Knowledge

Vertex configuration

Source đź“ť

560: 553: 546: 539: 532: 46: 605: 598: 377: 346: 35: 314: 300: 286: 272: 363: 619: 612: 626: 333: 1066: 420:
Different notations are used, sometimes with a comma (,) and sometimes a period (.) separator. The period operator is useful because it looks like a product and an exponent notation can be used. For example, 3.5.3.5 is sometimes written as (3.5).
668:
Faces on a vertex figure are considered to progress in one direction. Some uniform polyhedra have vertex figures with inversions where the faces progress retrograde. A vertex figure represents this in the
1506:
Pp. 58–64, Tilings of regular polygons a.b.c.... (Tilings by regular polygons and star polygons) pp. 95–97, 176, 283, 614–620, Monohedral tiling symbol . pp. 632–642 hollow tilings.
693:
the number of turns around a circle. For example, "3/2" means a triangle that has vertices that go around twice, which is the same as backwards once. Similarly "5/3" is a backwards pentagram 5/2.
470:
This notation applies to polygonal tilings as well as polyhedra. A planar vertex configuration denotes a uniform tiling just like a nonplanar vertex configuration denotes a uniform polyhedron.
725:
NOTE: The vertex figure can represent a regular or semiregular tiling on the plane if its defect is zero. It can represent a tiling of the hyperbolic plane if its defect is negative.
728:
For uniform polyhedra, the angle defect can be used to compute the number of vertices. Descartes' theorem states that all the angle defects in a topological sphere must sum to 4
706: 847:>2), 4.6.6, 4.6.8, 4.6.10, 4.6.12, 4.8.8, 5.5.5, 5.6.6, 6.6.6. In fact, all these configurations with three faces meeting at each vertex turn out to exist. 163:(the first has two triangles followed by two pentagons). Repeated elements can be collected as exponents so this example is also represented as 109:
A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex. The notation "
1299: 784:
Every enumerated vertex configuration potentially uniquely defines a semiregular polyhedron. However, not all configurations are possible.
1147: 1419: 210: 481:
has clockwise and counterclockwise forms which are identical across mirror images. Both have a 3.3.3.3.4 vertex configuration.
1205: 1517: 584: 735:
Since uniform polyhedra have all identical vertices, this relation allows us to compute the number of vertices, which is 4
1269:
Resources for Teaching Discrete Mathematics: Classroom Projects, History, modules, and articles, edited by Brian Hopkins
1554: 655: 17: 1499: 1468: 650: 589: 645: 710: 930: 579: 573: 567: 509: 508:
of {5/2,5} which expands to an explicit vertex configuration 5/2.5/2.5/2.5/2.5/2 or combined as (5/2). The
501: 1036: 909: 500:
For example, there are 4 regular star polyhedra with regular polygon or star polygon vertex figures. The
1312:
Deza, Michel; Shtogrin, Mikhail (2000), "Uniform partitions of 3-space, their relatives and embedding",
1456: 926: 997: 702: 403: 102:
there is only one vertex type and therefore the vertex configuration fully defines the polyhedron. (
