373: 2351: 2347: 2343: 2340: 2337: 2329: 2325: 2321: 2311: 2309: 2305: 2301: 2296: 2283: 2277: 2274: 2267: 2263: 2256: 2252: 2242: 2235: 2231: 2224: 2220: 2210: 2203: 2199: 2192: 2188: 2173: 2167: 2160: 2154: 2148: 2140: 2125: 2112: 2109: 2102: 2098: 2094: 2089: 2082: 2078: 2074: 2069: 2062: 2058: 2054: 2049: 2044: 2041: 2019: 2016: 2011: 2007: 2003: 1998: 1994: 1990: 1985: 1981: 1977: 1974: 1965: 1959: 1953: 1940: 1933: 1925: 1913: 1907: 1900: 1894: 1889: 1885: 1876: 1871: 1868: 1863: 1860: 1853:is given by: 1840: 1825: 1812: 1806: 1800: 1793: 1790: 1787: 1781: 1773: 1758: 1740: 1734: 1727: 1722: 1719: 1705: 1703: 1702:heat equation 1698: 1682: 1679: 1672: 1669: 1666: 1655: 1652:for a simple 1651: 1646: 1631: 1628: 1621: 1618: 1613: 1610: 1602: 1582: 1575: 1560: 1550: 1535: 1528: 1513: 1493: 1483: 1482: 1481: 1467: 1464: 1456: 1452: 1446: 1440: 1437: 1434: 1431: 1423: 1419: 1411: 1381: 1366: 1359: 1355: 1354:thermal power 1328: 1302: 1276: 1270: 1267: 1256: 1255: 1254: 1252: 1222: 1219: 1195: 1169: 1166: 1144: 1112: 1086: 1071: 1070: 1069: 1055: 1044:Integral form 1041: 1039: 1035: 1018: 1009: 1005: 996: 991: 980: 972: 968: 959: 954: 943: 935: 931: 922: 917: 905: 901: 898: 892: 884: 871: 870:heat equation 866: 853: 847: 844: 839: 836: 830: 827: 824: 819: 815: 805: 799: 785: 777: 761: 753: 736: 712: 702: 699: 695: 679: 672: 669: 644: 643: 642: 640: 624: 621: 615: 612: 609: 584: 578: 558: 551: 525: 515: 513: 509: 505: 501: 499: 494: 490: 486: 485:heat transfer 482: 481:heat equation 478: 477:Fourier's law 471:Fourier's law 468: 466: 462: 458: 454: 453:heat transfer 450: 446: 437: 434: 424: 421: 416: 412: 411:heat capacity 408: 404: 399: 397: 392: 388: 387:heat equation 382: 378: 374: 372: 366: 362: 358: 355: 351: 345: 344:Heat equation 335: 333: 329: 324: 320: 317: 313: 302: 300: 296: 292: 291: 286: 282: 278: 274: 270: 266: 262: 258: 254: 249: 233: 229: 221: 215: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 164: 162: 158: 154: 149: 146: 141: 137: 130: 127: 124: 121: 118: 117: 116: 107: 102: 101:Heat equation 88: 84: 81: 78: 74: 71: 70: 69: 66: 64: 60: 56: 52: 44: 39: 33: 19: 5367: 5362: 5350:. Retrieved 5335: 5328: 5316:. Retrieved 5301: 5294: 5282:. Retrieved 5267: 5260: 5248:. Retrieved 5233: 5226: 5206: 5199: 5186: 5159: 5149: 5124: 5120: 5110: 5101: 5092: 5081:. Retrieved 5077: 4979: 4975: 4972: 4959: 4955: 4934: 4927: 4924: 4917: 4910: 4893:Biot numbers 4870: 4789: 4454: 