Knowledge

Cretaceous–Paleogene extinction event

Source 📝

1039:, a group of highly diverse, numerous, and widely distributed shelled cephalopods. The extinction of belemnites enabled surviving cephalopod clades to fill their niches. Ammonite genera became extinct at or near the K–Pg boundary; there was a smaller and slower extinction of ammonite genera prior to the boundary associated with a late Cretaceous marine regression, and a small, gradual reduction in ammonite diversity occurred throughout the very late Cretaceous. Researchers have pointed out that the reproductive strategy of the surviving nautiloids, which rely upon few and larger eggs, played a role in outsurviving their ammonoid counterparts through the extinction event. The ammonoids utilized a planktonic strategy of reproduction (numerous eggs and planktonic larvae), which would have been devastated by the K–Pg extinction event. Additional research has shown that subsequent to this elimination of ammonoids from the global biota, nautiloids began an evolutionary radiation into shell shapes and complexities theretofore known only from ammonoids. 2534:, Sierra Petersen and colleagues argue that there were two separate extinction events near the Cretaceous–Paleogene boundary, with one correlating to Deccan Trap volcanism and one correlated with the Chicxulub impact. The team analyzed combined extinction patterns using a new clumped isotope temperature record from a hiatus-free, expanded K–Pg boundary section. They documented a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. They suggested that local warming had been amplified due to the simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change. 2436:. While his assertion was not initially well-received, later intensive field studies of fossil beds lent weight to his claim. Eventually, most paleontologists began to accept the idea that the mass extinctions at the end of the Cretaceous were largely or at least partly due to a massive Earth impact. Even Walter Alvarez acknowledged that other major changes might have contributed to the extinctions. More recent arguments against the Deccan Traps as an extinction cause include that the timeline of Deccan Traps activity and pulses of climate change has been found by some studies to be asynchronous, that palynological changes do not coincide with intervals of volcanism, and that many sites show climatic stability during the latest Maastrichtian and no sign of major disruptions caused by volcanism. Multiple modelling studies conclude that an impact event, not volcanism, fits best with available evidence of extinction patterns. 1653:
devastation and mass extinction of plants at the K–Pg boundary sections, although there were substantial megafloral changes before the boundary. In North America, approximately 57% of plant species became extinct. In high southern hemisphere latitudes, such as New Zealand and Antarctica, the mass die-off of flora caused no significant turnover in species, but dramatic and short-term changes in the relative abundance of plant groups. European flora was also less affected, most likely due to its distance from the site of the Chicxulub impact. In northern Alaska and the Anadyr-Koryak region of Russia, the flora was minimally impacted. Another line of evidence of a major floral extinction is that the divergence rate of subviral pathogens of angiosperms sharply decreased, which indicates an enormous reduction in the number of flowering plants. However, phylogenetic evidence shows no mass angiosperm extinction.
1404:) helps to understand their full extinction in contrast with their close relatives, the crocodilians. Ectothermic ("cold-blooded") crocodiles have very limited needs for food (they can survive several months without eating), while endothermic ("warm-blooded") animals of similar size need much more food to sustain their faster metabolism. Thus, under the circumstances of food chain disruption previously mentioned, non-avian dinosaurs died out, while some crocodiles survived. In this context, the survival of other endothermic animals, such as some birds and mammals, could be due, among other reasons, to their smaller needs for food, related to their small size at the extinction epoch. Prolonged cold is unlikely to have been a reason for the extinction of non-avian dinosaurs given the adaptations of many dinosaurs to cold environments. 1555:, were wiped out. Only a small fraction of ground and water-dwelling Cretaceous bird species survived the impact, giving rise to today's birds. The only bird group known for certain to have survived the K–Pg boundary is the Aves. Avians may have been able to survive the extinction as a result of their abilities to dive, swim, or seek shelter in water and marshlands. Many species of avians can build burrows, or nest in tree holes, or termite nests, all of which provided shelter from the environmental effects at the K–Pg boundary. Long-term survival past the boundary was assured as a result of filling ecological niches left empty by extinction of non-avian dinosaurs. Based on molecular sequencing and fossil dating, many species of birds (the 2329: 85: 2068: 1607:). In the Hell Creek beds of North America, at least half of the ten known multituberculate species and all eleven metatherians species are not found above the boundary. Multituberculates in Europe and North America survived relatively unscathed and quickly bounced back in the Paleocene, but Asian forms were devastated, never again to represent a significant component of mammalian fauna. A recent study indicates that metatherians suffered the heaviest losses at the K–Pg event, followed by multituberculates, while eutherians recovered the quickest. K–Pg boundary mammalian species were generally small, comparable in size to 56: 2294:-containing rock usually present in the shallow seabed of the region; it had been almost entirely removed, vaporized into the atmosphere. The impactor was large enough to create a 190-kilometer-wide (120 mi) peak ring, to melt, shock, and eject deep granite, to create colossal water movements, and to eject an immense quantity of vaporized rock and sulfates into the atmosphere, where they would have persisted for several years. This worldwide dispersal of dust and sulfates would have affected climate catastrophically, led to large temperature drops, and devastated the food chain. 1280:, a diverse group of large predatory marine reptiles, also became extinct. Fossil evidence indicates that squamates generally suffered very heavy losses in the K–Pg event, only recovering 10 million years after it. The extinction of Cretaceous lizards and snakes may have led to the evolution of modern groups such as iguanas, monitor lizards, and boas. The diversification of crown group snakes has been linked to the biotic recovery in the aftermath of the K-Pg extinction event. Pan-Gekkotans weathered the extinction event well, with multiple lineages likely surviving. 2429:
time of the extinction event. Not only did the climate temperature increase, but the water temperature decreased, causing a drastic decrease in marine diversity. Evidence from Tunisia indicates that marine life was deleteriously affected by a major period of increased warmth and humidity linked to a pulse of intense Deccan Traps activity, and that marine extinctions there began before the impact event. Charophyte declines in the Songliao Basin, China before the asteroid impact have been concluded to be connected to climate changes caused by Deccan Traps activity.
882: 693:, because such communities rely less directly on food from living plants, and more on detritus washed in from the land, protecting them from extinction. Modern crocodilians can live as scavengers and survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous. Similar, but more complex patterns have been found in the oceans. Extinction was more severe among animals living in the 1397:
record is simply not good enough to permit researchers to distinguish between the options. There is no evidence that late Maastrichtian non-avian dinosaurs could burrow, swim, or dive, which suggests they were unable to shelter themselves from the worst parts of any environmental stress that occurred at the K–Pg boundary. It is possible that small dinosaurs (other than birds) did survive, but they would have been deprived of food, as herbivorous dinosaurs would have found plant material scarce and carnivores would have quickly found prey in short supply.
16267: 1150:, apparently precipitated by the K–Pg extinction event; the marine and freshwater environments of fishes mitigated the environmental effects of the extinction event. The result was Patterson's Gap, a period in the earliest part of the Cenozoic of decreased acanthomorph diversity, although acanthomorphs diversified rapidly after the extinction. Teleost fish diversified explosively after the mass extinction, filling the niches left vacant by the extinction. Groups appearing in the Paleocene and Eocene epochs include billfish, tunas, eels, and flatfish. 2148: 2093: 1384: 1325:, which lived in freshwater and marine locations. Approximately 50% of crocodyliform representatives survived across the K–Pg boundary, the only apparent trend being that no large crocodiles survived. Crocodyliform survivability across the boundary may have resulted from their aquatic niche and ability to burrow, which reduced susceptibility to negative environmental effects at the boundary. Jouve and colleagues suggested in 2008 that juvenile marine crocodyliforms lived in freshwater environments as do modern marine 525: 430: 989: 2000:, as the source of the K–Pg boundary clay. Identified in 1990 based on work by geophysicist Glen Penfield in 1978, the crater is oval, with an average diameter of roughly 180 km (110 mi), about the size calculated by the Alvarez team. In March 2010, an international panel of 41 scientists reviewed 20 years of scientific literature and endorsed the asteroid hypothesis, specifically the Chicxulub impact, as the cause of the extinction, ruling out other theories such as massive 2538: 65: 2425:
Traps volcanism resulted in carbon dioxide emissions that increased the greenhouse effect when the dust and aerosols cleared from the atmosphere. Plant fossils record a 250 ppm increase in carbon dioxide concentrations across the K-Pg boundary likely attributable to Deccan Traps activity. The increased carbon dioxide emissions also caused acid rain, evidenced by increased mercury deposition due to increased solubility of mercury compounds in more acidic water.
1744: 16679: 2045: 803:. Major spatial differences existed in calcareous nannoplankton diversity patterns; in the Southern Hemisphere, the extinction was less severe and recovery occurred much faster than in the Northern Hemisphere. Following the extinction, survivor communities dominated for several hundred thousand years. The North Pacific acted as a diversity hotspot from which later nannoplankton communities radiated as they replaced survivor faunas across the globe. 76: 1428:), which both date from approximately 75 Ma, provides information on the changes in dinosaur populations over the last 10 million years of the Cretaceous. These fossil beds are geographically limited, covering only part of one continent. The middle–late Campanian formations show a greater diversity of dinosaurs than any other single group of rocks. The late Maastrichtian rocks contain the largest members of several major clades: 1900: 45: 985:), became extinct at the K–Pg boundary, with the gradual extinction of most inoceramid bivalves beginning well before the K–Pg boundary. Deposit feeders were the most common bivalves in the catastrophe's aftermath. Abundance was not a factor that affected whether a bivalve taxon went extinct, according to evidence from North America. Veneroid bivalves developed deeper burrowing habitats as the recovery from the crisis ensued. 2075: 861:
indicates substantial extinction of these species at the K–Pg boundary, and those who think the evidence supports a gradual extinction through the boundary. There is strong evidence that local conditions heavily influenced diversity changes in planktonic foraminifera. Low and mid-latitude communities of planktonic foraminifera experienced high extinction rates, while high latitude faunas were relatively unaffected.
1877: 16689: 1178:; therefore, some amphibians do seem to have become extinct at the boundary. The relatively low levels of extinction seen among amphibians probably reflect the low extinction rates seen in freshwater animals. Following the mass extinction, frogs radiated substantially, with 88% of modern anuran diversity being traced back to three lineages of frogs that evolved after the cataclysm. 1611:; this small size would have helped them find shelter in protected environments. It is postulated that some early monotremes, marsupials, and placentals were semiaquatic or burrowing, as there are multiple mammalian lineages with such habits today. Any burrowing or semiaquatic mammal would have had additional protection from K–Pg boundary environmental stresses. 1375:
groups, possibly due to direct competition, or they simply filled empty niches, but there is no correlation between pterosaur and avian diversities that are conclusive to a competition hypothesis, and small pterosaurs were present in the Late Cretaceous. At least some niches previously held by birds were reclaimed by pterosaurs prior to the K–Pg event.
1664:, that do not require photosynthesis and use nutrients from decaying vegetation. The dominance of fungal species lasted only a few years while the atmosphere cleared and plenty of organic matter to feed on was present. Once the atmosphere cleared photosynthetic organisms returned – initially ferns and other ground-level plants. 925:, extinction patterns were highly heterogeneous and cannot be neatly attributed to any particular factor. Decapods that inhabited the Western Interior Seaway were especially hard-hit, while other regions of the world's oceans were refugia that increased chances of survival into the Palaeocene. Among retroplumid crabs, the genus 10701: 1975:, but this was the first hard evidence, and since then, studies have continued to demonstrate elevated iridium levels in association with the K-Pg boundary. This hypothesis was viewed as radical when first proposed, but additional evidence soon emerged. The boundary clay was found to be full of minute 2439:
Combining these theories, some geophysical models suggest that the impact contributed to the Deccan Traps. These models, combined with high-precision radiometric dating, suggest that the Chicxulub impact could have triggered some of the largest Deccan eruptions, as well as eruptions at active volcano
2309:
After the impact winter, the Earth entered a period of global warming as a result of the vapourisation of carbonates into carbon dioxide, whose long residence time in the atmosphere ensured significant warming would occur after more short-lived cooling gases dissipated. Carbon monoxide concentrations
1396:
Scientists agree that all non-avian dinosaurs became extinct at the K–Pg boundary. The dinosaur fossil record has been interpreted to show both a decline in diversity and no decline in diversity during the last few million years of the Cretaceous, and it may be that the quality of the dinosaur fossil
1078:
The extinction event produced major changes in Paleogene insect communities. Many groups of ants were present in the Cretaceous, but in the Eocene ants became dominant and diverse, with larger colonies. Butterflies diversified as well, perhaps to take the place of leaf-eating insects wiped out by the
4599:
Clyde, William C.; Wilf, Peter; Iglesias, Ari; Slingerland, Rudy L.; Barnum, Timothy; Bijl, Peter K.; Bralower, Timothy J.; Brinkhuis, Henk; Comer, Emily E.; Huber, Brian T.; Ibañez-Mejia, Mauricio; Jicha, Brian R.; Krause, J. Marcelo; Schueth, Jonathan D.; Singer, Bradley S.; Raigemborn, María Sol;
2285:
around the Chicxulub impact crater. The discoveries confirmed that the rock comprising the peak ring had been shocked by immense pressure and melted in just minutes from its usual state into its present form. Unlike sea-floor deposits, the peak ring was made of granite originating much deeper in the
1679:
pollen grains, but the boundary layer contains little pollen and is dominated by fern spores. More usual pollen levels gradually resume above the boundary layer. This is reminiscent of areas blighted by modern volcanic eruptions, where the recovery is led by ferns, which are later replaced by larger
4314:
MacLeod, N.; Rawson, P.F.; Forey, P.L.; Banner, F.T.; Boudagher-Fadel, M.K.; Bown, P.R.; Burnett, J.A.; Chambers, P.; Culver, S.; Evans, S.E.; Jeffery, C.; Kaminski, M.A.; Lord, A.R.; Milner, A.C.; Milner, A.R.; Morris, N.; Owen, E.; Rosen, B.R.; Smith, A.B.; Taylor, P.D.; Urquhart, E.; Young, J.R.
2428:
Evidence for extinctions caused by the Deccan Traps includes the reduction in diversity of marine life when the climate near the K–Pg boundary increased in temperature. The temperature increased about three to four degrees very rapidly between 65.4 and 65.2 million years ago, which is very near the
1724:
While it appears that many fungi were wiped out at the K-Pg boundary, there is some evidence that some fungal species thrived in the years after the extinction event. Microfossils from that period indicate a great increase in fungal spores, long before the resumption of plentiful fern spores in the
1271:
comprising lizards and snakes first diversified during the Jurassic and continued to diversify throughout the Cretaceous. They are currently the most successful and diverse group of living reptiles, with more than 10,000 extant species. The only major group of terrestrial lizards to go extinct
1224:
and are represented by living species. Analysis of turtle survivorship in the Hell Creek Formation shows a minimum of 75% of turtle species survived. Following the extinction event, turtle diversity exceeded pre-extinction levels in the Danian of North America, although in South America it remained
2472:
area, the most species-rich part of the sea, and therefore could have been enough to cause a marine mass extinction. This change would not have caused the extinction of the ammonites. The regression would also have caused climate changes, partly by disrupting winds and ocean currents and partly by
2232:
effect. If widespread fires occurred this would have exterminated the most vulnerable organisms that survived the period immediately after the impact. Experimental analysis suggests that any impact-induced wildfires were insufficient on their own to cause plant extinctions, and much of the thermal
2040:
matching those of the Chicxulub impact event. Some researchers question the interpretation of the findings at the site or are skeptical of the team leader, Robert DePalma, who had not yet received his Ph.D. in geology at the time of the discovery and whose commercial activities have been regarded
1543:
bird relatives coexisted with non-avian dinosaurs. Large collections of bird fossils representing a range of different species provide definitive evidence for the persistence of archaic birds to within 300,000 years of the K–Pg boundary. The absence of these birds in the Paleogene is evidence
1472:
in Alberta, Canada, supports the gradual extinction of non-avian dinosaurs; during the last 10 million years of the Cretaceous layers there, the number of dinosaur species seems to have decreased from about 45 to approximately 12. Other scientists have made the same assessment following their
1374:
and a basal toothed taxon of uncertain affinities, though they are represented by fragmentary remains that are difficult to assign to any given group. While this was occurring, modern birds were undergoing diversification; traditionally it was thought that they replaced archaic birds and pterosaur
1063:
from fourteen sites in North America was used as a proxy for insect diversity across the K–Pg boundary and analyzed to determine the rate of extinction. Researchers found that Cretaceous sites, prior to the extinction event, had rich plant and insect-feeding diversity. During the early Paleocene,
2424:
The Deccan Traps could have caused extinction through several mechanisms, including the release of dust and sulfuric aerosols into the air, which might have blocked sunlight and thereby reduced photosynthesis in plants. In addition, the latest Cretaceous saw a rise in global temperatures; Deccan
2200:
has been estimated at more than 100 m (330 ft) tall, as the asteroid fell into relatively shallow seas; in deep seas it would have been 4.6 km (2.9 mi) tall. Fossiliferous sedimentary rocks deposited during the K–Pg impact have been found in the Gulf of Mexico area, including
1831:
mammals occurred after approximately 185,000 years, and no more than 570,000 years, "indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event." Analysis of the carbon cycle disruptions caused by the impact constrains them to an interval of just 5,000
1631:
orders diversified soon after the K–Pg boundary. However, morphological diversification rates among eutherians after the extinction event were thrice those of before it. Also significant, within the mammalian genera, new species were approximately 9.1% larger after the K–Pg boundary. After about
1614:
After the K–Pg extinction, mammals evolved to fill the niches left vacant by the dinosaurs. Some research indicates that mammals did not explosively diversify across the K–Pg boundary, despite the ecological niches made available by the extinction of dinosaurs. Several mammalian orders have been
873:
Phytoplankton recovery in the early Paleocene provided the food source to support large benthic foraminiferal assemblages, which are mainly detritus-feeding. Ultimate recovery of the benthic populations occurred over several stages lasting several hundred thousand years into the early Paleocene.
1134:
families and 13 batoid families thrived, of which 25 and 9, respectively, survived the K–T boundary event. Forty-seven of all neoselachian genera cross the K–T boundary, with 85% being sharks. Batoids display with 15%, a comparably low survival rate. Among elasmobranchs, those species that
860:
across the K–Pg boundary has been studied since the 1930s. Research spurred by the possibility of an impact event at the K–Pg boundary resulted in numerous publications detailing planktonic foraminiferal extinction at the boundary; there is ongoing debate between groups which think the evidence
2420:
caused the extinction were usually linked to the view that the extinction was gradual, as the flood basalt events were thought to have started around 68 Mya and lasted more than 2 million years. The most recent evidence shows that the traps erupted over a period of only 800,000 years
1652:
Plant fossils illustrate the reduction in plant species across the K–Pg boundary. There is overwhelming evidence of global disruption of plant communities at the K–Pg boundary. Extinctions are seen both in studies of fossil pollen, and fossil leaves. In North America, the data suggests massive
2513:
Proponents of multiple causation view the suggested single causes as either too small to produce the vast scale of the extinction, or not likely to produce its observed taxonomic pattern. In a review article, J. David Archibald and David E. Fastovsky discussed a scenario combining three major
1987:
along the Gulf Coast and the Caribbean provided more evidence, and suggested that the impact might have occurred nearby, as did the discovery that the K–Pg boundary became thicker in the southern United States, with meter-thick beds of debris occurring in northern New Mexico. A K-Pg boundary
1291:
Ca values indicate that prior to the mass extinction, marine reptiles at the top of food webs were feeding on only one source of calcium, suggesting their populations exhibited heightened vulnerability to extinctions at the terminus of the Cretaceous. Along with the aforementioned mosasaurs,
872:
in the ocean is thought to have decreased. As the marine microbiota recovered, it is thought that increased speciation of benthic foraminifera resulted from the increase in food sources. In some areas, such as Texas, benthic foraminifera show no sign of any major extinction event, however.