524:, {3,5/2} also has a pentagrammic vertex figure, with vertex configuration (3.3.3.3.3)/2 or (3)/2. 1025: 934: 905: 474: 242: 103: 839:. Therefore, potentially possible triples are 3.3.3, 3.4.4, 3.6.6, 3.8.8, 3.10.10, 3.12.12, 4.4. 559: 980: 897: 715: 237:
has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for
1380: 1190: 1178: 1032: 913: 889: 1221: 707:
Tiling by regular polygons § Combinations of regular polygons that can meet at a vertex
552: 1343: 1121: 1105: 1069: 901: 8: 993: 976: 1163: 1144: 147:. The notation is cyclic and therefore is equivalent with different starting points, so 1549: 1520:(p. 289 Vertex figures, uses comma separator, for Archimedean solids and tilings). 1321: 1278: 1040: 633: 545: 538: 531: 513: 512:, {5/2,3} has a triangular vertex figure and configuration (5/2.5/2.5/2) or (5/2). The 238: 99: 1479: 1361: 1112:
This notation represents a sequential count of the number of faces that exist at each
505: 425: 1533: 1513: 1495: 1464: 1357: 1113: 1054: 1021: 972: 850:
The number in parentheses is the number of vertices, determined by the angle defect.
719: 639: 521: 318: 205: 144: 141: 95: 39: 1257: 1043:(note that the two different orders of the same numbers give two different patterns) 45: 1448: 1331: 1290:
Structure and Form in Design: Critical Ideas for Creative Practice By Michael Hann
1202: 920: 874: 381: 1339: 1209: 1151: 1117: 1092: 91: 1095:) and so they can be identified by a similar notation which is sometimes called 893: 751: 696: 429: 1488: 1543: 1483: 1452:, Cambridge University Press (1977) The Archimedean solids. Pp. 156–167. 1076: 1065: 987: 968: 597: 350: 230: 79: 50: 1427:. Pp. 101–115, pp. 118–119 Table I, Nets of Archimedean Duals, V. 604: 497:
has the symbol {5/2}, meaning it has 5 sides going around the centre twice.
1530: 1414: 1335: 1084: 868: 670: 490: 395: 376: 367: 199: 106:
polyhedra exist in mirror-image pairs with the same vertex configuration.)
87: 1010: 860: 304: 276: 1461:
The Geometrical Foundation of Natural Structure: A Source Book of Design
1233: 345: 947: 290: 83: 400:
A 0° angle defect will fill the Euclidean plane with a regular tiling.
1366: 1326: 1128:, and alternating vertices of the rhombus contain 3 or 4 faces each. 1080: 1017: 953: 494: 478: 1423:(1952), (3rd edition, 1989, Stradbroke, England: Tarquin Pub.), 3.7 1381:
Divided Spheres: Geodesics and the Orderly Subdivision of the Sphere
1245: 424:
The notation can also be considered an expansive form of the simple
34: 137: 133: 71: 1179:
Crystallography of Quasicrystals: Concepts, Methods and Structures
313: 1125: 299: 285: 271: 227: 1478: 362: 241:
all the neighboring vertices are in the same plane and so this
1109:
uses square brackets around the symbol for isohedral tilings.
625: 618: 611: 1512:
2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss,
1181:
by Walter Steurer, Sofia Deloudi, (2009) pp. 18–20 and 51–53
697:
All uniform vertex configurations of regular convex polygons
245:
can be used to visually represent the vertex configuration.
113:" describes a vertex that has 3 faces around it, faces with 864: 754:
3.8.8 has an angle defect of 30 degrees. Therefore, it has
489:
The notation also applies for nonconvex regular faces, the
337: 332: 1355: 467:. For example, an icosahedron is {3,5} = 3.3.3.3.3 or 3. 1300:
Symmetry-type graphs of Platonic and Archimedean solids
1246:
Symmetry-type graphs of Platonic and Archimedean solids
787:
Topological requirements limit existence. Specifically
711:
Uniform tiling § Expanded lists of uniform tilings
132:" indicates a vertex belonging to 4 faces, alternating 1258:
3. General Theorems: Regular and Semi-Regular Tilings
1099:. Cundy and Rollett prefixed these dual symbols by a 1487: 1120:. For example, V3.4.3.4 or V(3.4) represents the 516:, {5,5/2} has a pentagrammic vertex figure, with 1541: 1193:edited by David E. Laughlin, (2014) pp. 16–20 877:3.4.4 (6), 4.4.4 (8; also listed above), 4.4. 78:is a shorthand notation for representing the 1311: 1191:Physical Metallurgy: 3-Volume Set, Volume 1 1124:which is face-transitive: every face is a 233:showing the faces around the vertex. This 1325: 1174: 1172: 718:have vertex configurations with positive 31: 27:Notation for a polyhedron's vertex figure 1455: 1064: 394:A vertex needs at least 3 faces, and an 140:. This vertex configuration defines the 1184: 703:Archimedean_solid § Classification 14: 1542: 1169: 1145:Uniform Solution for Uniform Polyhedra 956:3.3.3.3 (6; also listed above), 3.3.3. 248: 1356: 1060: 663: 732: radians or 720 degrees. 24: 1383:6.4.1 Cundy-Rollett symbol, p. 164 795:-gon is surrounded by alternating 25: 1566: 1524: 1314:European Journal of Combinatorics 1234:Uniform Polyhedra and their Duals 406:, the number of vertices is 720°/ 217: 624: 617: 610: 603: 596: 558: 551: 544: 537: 530: 484: 375: 361: 344: 331: 312: 298: 284: 270: 44: 33: 1395: 1386: 1374: 1349: 1305: 1293: 1284: 1272: 1263: 761:In particular it follows that { 374: 343: 311: 173:It has variously been called a 1531:Consistent Vertex Descriptions 1251: 1239: 1227: 1215: 1196: 1157: 1138: 473:The notation is ambiguous for 447:-gons around each vertex. So { 252: 29: 13: 1: 1494:. W. H. Freeman and Company. 1408: 520:is (5.5.5.5.5)/2 or (5)/2. A 329: 268: 254:Regular vertex figure nets, { 226:can also be represented as a 510:great stellated dodecahedron 502:small stellated dodecahedron 7: 1463:. Dover Publications, Inc. 689:is the number of sides and 155:The order is important, so 10: 1571: 1475:Uses Cundy-Rollett symbol. 700: 1555:Polytope notation systems 1425:The Archimedean Polyhedra 432:. The Schläfli notation { 393: 1510:The Symmetries of Things 1401:Cundy and Rollett (1952) 1131: 477:forms. For example, the 239:vertex-uniform polyhedra 1392:Laughlin (2014), p. 16 1336:10.1006/eujc.1999.0385 1166:Roman E. Maeder (1995) 1072: 204:for its usage for the 197:. It is also called a 1248:, Jurij KoviÄŤ, (2011) 1203:Archimedean Polyhedra 1164:The Uniform Polyhedra 1068: 716:Semiregular polyhedra 1490:Tilings and Patterns 1260:Kevin Mitchell, 1995 1122:rhombic dodecahedron 1106:Tilings and patterns 1075:The uniform dual or 1070:Rhombic dodecahedron 1031:semiregular tilings 992:semiregular tilings 925:semiregular tilings 518:vertex configuration 455:} can be written as 224:vertex