4446:Applications 4402: 4398: 4389: 4332: 4325: 4280: 4273: 4008: 3993: 3984: 3969:Please help 3957: 3717: 3672:surface area 3669: 3612: 2937: 2893: 2776: 2768: 2682:, given by: 2679: 2677: 2564: 2511: 2506: 2502: 2498: 2494: 2451: 2447: 2443: 2404: 2317: 2297: 2126: 1963: 1957: 1954: 1826: 1759: 1711: 1699: 1647: 1598: 1415: 1248: 1047: 867: 803: 800: 728: 694:conductivity 521: 502: 489:proportional 474: 445:Second sound 443: 430: 414: 400: 383: 379: 375: 367: 363: 359: 353: 349: 347: 325: 321: 315: 311: 308: 288: 284: 280: 276: 272: 268: 264: 256: 250: 216: 183: 165: 163:vibrations. 150: 138: 134: 114: 104: 86: 79: 72: 67: 42: 37: 36: 5127:: 500–505. 5036:Biot number 4947:Instruments 1708:Conductance 1038:heat kernel 807:direction: 752:anisotropic 180:ionic bonds 59:temperature 5460:Categories 5378:, page 23. 5083:2024-08-19 5057:References 4969:Gas sensor 4941:symmetries 4885:martensite 2512:For heat, 2304:turbulence 1422:integrated 1416:The above 455:occurs by 188:conductive 168:conductors 157:insulators 99:See also: 80:Convection 73:Conduction 5178:713621645 5141:114611104 5011:Heat pipe 4881:austenite 4873:quenching 4838:ρ 4826:α 4806:α 4765:α 4746:− 4738:⁡ 4724:α 4721:π 4708:Δ 4679:− 4640:∞ 4637:≤ 4631:≤ 4628:∞ 4625:− 4605:∞ 4579:∞ 4553:∞ 4550:− 4357:α 4237:ρ 4223:− 4213:⁡ 4191:− 4166:− 4134:Δ 4127:− 3958:does not 3900:− 3852:− 3833:π 3798:− 3763:− 3747:π 3732:˙ 3691:π 3609:Spherical 3559:⁡ 3541:− 3482:− 3457:− 3431:ℓ 3425:π 3413:˙ 3384:ℓ 3378:π 3339:⁡ 3323:˙ 3311:Δ 3241:⁡ 3223:− 3207:ℓ 3204:π 3189:˙ 3132:∫ 3128:ℓ 3125:π 3116:− 3068:∫ 3061:˙ 3015:ℓ 3009:π 3000:− 2961:− 2952:˙ 2924:ℓ 2918:π 2869:− 2839:ℓ 2711:˙ 2699:Δ 2592:Δ 2579:˙ 2537:Δ 2419:ρ 2328:Ohm's law 2308:viscosity 2300:thin film 2278:⋯ 2249:Δ 2217:Δ 2185:Δ 2171:Δ 2168:− 2146:Δ 2138:Δ 2113:⋯ 2020:⋯ 1931:Δ 1923:Δ 1911:Δ 1908:− 1883:Δ 1804:Δ 1801:− 1779:Δ 1771:Δ 1732:Δ 1683:˙ 1664:Δ 1650:Ohm's law 1558:Δ 1491:Δ 1462:Δ 1450:Δ 1438:− 1329:⋅ 1271:˙ 1223:⋅ 1217:∇ 1167:− 1113:⋅ 1002:∂ 988:∂ 965:∂ 951:∂ 928:∂ 914:∂ 902:α 890:∂ 882:∂ 828:− 710:∇ 619:∇ 613:− 582:∇ 579:− 524:heat flux 508:Ohm's law 461:diffusion 415:variation 212:diffusion 87:radiation 4985:See also 4901:nomogram 4889:eutectic 4411:Convert 4328:nomogram 3987:May 2013 3507:, where 2493:, where 2442:, where 1712:Writing 1253:units): 526:density 493:gradient 290:property 176:covalent 95:Overview 55:hotplate 3979:removed 3964:sources 1420:, when 1412:(in m). 