9836:
Bertrand, Ornella C.; Shelley, Sarah L.; Williamson, Thomas E.; Wible, John R.; Chester, Stephen G. B.; Flynn, John J.; Holbrook, Luke T.; Lyson, Tyler R.; Meng, Jin; Miller, Ian M.; Püschel, Hans P.; Smith, Thierry; Spaulding, Michelle; Tseng, Z. Jack; Brusatte, Stephen L. (April 2022).
1467:
biases and the sparsity of the continental fossil record. The results of this study, which were based on estimated real global biodiversity, showed that between 628 and 1,078 non-avian dinosaur species were alive at the end of the Cretaceous and underwent sudden extinction after the
12552:
Lawton, T. F.; Shipley, K. W.; Aschoff, J. L.; Giles, K. A.; Vega, F. J. (2005). "Basinward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico".
918:. Current research cannot ascertain whether the extinctions occurred prior to, or during, the boundary interval. Ostracods that were heavily sexually selected were more vulnerable to extinction, and ostracod sexual dimorphism was significantly rarer following the mass extinction. 1046:
that thrived in low-latitude, shallow-water environments during the late Cretaceous had the highest extinction rate. Mid-latitude, deep-water echinoderms were much less affected at the K–Pg boundary. The pattern of extinction points to habitat loss, specifically the drowning of
2518:, and extraterrestrial impact. In this scenario, terrestrial and marine communities were stressed by the changes in, and loss of, habitats. Dinosaurs, as the largest vertebrates, were the first affected by environmental changes, and their diversity declined. At the same time, 1407:
Whether the extinction occurred gradually or suddenly has been debated, as both views have support from the fossil record. A highly informative sequence of dinosaur-bearing rocks from the K–Pg boundary is found in western North America, particularly the late Maastrichtian-age
10805:
Depalma, Robert A.; Oleinik, Anton A.; Gurche, Loren P.; Burnham, David A.; Klingler, Jeremy J.; McKinney, Curtis J.; Cichocki, Frederick P.; Larson, Peter L.; Egerton, Victoria M.; Wogelius, Roy A.; Edwards, Nicholas P.; Bergmann, Uwe; Manning, Phillip L. (8 December 2021).
12703:
Smit, Jan; Montanari, Alessandro; Swinburne, Nicola H.; Alvarez, Walter; Hildebrand, Alan R.; Margolis, Stanley V.; Claeys, Philippe; Lowrie, William; Asaro, Frank (1992). "Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico".
4833: 814:
provide a fossil record, and not all dinoflagellate species have cyst-forming stages, which likely causes diversity to be underestimated. Recent studies indicate that there were no major shifts in dinoflagellates through the boundary layer. There were blooms of the taxa
2256:, which might have reduced sunlight reaching the Earth's surface by more than 50%. Fine silicate dust also contributed to the intense impact winter, as did soot from wildfires. The climatic forcing of this impact winter was about 100 times more potent than that of the 1690:
appears to have enhanced the ability of flowering plants to survive the extinction, probably because the additional copies of the genome such plants possessed allowed them to more readily adapt to the rapidly changing environmental conditions that followed the impact.
2342:
Other crater-like topographic features have also been proposed as impact craters formed in connection with Cretaceous–Paleogene extinction. This suggests the possibility of near-simultaneous multiple impacts, perhaps from a fragmented asteroidal object similar to the
1316:
Ten families of crocodilians or their close relatives are represented in the Maastrichtian fossil records, of which five died out prior to the K–Pg boundary. Five families have both Maastrichtian and Paleocene fossil representatives. All of the surviving families of
11819:
Kaskes, P.; Goderis, S.; Belza, J.; Tack, P.; DePalma, R. A.; Smit, J.; Vincze, Laszlo; Vabgaecje, F.; Claeys, P. (2019). "Caught in amber: Geochemistry and petrography of uniquely preserved Chicxulub microtektites from the Tanis K-Pg site from North Dakota (USA)".
955:, which collapsed due to the events surrounding the K–Pg boundary, but the use of data from coral fossils to support K–Pg extinction and subsequent Paleocene recovery, must be weighed against the changes that occurred in coral ecosystems through the K–Pg boundary. 2789:
Jones, Heather L.; Westerhold, Thomas; Birch, Heather; Hull, Pincelli; Negra, M. Hédi; Röhl, Ursula; Sepúlveda, Julio; Vellekoop, Johan; Whiteside, Jessica H.; Alegret, Laia; Henehan, Michael; Robinson, Libby; Van Dijk, Joep; Bralower, Timothy (18 January 2023).
1811:
probably died out long after the most recent fossil that has been found. Scientists have also found very few continuous beds of fossil-bearing rock that cover a time range from several million years before the K–Pg extinction to several million years after it.
2134:
of asteroids. This link has been doubted, though not disproved, in part because of a lack of observations of the asteroid and its family. It was reported in 2009 that 298 Baptistina does not share the chemical signature of the K–Pg impactor. Further, a 2011
2908:
Ferreira da Silva, Luiza Carine; Santos, Alessandra; Fauth, Gerson; Manríquez, Leslie Marcela Elizabeth; Kochhann, Karlos Guilherme Diemer; Do Monte Guerra, Rodrigo; Horodyski, Rodrigo Scalise; Villegas-Martín, Jorge; Ribeiro da Silva, Rafael (April 2023).
1341:
survived; the exact reasons for this pattern are not known. Sebecids were large terrestrial predators, are known from the Eocene of Europe, and would survive in South America into the Miocene. Tethysuchians radiated explosively after the extinction event.
2191:
deposits and sediments around the area of the Caribbean Sea and Gulf of Mexico, from the colossal waves created by the impact. These deposits have been identified in the La Popa basin in northeastern Mexico, platform carbonates in northeastern Brazil, in
1802:
The extinction's rapidity is a controversial issue because some researchers think the extinction was the result of a sudden event, while others argue that it took place over a long period. The exact length of time is difficult to determine because of the
5261: 2332:
The river bed at the Moody Creek Mine, 7 Mile Creek / Waimatuku, Dunollie, New Zealand contains evidence of a devastating event on terrestrial plant communities at the Cretaceous–Paleogene boundary, confirming the severity and global nature of the
8547:
Ocampo, A.; Vajda, V.; Buffetaut, E. (2006). "Unravelling the Cretaceous–Paleogene (K–T) turnover, evidence from flora, fauna and geology in biological processes associated with impact events". In Cockell, C.; Gilmour, I.; Koeberl, C. (eds.).
5990: 5072:
Arenillas, I.; Arz, J. A.; Molina, E.; Dupuis, C. (2000). "An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extinction and possible survivorship".
8773:
Ryan, M. J.; Russell, A. P.; Eberth, D. A.; Currie, P. J. (2001). "The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bone bed from the Dinosaur Park formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny".
5348:
Galeotti, S.; Bellagamba, M.; Kaminski, M. A.; Montanari, A. (2002). "Deep-sea benthic foraminiferal recolonisation following a volcaniclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy)".
1564:, for example, rapidly diversified in the early Paleogene and are believed to have convergently developed flightlessness at least three to six times, often fulfilling the niche space for large herbivores once occupied by non-avian dinosaurs. 2268:
dropped as much as 7 °C (13 °F) for decades after the impact. It would take at least ten years for such aerosols to dissipate, and would account for the extinction of plants and phytoplankton, and subsequently herbivores and their
2297:
The release of large quantities of sulphur aerosols into the atmosphere as a consequence of the impact would also have caused acid rain. Oceans acidified as a result. This decrease in ocean pH would kill many organisms that grow shells of
12087:
Timms, Nicholas E.; Kirkland, Christopher L.; Cavosie, Aaron J.; Rae, Auriol S.P.; Rickard, William D.A.; Evans, Noreen J.; Erickson, Timmons M.; Wittmann, Axel; Ferrière, Ludovic; Collins, Gareth S.; Gulick, Sean P.S. (15 July 2020).
3794:
Labandeira, C. C.; Johnson, K. R.; et al. (2002). "Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound". In Hartman, J.H.; Johnson, K.R.; Nichols, D.J. (eds.).
8130: 3445:"The nastiest feud in science: A Princeton geologist has endured decades of ridicule for arguing that the fifth extinction was caused not by an asteroid but by a series of colossal volcanic eruptions. But she's reopened that debate" 2522:
materials from volcanism cooled and dried areas of the globe. Then an impact event occurred, causing collapses in photosynthesis-based food chains, both in the already-stressed terrestrial food chains and in the marine food chains.
1095:
across the K–Pg boundary, which provide good evidence of extinction patterns of these classes of marine vertebrates. While the deep-sea realm was able to remain seemingly unaffected, there was an equal loss between the open marine
8354:
Butler, Richard J.; Barrett, Paul M.; Nowbath, Stephen; Upchurch, Paul (2009). "Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird / pterosaur competitive replacement".
2184:. The Chicxulub impact caused a global catastrophe. Some of the phenomena were brief occurrences immediately following the impact, but there were also long-term geochemical and climatic disruptions that devastated the ecology. 2452:
rock layers from various parts of the world, the later layers are terrestrial; earlier layers represent shorelines and the earliest layers represent seabeds. These layers do not show the tilting and distortion associated with
1988:"cocktail" of microfossils, lithic fragments, and impact-derived material deposited by gigantic sediment gravity flows was discovered in the Caribbean that served to demarcate the impact. Further research identified the giant 8708:
Rieraa, V.; Marmib, J.; Omsa, O.; Gomez, B. (March 2010). "Orientated plant fragments revealing tidal palaeocurrents in the Fumanya mudflat (Maastrichtian, southern Pyrenees): Insights in palaeogeographic reconstructions".
557:
becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised
2163:
of non-avian dinosaurs and many other species on Earth. The impact spewed hundreds of billions of tons of sulfur into the atmosphere, producing a worldwide blackout and freezing temperatures which persisted for at least a
6040:
Ward, P. D.; Kennedy, W. J.; MacLeod, K. G.; Mount, J. F. (1991). "Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain)".
11695:
Depalma, Robert A.; Smit, Jan; Burnham, David A.; Kuiper, Klaudia; Manning, Phillip L.; Oleinik, Anton; Larson, Peter; Maurrasse, Florentin J.; Vellekoop, Johan; Richards, Mark A.; Gurche, Loren; Alvarez, Walter (2019).
4602:"New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: Implications for Cretaceous-Paleogene extinction recovery and land mammal age correlations" 9148:
Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N. J.; Worthy, T. H.; Wood, J.; Lee, M. S. Y.; Cooper, A. (2014). "Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution".
2236:
Aside from the hypothesized fire effects on reduction of insolation, the impact would have created a humongous dust cloud that blocked sunlight for up to a year, inhibiting photosynthesis. The asteroid hit an area of
10747:
During, Melanie A. D.; Smit, Jan; Voeten, Dennis F. A. E.; Berruyer, Camille; Tafforeau, Paul; Sanchez, Sophie; Stein, Koen H. W.; Verdegaal-Warmerdam, Suzan J. A.; Van Der Lubbe, Jeroen H. J. L. (23 February 2022).
5186:
MacLeod, N (1996). "Nature of the Cretaceous-Tertiary (K–T) planktonic foraminiferal record: Stratigraphic confidence intervals, Signor–Lipps effect, and patterns of survivorship". In MacLeod, N.; Keller, G. (eds.).
1135:
inhabited higher latitudes and lived pelagic lifestyles were more likely to survive, whereas epibenthic lifestyles and durophagy were strongly associated with the likelihood of perishing during the extinction event.
12181:
Majaess, D. J.; Higgins, D.; Molnar, L. A.; Haegert, M. J.; Lane, D. J.; Turner, D. G.; Nielsen, I. (February 2009). "New constraints on the asteroid 298 Baptistina, the alleged family member of the K/T impactor".
1572:
Mammalian species began diversifying approximately 30 million years prior to the K–Pg boundary. Diversification of mammals stalled across the boundary. All major Late Cretaceous mammalian lineages, including
4419:
Aberhan, M.; Weidemeyer, S.; Kieesling, W.; Scasso, R.A.; Medina, F.A. (2007). "Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections".
1162:
concluded that no species of amphibian became extinct. Yet there are several species of Maastrichtian amphibian, not included as part of this study, which are unknown from the Paleocene. These include the frog
13502: 13326: 12403: 11953: 11702: 10645: 10484: 9631: 6976: 6267: 5934: 4497:
García-Girón, Jorge; Chiarenza, Alfio Alessandro; Alahuhta, Janne; DeMar, David G.; Heino, Jani; Mannion, Philip D.; Williamson, Thomas E.; Wilson Mantilla, Gregory P.; Brusatte, Stephen L. (9 December 2022).
3739: 3673: 3597: 3348: 3208: 1559:
group in particular) appeared to radiate after the K–Pg boundary. The open niche space and relative scarcity of predators following the K-Pg extinction allowed for adaptive radiation of various avian groups.
2264:, the onset of global darkness would have reached its maximum in only a few weeks and likely lasted upwards of 2 years. Freezing temperatures probably lasted for at least three years. At Brazos section, the 1462:
of Europe in 2010 supports the view that dinosaurs there had great diversity until the asteroid impact, with more than 100 living species. More recent research indicates that this figure is obscured by
7826:"Polycotylidae (Sauropterygia, Plesiosauria) from the La Colonia Formation, Patagonia, Argentina: Phylogenetic affinities of Sulcusuchus erraini and the Late Cretaceous circum-pacific polycotylid diversity" 913:
that were prevalent in the upper Maastrichtian, left fossil deposits in a variety of locations. A review of these fossils shows that ostracod diversity was lower in the Paleocene than any other time in the
833:
times, and their mineral fossil skeletons can be tracked across the K–Pg boundary. There is no evidence of mass extinction of these organisms, and there is support for high productivity of these species in
9997:
Askin, R.A.; Jacobson, S.R. (1996). "Palynological change across the Cretaceous–Tertiary boundary on Seymour Island, Antarctica: environmental and depositional factors". In Keller, G.; MacLeod, N. (eds.).
2504:
However, sea level fall as a cause of the extinction event is contradicted by other evidence, namely that sections which show no sign of marine regression still show evidence of a major drop in diversity.
417:. The surviving group of dinosaurs were avians, a few species of ground and water fowl, which radiated into all modern species of birds. Among other groups, teleost fish and perhaps lizards also radiated. 1632:
700,000 years, some mammals had reached 50 kilos (110 pounds), a 100-fold increase over the weight of those which survived the extinction. It is thought that body sizes of placental mammalian survivors
2196:
deep-sea sediments, and in the form of the thickest-known layer of graded sand deposits, around 100 m (330 ft), in the Chicxulub crater itself, directly above the shocked granite ejecta. The
9258:
Bininda-Emonds, O. R.; Cardillo M.; Jones, K. E., MacPhee, R. D.; Beck, R. M.; Grenyer, R.; Price, S. A.; Vos, R. A.; Gittleman, J. L.; Purvis, A. (2007). "The delayed rise of present-day mammals".
9364:
Goin, F. J.; Reguero, M. A.; Pascual, R.; von Koenigswald, W.; Woodburne, M. O.; Case, J. A.; Marenssi, S. A.; Vieytes, C.; Vizcaíno, S. F. (2006). "First gondwanatherian mammal from Antarctica".
5674:
Vescsei, A.; Moussavian, E. (1997). "Paleocene reefs on the Maiella Platform margin, Italy: An example of the effects of the cretaceous/tertiary boundary events on reefs and carbonate platforms".
15238: 2735: 578:
The K–Pg extinction event was severe, global, rapid, and selective, eliminating a vast number of species. Based on marine fossils, it is estimated that 75% or more of all species became extinct.
2004:. They had determined that a 10-to-15-kilometer (6 to 9 mi) asteroid hurtled into Earth at Chicxulub on Mexico's Yucatán Peninsula. Additional evidence for the impact event is found at the 1358:, were definitely present in the Maastrichtian, and they likely became extinct at the K–Pg boundary. Several other pterosaur lineages may have been present during the Maastrichtian, such as the 4924: 2127:. He further posits that the mass extinction occurred within 32,000 years of this date. The dating of hydrothermally altered structures around the crater is consistent with this timeline. 13769:"Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide" 2413:
The Deccan Traps, which erupted close to the boundary between the Mesozoic and Cenozoic, have been cited as an alternate explanation for the mass extinction. Before 2000, arguments that the
3070: 6841:
Alfaro, Michael E.; Faircloth, Brant C.; Harrington, Richard C.; Sorenson, Laurie; Friedman, Matt; Thacker, Christine E.; Oliveros, Carl H.; Černý, David; Near, Thomas J. (12 March 2018).
13265: 1680:
angiosperm plants. In North American terrestrial sequences, the extinction event is best represented by the marked discrepancy between the rich and relatively abundant late-Maastrichtian
6897:
Archibald, J. D.; Bryant, L. J. (1990). "Differential Cretaceous–Tertiary extinction of nonmarine vertebrates; evidence from northeastern Montana". In Sharpton, V.L.; Ward, P.D. (eds.).
2205:-type ecosystem, indicating that water in the Gulf of Mexico sloshed back and forth repeatedly after the impact; dead fish left in these shallow waters were not disturbed by scavengers. 939:
genera failed to cross the K–Pg boundary into the Paleocene. Further analysis of the coral extinctions shows that approximately 98% of colonial species, ones that inhabit warm, shallow
9972:
Johnson, K.R.; Hickey, L.J. (1991). "Megafloral change across the Cretaceous Tertiary boundary in the northern Great Plains and Rocky Mountains". In Sharpton, V.I.; Ward, P.D. (eds.).
14320:
Keller, G.; Adatte, T.; Gardin, S.; Bartolini, A.; Bajpai, S. (2008). "Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna-Godavari Basin, SE India".
9212:
Yonezawa, Takahiro; Segawa, Takahiro; Mori, Hiroshi; Campos, Paula F.; Hongoh, Yuichi; Endo, Hideki; Akiyoshi, Ayumi; Kohno, Naoki; Nishida, Shin; Wu, Jiaqi; Jin, Haofei (2017).
9573:
Shupinski, Alex B.; Wagner, Peter J.; Smith, Felisa A.; Lyons, S. Kathleen (3 July 2024). "Unique functional diversity during early Cenozoic mammal radiation of North America".
15672: 2585: 11184:
Renne, Paul R.; Deino, Alan L.; Hilgen, Frederik J.; Kuiper, Klaudia F.; Mark, Darren F.; Mitchell, William S.; Morgan, Leah E.; Mundil, Roland; Smit, Jan (8 February 2013).
2791: 13320:
Lyons, Shelby L.; Karp, Allison T.; Bralower, Timothy J.; Grice, Kliti; Schaefer, Bettina; Gulick, Sean P. S.; Morgan, Joanna V.; Freeman, Katherine H. (28 September 2020).