configuration 76:vertex configuration 1420:Mathematical Models 1362:"Archimedean solid" 1016:Archimedean solids 967:Archimedean solids 888:Archimedean solids 266: 249:Variations and uses 211:Mathematical Models 208:in their 1952 book 90:as the sequence of 1441:vertically-regular 1358:Weisstein, Eric W. 1208:2017-07-05 at the 1150:2015-11-27 at the 1097:face configuration 1089:vertically-regular 1073: 1061:Face configuration 673:notation of sides 514:great dodecahedron 404:Descartes' theorem 253: 206:Archimedean solids 202:and Rollett symbol 187:vertex arrangement 175:vertex description 159:is different from 18:Face configuration 1534:Stella (software) 1518:978-1-56881-220-5 1417:and Rollett, A., 1222:Uniform Polyhedra 803:-gons, so either 664:Inverted polygons 661: 660: 522:great icosahedron 493:. For example, a 430:regular polyhedra 418: 417: 410:(4Ď€ radians/ 145:icosidodecahedron 142:vertex-transitive 100:uniform polyhedra 68: 67: 40:Icosidodecahedron 16:(Redirected from 1562: 1505: 1493: 1480:GrĂĽnbaum, Branko 1474: 1457:Williams, Robert 1446:Peter Cromwell, 1402: 1399: 1393: 1390: 1384: 1378: 1372: 1371: 1370: 1353: 1347: 1346: 1329: 1309: 1303: 1297: 1291: 1288: 1282: 1281:Robert Whittaker 1276: 1270: 1267: 1261: 1255: 1249: 1243: 1237: 1231: 1225: 1219: 1213: 1200: 1194: 1188: 1182: 1176: 1167: 1161: 1155: 1142: 1079:, including the 859:Platonic solids 780: 757: 628: 621: 614: 607: 600: 562: 555: 548: 541: 534: 527: 526: 379: 365: 348: 335: 316: 302: 288: 274: 267: 243:plane projection 169: 162: 158: 154: 150: 131: 124: 120: 116: 112: 64: 57: 48: 37: 30: 21: 1570: 1569: 1565: 1564: 1563: 1561: 1560: 1559: 1540: 1539: 1527: 1502: 1484:Shephard, G. C. 1471: 1411: 1406: 1405: 1400: 1396: 1391: 1387: 1379: 1375: 1354: 1350: 1310: 1306: 1298: 1294: 1289: 1285: 1277: 1273: 1268: 1264: 1256: 1252: 1244: 1240: 1232: 1228: 1220: 1216: 1210:Wayback Machine 1201: 1197: 1189: 1185: 1177: 1170: 1162: 1158: 1152:Wayback Machine 1143: 1139: 1134: 1103:. In contrast, 1093:face-transitive 1063: 1053:regular tiling 1009:Platonic solid 986:regular tiling 946:Platonic solid 919:regular tiling 791:implies that a 770: 755: 713: 699: 666: 506:Schläfli symbol 487: 426:Schläfli symbol 401: 399: 387: 380: 371: 366: 356: 349: 340: 336: 324: 317: 308: 303: 294: 289: 280: 275: 251: 220: 168: 164: 160: 156: 152: 151:is the same as 148: 129: 122: 118: 114: 110: 63: 59: 55: 54: 49: 38: 28: 23: 22: 15: 12: 11: 5: 1568: 1558: 1557: 1552: 1538: 1537: 1526: 1525:External links 1523: 1522: 1521: 1507: 1500: 1476: 1469: 1453: 1444: 1410: 1407: 1404: 1403: 1394: 1385: 1373: 1348: 1320:(6): 807–814, 1304: 1292: 1283: 1271: 1262: 1250: 1238: 1226: 1214: 1195: 1183: 1168: 1156: 1136: 1135: 1133: 1130: 1077:Catalan solids 1062: 1059: 1058: 1057: 1050: 1049: 1045: 1044: 1029: 1014: 1006: 1005: 1001: 1000: 990: 984: 965: 951: 943: 942: 938: 937: 923: 917: 886: 872: 856: 855: 752:truncated cube 698: 695: 665: 662: 659: 658: 653: 648: 643: 637: 630: 629: 622: 615: 608: 601: 593: 592: 587: 582: 577: 571: 564: 563: 556: 549: 542: 535: 486: 483: 416: 415: 391: 390: 373: 359: 342: 328: 327: 310: 296: 282: 250: 