1379:(in J), 1352:is the 1032:with a 696:, W/(m· 641:units) 350:in time 196:thermal 115:Where: 5405:  5374:  5343:  5309:  5275:  5241:  5214:  5176:  5166:  5139:  4871:Metal 4794:. The 2558:where 1753:where 1480:where 1408:is an 776:tensor 498:fluxes 204:copper 161:phonon 112:ÎșAΔT/ℓ 5352:7 May 5318:7 May 5284:7 May 5250:7 May 5137:S2CID 447:is a 295:phase 259:. In 186:of a 90:body. 5403:ISBN 5372:ISBN 5354:2013 5341:ISBN 5320:2013 5307:ISBN 5286:2013 5273:ISBN 5252:2013 5239:ISBN 5212:ISBN 5190:The 5174:OCLC 5164:ISBN 4617:for 4565:and 4510:and 4274:The 3962:any 3960:cite 3670:The 3399:and 2306:and 1961:and 1358:heat 457:wave 198:and 5129:doi 5125:846 4883:to 4735:exp 4536:at 4401:or 4210:exp 3973:by 2644:or 670:/m, 178:or 5462:: 5448:, 5172:. 5135:. 5123:. 5119:. 5100:. 5076:. 5065:^ 4918:A 4346:Fo 4278:, 4019:Bi 3556:ln 3336:ln 3238:ln 2891:. 2402:. 1704:. 1656:: 1251:SI 1040:. 700:), 639:SI 398:. 263:, 248:. 5452:. 5356:. 5322:. 5288:. 5254:. 5220:. 5180:. 5143:. 5131:: 5086:. 4846:p 4842:C 4834:k 4829:= 4775:) 4768:t 4762:4 4756:2 4752:x 4742:( 4727:t 4716:2 4711:X 4703:i 4699:T 4692:= 4687:i 4683:T 4676:) 4673:t 4670:, 4667:x 4664:( 4661:T 4634:x 4602:= 4599:t 4576:= 4573:x 4547:= 4544:x 4524:0 4521:= 4518:T 4498:0 4495:= 4492:x 4472:0 4469:= 4466:t 4424:i 4420:T 4405:. 4403:L 4399:x 4376:. 4369:2 4365:L 4360:t 4351:= 4333:y 4308:K 4303:2 4299:m 4294:W 4281:h 4260:. 4256:) 4250:V 4245:p 4241:C 4232:t 4229:A 4226:h 4217:( 4207:= 4199:f 4195:T 4186:i 4182:T 4174:f 4170:T 4163:T 4140:, 4137:T 4130:h 4124:= 4121:q 4098:K 4095:s 4090:2 4086:m 4081:J 4059:h 4037:k 4033:L 4030:h 4024:= 4000:) 3994:( 3989:) 3985:( 3981:. 3967:. 3908:1 3904:r 3895:2 3891:r 3883:2 3879:r 3873:1 3869:r 3865:) 3860:2 3856:T 3847:1 3843:T 3839:( 3830:k 3827:4 3824:= 3815:2 3811:r 3805:/ 3801:1 3792:1 3788:r 3782:/ 3778:1 3771:2 3767:T 3758:1 3754:T 3744:k 3741:4 3738:= 3729:Q 3704:. 3699:2 3695:r 3688:4 3685:= 3682:A 3653:2 3649:r 3626:1 3622:r 3590:) 3585:1 3581:r 3576:/ 3570:2 3566:r 3562:( 3549:1 3545:r 3536:2 3532:r 3525:= 3520:m 3516:r 3490:1 3486:r 3477:2 3473:r 3465:2 3461:T 3452:1 3448:T 3439:m 3435:r 3428:k 3422:2 3419:= 3410:Q 3381:k 3375:2 3370:) 3365:1 3361:r 3356:/ 3350:2 3346:r 3342:( 3330:= 3320:Q 3314:T 3305:= 3300:c 3296:R 3272:) 3267:1 3263:r 3258:/ 3252:2 3248:r 3244:( 3231:2 3227:T 3218:1 3214:T 3201:k 3198:2 3195:= 3186:Q 3163:T 3160:d 3153:2 3149:T 3141:1 3137:T 3122:k 3119:2 3113:= 3110:r 3107:d 3101:r 3098:1 3089:2 3085:r 3077:1 3073:r 3058:Q 3032:r 3029:d 3024:T 3021:d 3012:r 3006:k 3003:2 2997:= 2991:r 2988:d 2983:T 2980:d 2972:r 2968:A 2964:k 2958:= 2949:Q 2921:r 2915:2 2912:= 2907:r 2903:A 2877:1 2873:T 2864:2 2860:T 2817:2 2813:r 2790:1 2786:r 2755:. 