2139:(WISE) study of reflected light from the asteroids of the family estimated their break-up at 80 Ma, giving them insufficient time to shift orbits and impact Earth by 66 Ma. 2104:
Some critics of the impact theory have put forward that the impact precedes the mass extinction by about 300,000 years and thus was not its cause. However, in a 2013 paper,
2792:"Stratigraphy of the Cretaceous/Paleogene (K/Pg) boundary at the Global Stratotype Section and Point (GSSP) in El Kef, Tunisia: New insights from the El Kef Coring Project" 12221:
Reddy, V.; Emery, J. P.; Gaffey, M. J.; Bottke, W. F.; Cramer, A.; Kelley, M. S. (December 2009). "Composition of 298 Baptistina: Implications for the K/T impactor link".
8746:
le Loeuff, J. (2012). "Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: How many dinosaur species became extinct at the Cretaceous-Tertiary boundary?".
2083: 1971:. Because of this, the Alvarez team suggested that an asteroid struck the Earth at the time of the K–Pg boundary. There were earlier speculations on the possibility of an 11012:"An asteroid killed dinosaurs in spring—which might explain why mammals survived – New study sheds light on why species extinction was so selective after the K-Pg impact" 13195:
Senel, Cem Berk; Kaskes, Pim; Temel, Orkun; Vellekoop, Johan; Goderis, Steven; DePalma, Robert; Prins, Maarten A.; Claeys, Philippe; Karatekin, Özgür (30 October 2023).
8177:
Company, J.; Ruiz-Omeñaca, J. I.; Pereda Suberbiola, X. (1999). "A long-necked pterosaur (Pterodactyloidea, Azhdarchidae) from the upper Cretaceous of Valencia, Spain".
1675:. Just two species of fern appear to have dominated the landscape for centuries after the event. In the sediments below the K–Pg boundary the dominant plant remains are 11647:
Stöffler, Dieter; Artemieva, Natalya A.; Ivanov, Boris A.; Hecht, Lutz; Kenkmann, Thomas; Schmitt, Ralf Thomas; Tagle, Roald Alberto; Wittmann, Axel (26 January 2010).
5436:
Brouwers, E. M.; de Deckker, P. (1993). "Late Maastrichtian and Danian Ostracode Faunas from Northern Alaska: Reconstructions of Environment and Paleogeography".
3308:"The dinosaur-killing asteroid acidified the ocean in a flash: the Chicxulub event was as damaging to life in the oceans as it was to creatures on land, a study shows" 12627:
Norris, R. D.; Firth, J.; Blusztajn, J. S. & Ravizza, G. (2000). "Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact".
8819:
Sloan, R. E.; Rigby, K.; van Valen, L. M.; Gabriel, Diane (1986). "Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation".
2489:
that ten million years before had been host to diverse communities such as are found in rocks of the Dinosaur Park Formation. Another consequence was an expansion of
5717:
Rosen, B. R.; Turnšek, D. (1989). Jell A; Pickett JW (eds.). "Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary".
3454: 9439: 6675:
Cione, Alberto L.; Santillana, Sergio; Gouiric-Cavalli, Soledad; Acosta Hospitaleche, Carolina; Gelfo, Javier N.; López, Guillermo M.; Reguero, Marcelo (May 2018).
6630:
Zinsmeister, W. J. (1 May 1998). "Discovery of fish mortality horizon at the K–T boundary on Seymour Island: Re-evaluation of events at the end of the Cretaceous".
6081:
Harries, P. J.; Johnson, K. R.; Cobban, W. A.; Nichols, D.J. (2002). "Marine Cretaceous-Tertiary boundary section in southwestern South Dakota: Comment and reply".
3266:
Hildebrand, A. R.; Penfield, G. T.; et al. (1991). "Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán peninsula, Mexico".
2067: 1503:(about 1 million years after the K–Pg extinction event). If their existence past the K–Pg boundary can be confirmed, these hadrosaurids would be considered a 307:. The fact that the extinctions occurred simultaneously provides strong evidence that they were caused by the asteroid. A 2016 drilling project into the Chicxulub 13590: 13767:
Kawaragi, Ko; Sekine, Yasuhito; Kadono, Toshihiko; Sugita, Seiji; Ohno, Sohsuke; Ishibashi, Ko; Kurosawa, Kosuke; Matsui, Takafumi; Ikeda, Susumu (30 May 2009).
12184: 12065: 10029: 9692: 9575: 5995: 1815:
The sedimentation rate and thickness of K–Pg clay from three sites suggest rapid extinction, perhaps over a period of less than 10,000 years. At one site in the
12324: 8402:"Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity" 1786:
assumptions" for the June dating have since all been refuted. Another modern study opted for the spring–summer range. A study of fossilized fish bones found at
389:, which became extinct), and many species of plankton. It is estimated that 75% or more of all species on Earth vanished. However, the extinction also provided 102:
a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
9919:
Vajda, Vivi; Raine, J. Ian; Hollis, Christopher J. (2001). "Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike".
6799:"The Cretaceous–Paleogene transition in spiny-rayed fishes: surveying "Patterson's Gap" in the acanthomorph skeletal record André Dumont medalist lecture 2018" 5411:
Coles, G. P.; Ayress, M. A.; Whatley, R. C. (1990). "A comparison of North Atlantic and 20 Pacific deep-sea Ostracoda". In Whatley, R. C.; Maybury, C. (eds.).
8025:"Phylogenetic structure of the extinction and biotic factors explaining differential survival of terrestrial notosuchians at the Cretaceous–Palaeogene crisis" 4601: 8881:. International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, 9–12 July 2000. Vol. 1053. Vienna, Austria. pp. 45–46. 2041:
with suspicion. Furthermore, indirect evidence of an asteroid impact as the cause of the mass extinction comes from patterns of turnover in marine plankton.
14624:
Sial, A. N.; Lacerda, L. D.; Ferreira, V. P.; Frei, R.; Marquillas, R. A.; Barbosa, J. A.; Gaucher, C.; Windmöller, C. C.; Pereira, N. S. (1 October 2013).
6739: 5139: 3133: 2448:
There is clear evidence that sea levels fell in the final stage of the Cretaceous by more than at any other time in the Mesozoic era. In some Maastrichtian
1333:
became extinct; freshwater environments were not so strongly affected by the K–Pg extinction event as marine environments were. Among the terrestrial clade
14357:
Callegaro, Sara; Baker, Don R.; Renne, Paul R.; Melluso, Leone; Geraki, Kalotina; Whitehouse, Martin J.; De Min, Angelo; Marzoli, Andrea (6 October 2023).
7720: 6175: 4361: 3317: 2032:. Tanis is an extraordinary and unique site because it appears to record the events from the first minutes until a few hours after the impact of the giant 14425: 7317:
Apesteguía, Sebastián; Novas, Fernando E. (2003). "Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana".
4925:"Calcareous Nannofossils Across the Cretaceous–Tertiary Boundary at Brazos, Texas, U.S.A.: Extinction and Survivorship, Biostratigraphy, and Paleoecology" 2432:
In the years when the Deccan Traps hypothesis was linked to a slower extinction, Luis Alvarez (d. 1988) replied that paleontologists were being misled by
760:
during the Paleogene Period. After the K–Pg extinction event, biodiversity required substantial time to recover, despite the existence of abundant vacant
11790:
Tanis, a mixed marine-continental event deposit at the KPG Boundary in North Dakota caused by a seiche triggered by seismic waves of the Chicxulub Impact
7981:"The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary" 3797:
The Hell Creek formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous
2212:, cooking exposed organisms. This is debated, with opponents arguing that local ferocious fires, probably limited to North America, fall short of global 15500: 11011: 4834:"The role of regional survivor incumbency in the evolutionary recovery of calcareous nannoplankton from the Cretaceous/Paleogene (K/Pg) mass extinction" 601:, but are unknown from the Cenozoic anywhere in the world. Similarly, fossil pollen shows devastation of the plant communities in areas as far apart as 397:—sudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the 16733: 15665: 11391:
Bohor, B. F.; Foord, E. E.; Modreski, P. J.; Triplehorn, D. M. (1984). "Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary".
10567:
Carvalho, Mónica R.; Jaramillo, Carlos; Parra, Felipe de la; Caballero-Rodríguez, Dayenari; Herrera, Fabiany; Wing, Scott; et al. (2 April 2021).
12681: 11649:"Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling" 7031:
Evans, Susan E.; Klembara, Jozef (2005). "A choristoderan reptile (Reptilia: Diapsida) from the Lower Miocene of northwest Bohemia (Czech Republic)".
6199:"A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) – a story of persistence, food availability and a big bang" 14956: 14722: 14630: 14489: 14278: 13897: 12826: 8711: 8595: 6461: 6381: 5218: 4248:
Wilf, P.; Johnson, K.R. (2004). "Land plant extinction at the end of the Cretaceous: A quantitative analysis of the North Dakota megafloral record".
2855: 1597:
survived the K–Pg extinction event, although they suffered losses. In particular, metatherians largely disappeared from North America, and the Asian
1507:. The scientific consensus is that these fossils were eroded from their original locations and then re-buried in much later sediments (also known as 1064:
flora were relatively diverse with little predation from insects, even 1.7 million years after the extinction event. Studies of the size of the
11038:
Signor, Philip W. III; Lipps, Jere H. (1982). "Sampling bias, gradual extinction patterns, and catastrophes in the fossil record". In Silver, L.T.;
10456: 9311: 8296: 5721:. Proceedings of the Fifth International Symposium on Fossil Cnidaria including Archaeocyatha and Spongiomorphs (8). Brisbane, Queensland: 355–370. 4460:
Sheehan, Peter M.; Fastovsky, D. E. (1992). "Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana".
2557: 3062: 15389: 3913: 14803: 12869: 11821: 8228: 6119: 16606: 12128:
Bottke, W. F.; Vokrouhlický, D.; Nesvorný, D. (September 2007). "An asteroid breakup 160 Myr ago as the probable source of the K/T impactor".
8916: 6459:
Kriwet, Jürgen; Benton, Michael J. (2004). "Neoselachian (Chondrichthyes, Elasmobranchii) Diversity across the Cretaceous–Tertiary Boundary".
5481:
Martins, Maria João Fernandes; Hunt, Gene; Thompson, Carmi Milagros; Lockwood, Rowan; Swaddle, John P.; Puckett, T. Markham (26 August 2020).
1484:
up to 1.3 m (4 ft 3.2 in) above and 40,000 years later than the K–Pg boundary. Pollen samples recovered near a fossilized
15658: 14952:"Coastal ecosystem responses to late stage Deccan Trap volcanism: the post K–T boundary (Danian) palynofacies of Mumbai (Bombay), west India" 13979: 12789: 7161: 12944:"An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub" 10920: 10025:"No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France" 4928: 12762: 12284: 9075: 8074:
Martin, Jeremy E.; Pochat-Cottilloux, Yohan; Laurent, Yves; Perrier, Vincent; Robert, Emmanuel; Antoine, Pierre-Olivier (28 October 2022).
6322:
Wilf, P.; Labandeira, C. C.; Johnson, K. R.; Ellis, B. (2006). "Decoupled plant and insect diversity after the end-Cretaceous extinction".
4880:
Gedl, P. (2004). "Dinoflagellate cyst record of the deep-sea Cretaceous-Tertiary boundary at Uzgru, Carpathian Mountains, Czech Republic".
753: 13158:
Ohno, S.; et al. (2014). "Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification".
6972:"Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary" 2660:
Shocked minerals have their internal structure deformed, and are created by intense pressures as in nuclear blasts and meteorite impacts.
2568: 17: 8950:
Hou, L.; Martin, M.; Zhou, Z.; Feduccia, A. (1996). "Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China".
1733:
would not need sunlight, allowing them to survive during a period when the atmosphere was likely clogged with dust and sulfur aerosols.
16718: 16663: 13001: 11501:
Bourgeois, J.; Hansen, T. A.; Wiberg, P. A.; Kauffman, E. G. (1988). "A tsunami deposit at the Cretaceous-Tertiary boundary in Texas".
11067: 4741: 2705: 2461:, a drop in sea level. There is no direct evidence for the cause of the regression, but the currently accepted explanation is that the 1158:
There is limited evidence for extinction of amphibians at the K–Pg boundary. A study of fossil vertebrates across the K–Pg boundary in
795:
deposits for which the Cretaceous is named. The turnover in this group is clearly marked at the species level. Statistical analysis of
271:
10 to 15 km (6 to 9 mi) wide, 66 million years ago, which devastated the global environment, mainly through a lingering
11903:"Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): paleoenvironmental inferences" 8890: 7663:
Martin, Jeremy E.; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent (5 June 2017).
2159:. The aftermath of this immense asteroid collision, which occurred approximately 66 million years ago, is believed to have caused the 244:, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal 15191:"Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktonic foraminifera from Brazos River, Texas" 13938: 12008:
Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; STüBEN, Doris; Berner, Zsolt; Kramar, Utz; Harting, Markus (26 January 2010).
7564:
Klein, Catherine G.; Pisani, Davide; Field, Daniel J.; Lakin, Rebecca; Wills, Matthew A.; Longrich, Nicholas R. (14 September 2021).
5827:
Marshall, C. R.; Ward, P. D. (1996). "Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys".
5483:"Shifts in sexual dimorphism across a mass extinction in ostracods: implications for sexual selection as a factor in extinction risk" 4162:
Weishampel, D. B.; Barrett, P. M. (2004). "Dinosaur distribution". In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.).
2849:
Irizarry, Kayla M.; Witts, James T.; Garb, Matthew P.; Rashkova, Anastasia; Landman, Neil H.; Patzkowsky, Mark E. (15 January 2023).
2181: 1496: 799:
losses at this time suggests that the decrease in diversity was caused more by a sharp increase in extinctions than by a decrease in
10372:
Field, Daniel J.; Bercovici, Antoine; Berv, Jacob S.; Dunn, Regan; Fastovsky, David E.; Lyson, Tyler R.; et al. (24 May 2018).
6970:
Feng, Yan-Jie; Blackburn, David C.; Liang, Dan; Hillis, David M.; Wake, David B.; Cannatella, David C.; Zhang, Peng (18 July 2017).
5777:
MacLeod, K. G. (1994). "Extinction of Inoceramid Bivalves in Maastrichtian Strata of the Bay of Biscay Region of France and Spain".
16488: 15820: 13821: 13381:
Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke (14 July 2016).
4666:
Pospichal, J. J. (1996). "Calcareous nannofossils and clastic sediments at the Cretaceous–Tertiary boundary, northeastern Mexico".
2648: 2314:
and methane concentrations. The impact's injection of water vapour into the atmosphere also produced major climatic perturbations.
1051:, the shallow-water reefs in existence at that time, by the extinction event. Atelostomatans were affected by the Lilliput effect. 14485:"Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean)" 3406:(2012). "The Cretaceous–Tertiary mass extinction, Chicxulub impact, and Deccan volcanism. Earth and life". In Talent, John (ed.). 3103: 2911:"High-latitude Cretaceous–Paleogene transition: New paleoenvironmental and paleoclimatic insights from Seymour Island, Antarctica" 16738: 16450: 10136: 10088: 9808: 7125: 5882:"The first 2 million years after the Cretaceous-Tertiary boundary in east Texas: rate and paleoecology of the molluscan recovery" 11143:"Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales" 10639:
Visscher, H.; Brinkhuis, H.; Dilcher, D. L.; Elsik, W. C.; Eshet, Y.; Looy, C. V.; Rampino, M. R.; Traverse, A. (5 March 1996).
1195:(a group of semi-aquatic diapsids of uncertain position) survived across the K–Pg boundary subsequently becoming extinct in the 342:, and sea level change. However, in January 2020, scientists reported that climate-modeling of the extinction event favored the 16590: 16435: 15882: 15101: 12942:
Belcher, Claire M.; Hadden, Rory M.; Rein, Guillermo; Morgan, Joanna V.; Artemieva, Natalia; Goldin, Tamara (22 January 2015).
12462: 9326: 6747: 5310:"The Cretaceous–Paleogene (K–P) boundary at Brazos, Texas: Sequence stratigraphy, depositional events and the Chicxulub impact" 5144: 4606: 4209: 2796: 2591: 488: 14224:
Courtillot, Vincent; Besse, Jean; Vandamme, Didier; Montigny, Raymond; Jaeger, Jean-Jacques; Cappetta, Henri (November 1986).
6949:
Gardner, J. D. (2000). "Albanerpetontid amphibians from the upper Cretaceous (Campanian and Maastrichtian) of North America".
5636:"Costacopluma (Decapoda: Brachyura: Retroplumidae) from the Maastrichtian and Paleocene of Senegal: A survivor of K/Pg events" 2851:"Faunal and stratigraphic analysis of the basal Cretaceous-Paleogene (K-Pg) boundary event deposits, Brazos River, Texas, USA" 1220:
species passed through the K–Pg boundary. All six turtle families in existence at the end of the Cretaceous survived into the
16548: 16430: 15870: 15596: 15471: 15195: 14875: 14037: 13880: 13054: 12824:
Kring, David A. (2007). "The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary".
12675: 12529: 11053: 10007: 9981: 9416: 8692: 8573: 8528: 7377: 7173: 6914: 6505: 6440: 6197:
Wiese, Frank; Schlüter, Nils; Zirkel, Jessica; Herrle, Jens O.; Friedrich, Oliver (9 August 2023). Carnevale, Giorgio (ed.).
5420: 5196: 5016: 4179: 3804: 3427: 2770: 2745: 2689: 2579: 1737: 644:-eaters survived the extinction event, perhaps because of the increased availability of their food sources. Neither strictly 495: 14891:
Sprain, Courtney J.; Renne, Paul R.; Vanderkluysen, Loÿc; Pande, Kanchan; Self, Stephen; Mittal, Tushar (22 February 2019).
14766:"Extinction, survivorship and evolution of planktic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia" 9688:"Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction" 2421:
spanning the K–Pg boundary, and therefore may be responsible for the extinction and the delayed biotic recovery thereafter.
1948: 756:. The elimination of dominant Cretaceous groups allowed other organisms to take their place, causing a remarkable amount of 16713: 16188: 11556:"The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" 5881: 7875:"Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility" 4113:"Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction" 3444: 1943:
many times greater than normal (30, 160, and 20 times in three sections originally studied). Iridium is extremely rare in
16748: 16621: 16370: 14433: 14322: 14230: 14059: 13773: 13717: 13669: 13621: 11147: 9433: 8454:"Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary" 5262:"Comparative biogeographic analysis of planktic foraminiferal survivorship across the Cretaceous/Tertiary (K/T) boundary" 3480: 2136: 10423: 943:
waters, became extinct. The solitary corals, which generally do not form reefs and inhabit colder and deeper (below the
16763: 16543: 15760: 14802:
Zhang, Laiming; Wang, Chengshan; Wignall, Paul B.; Kluge, Tobias; Wan, Xiaoqiao; Wang, Qian; Gao, Yuan (1 March 2018).
13580: 12463:"Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous" 12223: 12014: 11653: 8875:
Compelling new evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone San Juan Basin, New Mexico and Colorado, USA
7988: 7033: 6521:
Noubhani, Abdelmajid (2010). "The Selachians' faunas of the Moroccan phosphate deposits and the K-T mass extinctions".