247: 219: 218:Vertex figures 216: 191:vertex pattern 166: 128:For example, " 66: 65: 61: 53:represented as 42: 26: 9: 6: 4: 3: 2: 1567: 1556: 1553: 1551: 1548: 1547: 1545: 1536:, Robert Webb 1535: 1532: 1529: 1528: 1519: 1515: 1511: 1508: 1503: 1501:0-7167-1193-1 1497: 1492: 1491: 1485: 1481: 1477: 1472: 1470:0-486-23729-X 1466: 1462: 1458: 1454: 1451: 1450: 1445: 1442: 1438: 1434: 1430: 1426: 1422: 1421: 1416: 1413: 1412: 1398: 1389: 1382: 1377: 1369: 1368: 1363: 1359: 1352: 1345: 1341: 1337: 1333: 1328: 1323: 1319: 1315: 1308: 1301: 1296: 1287: 1280: 1279:Vertex Symbol 1275: 1266: 1259: 1254: 1247: 1242: 1235: 1230: 1223: 1218: 1211: 1207: 1204: 1199: 1192: 1187: 1180: 1175: 1173: 1165: 1160: 1153: 1149: 1146: 1141: 1137: 1129: 1127: 1123: 1119: 1115: 1110: 1108: 1107: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1067: 1056: 1052: 1051: 1047: 1046: 1042: 1038: 1034: 1030: 1027: 1023: 1019: 1015: 1012: 1008: 1007: 1003: 1002: 999: 995: 991: 989: 985: 982: 978: 974: 970: 966: 963: 959: 955: 952: 949: 945: 944: 940: 939: 936: 932: 928: 924: 922: 918: 915: 911: 907: 903: 899: 895: 891: 887: 884: 880: 876: 873: 870: 866: 862: 858: 857: 853: 852: 851: 848: 846: 842: 838: 834: 830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 790: 785: 782: 778: 774: 768: 764: 759: 753: 748: 746: 742: 738: 733: 731: 726: 723: 721: 717: 712: 708: 704: 694: 692: 688: 684: 680: 676: 672: 657: 654: 652: 649: 647: 644: 641: 638: 635: 632: 631: 627: 623: 620: 616: 613: 609: 606: 602: 599: 595: 594: 591: 588: 586: 583: 581: 578: 575: 572: 569: 566: 565: 561: 557: 554: 550: 547: 543: 540: 536: 533: 529: 528: 525: 523: 519: 515: 511: 507: 503: 498: 496: 492: 491:star polygons 485:Star polygons 482: 480: 476: 471: 468: 466: 462: 458: 454: 450: 446: 443: 439: 435: 431: 427: 422: 413: 409: 405: 397: 392: 389: 383: 378: 369: 364: 360: 358: 352: 347: 339: 334: 330: 326: 320: 315: 306: 301: 297: 292: 287: 283: 278: 273: 269: 265: 261: 257: 246: 244: 240: 236: 235:vertex figure 232: 231:vertex figure 229: 225: 215: 213: 212: 207: 203: 201: 196: 192: 188: 184: 183:vertex symbol 180: 176: 171: 146: 143: 139: 135: 126: 107: 105: 101: 97: 93: 89: 85: 81: 80:vertex figure 77: 73: 52: 51:Vertex figure 47: 43: 41: 36: 32: 19: 1509: 1489: 1460: 1447: 1440: 1436: 1432: 1428: 1424: 1418: 1397: 1388: 1376: 1365: 1351: 1327:math/9906034 1317: 1313: 1307: 1295: 1286: 1274: 1265: 1253: 1241: 1229: 1217: 1212:Steven Dutch 1198: 1186: 1159: 1140: 1111: 1104: 1100: 1096: 1088: 1085:trapezohedra 1074: 961: 957: 882: 878: 849: 844: 840: 836: 832: 828: 824: 820: 816: 815:. Similarly 812: 808: 804: 800: 796: 792: 788: 786: 783: 776: 772: 766: 762: 760: 749: 744: 740: 736: 734: 729: 727: 724: 720:angle defect 714: 690: 686: 682: 678: 674: 671:star polygon 667: 517: 499: 488: 472: 469: 464: 460: 456: 452: 448: 444: 441: 437: 433: 423: 419: 411: 407: 396:angle defect 385: 354: 322: 295:Defect 120° 281:Defect 180° 263: 259: 255: 234: 223: 221: 209: 198: 194: 190: 186: 182: 178: 174: 172: 127: 108: 75: 69: 1302:Jurij KoviÄŤ 1236:Robert Webb 1224:Jim McNeill 1055:3.3.3.3.3.3 1024:(60) (both 831:is even or 819:is even or 807:is even or 756:720/30 = 24 750:Example: A 372:Defect 36° 341:Defect 90° 309:Defect 60° 195:face-vector 179:vertex type 1544:Categories 1409:References 1081:bipyramids 1035:(chiral), 1004:Quintuples 954:antiprisms 941:Quadruples 799:-gons and 781:vertices. 