2752:I 2748:/ 2744:V 2741:= 2738:R 2718:, 2708:Q 2702:T 2693:= 2690:R 2680:R 2664:. 2661:G 2658:V 2655:= 2652:I 2632:R 2628:/ 2624:V 2621:= 2618:I 2598:, 2595:T 2588:U 2585:= 2576:Q 2560:U 2546:, 2540:x 2532:A 2529:k 2523:= 2520:U 2507:A 2503:x 2499:k 2495:G 2479:x 2475:/ 2471:A 2468:k 2465:= 2462:G 2452:A 2448:x 2444:ρ 2430:A 2426:/ 2422:x 2416:= 2413:R 2388:V 2384:/ 2380:I 2377:= 2374:G 2352:I 2348:/ 2344:V 2341:= 2338:R 2284:. 2275:+ 2268:3 2264:k 2257:3 2253:x 2243:+ 2236:2 2232:k 2225:2 2221:x 2211:+ 2204:1 2200:k 2193:1 2189:x 2177:) 2174:T 2165:( 2161:A 2155:= 2149:t 2141:Q 2110:+ 2103:3 2099:U 2095:1 2090:+ 2083:2 2079:U 2075:1 2070:+ 2063:1 2059:U 2055:1 2050:= 2045:U 2042:1 2017:+ 2012:3 2008:R 2004:+ 1999:2 1995:R 1991:+ 1986:1 1982:R 1978:= 1975:R 1964:Q 1958:A 1941:. 1934:t 1926:Q 1917:) 1914:T 1905:( 1901:A 1895:= 1890:k 1886:x 1877:= 1872:U 1869:1 1864:= 1861:R 1841:R 1813:. 1810:) 1807:T 1798:( 1794:A 1791:U 1788:= 1782:t 1774:Q 1755:U 1741:, 1735:x 1728:k 1723:= 1720:U 1680:Q 1673:R 1670:= 1667:T 1632:A 1629:L 1622:k 1619:1 1614:= 1611:R 1583:L 1561:T 1536:A 1514:Q 1494:t 1468:, 1465:T 1457:L 1453:t 1447:A 1441:k 1435:= 1432:Q 1395:S 1390:d 1367:Q 1338:S 1333:d 1325:q 1303:S 1277:= 1268:Q 1232:S 1227:d 1220:T 1196:S 1170:k 1145:= 1122:S 1117:d 1109:q 1087:S 1056:S 1019:) 1010:2 1006:z 997:T 992:2 981:+ 973:2 969:y 960:T 955:2 944:+ 936:2 932:x 923:T 918:2 906:( 899:= 893:t 885:T 854:. 848:x 845:d 840:T 837:d 831:k 825:= 820:x 816:q 804:x 786:k 762:k 737:k 713:T 698:K 680:k 668:W 653:q 625:, 622:T 616:k 610:= 606:q 585:T 559:k 535:q 285:T 281:A 277:L 273:t 269:Q 265:k 257:k 234:n 230:K 47:k 34:. 20:)

Index

Fourier's law
Conduction (disambiguation)
temperature gradient
hotplate
temperature
thermal equilibrium
Heat equation
Thermal contact conductance
Interfacial thermal resistance
phonon vibration
insulators
phonon
conductors
metallic bonds
covalent
ionic bonds
conductive
electric current
thermal
electrical conductivities
copper
Thermoelectricity
diffusion
Knudsen number
thermal conductivity
thermal conductivity
property
phase
Thermal effusivity
electrical resistances

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