4117: 620:
Despite the event's severity, there was significant variability in the rate of extinction between and within different
14804:"Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China" 12057: 7212:"Tracing the patterns of non-marine turtle richness from the Triassic to the Palaeogene: from origin to global spread" 5991:"The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves" 5540:"Temporal shifts in ostracode sexual dimorphism from the Late Cretaceous to the late Eocene of the U.S. Coastal Plain" 5140:"How complete are Cretaceous /Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation" 2245:
rock containing a large amount of combustible hydrocarbons and sulfur, much of which was vaporized, thereby injecting
1539:. Several analyses of bird fossils show divergence of species prior to the K–Pg boundary, and that duck, chicken, and 16508: 15784: 15258: 14626:"Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition" 13873:
The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions
13557:
Hand, Eric (17 November 2016). "Updated: Drilling of dinosaur-killing impact crater explains buried circular hills".
12948: 12312: 11298:
Smit, J.; Klaver, J. (1981). "Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event".
8076:"Anatomy and phylogeny of an exceptionally large sebecid (Crocodylomorpha) from the middle Eocene of southern France" 6176:"Variation in echinoid biodiversity during the Cenomanian-early Turonian transgressive episode in Charentes (France)" 6118:
Iba, Yasuhiro; Mutterlose, Jörg; Tanabe, Kazushige; Sano, Shin-ichi; Misaki, Akihiro; Terabe, Kazunobu (1 May 2011).
4946: 4317: 1888: 1858: 1672: 1458:, which suggests food was plentiful immediately prior to the extinction. A study of 29 fossil sites in Catalan 241: 11807:
Life after impact: A remarkable mammal burrow from the Chicxulub aftermath in the Hell Creek Formation, North Dakota
7805:
O'Keefe, F. R. (2001). "A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia)".
7625:"An early Eocene pan-gekkotan from France could represent an extra squamate group that survived the K-Pg extinction" 7210:
Cleary, Terri J.; Benson, Roger B. J.; Holroyd, Patricia A.; Barrett, Paul M. (10 May 2020). Mannion, Philip (ed.).
868:
foraminifera became extinct during the event, presumably because they depend on organic debris for nutrients, while
532: 437: 16642: 16611: 15808: 15796: 5384:
Kuhnt, W.; Collins, E. S. (1996). "8. Cretaceous to Paleogene benthic foraminifers from the Iberia abyssal plain".
5214:"The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction?" 1241:, had begun to decline by the mid-Cretaceous, although they remained successful in the Late Cretaceous of southern 559: 502: 339: 11141:
Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M. (15 October 2016).
9796: 1827:
lasted approximately 1,000 years, and no more than 71,000 years; at the same location, the earliest appearance of
1762:
the extinction-associated freezing to early June. A later study shifted the dating to spring season, based on the
16420: 16317: 15846: 15322:"End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change" 13617:"The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol" 12897: 12355: 12094: 9435:
The Extinction of the Multituberculates Outside North America: a Global Approach to Testing the Competition Model
8319: 8259: 7715: 7517:"A new polyglyphanodontian lizard with a complete lower temporal bar from the Upper Cretaceous of southern China" 7260:"Surviving the Cretaceous-Paleogene mass extinction event: A terrestrial stem turtle in the Cenozoic of Laurasia" 6780: 6677:"Before and after the K/Pg extinction in West Antarctica: New marine fish records from Marambio (Seymour) Island" 5930:"Abundance not linked to survival across the end-Cretaceous mass extinction: Patterns in North American bivalves" 4784:
Jiang, Shijun; Bralower, Timothy J.; Patzkowsky, Mark E.; Kump, Lee R.; Schueth, Jonathan D. (28 February 2010).
3182: 2573: 2257: 2233:
radiation generated by the impact would have been absorbed by the atmosphere and ejecta in the lower atmosphere.
1468:
Cretaceous–Paleogene extinction event. Alternatively, interpretation based on the fossil-bearing rocks along the
516: 319:, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an 15167: 12727: 11947:
Keller, G.; Adatte, T.; Stinnesbeck, W.; Rebolledo-Vieyra, _; Fucugauchi, J. U.; Kramar, U.; Stüben, D. (2004).
11625: 11573: 11362: 10358: 8797: 7166:
Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas
7046: 6104: 6064: 6008: 5157: 4762: 4689: 4577: 4483: 4402: 4263: 4222: 3307: 3289: 903:
across the K–Pg boundary. The apparent rate is influenced by a lack of fossil records, rather than extinctions.
16723: 16297: 15243:
Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality
14576:
Milligan, Joseph N.; Royer, Dana L.; Franks, Peter J.; Upchurch, Garland R.; McKee, Melissa L. (7 March 2019).
12650: 12320: 11343:
Olsson, Richard K.; Miller, Kenneth G.; Browning, James V.; Habib, Daniel; Sugarman, Peter J. (1 August 1997).
10480:"Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event" 10180:"Divergence rates of subviral pathogens of angiosperms abruptly decreased at the Cretaceous-Paleogene boundary" 10084:"Flora development in Northeastern Asia and Northern Alaska during the Cretaceous-Paleogene transitional epoch" 9974:
Global Catastrophes in Earth History: An interdisciplinary conference on impacts, volcanism, and mass mortality
8401: 6899:
Global Catastrophes in Earth History: an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality
4204: 2328: 1667:
In some regions, the Paleocene recovery of plants began with recolonizations by fern species, represented as a
697:
than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on
14458: 9331:(Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation" 8001: 5538:
Samuels-Fair, Maya; Martins, Maria João Fernandes; Lockwood, Rowan; Swaddle, John P.; Hunt, Gene (June 2022).
4390: 303:
in the early 1990s, which provided conclusive evidence that the K–Pg boundary clay represented debris from an
16743: 16647: 15504: 15492: 14446: 14007: 13964: 13923: 12758: 11602:
Pope, K. O.; Ocampo, A. C.; Kinsland, G. L.; Smith, R. (1996). "Surface expression of the Chicxulub crater".
11345:"Ejecta layer at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX)" 10132:"Albian-Paleocene flora of the north pacific: Systematic composition, palaeofloristics and phytostratigraphy" 9875: 7629: 6847: 5592: 5314: 3546: 3344:"Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact" 2217: 2109: 569: 524: 429: 14359:"Recurring volcanic winters during the latest Cretaceous: Sulfur and fluorine budgets of Deccan Traps lavas" 10374:"Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction" 16478: 15569: 15524: 14582: 12470: 9512:
Springer, Mark S.; Foley, Nicole M.; Brady, Peggy L.; Gatesy, John; Murphy, William J. (29 November 2019).
6120:"Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous−Paleogene event" 1740:, the largest known mass extinction in Earth's history, with up to 96% of all species suffering extinction. 536: 441: 14625: 10424:"Online guide to the continental Cretaceous–Tertiary boundary in the Raton basin, Colorado and New Mexico" 6568:"Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays" 5587: 3587:
Chiarenza, Alfio Alessandro; Farnsworth, Alexander; Mannion, Philip D.; Lunt, Daniel J.; Valdes, Paul J.;
2910: 2850: 2321:
definitively known to be associated with an impact, and other large extraterrestrial impacts, such as the
1071:, produced by either cicada nymphs or beetle larvae, over the course of the K-Pg transition show that the 16758: 16728: 16692: 16563: 14681: 13006: 12009: 11648: 11048:. Vol. Special Publication 190. Boulder, Colorado: Geological Society of America. pp. 291–296. 10450: 8131:"Biotic and abiotic factors and the phylogenetic structure of extinction in the evolution of Tethysuchia" 7873:
Fischer, Valentin; Bardet, Nathalie; Benson, Roger B. J.; Arkhangelsky, Maxim S.; Friedman, Matt (2016).
7623:Čerňanský, Andrej; Daza, Juan; Tabuce, Rodolphe; Saxton, Elizabeth; Vidalenc, Dominique (December 2023). 7162:"Temporal changes within the latest Cretaceous and early Paleogene turtle faunas of northeastern Montana" 6375:
Wiest, Logan A.; Lukens, William E.; Peppe, Daniel J.; Driese, Steven G.; Tubbs, Jack (1 February 2018).
5213: 2310:
also increased and caused particularly devastating global warming because of the consequent increases in
1254: 768:
suggests that biotic recovery was more rapid in the Southern Hemisphere than in the Northern Hemisphere.
529: 434: 8023:
Aubier, Paul; Jouve, Stéphane; Schnyder, Johann; Cubo, Jorge (20 February 2023). Mannion, Philip (ed.).
4703:
Bown, P. (2005). "Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary".
1633: 995:
bivalves from the Late Cretaceous of the Omani Mountains, United Arab Emirates. Scale bar is 10 mm.
966:
of marine invertebrates, survived the K–Pg extinction event and diversified during the early Paleocene.
737:
included these shell builders, became extinct or suffered heavy losses. For example, it is thought that
537: 442: 353:
A wide range of terrestrial species perished in the K–Pg extinction, the best-known being the non-avian
16211: 11555: 11344: 10023:
Wappler, Torsten; Currano, Ellen D.; Wilf, Peter; Rust, Jes; Labandeira, Conrad C. (22 December 2009).
9257: 3893: 3066: 2344: 1833: 1794:
suggests that the Cretaceous-Paleogene mass extinction happened during the Northern Hemisphere spring.
1208:
palatal teeth suggest that there were dietary changes among the various species across the K–Pg event.
15190: 15093: 13098:"Site of asteroid impact changed the history of life on Earth: The low probability of mass extinction" 10335:
Schultz, P.; d'Hondt, S. (1996). "Cretaceous–Tertiary (Chicxulub) impact angle and its consequences".
10228:"No phylogenetic evidence for angiosperm mass extinction at the Cretaceous–Palaeogene (K-Pg) boundary" 10082:
Herman, A. B.; Akhmetiev, M. A.; Kodrul, T. M.; Moiseeva, M. G.; Iakovleva, A. I. (24 February 2009).
8631:"The Hell Creek Formation and its contribution to the Cretaceous–Paleogene extinction: A short primer" 6376: 5034:"Sedimentology and extinction patterns across the Cretaceous-Tertiary boundary interval in east Texas" 4549:"Mosasaur predation on upper Cretaceous nautiloids and ammonites from the United States Pacific Coast" 3410:
Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time
2277:
would have a reasonable chance of survival. In 2016, a scientific drilling project obtained deep rock-
1694:
Beyond extinction impacts, the event also caused more general changes of flora such as giving rise to
973:
genera exhibited significant diminution after the K–Pg boundary. Entire groups of bivalves, including
16553: 15906: 15772: 15589: 13713:"Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model" 13261:"On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections" 12861: 11091:"A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3" 10641:"The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse" 8075: 1960: 1276:, a diverse group of mainly herbivorous lizards known predominantly from the Northern Hemisphere The 535: 534: 440: 439: 14274:"Deccan volcanism at the Cretaceous-Tertiary boundary: past climatic crises as a key to the future?" 13817:"Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases" 12245: 9214:"Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites" 8213: 1956: 632:
reaching the ground. This plant extinction caused a major reshuffling of the dominant plant groups.
531: 436: 16585: 16577: 16473: 16425: 16181: 15858: 15712: 14577: 12590:"A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil" 8928: 2562: 2049: 1031:
class Cephalopoda became extinct at the K–Pg boundary. These included the ecologically significant
530: 528: 509: 435: 433: 331:
and produced long-lasting effects on the climate, detailing the mechanisms of the mass extinction.
15043:"State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact" 7665:"Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction" 6930:
Estes, R. (1964). "Fossil vertebrates from the late Cretaceous Lance formation, eastern Wyoming".
4500:"Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous" 2208:
The re-entry of ejecta into Earth's atmosphere included a brief (hours-long) but intense pulse of
538: 533: 443: 438: 16523: 15736: 15488: 15276:"Calcareous Nannofossil Succession across the Cretaceous/Tertiary Boundary in East-Central Texas" 14951: 14717: 14484: 13768: 12276: 12089: 11902: 11757: 11271: 9071: 8029: 7825: 7216: 6676: 6632: 5779: 5635: 5539: 5309: 4832:
Schueth, Jonathan D.; Bralower, Timothy J.; Jiang, Shijun; Patzkowsky, Mark E. (September 2015).
2482: 2433: 2265: 1804: 1421: 1401: 1308:
had disappeared from fossil record tens of millions of years prior to the K-Pg extinction event.
14765: 14483:
Berggren, W.A; Aubry, M.-P; van Fossen, M; Kent, D.V; Norris, R.D; Quillévéré, F (1 June 2000).
14273: 14225: 14160:
Courtillot, V.; Féraud, G.; Maluski, H.; Vandamme, D.; Moreau, M. G.; Besse, J. (30 June 1988).
14054: 13816: 13712: 13664: 13616: 12749: 12514: 11809:
Paper No. 113–16, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
11806: 11792:
Paper No. 113–15, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
11789: 11090: 8684: 8590: 8353: 7762:
Chatterjee, S.; Small, B. J. (1989). "New plesiosaurs from the Upper Cretaceous of Antarctica".
5102:"The Cretaceous-Tertiary boundary transition in the Antarctic Ocean and its global implications" 5101: 5033: 2306:
rain through the production of nitrogen oxides and their subsequent reaction with water vapour.
1729:
are almost exclusive microfossils for a short span during and after the iridium boundary. These
460: 84: 16390: 16342: 15000:"Stable climate in India during Deccan volcanism suggests limited influence on K–Pg extinction" 13446: 13383:"Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction" 12893:"Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact" 12787:
Smit, Jan (1999). "The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta".
12240: 10287: 8557: 8409: 8357: 8312:"The rise of birds and mammals: Are microevolutionary processes sufficient for macroevolution?" 8135: 7121:"100 million years of land vertebrate evolution: The Cretaceous-early Tertiary transition" 5886: 5634:
Hyžný, Matúš; Perrier, Vincent; Robin, Ninon; Martin, Jeremy E.; Sarr, Raphaël (January 2016).
5266: 5032:
Hansen, T.; Farrand, R.B.; Montgomery, H.A.; Billman, H.G.; Blechschmidt, G. (September 1987).
4838: 4749: 4250: 4171: 4006:"The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation" 3909:"Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction" 3419: 2224:
suggested that, based on the amount of soot in the global debris layer, the entire terrestrial
2124: 1730: 1657: 1417: 947:) areas of the ocean were less impacted by the K–Pg boundary. Colonial coral species rely upon 14867: 13498:"Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary" 12665: 11446:"Shocked quartz in the Cretaceous-Tertiary boundary clays: Evidence for a global distribution" 7196: 6377:"Terrestrial evidence for the Lilliput effect across the Cretaceous-Paleogene (K-Pg) boundary" 3204:"Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary" 1656:
Due to the wholesale destruction of plants at the K–Pg boundary, there was a proliferation of
617:. Nevertheless, high latitudes appear to have been less strongly affected than low latitudes. 16753: 16513: 16468: 16347: 16236: 16226: 15832: 15385: 15326: 15144:
Li, Liangquan; Keller, Gerta (1998). "Abrupt deep-sea warming at the end of the Cretaceous".
14025: 14001: 13984: 13958: 13917: 12277:"NASA's WISE raises doubt about asteroid family believed responsible for dinosaur extinction" 11244: 9518: 9305: 8290: 7879: 7733: 7570: 5732:
Raup, D. M.; Jablonski, D. (1993). "Geography of end-Cretaceous marine bivalve extinctions".
5006: 2322: 850:
to the Upper Paleocene, a significant turnover in species but not a catastrophic extinction.
14718:"Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record" 14694: 14335: 14243: 13786: 13730: 13682: 13634: 13259:
Bardeen, Charles G.; Garcia, Rolando R.; Toon, Owen B.; Conley, Andrew J. (21 August 2017).
12236: 11160: 11043: 8549: 8253:
Slack, K, E; Jones, C M; Ando, T; Harrison, G L; Fordyce, R E; Arnason, U; Penny, D (2006).
4163: 3971:
Jablonski, D.; Chaloner, W. G. (1994). "Extinctions in the fossil record (and discussion)".
3407: 2709: 2151:
Artistic impression of the asteroid slamming into tropical, shallow seas of the sulfur-rich
208:
weighing more than 25 kilograms (55 pounds) also became extinct, with the exception of some
16616: 16385: 16375: 16332: 15582: 15417: 15335: 15155: 15110: 15056: 15013: 14965: 14906: 14817: 14731: 14690: 14639: 14542: 14498: 14372: 14331: 14287: 14239: 14175: 14111: 13830: 13782: 13726: 13678: 13630: 13511: 13441: 13210: 13169: 13109: 12906: 12835: 12798: 12715: 12638: 12601: 12562: 12479: 12412: 12364: 12232: 12203: 12139: 11962: 11914: 11859: 11711: 11613: 11512: 11459: 11402: 11309: 11156: 11107: 10963: 10876: 10863:
During, Melanie A. D.; Smit, Jan; Voeten, Dennis F. A. E.; et al. (23 February 2022).
10819: 10761: 10713: 10654: 10582: 10493: 10346: 9930: 9854: 9763: 9640: 9373: 9269: 9160: 9021: 8961: 8882: 8873: 8830: 8785: 8720: 8644: 8418: 8366: 8087: 8038: 7888: 7839: 7771: 7579: 7528: 7463: 7326: 6756: 6641: 6581: 6532: 6470: 6390: 6333: 6276: 6133: 6092: 6052: 5838: 5788: 5743: 5683: 5447: 5358: 4971: 4889: 4786:"Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary" 4714: 4677: 4615: 4565: 4471: 4431: 4378: 4326: 4066: 3922: 3835: 3748: 3682: 3606: 3525: 3449: 3415: 3357: 3277: 3217: 3150: 2992: 2922: 2864: 2805: 2478: 2449: 2261: 2017: 1841: 1759: 1747: 1481: 1409: 1257:. Outside of New Zealand, one rhynchocephalian is known to have crossed the K-Pg boundary, 900: 12943: 9514:"Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary" 7164:. In Wilson, Gregory P.; Clemens, William A.; Horner, John R.; Hartman, Joseph H. (eds.). 6567: 2493:
environments, since continental runoff now had longer distances to travel before reaching
2152: 1997: 1983:
and other minerals were also identified in the K–Pg boundary. The identification of giant
300: 200:
approximately 66 million years ago. The event caused the extinction of all non-avian
8: 16682: 16445: 16327: 16322: 16312: 16231: 16174: 14893:"The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary" 14578:"No Evidence for a Large Atmospheric CO 2 Spike Across the Cretaceous-Paleogene Boundary" 14533: 13048:
Morgan, Joanna V.; Bralower, Timothy J.; Brugger, Julia; Wünnemann, Kai (12 April 2022).
12399:"Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary" 10702:"Palaeobotanical evidence for a June 'impact winter' at the Cretaceous/Tertiary boundary" 9624: 8635: 8513: 7936: 7830: 7211: 6681: 5640: 5038: 2565: – One of the five most severe extinction events in the history of the Earth's biota 2156: 2005: 1916: 1880: 1787: 1492: 1477: 892: 765: 472: 328: 260: 15574: 15559: 15421: 15339: 15159: 15114: 15060: 15017: 14969: 14910: 14821: 14735: 14643: 14546: 14502: 14401: 14376: 14358: 14291: 14179: 14115: 13834: 13711:
Pope, Kevin O.; Baines, Kevin H.; Ocampo, Adriana C.; Ivanov, Boris A. (December 1994).