758:vertices. 701:See also: 677:such that 656:V(3.5/2)/2 463:times) or 388:Defect 0° 357:Defect 0° 325:Defect 0° 84:polyhedron 1550:Polyhedra 1449:Polyhedra 1415:Cundy, H. 1367:MathWorld 1116:around a 1048:Sextuples 1041:3.3.4.3.4 1037:3.3.3.4.4 1033:3.3.3.3.6 1022:3.3.3.3.5 1018:3.3.3.3.4 1011:3.3.3.3.3 843:(for any 771:4 / (2 - 590:(3.5/2)/2 495:pentagram 479:snub cube 228:polygonal 138:pentagons 134:triangles 94:around a 1486:(1987). 1459:(1979). 1443:symbols. 1206:Archived 1148:Archived 685:, where 642:= (3)/2 636:= (5)/2 576:= (5/2) 570:= (5/2) 504:has the 457:p.p.p... 440:} means 153:5.3.5.3. 72:geometry 1439:... as 1344:1791208 1126:rhombus 998:3.4.6.4 994:3.6.3.6 988:4.4.4.4 981:3.4.5.4 977:3.4.4.4 973:3.5.3.5 969:3.4.3.4 948:3.3.3.3 927:3.12.12 912:(120), 898:3.10.10 854:Triples 835:equals 823:equals 811:equals 775:(1 - 2/ 743:or 720/ 646:V.3.5/2 640:{3,5/2} 634:{5,5/2} 574:{5/2,3} 568:{5/2,5} 161:3.5.3.5 157:3.3.5.5 149:3.5.3.5 130:3.5.3.5 125:sides. 56:3.5.3.5 1516:  1498:  1467:  1342:  1154:(1993) 1114:vertex 1087:, are 1026:chiral 1020:(24), 979:(24), 975:(30), 971:(12), 931:4.6.12 910:4.6.10 908:(48), 904:(24), 900:(60), 896:(24), 892:(12), 875:prisms 827:, and 769:} has 745:defect 741:defect 709:, and 651:V3.5/3 475:chiral 412:defect 408:defect 121:, and 104:Chiral 98:. For 96:vertex 88:tiling 1322:arXiv 1132:Notes 935:4.8.8 921:6.6.6 916:(60). 914:5.6.6 906:4.6.8 902:4.6.6 894:3.8.8 890:3.6.6 869:5.5.5 867:(8), 865:4.4.4 863:(4), 861:3.3.3 789:p.q.r 681:<2 585:3.5/3 580:3.5/2 382:{6,3} 368:{5,3} 351:{4,4} 338:{4,3} 319:{3,6} 305:{3,5} 291:{3,4} 277:{3,3} 200:Cundy 165:(3.5) 111:a.b.c 92:faces 82:of a 60:(3.5) 1514:ISBN 1496:ISBN 1465:ISBN 1118:face 1083:and 1013:(12) 983:(60) 871:(20) 428:for 262:} = 136:and 74:, a 1332:doi 950:(6) 675:p/q 414:). 402:By 370:= 5 307:= 3 293:= 3 279:= 3 86:or 70:In 58:or 1546:: 1482:; 1364:, 1360:, 1340:MR 1338:, 1330:, 1318:21 1316:, 1171:^ 1039:, 996:, 960:(2 933:, 929:, 881:(2 779:)) 747:. 722:. 705:, 384:= 353:= 321:= 222:A 214:. 193:, 189:, 185:, 181:, 177:, 170:. 117:, 1504:. 1473:. 1437:c 1435:. 1433:b 1431:. 1429:a 1334:: 1324:: 1101:V 1091:( 1028:) 964:) 962:n 958:n 885:) 883:n 879:n 845:n 841:n 837:q 833:p 829:r 825:r 821:p 817:q 813:r 809:q 805:p 801:r 797:q 793:p 777:a 773:b 767:b 765:, 763:a 739:/ 737:Ď€ 730:Ď€ 691:q 687:p 683:q 679:p 465:p 461:q 459:( 453:q 451:, 449:p 445:p 442:q 438:q 436:, 434:p 398:. 386:6 355:4 323:3 264:p 260:q 258:, 256:p 167:2 123:c 119:b 115:a 62:2 20:)

Index

Face configuration

Icosidodecahedron

Vertex figure
geometry
vertex figure
polyhedron
tiling
faces
vertex
uniform polyhedra
Chiral
triangles
pentagons
vertex-transitive
icosidodecahedron
Cundy
Archimedean solids
Mathematical Models
polygonal
vertex figure
vertex-uniform polyhedra
plane projection

{3,3}

{3,4}

{3,5}

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