13515: 13214: 13173: 13113: 12910: 12839: 12802: 12719: 12642: 12605: 12566: 12483: 12416: 12368: 12207: 12143: 11966: 11918: 11863: 11715: 11617: 11516: 11463: 11406: 11390: 11313: 11111: 10967: 10880: 10823: 10765: 10717: 10658: 10586: 10539: 10497: 10350: 10260: 10227: 9934: 9858: 9767: 9644: 9377: 9273: 9164: 9025: 8965: 8886: 8834: 8789: 8724: 8648: 8422: 8370: 8091: 8042: 7979:
Jouve, S.; Bardet, N.; Jalil, N.-E.; Suberbiola, X. P.; Bouya, B.; Amaghzaz, M. (2008).
7892: 7843: 7775: 7624: 7583: 7532: 7467: 7330: 6760: 6645: 6585: 6536: 6474: 6394: 6337: 6280: 6235: 6198: 6137: 6096: 6056: 5842: 5792: 5747: 5687: 5451: 5362: 4975: 4893: 4718: 4681: 4619: 4569: 4475: 4435: 4382: 4330: 4070: 3926: 3839: 3822:"First evidence for a massive extinction event affecting bees close to the K-T boundary" 3752: 3686: 3610: 3529: 3361: 3281: 3221: 3154: 3093: 2996: 2976:"The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary" 2926: 2868: 2809: 1671:
in the geologic record; this same pattern of fern recolonization was observed after the
16768: 15614: 15544: 15440: 15405: 15356: 15321: 15295: 15171: 15126: 14199: 14135: 13665:"Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary" 13585: 13534: 13497: 13417: 13387: 13382: 13358: 13321: 13297: 13260: 13234: 13130: 13097: 12589: 12495: 12258: 12254: 12193: 12163: 12027: 11883: 11734: 11697: 11666: 11536: 11483: 11426: 11325: 11280: 11007: 10989: 10897: 10864: 10840: 10807: 10782: 10749: 10729: 10614: 10516: 10479: 10405: 10317: 10201: 10179: 10059: 10024: 9954: 9896: 9722: 9687: 9550: 9513: 9489: 9462: 9389: 9363: 9293: 9194: 9125: 9098: 9053: 8985: 8871: 8854: 8801: 8677: 8480: 8453: 8434: 8382: 8194: 8111: 8005: 7961: 7911: 7874: 7855: 7787: 7737: 7600: 7565: 7492: 7451: 7427: 7394: 7350: 7294: 7264: 7259: 7183: 7142: 7096: 7074: 7069: 7050: 7008: 6971: 6798: 6772: 6657: 6605: 6548: 6523: 6357: 5862: 5804: 5699: 5515: 5482: 5463: 5082: 4987: 4905: 4766: 4641: 4581: 4524: 4499: 4394: 4342: 4267: 4139: 4112: 4090: 4010: 3945: 3908: 3858: 3821: 3771: 3734: 3705: 3668: 3637: 3592: 3559: 3485: 3380: 3343: 3312: 3240: 3203: 3174: 3016: 2975: 2938: 2880: 2821: 2311: 2282: 2147: 2020:, a group of rocks spanning four states in North America renowned for many significant 1862: 1736:
The proliferation of fungi has occurred after several extinction events, including the
1624: 1615:
interpreted as diversifying immediately after the K–Pg boundary, including Chiroptera (
1442: 1359: 1273: 1237:
which were a globally distributed and diverse group of lepidosaurians during the early
1225:
diminished. European turtles likewise recovered rapidly following the mass extinction.
1048: 1012: 757: 698: 668: 394: 288: 268: 137:
than the upper and lower layers. Picture taken at the San Diego Natural History Museum;
14743: 14702: 14673: 14554: 14510: 11985: 11948: 11926: 11758:"National Natural Landmarks – National Natural Landmarks (U.S. National Park Service)" 11500: 11185: 10196: 9839: 9747:"Cope's rule and the dynamics of body mass evolution in North American fossil mammals" 9746: 9663: 9626: 9004: 8311: 8211: 7980: 6299: 6262: 6080: 5966: 5929: 5370: 5347: 4548: 3511: 16652: 16538: 16528: 16281: 16241: 15748: 15477: 15467: 15445: 15361: 15254: 15212: 15175: 15146: 15074: 15047: 15004: 14932: 14924: 14897: 14871: 14860: 14833: 14808: 14781: 14599: 14558: 14450: 14406: 14388: 14299: 14251: 14191: 14127: 14072: 14033: 14021: 13876: 13846: 13742: 13738: 13690: 13642: 13539: 13471: 13463: 13422: 13404: 13363: 13345: 13302: 13284: 13238: 13226: 13201: 13196: 13160: 13135: 13071: 13049: 13023: 12975: 12924: 12731: 12706: 12671: 12629: 12613: 12551: 12525: 12440: 12435: 12398: 12348: 12155: 12031: 11990: 11946: 11875: 11850: 11739: 11670: 11629: 11604: 11577: 11560: 11528: 11503: 11475: 11450: 11418: 11393: 11366: 11349: 11215: 11207: 11190: 11123: 11098: 11059: 11049: 10993: 10981: 10925: 10902: 10845: 10787: 10682: 10677: 10640: 10618: 10606: 10598: 10573: 10568: 10521: 10397: 10337: 10309: 10292: 10265: 10247: 10205: 10153: 10131: 10105: 10083: 10064: 10046: 10003: 9977: 9946: 9921: 9900: 9888: 9880: 9845: 9779: 9754: 9727: 9709: 9668: 9604: 9592: 9555: 9537: 9494: 9412: 9393: 9285: 9237: 9198: 9186: 9151: 9130: 9045: 9002: 8977: 8952: 8846: 8821: 8805: 8688: 8569: 8550: 8524: 8485: 8336: 8278: 8152: 8115: 8103: 8056: 7965: 7953: 7916: 7859: 7791: 7696: 7688: 7605: 7546: 7497: 7479: 7432: 7414: 7373: 7342: 7299: 7281: 7233: 7169: 7101: 7013: 6995: 6910: 6872: 6864: 6816: 6661: 6609: 6597: 6572: 6552: 6501: 6436: 6406: 6349: 6324: 6304: 6240: 6222: 6149: 6124: 6083: 6043: 6012: 5971: 5953: 5903: 5854: 5829: 5808: 5759: 5734: 5703: 5609: 5520: 5502: 5416: 5397: 5283: 5235: 5231: 5192: 5161: 5117: 5051: 5012: 4991: 4942: 4909: 4855: 4807: 4790: 4705: 4668: 4645: 4585: 4529: 4462: 4422: 4369: 4346: 4185: 4175: 4164: 4144: 4082: 4057: 4029: 3950: 3863: 3800: 3776: 3710: 3642: 3624: 3563: 3551: 3516: 3423: 3408: 3385: 3268: 3245: 3166: 3141: 3131: 3008: 2983: 2942: 2884: 2825: 2766: 2741: 2685: 2515: 2469: 2299: 2228:
might have burned, implying a global soot-cloud blocking out the sun and creating an
2131: 1695: 1170: 1042:
Approximately 35% of echinoderm genera became extinct at the K–Pg boundary, although
869: 777: 710: 628:
declined or became extinct as atmospheric particles blocked sunlight and reduced the
267:, it is now generally thought that the K–Pg extinction was caused by the impact of a 117: 12499: 12262: 12180: 11887: 11487: 11430: 10409: 10321: 9958: 9347: 8989: 8858: 8438: 8386: 8198: 8009: 7741: 7054: 6842: 6776: 6361: 4770: 4398: 4271: 4094: 3178: 2399:
would since have been obscured by the northward tectonic drift of Africa and India.
1508: 123:
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near
16657: 16405: 16380: 16337: 16307: 16256: 16251: 15681: 15639: 15628: 15435: 15425: 15351: 15343: 15287: 15246: 15239:"The Cretaceous/Tertiary boundary impact hypothesis and the paleontological record" 15204: 15163: 15130: 15118: 15064: 15021: 14973: 14914: 14825: 14777: 14739: 14698: 14647: 14591: 14550: 14506: 14442: 14396: 14380: 14363: 14339: 14295: 14247: 14203: 14183: 14166: 14139: 14119: 14102: 14068: 13838: 13790: 13734: 13686: 13638: 13562: 13529: 13519: 13455: 13442:"Chicxulub and Climate: Radiative Perturbations of Impact-Produced S-Bearing Gases" 13412: 13396: 13353: 13335: 13292: 13274: 13218: 13177: 13125: 13117: 13063: 13015: 12965: 12957: 12914: 12843: 12806: 12723: 12646: 12609: 12570: 12487: 12430: 12420: 12372: 12250: 12167: 12147: 12130: 12103: 12023: 11980: 11970: 11922: 11867: 11729: 11719: 11662: 11621: 11569: 11540: 11520: 11467: 11410: 11358: 11329: 11317: 11300: 11199: 11164: 11115: 11039: 10971: 10954: 10892: 10884: 10835: 10827: 10777: 10769: 10733: 10721: 10672: 10662: 10590: 10569:"Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests" 10511: 10501: 10387: 10354: 10301: 10255: 10239: 10191: 10145: 10097: 10054: 10038: 9938: 9870: 9862: 9771: 9717: 9701: 9658: 9648: 9600: 9584: 9545: 9527: 9484: 9476: 9461:
Pires, Mathias M.; Rankin, Brian D.; Silvestro, Daniele; Quental, Tiago B. (2018).
9381: 9297: 9277: 9260: 9227: 9176: 9168: 9120: 9112: 9057: 9037: 9029: 9012: 9003:
Clarke, J.A.; Tambussi, C.P.; Noriega, J.I.; Erickson, G.M.; Ketcham, R.A. (2005).
8969: 8838: 8818: 8793: 8772: 8755: 8728: 8652: 8604: 8561: 8475: 8465: 8426: 8374: 8328: 8268: 8186: 8176: 8144: 8095: 8046: 7997: 7945: 7906: 7896: 7847: 7779: 7729: 7678: 7638: 7595: 7587: 7566:"Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction" 7536: 7487: 7471: 7422: 7406: 7354: 7334: 7289: 7273: 7225: 7134: 7091: 7083: 7042: 7003: 6985: 6902: 6856: 6806: 6764: 6698: 6690: 6649: 6589: 6540: 6478: 6398: 6341: 6294: 6284: 6230: 6212: 6141: 6100: 6060: 6039: 6004: 5961: 5943: 5895: 5866: 5846: 5796: 5751: 5691: 5649: 5601: 5559: 5555: 5551: 5510: 5494: 5455: 5393: 5366: 5323: 5275: 5227: 5153: 5113: 5047: 4979: 4934: 4897: 4847: 4799: 4758: 4722: 4685: 4631: 4623: 4573: 4519: 4511: 4479: 4439: 4386: 4334: 4259: 4218: 4134: 4126: 4074: 4019: 3980: 3940: 3930: 3853: 3843: 3766: 3756: 3700: 3690: 3632: 3614: 3541: 3533: 3375: 3365: 3285: 3235: 3225: 3158: 3020: 3000: 2934: 2930: 2872: 2813: 2477:
and increasing global temperatures. Marine regression also resulted in the loss of
2372: 2352: 2318: 2160: 2097: 2033: 2025: 1993: 1989: 1932: 1866: 1837: 1578: 1371: 1123:(skates and rays) lost nearly all the identifiable species, while more than 90% of 835: 761: 726: 563: 292: 253: 182: 31: 12810: 11119: 9385: 8973: 8657: 8630: 8099: 7851: 7783: 7541: 7516: 6843:"Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary" 6694: 5850: 5653: 5588:"Selective extinction at the end-Cretaceous and appearance of the modern Decapoda" 4983: 4901: 4418: 3162: 1480:. Evidence of this existence is based on the discovery of dinosaur remains in the 127:, The Netherlands (finger is just below the actual Cretaceous–Paleogene boundary); 16365: 16302: 15520: 15461: 14977: 14651: 12847: 12626: 11524: 11471: 11414: 10378: 9775: 9467: 9218: 9103: 8842: 8732: 8608: 8470: 7669: 7395:"The youngest South American rhynchocephalian, a survivor of the K/Pg extinction" 7120: 6901:. Special Paper. Vol. 247. Geological Society of America. pp. 549–562. 6797:
Friedman, Matt; V. Andrews, James; Saad, Hadeel; El-Sayed, Sanaa (16 June 2023).
6737: 6674: 6482: 6402: 6217: 5327: 4078: 3848: 3098: 2876: 2462: 2302:. The heating of the atmosphere during the impact itself may have also generated 1984: 1944: 1524: 1504: 1363: 1318: 1234: 1072: 1060: 899:
There is significant variation in the fossil record as to the extinction rate of
343: 304: 233: 14098:"Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary" 11871: 11601: 11245:"Darkness caused by dino-killing asteroid snuffed out life on Earth in 9 months" 9099:"Diversification of Neoaves: integration of molecular sequence data and fossils" 8759: 7978: 7934:
Brochu, C. A. (2004). "Calibration age and quartet divergence date estimation".
7716:"Consequences of the Cretaceous/Paleogene Mass Extinction for Marine Ecosystems" 6321: 6260: 5308:
Schulte, Peter; Speijer, Robert; Mai, Hartmut; Kontny, Agnes (1 February 2006).
2679: 55: 16518: 16493: 15623: 15529: 15457: 15406:"A seismically induced onshore surge deposit at the KPg boundary, North Dakota" 14343: 13794: 13503:
Proceedings of the National Academy of Sciences of the United States of America
13459: 13327:
Proceedings of the National Academy of Sciences of the United States of America
13222: 13121: 13067: 12890: 12404:
Proceedings of the National Academy of Sciences of the United States of America
12220: 11954:
Proceedings of the National Academy of Sciences of the United States of America
11703:
Proceedings of the National Academy of Sciences of the United States of America
11698:"A seismically induced onshore surge deposit at the KPG boundary, North Dakota" 11169: 11142: 10976: 10949: 10888: 10831: 10773: 10646:
Proceedings of the National Academy of Sciences of the United States of America
10485:
Proceedings of the National Academy of Sciences of the United States of America
9632:
Proceedings of the National Academy of Sciences of the United States of America
8378: 8332: 7591: 7393:
Apesteguía, Sebastián; Gómez, Raúl O.; Rougier, Guillermo W. (7 October 2014).
7277: 6977:
Proceedings of the National Academy of Sciences of the United States of America
6268:
Proceedings of the National Academy of Sciences of the United States of America
5935:
Proceedings of the National Academy of Sciences of the United States of America
3740:
Proceedings of the National Academy of Sciences of the United States of America
3674:
Proceedings of the National Academy of Sciences of the United States of America
3598:
Proceedings of the National Academy of Sciences of the United States of America
3593:"Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction" 3349:
Proceedings of the National Academy of Sciences of the United States of America
3209:
Proceedings of the National Academy of Sciences of the United States of America
2731: 2543: 2527: 2356: 2221: 2193: 2187:
The scientific consensus is that the asteroid impact at the K–Pg boundary left
2169: 1980: 1935:
layers found all over the world at the Cretaceous–Paleogene boundary contain a
1920: 1884: 1771: 1767: 1594: 1590: 1552: 1536: 1532: 1499:
in Colorado, indicate that the animal lived during the Cenozoic, approximately
1469: 1330: 1297: 1143: 1108: 881: 811: 807: 796: 682: 625: 296: 276: 264: 16558: 14674:"The end-cretaceous mass extinction in the marine realm: Year 2000 assessment" 12107: 11848:
Barras, Colin (5 April 2019). "Does fossil site record dino-killing impact?".
11063: 10427: 10392: 10373: 10149: 10101: 9840:"Brawn before brains in placental mammals after the end-Cretaceous extinction" 9463:"Diversification dynamics of mammalian clades during the K–Pg mass extinction" 9232: 9213: 8255:"Early Penguin Fossils, Plus Mitochondrial Genomes, Calibrate Avian Evolution" 8190: 7683: 7664: 7450:
Herrera-Flores, Jorge A.; Stubbs, Thomas L.; Benton, Michael J. (March 2021).
6860: 6653: 6544: 5899: 5800: 5279: 4313: 581:
The event appears to have affected all continents at the same time. Non-avian
133:
rock with an intermediate claystone layer that contains 1,000 times more
16707: 16395: 16246: 16221: 15974: 15216: 15026: 14999: 14928: 14837: 14603: 14454: 14392: 14195: 14131: 13850: 13467: 13408: 13349: 13322:"Organic matter from the Chicxulub crater exacerbated the K–Pg impact winter" 13288: 13230: 13075: 13027: 12979: 12425: 12035: 11674: 11581: 11370: 11211: 11045:
Geological implications of impacts of large asteroids and comets on the Earth
10602: 10251: 10157: 10109: 10050: 9884: 9713: 9686:
Halliday, Thomas John Dixon; Upchurch, Paul; Goswami, Anjali (29 June 2016).
9596: 9541: 9532: 9338: 9005:"Definitive fossil evidence for the extant avian radiation in the Cretaceous" 8156: 8107: 8060: 7692: 7550: 7483: 7418: 7285: 7237: 6999: 6951: 6868: 6820: 6410: 6226: 6153: 6016: 5957: 5907: 5755: 5613: 5605: 5506: 5287: 5239: 5165: 4859: 4811: 4338: 4189: 4052: 3628: 3588: 3063:"Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast" 2486: 2246: 2229: 2092: 2013: 1936: 1783: 1598: 1430: 1388: 1383: 1355: 1301: 1259: 1242: 1201: 1097: 1092: 781: 702: 686: 586: 272: 15481: 15430: 15208: 15069: 15042: 14919: 14892: 13566: 13524: 13340: 13279: 12396: 11975: 11724: 11203: 10921:"Springtime was the season the dinosaurs died, ancient fish fossils suggest" 10594: 10506: 10305: 9942: 9866: 9653: 9172: 8565: 8523:(2nd ed.). Berkeley: University of California Press. pp. 672–684. 8273: 8254: 6990: 6593: 6345: 5948: 4024: 4005: 3935: 3761: 3735:"Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary" 3695: 3619: 3537: 3370: 3230: 3004: 2537: 2485:
of North America. The loss of these seas greatly altered habitats, removing
30:"Extinction of the non-avian dinosaurs" redirects here. For other uses, see 16637: 16216: 15634: 15489:
Papers and presentations resulting from the 2016 Chicxulub drilling project
15449: 15365: 15078: 14950:
Cripps, J.A.; Widdowson, M.; Spicer, R.A.; Jolley, D.W. (1 February 2005).
14936: 14562: 14410: 14384: 14319: 14161: 14097: 13746: 13543: 13475: 13426: 13367: 13306: 13139: 12970: 12928: 12751:
Field guide to Cretaceous-tertiary boundary sections in northeastern Mexico
12735: 12159: 12090:"Shocked titanite records Chicxulub hydrothermal alteration and impact age" 11994: 11879: 11743: 11633: 11532: 11479: 11422: 11219: 11127: 11016: 10985: 10906: 10849: 10791: 10686: 10667: 10610: 10525: 10401: 10313: 10269: 10243: 10068: 10042: 9950: 9892: 9813: 9731: 9705: 9672: 9608: 9588: 9559: 9498: 9480: 9289: 9241: 9190: 9134: 9116: 9097:
Ericson, P. G.; Anderson, C. L.; Britton, T.; et al. (December 2006).
9049: 8850: 8672: 8489: 8340: 8282: 7957: 7920: 7700: 7642: 7609: 7501: 7436: 7410: 7346: 7303: 7105: 7017: 6876: 6601: 6353: 6308: 6289: 6244: 5975: 5763: 5524: 5498: 5071: 4938: 4533: 4515: 4148: 4130: 4086: 4033: 3984: 3954: 3867: 3780: 3714: 3646: 3555: 3403: 3389: 3249: 3170: 3012: 2417: 2414: 2408: 2396: 2392: 2253: 2009: 1972: 1928: 1816: 1791: 1763: 1713: 1603: 1520: 1436: 1351: 1322: 1293: 1192: 1174: 1139: 978: 933: 857: 788: 694: 690: 637: 629: 366: 335: 217: 144: 14998:
Dzombak, R.M.; Sheldon, N.D.; Mohabey, D.M.; Samant, B. (September 2020).
14716:
Adatte, Thierry; Keller, Gerta; Stinnesbeck, Wolfgang (28 February 2002).
13815:
Pierazzo, Elisabetta; Kring, David A.; Melosh, H. Jay (25 November 1998).
12444: 12010:"More evidence that the Chicxulub impact predates the K/T mass extinction" 10455:. Scientific Monograph. Vol. 5. United States National Park Service. 9783: 8981: 5858: 4785: 4600:
Schmitz, Mark D.; Sluijs, Appy; Zamaloa, María del Carmen (1 March 2014).
3510:
Hull, Pincelli M.; Bornemann, André; Penman, Donald E. (17 January 2020).
1636:
increased first, allowing them to fill niches after the extinctions, with
16498: 16483: 16266: 14595: 14426:"Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous" 12491: 12460: 12127: 11554:
Bralower, Timothy J.; Paull, Charles K.; Mark Leckie, R. (1 April 1998).
11269:
de Laubenfels, M. W. (1956). "Dinosaur extinction: One more hypothesis".
11186:"Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary" 10566: 8591:"Polar dinosaurs and the question of dinosaur extinction: a brief review" 6811: 6496:
Patterson, C. (1993). "Osteichthyes: Teleostei". In Benton, M. J. (ed.).
5564: 4362:"Detritus feeding as a buffer to extinction at the end of the Cretaceous" 2490: 2303: 2278: 2197: 2188: 2053: 1979:
of rock, crystallized from droplets of molten rock formed by the impact.
1924: 1912: 1775: 1681: 1448: 1367: 1305: 1112: 1101: 1032: 959: 944: 706: 678: 649: 645: 614: 453: 334:
Other causal or contributing factors to the extinction may have been the
213: 209: 140: 15495:, GSA Annual Meeting in Seattle, Washington, USA – 2017, Session No. 192 15347: 15250: 13440:
Pierazzo, Elisabetta; Hahmann, Andrea N.; Sloan, Lisa C. (5 July 2004).
12961: 12151: 9281: 9096: 9033: 8129:
Forêt, Tom; Aubier, Paul; Jouve, Stéphane; Cubo, Jorge (23 April 2024).
7901: 7475: 7338: 6932:
University of California Publications, Department of Geological Sciences
6906: 4851: 4205:"Productivity across the Cretaceous/Tertiary boundary in high latitudes" 3035: 2737:
Life: A natural history of the first four billion years of life on Earth
2391:
impact, and the controversial and much larger 600 km (370 mi)
2096:
Radar topography reveals the 180 km (112 mi)-wide ring of the
315:
ejected within minutes from deep in the earth, but contained hardly any
16197: 16037: 16010: 15947: 15299: 15275: 12377: 12350: 11829:. Vol. 6. Houston, TX: Lunar and Planetary Institute. pp. 1–2 11443: 11284: 10452:
Invasion and Recovery of Vegetation after a Volcanic Eruption in Hawaii
9627:"Placental mammal diversification and the Cretaceous–Tertiary boundary" 9041: 8148: 8051: 8024: 7316: 7229: 7146: 6703: 5695: 5467: 5410: 5086: 4636: 4170:(2nd ed.). Berkeley, CA: University of California Press. pp.  4001: 2615: 2531: 2498: 2105: 1824: 1779: 1698: 1687: 1676: 1668: 1637: 1582: 1454: 1334: 1165: 1147: 1080: 1065: 1036: 1024: 910: 847: 830: 826: 800: 785: 738: 734: 602: 598: 324: 221: 109: 15565: 13842: 13400: 13019: 13002:"Wildfires and animal extinctions at the Cretaceous/Tertiary boundary" 12919: 12892: 10000:
Cretaceous–Tertiary Mass Extinctions: Biotic and Environmental Changes
9809:"Mammals' bodies outpaced their brains right after the dinosaurs died" 9181: 8872:
Fassett, J. E.; Lucas, S. G.; Zielinski, R. A.; Budahn, J. R. (2001).
7087: 6263:"Impact of the terminal Cretaceous event on plant–insect associations" 6174:
Neraudeau, Didier; Thierry, Jacques; Moreau, Pierre (1 January 1997).
5189:
Cretaceous–Tertiary Mass Extinctions: Biotic and environmental changes
4443: 3669:"Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary" 1075:
occurred in terrestrial invertebrates thanks to the extinction event.
988: 655:
seem to have survived. Rather, the surviving mammals and birds fed on
16503: 16019: 15929: 15724: 15122: 14829: 14187: 14123: 13181: 12574: 12522:
The Sea (Ideas and Observations on Progress in the Study of the Seas)
11321: 10725: 8949: 8707: 8212:
Barrett, P. M.; Butler, R. J.; Edwards, N. P.; Milner, A. R. (2008).
8073: 6768: 6145: 4739: 4726: 4627: 3733:
Longrich, N. R.; Bhullar, B.-A. S.; Gauthier, J. A. (December 2012).
2907: 2817: 2647:), which is now discouraged as a formal geochronological unit by the 2627: 2376: 2270: 2242: 2225: 2213: 2029: 2001: 1709: 1628: 1620: 1574: 1528: 1485: 1464: 1338: 1326: 1221: 1124: 1008: 1004: 1000: 948: 839: 633: 398: 390: 386: 362: 347: 308: 205: 15650: 15291: 15094:"Triggering of the largest Deccan eruptions by the Chicxulub impact" 14026:"Multiple Impacts at the KT Boundary and the Death of the Dinosaurs" 13266:
Proceedings of the National Academy of Sciences of the United States
12349:
Robertson, D. S.; Lewis, W. M.; Sheehan, P. M.; Toon, O. B. (2013).
11445: 10478:
Fawcett, Jeffrey A.; Maere, Steven; Van de Peer, Yves (April 2009).
9625:
Springer, M. S.; Murphy, W. J.; Eizirik, E.; O'Brien, S. J. (2003).
8519:. In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.). 7138: 5880:
Hansen, Thor A.; Farrell, Benjamin R.; Upshaw, Banks (Spring 1993).
5459: 4930:
The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas
4803: 3132:
Alvarez, Luis W.; Alvarez, Walter; Asaro, F.; Michel, H. V. (1980).
3027: 2036:
in extreme detail. Amber from the site has been reported to contain
1899: 327:. In October 2019, researchers asserted that the event rapidly 323:
into the atmosphere, causing longer-term effects on the climate and
147:, which are another hypothesized cause of the K–Pg extinction event. 16533: 16001: 15992: 15965: 15956: 15938: 15536: 10808:"Seasonal calibration of the end-cretaceous Chicxulub impact event" 10544: 7949: 6738:
Robertson, D. S.; McKenna, M. C.; Toon, O. B.; et al. (2004).
6203: 4962:
MacLeod, N. (1998). "Impacts and marine invertebrate extinctions".
3826: 2640: 2519: 2501:, those that prefer marine environments, such as sharks, suffered. 2274: 2209: 2202: 2057: 1976: 1968: 1904: 1828: 1820: 1705: 1586: 1459: 1277: 1268: 1238: 1120: 1104: 1028: 970: 922: 915: 906: 888: 854: 746: 742: 718: 582: 370: 354: 284: 249: 237: 229: 225: 201: 105: 99: 12198: 8430: 7070:"Morphology and function of the palatal dentition in Choristodera" 5537: 4742:"Origination, extinction, and mass depletions of marine diversity" 4496: 3512:"On impact and volcanism across the Cretaceous-Paleogene boundary" 291:, was bolstered by the discovery of the 180 km (112 mi) 64: 16028: 15983: 10950:"Fossil fish reveal timing of asteroid that killed the dinosaurs" 10540:"Dinosaur-killing asteroid strike gave rise to Amazon rainforest" 10226:
Thompson, Jamie B.; Ramírez-Barahona, Santiago (September 2023).
8776: 7452:"Ecomorphological diversification of squamates in the Cretaceous" 6840: 5438: 4556: 4459: 3265: 2454: 2360: 2348: 2291: 2249: 2037: 1940: 1808: 1556: 1548: 1425: 1413: 1321:
inhabited freshwater and terrestrial environments—except for the
1246: 1196: 1159: 1016: 982: 974: 940: 865: 792: 714: 641: 414: 406: 402: 382: 374: 320: 312: 245: 193: 134: 130: 124: 113: 12587: 12344: 12342: 8546: 7168:. Boulder, CO: Geological Society of America. pp. 299–312. 2765:. Portland, Oregon: Graphic Arts Center Publishing. p. 20. 2708:. International Commission on Stratigraphy. 2015. Archived from 1876: 15320:
Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C. (2016).
14223: 14159: 14055:"40Ar/39Ar dating on volcanic rocks of the Deccan Traps, India" 12316: 8399: 7872: 4161: 3793: 3134:"Extraterrestrial cause for the Cretaceous–Tertiary extinction" 2474: 2388: 2325:
impact, do not coincide with any noticeable extinction events.
2287: 2238: 2021: 1892: 1708:, replacing species composition and structure of local forests 1661: 1641: 1561: 1540: 1217: 1116: 992: 963: 843: 730: 722: 685:, few animal groups became extinct, including large forms like 675: 656: 652: 606: 594: 590: 551: 358: 316: 190: 75: 44: 13047: 12989:– via Lyell Collections Geological Society Publications. 12891:
Pope, K.O.; Baines, K.H.; Ocampo, A.C.; Ivanov, B. A. (1997).
12456: 12454: 9835: 9147: 6796: 5031: 4831: 3667:
Longrich, Nicholas R.; Tokaryk, Tim; Field, Daniel J. (2011).
3586: 2618:, which in turn originates from the correspondent German term 1836:
demonstrated that the period of global darkness following the
1392:
was among the dinosaurs living on Earth before the extinction.
1142:
at a fossil site immediately above the K–Pg boundary layer on
259:
As originally proposed in 1980 by a team of scientists led by
16166: 15540: 14890: 12702: 12339: 12007: 11901:
Alegret, Laia; Molina, Eustoquio; Thomas, Ellen (July 2003).
10638: 10081: 6896: 6261:
Labandeira, Conrad C.; Johnson, Kirk R.; Wilf, Peter (2002).
5435: 5386:
Proceedings of the Ocean Drilling Program, Scientific Results
4055:(1995). "Explosive evolution in Tertiary birds and mammals". 3202:
Vellekoop, J.; Sluijs, A.; Smit, J.; et al. (May 2014).
2680:
Ogg, James G.; Gradstein, F. M.; Gradstein, Felix M. (2004).
2494: 2177: 2074: 1964: 1807:, where the fossil record is so incomplete that most extinct 1743: 1726: 1701: 1488: 1400:
The growing consensus about the endothermy of dinosaurs (see
1131: 1043: 1020: 952: 936: 664: 621: 610: 554: 393:
opportunities: in its wake, many groups underwent remarkable
378: 280: 197: 186: 14424:
Nordt, Lee; Atchley, Stacy; Dworkin, Steve (December 2003).
12351:"K/Pg extinction: Re-evaluation of the heat/fire hypothesis" 11949:"Chicxulub impact predates the K–T boundary mass extinction" 11646: 9797:
How life blossomed after the dinosaurs died | Science | AAAS
7662: 6566:
Guinot, Guillaume; Condamine, Fabien L. (23 February 2023).
4598: 3887: 2286:
earth, which had been ejected to the surface by the impact.
2044: 1329:
juveniles, which would have helped them survive where other
15168:
10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2
14997: 14949: 14575: 14482: 14226:"Deccan flood basalts at the Cretaceous/Tertiary boundary?" 14162:"Deccan flood basalts and the Cretaceous/Tertiary boundary" 12728:
10.1130/0091-7613(1992)020<0099:TBDWCU>2.3.CO;2
12451: 11626:
10.1130/0091-7613(1996)024<0527:SEOTCC>2.3.CO;2
11574:
10.1130/0091-7613(1998)026<0331:TCTBCC>2.3.CO;2
11363:
10.1130/0091-7613(1997)025<0759:ELATCT>2.3.CO;2
11140: 10804: 10359:
10.1130/0091-7613(1996)024<0963:CTCIAA>2.3.CO;2
9460: 8798:
10.1669/0883-1351(2001)016<0482:ttoaco>2.0.co;2
7047:
10.1671/0272-4634(2005)025[0171:ACRRDF]2.0.CO;2
6105:
10.1130/0091-7613(2002)030<0955:MCTBSI>2.0.CO;2
6065:
10.1130/0091-7613(1991)019<1181:AAIBEP>2.3.CO;2
6009:
10.1666/0094-8373(2004)030<0507:TTEAIM>2.0.CO;2
5480: 5158:
10.1130/0016-7606(1991)103<1439:HCACTB>2.3.CO;2
4783: 4763:
10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2
4690:
10.1130/0091-7613(1996)024<0255:CNACSA>2.3.CO;2
4578:
10.1669/0883-1351(2004)019<0096:MPOUCN>2.0.CO;2
4484:
10.1130/0091-7613(1992)020<0556:MEOLDV>2.3.CO;2
4264:
10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2
4223:
10.1130/0016-7606(1994)106<1254:PATCTB>2.3.CO;2
3973:
Philosophical Transactions of the Royal Society of London B
3820:
Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P. (2013).
3290:
10.1130/0091-7613(1991)019<0867:ccapct>2.3.co;2
3201: 2130:
In 2007, it was proposed that the impactor belonged to the
1952: 1619:) and Cetartiodactyla (a diverse group that today includes 660: 228:
era, while heralding the beginning of the current era, the
15535:
Robert A. de Palm has found strong evidence that the
14356: 13766: 13614: 12651:
10.1130/0091-7613(2000)28<1119:MFOTNA>2.0.CO;2
12515:"Chapter 3. Geologic effects and records of tsunamis" 10288:"Fungal Proliferation at the Cretaceous-Tertiary Boundary" 8917:"No Paleocene dinosaurs in the San Juan Basin, New Mexico" 7761: 7515:
Xing, Lida; Niu, Kecheng; Evans, Susan E. (January 2023).
7449: 7209: 5826: 2973: 2761:
Muench, David; Muench, Marc; Gilders, Michelle A. (2000).
2586:
Timeline of Cretaceous–Paleogene extinction event research
2060:, shows an abrupt change from dark- to light-colored rock. 1544:
that a mass extinction of archaic birds took place there.
1531:
became extinct, including then-flourishing groups such as
15604: 15313: 13197:"Chicxulub impact winter sustained by fine silicate dust" 13194: 13050:"The Chicxulub impact and its environmental consequences" 11342: 10281: 10279: 9971: 9572: 9406: 8002:
10.1671/0272-4634(2008)28[409:TOACPP]2.0.CO;2
7622: 6196: 5673: 5008:
Evolutionary Catastrophes: The science of mass extinction
4391:
10.1130/0091-7613(1986)14<868:DFAABT>2.0.CO;2
3481:"Asteroid or Volcano? New Clues to the Dinosaurs' Demise" 3261: 3259: 2848: 2168:
The collision would have released the same energy as 100
1616: 1608: 1264:
known from the earliest Paleocene (Danian) of Patagonia.
410: 15543:—were indeed wiped out 66 million years ago by the 15501:"Chicxulub impact event: Understanding the K–T boundary" 14447:
10.1130/1052-5173(2003)013<4:TEFTGE>2.0.CO;2
11694: 11553: 10862: 10746: 10560: 10225: 9511: 9211: 8629:
Fastovsky, David E.; Bercovici, Antoine (January 2016).
8309: 6969: 5731: 5586:
Schweitzer, Carrie E; Feldmann, Rodney M (1 June 2023).
5011:. Cambridge, UK: Cambridge University Press. p. 2. 4964:
Special Publications of the Geological Society of London
4882:
Special Publications of the Geological Society of London
2788: 15562:—University of California Museum of Paleontology (1995) 14715: 14623: 13380: 13258: 12941: 12185:
The Journal of the Royal Astronomical Society of Canada
12086: 11823:
Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136)
10477: 10448: 10030:
Proceedings of the Royal Society B: Biological Sciences
9693:
Proceedings of the Royal Society B: Biological Sciences
9685: 9576:
Proceedings of the Royal Society B: Biological Sciences
9324: 8022: 7399:
Proceedings of the Royal Society B: Biological Sciences
6117: 5716: 5633: 5487:
Proceedings of the Royal Society B: Biological Sciences
5383: 5307: 3732: 3728: 3726: 3724: 13710: 13319: 12461:
Brugger, Julia; Feulner, Georg; Petri, Stefan (2016).
11818: 11183: 10371: 10276: 10022: 8683:. Princeton, NJ: Princeton University Press. pp.  8252: 7392: 6374: 6173: 5719:
Memoir of the Association of Australasian Paleontology
3256: 2610:
The abbreviation is derived from the juxtaposition of
1245:. They are represented today by a single species, the 15319: 14801: 13615:
Sigurdsson, H.; D'Hondt, S.; Carey, S. (April 1992).
12524:. Vol. 15: Tsunamis. Boston, MA: Harvard University. 12397:
Pope, K. O.; d'Hondt, S. L.; Marshall. C. R. (1998).
8921:
Geological Society of America Abstracts with Programs
8451: 7563: 4315:(1997). "The Cretaceous–Tertiary biotic transition". 4247: 3970: 3883: 3881: 3879: 3877: 2576: – Extinction event around 444 million years ago 2443: 1832:
years. Models presented at the annual meeting of the
1119:, skates, and rays) disappeared after this event and 780:
represents one of the most dramatic turnovers in the
15237:
Keller, Gerta; Barrera, Enriqueta (1 January 1990).
13439: 11444:
Bohor, B. F.; Modreski, P. J.; Foord, E. E. (1987).
11268: 8542: 8540: 8452:
Longrich, N. R.; Martill, D. M.; Andres, B. (2018).
8214:"Pterosaur distribution in time and space: an atlas" 8128: 7721:
Annual Review of Ecology, Evolution, and Systematics
7160:
Holroyd, Patricia A.; Hutchinson, J. Howard (2013).
4933:. Society of Sedimentary Geology. pp. 157–178. 4203:
Barrera, Enriqueta; Keller, Gerta (1 October 1994).
4106: 4104: 4047: 4045: 4043: 3721: 3666: 2465:
became less active and sank under their own weight.
14531:Courtillot, Vincent (1990). "A volcanic eruption". 14423: 13814: 11900: 11243:updated, Mindy Weisberger last (22 December 2021). 7068:Matsumoto, Ryoko; Evans, Susan E. (November 2015). 5879: 4243: 4241: 4239: 3799:. Geological Society of America. pp. 297–327. 3662: 3660: 3658: 3656: 3509: 3036:"The Asteroid and the Dinosaur (Nova S08E08, 1981)" 2760: 2468:A severe regression would have greatly reduced the 1823:, after the K–Pg boundary layer was deposited, the 14859: 11297: 10334: 9838: 9409:Classification of mammals: Above the species level 9253: 9251: 8676: 8628: 8552:Biological Processes Associated with Impact Events 7804: 6629: 6430: 5585: 5212:Keller, G.; Li, L.; MacLeod, N. (1 January 1996). 5138:Macleod, Norman; Keller, Gerta (1 November 1991). 4740:Bambach, R. K.; Knoll, A. H.; Wang, S. C. (2004). 3874: 3061:Sleep, Norman H.; Lowe, Donald R. (9 April 2014). 2594: – Mass extinction ending the Triassic period 2395:. Any other craters that might have formed in the 1601:became extinct (aside from the lineage leading to 1523:regard birds as the only surviving dinosaurs (see 1079:extinction. The advanced mound-building termites, 895:(Upper Cretaceous), Owl Creek, Ripley, Mississippi 15241:. In Sharpton, Virgil L.; Ward, Peter D. (eds.). 14957:Palaeogeography, Palaeoclimatology, Palaeoecology 14723:Palaeogeography, Palaeoclimatology, Palaeoecology 14631:Palaeogeography, Palaeoclimatology, Palaeoecology 14490:Palaeogeography, Palaeoclimatology, Palaeoecology 14279:Palaeogeography, Palaeoclimatology, Palaeoecology 12827:Palaeogeography, Palaeoclimatology, Palaeoecology 10286:Vajda, Vivi; McLoughlin, Stephen (5 March 2004). 9876:20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20 8712:Palaeogeography, Palaeoclimatology, Palaeoecology 8596:Palaeogeography, Palaeoclimatology, Palaeoecology 8537: 7159: 6462:Palaeogeography, Palaeoclimatology, Palaeoecology 6382:Palaeogeography, Palaeoclimatology, Palaeoecology 6256: 6254: 5219:Palaeogeography, Palaeoclimatology, Palaeoecology 4101: 4040: 3996: 3994: 3547:20.500.11820/483a2e77-318f-476a-8fec-33a45fbdc90b 2856:Palaeogeography, Palaeoclimatology, Palaeoecology 1111:, approximately 7 out of the 41 families of 838:as a result of cooling temperatures in the early 829:have left a geological record since at least the 752:The K–Pg extinction had a profound effect on the 16705: 15404:DePalma, Robert A.; et al. (1 April 2019). 14014: 13988:. Archived from the original on 11 December 2011 12313:"How an asteroid ended the age of the dinosaurs" 9918: 7755: 4665: 4236: 3966: 3964: 3819: 3653: 3337: 3335: 2497:. While this change was favorable to freshwater 1725:recovery after the impact. Monoporisporites and 1627:), although recent research concludes that only 365:. In the oceans, the K–Pg extinction killed off 27:Mass extinction event about 66 million years ago 15390:University of California Museum of Paleontology 10285: 9248: 8914: 6565: 5211: 3914:Proceedings of the National Academy of Sciences 3474: 3472: 3301: 3299: 2351:. In addition to the 180 km (110 mi) 810:is not so well understood, mainly because only 527: 432: 16607:International Union for Conservation of Nature 10426:. U.S. Geological Survey. 2004. Archived from 10328: 8511: 8303: 7118: 7067: 6948: 6251: 5776: 5260:MacLeod, Norman; Keller, Gerta (Spring 1994). 3991: 3505: 3503: 3094:"Dinosaur asteroid hit 'worst possible place'" 2180:)—more than a billion times the energy of the 236:, the K–Pg event is marked by a thin layer of 16182: 15666: 15590: 15236: 13971: 13153: 13151: 13149: 12790:Annual Review of Earth and Planetary Sciences 12512: 12306: 12304: 12302: 9996: 9914: 9912: 9910: 8745: 7933: 7030: 6740:"Survival in the first hours of the Cenozoic" 5388:. Proceedings of the Ocean Drilling Program. 5259: 5137: 4359: 4353: 4202: 3961: 3332: 2684:. Cambridge, UK: Cambridge University Press. 2220:". A paper in 2013 by a prominent modeler of 1911:In 1980, a team of researchers consisting of 1476:Several researchers support the existence of 15273: 13945:. Archived from the original on 6 April 2012 13904:. Archived from the original on 25 June 2012 13663:Prinn, Ronald G.; Fegley, Bruce (May 1987). 12174: 11795: 11088: 11000: 10471: 10449:Smathers, G.A.; Mueller-Dombois, D. (1974). 9620: 9618: 9400: 9310:: CS1 maint: multiple names: authors list ( 8400:Prondvai, E.; Bodor, E. R.; Ösi, A. (2014). 8295:: CS1 maint: multiple names: authors list ( 7823: 7514: 7257: 6733: 6731: 6729: 6727: 6725: 6723: 6721: 6458: 4927:. In Keller, Gerta; Adatte, Thierry (eds.). 4546: 4110: 3906: 3469: 3296: 3054: 2974:Schulte, Peter; et al. (5 March 2010). 2969: 2967: 2965: 2963: 2961: 2959: 2582: – Earth's most severe extinction event 2558:Climate across Cretaceous–Paleogene boundary 2273:. Creatures whose food chains were based on 2201:tsunami wash deposits carrying remains of a 1054: 15503:. NASA Space Imagery Center. Archived from 15498: 14096:Duncan, R. A.; Pyle, D. G. (30 June 1988). 13662: 13095: 12588:Albertão, G. A.; P. P. Martins Jr. (1996). 12520:. In Robinson, A.R.; Bernard, E.N. (eds.). 12121: 11037: 8748:Bulletin de la Société Géologique de France 8512:David, Archibald; Fastovsky, David (2004). 7713: 6500:. Vol. 2. Springer. pp. 621–656. 6180:Bulletin de la Société Géologique de France 5822: 5820: 5818: 4961: 4360:Sheehan, Peter M.; Hansen, Thor A. (1986). 4309: 4307: 4305: 4303: 4301: 3500: 2569:List of possible impact structures on Earth 2457:, therefore the likeliest explanation is a 1083:, also appear to have risen in importance. 357:, along with many mammals, birds, lizards, 287:. The impact hypothesis, also known as the 16664:The Sixth Extinction: An Unnatural History 16189: 16175: 15673: 15659: 15597: 15583: 14530: 14271: 14095: 14020: 13977: 13936: 13895: 13146: 12299: 12214: 11778: 10865:"The Mesozoic terminated in boreal spring" 10750:"The Mesozoic terminated in boreal spring" 10699: 9907: 9425: 5004: 4299: 4297: 4295: 4293: 4291: 4289: 4287: 4285: 4283: 4281: 3127: 3125: 3123: 3121: 2639:The former designation includes the term ' 1547:The most successful and dominant group of 1138:There is evidence of a mass extinction of 1059:Insect damage to the fossilized leaves of 16734:Events in the geological history of Earth 15439: 15429: 15383: 15355: 15068: 15025: 14918: 14400: 13533: 13523: 13495: 13416: 13357: 13339: 13296: 13278: 13129: 12969: 12918: 12434: 12424: 12376: 12310: 12244: 12197: 11984: 11974: 11733: 11723: 11168: 11006: 10975: 10896: 10839: 10781: 10676: 10666: 10515: 10505: 10391: 10259: 10195: 10058: 9874: 9744: 9721: 9662: 9652: 9615: 9549: 9531: 9488: 9231: 9180: 9124: 8908: 8656: 8588: 8479: 8469: 8272: 8050: 7972: 7910: 7900: 7682: 7599: 7540: 7491: 7426: 7293: 7095: 7007: 6989: 6890: 6810: 6718: 6702: 6495: 6298: 6288: 6234: 6216: 5965: 5947: 5563: 5514: 4635: 4523: 4138: 4023: 3944: 3934: 3857: 3847: 3813: 3770: 3760: 3704: 3694: 3636: 3618: 3545: 3379: 3369: 3239: 3229: 3060: 2956: 2706:"International Chronostratigraphic Chart" 2182:atomic bombings of Hiroshima and Nagasaki 1684:record and the post-boundary fern spike. 1107:feeders on the continental shelf. Within 846:species survived the transition from the 15143: 15091: 13822:Journal of Geophysical Research: Planets 12392: 12390: 12388: 9072:"Primitive birds shared dinosaurs' fate" 8865: 8507: 8505: 8503: 8501: 8499: 7734:10.1146/annurev.ecolsys.35.021103.105715 7112: 6520: 5988: 5927: 5815: 5415:. Chapman & Hall. pp. 287–305. 5179: 4879: 4702: 4540: 4455: 4453: 4051: 2649:International Commission on Stratigraphy 2536: 2337: 2327: 2146: 2091: 2043: 1898: 1875: 1742: 1710:during ~6 million years of recovery 1382: 987: 880: 15519: 15403: 14866:. Princeton University Press. pp.  14857: 14091: 14089: 14052: 13870: 11940: 11242: 10137:Stratigraphy and Geological Correlation 10089:Stratigraphy and Geological Correlation 8679:The Horned Dinosaurs: A Natural History 8665: 7126:Annals of the Missouri Botanical Garden 5185: 4922: 4278: 3888:Nichols, D. J.; Johnson, K. R. (2008). 3342:Henehan, Michael J. (21 October 2019). 3341: 3118: 3033: 2355:, there is the 24 km (15 mi) 2016:. Tanis is part of the heavily studied 1304:, became extinct during the event. The 876: 311:confirmed that the peak ring comprised 14: 16706: 15456: 15188: 15102:Geological Society of America Bulletin 14763: 14671: 14030:30th International Geological Congress 13610: 13608: 13581:"Chicxulub crater dinosaur extinction" 13055:Nature Reviews Earth & Environment 12663: 12287:from the original on 23 September 2011 11847: 11688: 11238: 11236: 10947: 10177: 10129: 9078:from the original on 24 September 2011 8812: 8671: 7258:Pérez-García, Adán (30 January 2020). 6748:Geological Society of America Bulletin 5145:Geological Society of America Bulletin 5099: 4923:Tantawy, Abdel Aziz (1 January 2011). 4607:Geological Society of America Bulletin 4210:Geological Society of America Bulletin 3442: 3402: 3197: 3195: 2797:Geological Society of America Bulletin 2754: 2730: 1871: 1378: 1272:at the end of the Cretaceous were the 1199:. The gharial-like choristodere genus 709:always or sometimes feed on detritus. 486: 479: 470: 465: 420: 16170: 15680: 15654: 15606:Cretaceous–Paleogene extinction event 15578: 15196:Paleoceanography and Paleoclimatology 15092:Richards, M. A.; et al. (2015). 15040: 12999: 12823: 12684:from the original on 1 September 2019 12385: 10416: 8496: 6929: 6454: 6452: 6076: 6074: 6035: 6033: 4450: 4000: 3582: 3580: 3457:from the original on 21 February 2019 2724: 2317:The end-Cretaceous event is the only 2218:Cretaceous–Paleogene firestorm debate 1963:. Instead, iridium is more common in 1647: 932:Approximately 60% of late-Cretaceous 749:that became extinct at the boundary. 514: 507: 500: 493: 16688: 14791:– via Elsevier Science Direct. 14086: 13593:from the original on 9 November 2017 13556: 13157: 12786: 12117:– via Elsevier Science Direct. 12068:from the original on 8 February 2013 9431: 9407:McKenna, M. C.; Bell, S. K. (1997). 9074:. Science Daily. 20 September 2011. 8618:– via Elsevier Science Direct. 8589:Buffetaut, Eric (18 November 2004). 7386: 7367: 7024: 6714:– via Elsevier Science Direct. 5663:– via Elsevier Science Direct. 5575:– via Elsevier Science Direct. 5337:– via Elsevier Science Direct. 5249:– via Elsevier Science Direct. 5127:– via Elsevier Science Direct. 5061:– via Elsevier Science Direct. 3591:; Allison, Peter A. (21 July 2020). 3478: 3320:from the original on 24 October 2019 3305: 3091: 2903: 2901: 2844: 2842: 2784: 2782: 2626:, which is the abbreviation for the 2598: 2541:Speculative artist's rendering of a 2142: 2087:Location of Chicxulub crater, Mexico 1589:(which includes modern placentals), 1585:(which includes modern marsupials), 1527:). It is thought that all non-avian 550:(not the absolute number) of marine 458: 450: 143:'s Citadel, an eroded hill from the 16622:Voluntary Human Extinction Movement 16371:Extinction risk from climate change 14434:Geological Society of America Today 14323:Earth and Planetary Science Letters 14231:Earth and Planetary Science Letters 14060:Earth and Planetary Science Letters 13774:Earth and Planetary Science Letters 13718:Earth and Planetary Science Letters 13670:Earth and Planetary Science Letters 13622:Earth and Planetary Science Letters 13605: 13496:Vellekoop, J.; et al. (2013). 13096:Kaiho, Kunio; Oshima, Naga (2017). 12768:from the original on 21 August 2019 12224:Meteoritics & Planetary Science 12058:"Dinosaur extinction battle flares" 12055: 12015:Meteoritics & Planetary Science 11654:Meteoritics & Planetary Science 11233: 11148:Earth and Planetary Science Letters 11082: 9438:(M.S.). The Ohio State University. 8310:Penny, D.; Phillips, M. J. (2004). 7824:O'Gorman, José P. (December 2022). 7521:Journal of Systematic Palaeontology 3192: 3073:from the original on 1 January 2017 2137:Wide-field Infrared Survey Explorer 1852: 1770:records of well-preserved bones of 1673:1980 Mount St. Helens eruption 452:Marine extinction intensity during 24: 15376: 15274:Jiang, M. J.; Gartner, S. (1986). 15041:Renne, P. R.; et al. (2015). 13898:"Debating the Dinosaur Extinction" 13589:. New York, NY. 18 November 2016. 12327:from the original on 26 April 2022 12255:10.1111/j.1945-5100.2009.tb02001.x 12028:10.1111/j.1945-5100.2004.tb01133.x 11667:10.1111/j.1945-5100.2004.tb01128.x 10948:Barras, Colin (23 February 2022). 10130:Herman, A. B. (10 December 2013). 9325:Gelfo, J. N.; Pascual, R. (2001). 8234:from the original on 6 August 2017 8080:Journal of Vertebrate Paleontology 7989:Journal of Vertebrate Paleontology 7714:D'Hondt, Steven (17 August 2005). 7034:Journal of Vertebrate Paleontology 6449: 6071: 6030: 4118:Proceedings of the Royal Society B 3577: 3106:from the original on 18 March 2018 2614:, the common abbreviation for the 2592:Triassic–Jurassic extinction event 2508: 2444:Maastrichtian sea-level regression 1774:fishes. The study noted that "the 1283: 1130:In the Maastrichtian age, 28  585:, for example, are known from the 546:The blue graph shows the apparent 523: 428: 25: 16780: 15553: 15245:. Geological Society of America. 14555:10.1038/scientificamerican1090-85 12949:Journal of the Geological Society 12872:from the original on 26 July 2019 12045:– via Wiley Online Library. 11961:(11). Washington, DC: 3753–3758. 11684:– via Wiley Online Library. 10459:from the original on 3 April 2014 10197:10.3897/rethinkingecology.4.33014 9976:. Geological Society of America. 9442:from the original on 8 April 2015 7247:– via Wiley Online Library. 4318:Journal of the Geological Society 3921:(13). Washington, DC: 5218–5223. 3443:Bosker, Bianca (September 2018). 2898: 2839: 2779: 2580:Permian–Triassic extinction event 1738:Permian–Triassic extinction event 1311: 1003:(represented by the modern order 16687: 16678: 16677: 16643:Decline in amphibian populations 16612:IUCN Species Survival Commission 16265: 16155:Millions of years before present 15267: 15230: 15182: 15137: 15085: 15034: 14991: 14943: 14884: 14851: 14795: 14757: 14709: 14665: 14617: 14569: 14524: 14476: 14417: 14350: 14313: 14272:Courtillot, V. (December 1990). 14265: 14217: 14153: 14053:Kaneoka, Ichiro (January 1980). 14046: 14032:. Vol. 26. pp. 31–54. 13930: 13889: 13864: 13808: 13760: 13704: 13656: 13573: 13550: 13489: 13433: 13374: 13313: 13252: 13188: 13089: 13041: 13000:Adair, Robert K. (1 June 2010). 12993: 12935: 12884: 12854: 12817: 12780: 12742: 12696: 12657: 12620: 12581: 12545: 12506: 12269: 12080: 12049: 12001: 11894: 11841: 11812: 11750: 11640: 11595: 11547: 11494: 11437: 11384: 11336: 11291: 11262: 11177: 11134: 11031: 10941: 10913: 10856: 10798: 10740: 10693: 10632: 10532: 10442: 10365: 10219: 10171: 10123: 10075: 10016: 9990: 9965: 9829: 9801: 9790: 9738: 9679: 9566: 9505: 9454: 9357: 9318: 9205: 9141: 9090: 9064: 8996: 8943: 8896:from the original on 5 June 2011 8766: 8739: 8701: 8622: 8582: 8445: 8393: 8347: 8246: 8205: 8170: 8122: 8067: 8016: 7927: 7866: 7817: 7798: 7707: 7656: 7616: 7557: 7508: 7443: 7361: 7310: 7251: 7203: 7153: 7061: 5928:Lockwood, Rowan (4 March 2003). 5398:10.2973/odp.proc.sr.149.254.1996 5191:. W.W. Norton. pp. 85–138. 2654: 2073: 2066: 1186: 671:(dead plant and animal matter). 560:Capitanian mass extinction event 116:, where erosion has exposed the 83: 74: 63: 54: 43: 16318:Human impact on the environment 15566:The Great Chicxulub Debate 2004 13875:. Harper Collins. p. 336. 12898:Journal of Geophysical Research 12356:Journal of Geophysical Research 12095:Geochimica et Cosmochimica Acta 11070:from the original on 5 May 2016 8320:Trends in Ecology and Evolution 8260:Molecular Biology and Evolution 6963: 6942: 6923: 6834: 6790: 6668: 6623: 6559: 6514: 6489: 6424: 6368: 6315: 6190: 6167: 6111: 5982: 5921: 5873: 5770: 5725: 5710: 5667: 5627: 5579: 5531: 5474: 5429: 5404: 5377: 5341: 5301: 5253: 5205: 5131: 5093: 5065: 5025: 4998: 4955: 4916: 4873: 4825: 4777: 4733: 4696: 4659: 4592: 4490: 4412: 4196: 4155: 3900: 3787: 3479:Joel, Lucas (16 January 2020). 3436: 3396: 3306:Joel, Lucas (21 October 2019). 3085: 3034:Alvarez, Luis (10 March 1981). 2574:Late Ordovician mass extinction 2402: 2371:), the 20 km (12 mi) 2258:1991 eruption of Mount Pinatubo 1228: 1127:(bony fish) families survived. 16739:Events that forced the climate 16298:Climate variability and change 16196: 15539:—and nearly all other life on 14764:Keller, Gerta (October 1988). 13978:Mullen, L. (3 November 2004). 13937:Mullen, L. (20 October 2004). 13896:Mullen, L. (13 October 2004). 12667:Tsunami: The Underrated Hazard 6848:Nature Ecology & Evolution 5556:10.1016/j.marmicro.2020.101959 3092:Amos, Jonathan (15 May 2017). 2935:10.1016/j.marmicro.2023.102214 2698: 2673: 2633: 2604: 2514:postulated causes: volcanism, 2048:The K–Pg boundary exposure in 1758:A 1991 study of fossil leaves 1296:, represented by the families 338:and other volcanic eruptions, 13: 1: 16719:Cretaceous–Paleogene boundary 16648:Decline in insect populations 16591:IUCN Red List extinct species 15493:Geological Society of America 14862:T. rex and the Crater of Doom 14744:10.1016/S0031-0182(01)00395-9 14703:10.1016/S0032-0633(01)00032-0 14511:10.1016/S0031-0182(00)00031-6 12811:10.1146/annurev.earth.27.1.75 12759:Lunar and Planetary Institute 11927:10.1016/S0377-8398(03)00022-7 11120:10.1126/science.291.5510.1952 10178:Bajdek, Piotr (10 May 2019). 9411:. Columbia University Press. 9386:10.1144/GSL.SP.2006.258.01.10 8974:10.1126/science.274.5290.1164 8658:10.1016/j.cretres.2015.07.007 8100:10.1080/02724634.2023.2193828 7852:10.1016/j.cretres.2022.105339 7784:10.1144/GSL.SP.1989.047.01.15 7630:Acta Palaeontologica Polonica 7542:10.1080/14772019.2023.2281494 6695:10.1016/j.cretres.2018.01.004 5989:Lockwood, Rowan (Fall 2004). 5851:10.1126/science.274.5291.1360 5654:10.1016/j.cretres.2015.08.010 5593:Journal of Crustacean Biology 5371:10.1016/s0377-8398(01)00037-8 4984:10.1144/GSL.SP.1998.140.01.16 4902:10.1144/GSL.SP.2004.230.01.13 3163:10.1126/science.208.4448.1095 2740:. Vintage. pp. 238–260. 2260:. According to models of the 2110:Berkeley Geochronology Center 1951:which mostly sank along with 1859:Cretaceous–Paleogene boundary 1478:Paleocene non-avian dinosaurs 1345: 1153: 771: 733:), and those organisms whose 401:, evolving new forms such as 242:K–Pg boundary or K–T boundary 15570:Geological Society of London 15525:"The Day the Dinosaurs Died" 14978:10.1016/j.palaeo.2004.11.007 14782:10.1016/0377-8398(88)90005-9 14652:10.1016/j.palaeo.2013.07.019 14583:Geophysical Research Letters 14300:10.1016/0031-0182(90)90070-N 14252:10.1016/0012-821X(86)90118-4 14073:10.1016/0012-821X(80)90009-6 13980:"Shiva: Another K–T impact?" 13739:10.1016/0012-821X(94)90186-4 13691:10.1016/0012-821X(87)90046-X 13643:10.1016/0012-821X(92)90113-A 12848:10.1016/j.palaeo.2007.02.037 12664:Bryant, Edward (June 2014). 12614:10.1016/0037-0738(95)00128-X 12471:Geophysical Research Letters 11591:– via GeoScienceWorld. 11525:10.1126/science.241.4865.567 11472:10.1126/science.236.4802.705 11415:10.1126/science.224.4651.867 11380:– via GeoScienceWorld. 11089:Mukhopadhyay, Sujoy (2001). 9776:10.1126/science.280.5364.731 8843:10.1126/science.232.4750.629 8733:10.1016/j.palaeo.2010.01.037 8609:10.1016/j.palaeo.2004.02.050 8471:10.1371/journal.pbio.2001663 7764:Geological Society of London 6483:10.1016/j.palaeo.2004.02.049 6403:10.1016/j.palaeo.2017.12.005 6218:10.1371/journal.pone.0288046 5328:10.1016/j.sedgeo.2005.09.021 5232:10.1016/0031-0182(95)00009-7 5175:– via GeoScienceWorld. 5118:10.1016/0377-8398(93)90010-U 5100:Keller, Gerta (April 1993). 5052:10.1016/0195-6671(87)90023-1 4232:– via GeoScienceWorld. 4079:10.1126/science.267.5198.637 3849:10.1371/journal.pone.0076683 2877:10.1016/j.palaeo.2022.111334 2666: 2547:shortly after the K-Pg event 1903:Late Cretaceous global map ( 1840:would have persisted in the 1416:. Comparison with the older 1350:Two families of pterosaurs, 1216:More than 80% of Cretaceous 1091:There are fossil records of 806:The K–Pg boundary record of 7: 16714:Late Cretaceous extinctions 15466:. New York: Vintage Books. 15189:Keller, Gerta (June 1989). 14682:Planetary and Space Science 14672:Keller, Gerta (July 2001). 13108:(1). Article number 14855. 13007:American Journal of Physics 11872:10.1126/science.364.6435.10 9201:– via Web of Science. 8760:10.2113/gssgfbull.183.6.547 8166:– via Cambridge Core. 6431:Grimaldi, David A. (2007). 6026:– via Cambridge Core. 5917:– via Cambridge Core. 5413:Ostracoda and Global Events 5297:– via Cambridge Core. 4869:– via Cambridge Core. 3890:Plants and the K–T Boundary 2551: 1797: 1181: 1027:) all other species of the 981:(giant relatives of modern 741:were the principal food of 624:. Species that depended on 220:. It marked the end of the 18:Extinction of the dinosaurs 10: 16785: 16749:Hypothetical impact events 16212:Background extinction rate 15560:What killed the dinosaurs? 15463:Earth: An Intimate History 14344:10.1016/j.epsl.2008.01.015 13795:10.1016/j.epsl.2009.02.037 13460:10.1089/153110703321632453 13223:10.1038/s41561-023-01290-4 13122:10.1038/s41598-017-14199-x 13068:10.1038/s43017-022-00283-y 11170:10.1016/j.epsl.2016.07.041 10977:10.1038/d41586-022-00511-x 10889:10.1038/s41586-022-04446-1 10832:10.1038/s41598-021-03232-9 10774:10.1038/s41586-022-04446-1 10167:– via Springer Link. 10119:– via Springer Link. 9366:Geological Society, London 8379:10.1666/0094-8373-35.3.432 8333:10.1016/j.tree.2004.07.015 7592:10.1038/s41467-021-25136-y 7462:(3): rsos.201961, 201961. 7456:Royal Society Open Science 7278:10.1038/s41598-020-58511-8 3894:Cambridge University Press 3067:American Geophysical Union 2682:A geologic time scale 2004 2406: 1856: 1834:American Geophysical Union 1712:to former levels of plant 1567: 1211: 977:(reef-building clams) and 754:evolution of life on Earth 745:, a group of giant marine 248:, which is more common in 29: 16764:Meteorological hypotheses 16673: 16630: 16599: 16576: 16534:End-Jurassic or Tithonian 16461: 16413: 16404: 16356: 16290: 16274: 16263: 16204: 16074: 15688: 15612: 14006:: CS1 maint: unfit URL ( 13963:: CS1 maint: unfit URL ( 13922:: CS1 maint: unfit URL ( 12670:. Springer. p. 178. 12311:Osterloff, Emily (2018). 12108:10.1016/j.gca.2020.04.031 10393:10.1016/j.cub.2018.04.062 10150:10.1134/S0869593813070034 10102:10.1134/S0869593809010079 9346:: 369–379. Archived from 9329:Peligrotherium tropicalis 9233:10.1016/j.cub.2016.10.029 8556:. SpringerLink. pp.  7684:10.1016/j.cub.2017.04.043 6861:10.1038/s41559-018-0494-6 6654:10.1017/S0022336000024331 6545:10.1080/08912961003707349 6435:. Cambridge Univ Pr (E). 5900:10.1017/S0094837300015906 5801:10.1017/S0022336000026652 5280:10.1017/S0094837300012653 2588: – Research timeline 2440:sites anywhere on Earth. 1961:planetary differentiation 1847: 1753: 1260:Kawasphenodon peligrensis 1055:Terrestrial invertebrates 821:Braarudosphaera bigelowii 817:Thoracosphaera operculata 562:are clickable links; see 185:of three-quarters of the 98:Artist's rendering of an 16586:Lists of extinct species 15027:10.1016/j.gr.2020.04.007 14770:Marine Micropaleontology 12862:"Chicxulub impact event" 12426:10.1073/pnas.95.19.11028 11907:Marine Micropaleontology 9533:10.3389/fgene.2019.01241 9432:Wood, D. Joseph (2010). 9368:. Special Publications. 8915:Sullivan, R. M. (2003). 7766:. Special Publications. 7370:Tuatara: A living fossil 6433:Evolution of the Insects 5756:10.1126/science.11537491 5544:Marine Micropaleontology 5351:Marine Micropaleontology 5106:Marine Micropaleontology 4339:10.1144/gsjgs.154.2.0265 2915:Marine Micropaleontology 2563:Late Devonian extinction 2050:Trinidad Lake State Park 1719: 1640:increasing later in the 1514: 929:was a notable survivor. 224:period, and with it the 15431:10.1073/pnas.1817407116 15209:10.1029/PA004i003p00287 15070:10.1126/science.aac7549 14920:10.1126/science.aav1446 14695:2001P&SS...49..817K 14336:2008E&PSL.268..293K 14244:1986E&PSL..80..361C 13871:Brannen, Peter (2017). 13787:2009E&PSL.282...56K 13731:1994E&PSL.128..719P 13683:1987E&PSL..83....1P 13635:1992E&PSL.109..543S 13567:10.1126/science.aaf5684 13525:10.1073/pnas.1319253111 13341:10.1073/pnas.2004596117 13280:10.1073/pnas.1708980114 12237:2009M&PS...44.1917R 11976:10.1073/pnas.0400396101 11725:10.1073/pnas.1817407116 11272:Journal of Paleontology 11204:10.1126/science.1230492 11161:2016E&PSL.452..272C 10595:10.1126/science.abf1969 10507:10.1073/pnas.0900906106 10306:10.1126/science.1093807 9943:10.1126/science.1064706 9867:10.1126/science.abl5584 9654:10.1073/pnas.0334222100 9173:10.1126/science.1251981 8927:(5): 15. Archived from 8566:10.1007/3-540-25736-5_9 8191:10.1023/A:1003851316054 7119:Novacek, M. J. (1999). 6991:10.1073/pnas.1704632114 6633:Journal of Paleontology 6594:10.1126/science.abn2080 6346:10.1126/science.1129569 5949:10.1073/pnas.0535132100 5780:Journal of Paleontology 4025:10.1080/106351599260472 3936:10.1073/pnas.0808468106 3762:10.1073/pnas.1211526110 3696:10.1073/pnas.1110395108 3620:10.1073/pnas.2006087117 3538:10.1126/science.aay5055 3371:10.1073/pnas.1905989116 3231:10.1073/pnas.1319253111 3005:10.1126/science.1177265 2483:Western Interior Seaway 2266:sea surface temperature 1422:Dinosaur Park Formation 1086: 842:. Approximately 46% of 836:southern high latitudes 758:species diversification 705:, while animals on the 667:, which in turn fed on 94:Clockwise from the top: 16391:Latent extinction risk 14385:10.1126/sciadv.adg8284 12513:Bourgeois, J. (2009). 12321:Natural History Museum 10668:10.1073/pnas.93.5.2155 10244:10.1098/rsbl.2023.0314 10043:10.1098/rspb.2009.1255 9745:Alroy, J. (May 1998). 9706:10.1098/rspb.2015.3026 9589:10.1098/rspb.2024.0778 9481:10.1098/rsbl.2018.0458 9117:10.1098/rsbl.2006.0523 7807:Acta Zoologica Fennica 7643:10.4202/app.01083.2023 7411:10.1098/rspb.2014.0811 6290:10.1073/pnas.042492999 5606:10.1093/jcbiol/ruad018 5499:10.1098/rspb.2020.0730 5005:Courtillot, V (1999). 4939:10.2110/sepmsp.100.157 4516:10.1126/sciadv.add5040 4131:10.1098/rspb.2009.2177 3985:10.1098/rstb.1994.0045 3892:. Cambridge, England: 2548: 2334: 2165: 2101: 2061: 1908: 1896: 1750: 1577:(egg-laying mammals), 1418:Judith River Formation 1393: 1175:Albanerpeton galaktion 996: 896: 541: 446: 361:, plants, and all the 16724:Paleogene extinctions 16348:Paradox of enrichment 16237:Functional extinction 16227:Ecological extinction 15327:Nature Communications 13985:Astrobiology Magazine 13943:Astrobiology Magazine 13902:Astrobiology Magazine 12283:. 20 September 2011. 11773:Year designated: 1966 9519:Frontiers in Genetics 8514:"Dinosaur extinction" 8274:10.1093/molbev/msj124 7880:Nature Communications 7571:Nature Communications 4547:Kauffman, E. (2004). 4111:Friedman, M. (2010). 3907:Friedman, M. (2009). 2540: 2473:reducing the Earth's 2387:) possibly formed by 2338:Multiple impact event 2331: 2323:Manicouagan Reservoir 2150: 2095: 2047: 2024:discoveries from the 1919:, his son, geologist 1902: 1879: 1746: 1386: 991: 884: 597:, South America, and 570:source and image info 540: 467:Millions of years ago 445: 16744:Evolution of mammals 16617:Extinction Rebellion 16559:Pliocene–Pleistocene 16441:Cretaceous–Paleogene 16386:Hypothetical species 16376:Extinction threshold 16333:Overabundant species 15895:Cretaceous–Paleogene 15499:Kring, D.A. (2005). 15386:"The K–T extinction" 15109:(11–12): 1507–1520. 14596:10.1029/2018GL081215 13829:(E12): 28607–28625. 12492:10.1002/2016GL072241 11010:(23 February 2022). 10430:on 25 September 2006 10386:(11): 1825–1831.e2. 9353:on 12 February 2012. 8179:Geologie en Mijnbouw 7677:(11): 1641–1644.e2. 6812:10.20341/gb.2023.002 4408:on 27 February 2019. 3450:The Atlantic Monthly 2526:Based on studies at 2262:Hell Creek Formation 2123:years ago, based on 2112:dated the impact at 2084:class=notpageimage| 2018:Hell Creek Formation 1883:, left, and his son 1842:Hell Creek Formation 1748:Hell Creek Formation 1482:Hell Creek Formation 1410:Hell Creek Formation 1274:polyglyphanodontians 1166:Theatonius lancensis 951:with photosynthetic 901:marine invertebrates 877:Marine invertebrates 864:Numerous species of 764:. Evidence from the 329:acidified the oceans 167:, also known as the 157:Cretaceous–Paleogene 16544:Cenomanian-Turonian 16489:Cambrian–Ordovician 16421:Ordovician–Silurian 16328:Mutational meltdown 16313:Habitat destruction 16232:Extinct in the wild 15847:Ordovician-Silurian 15821:Cambrian-Ordovician 15761:Cenomanian-Turonian 15422:2019PNAS..116.8190D 15348:10.1038/ncomms12079 15340:2016NatCo...712079P 15251:10.1130/SPE247-p563 15160:1998Geo....26..995L 15115:2015GSAB..127.1507R 15061:2015Sci...350...76R 15018:2020GondR..85...19D 14970:2005PPP...216..303C 14911:2019Sci...363..866S 14858:Alvarez, W (1997). 14822:2018Geo....46..271Z 14736:2002PPP...178..165A 14644:2013PPP...387..153S 14547:1990SciAm.263d..85C 14534:Scientific American 14503:2000PPP...159....1B 14377:2023SciA....9G8284C 14292:1990PPP....89..291C 14180:1988Natur.333..843C 14116:1988Natur.333..841D 13835:1998JGR...10328607P 13516:2014PNAS..111.7537V 13334:(41): 25327–25334. 13273:(36): E7415–E7424. 13215:2023NatGe..16.1033S 13174:2014NatGe...7..279O 13114:2017NatSR...714855K 12962:10.1144/jgs2014-082 12911:1997JGR...10221645P 12905:(E9): 21645–21664. 12840:2007PPP...255....4K 12803:1999AREPS..27...75S 12720:1992Geo....20...99S 12643:2000Geo....28.1119N 12606:1996SedG..104..189A 12567:2005Geo....33...81L 12484:2017GeoRL..44..419B 12417:1998PNAS...9511028P 12411:(19): 11028–11029. 12369:2013JGRG..118..329R 12208:2009JRASC.103....7M 12152:10.1038/nature06070 12144:2007Natur.449...48B 11967:2004PNAS..101.3753K 11919:2003MarMP..48..251A 11864:2019Sci...364...10B 11716:2019PNAS..116.8190D 11618:1996Geo....24..527P 11517:1988Sci...241..567B 11464:1987Sci...236..705B 11407:1984Sci...224..867B 11314:1981Natur.292...47S 11112:2001Sci...291.1952M 11106:(5510): 1952–1955. 11008:Ouellette, Jennifer 10968:2022Natur.603...17B 10881:2022Natur.603...91D 10824:2021NatSR..1123704D 10766:2022Natur.603...91D 10718:1991Natur.352..420W 10700:Jack Wolfe (1991). 10659:1996PNAS...93.2155V 10587:2021Sci...372...63C 10498:2009PNAS..106.5737F 10351:1996Geo....24..963S 10037:(1677): 4271–4277. 9935:2001Sci...294.1700V 9929:(5547): 1700–1702. 9859:2022Sci...376...80B 9768:1998Sci...280..731A 9645:2003PNAS..100.1056S 9378:2006GSLSP.258..135G 9282:10.1038/nature05634 9274:2007Natur.446..507B 9165:2014Sci...344..898M 9034:10.1038/nature03150 9026:2005Natur.433..305C 8966:1996Sci...274.1164H 8960:(5290): 1164–1167. 8887:2001caev.conf.3139F 8835:1986Sci...232..629S 8790:2001Palai..16..482R 8725:2010PPP...288...82R 8649:2016CrRes..57..368F 8636:Cretaceous Research 8423:2014Pbio...40..288P 8371:2009Pbio...35..432B 8092:2022JVPal..42E3828M 8043:2023Palgy..6612638A 7902:10.1038/ncomms10825 7893:2016NatCo...710825F 7844:2022CrRes.14005339O 7831:Cretaceous Research 7776:1989GSLSP..47..197C 7584:2021NatCo..12.5335K 7533:2023JSPal..2181494X 7476:10.1098/rsos.201961 7468:2021RSOS....801961H 7339:10.1038/nature01995 7331:2003Natur.425..609A 6984:(29): E5864–E5870. 6907:10.1130/spe247-p549 6761:2004GSAB..116..760R 6682:Cretaceous Research 6646:1998JPal...72..556Z 6586:2023Sci...379..802G 6537:2010HBio...22...71N 6475:2004PPP...214..181K 6395:2018PPP...491..161W 6338:2006Sci...313.1112W 6332:(5790): 1112–1115. 6281:2002PNAS...99.2061L 6138:2011Geo....39..483I 6097:2002Geo....30..954H 6057:1991Geo....19.1181W 5843:1996Sci...274.1360M 5837:(5291): 1360–1363. 5793:1994JPal...68.1048M 5748:1993Sci...260..971R 5688:1997Faci...36..123V 5641:Cretaceous Research 5452:1993Palai...8..140B 5363:2002MarMP..44...57G 5315:Sedimentary Geology 5039:Cretaceous Research 4976:1998GSLSP.140..217M 4894:2004GSLSP.230..257G 4852:10.1017/pab.2015.28 4719:2005Geo....33..653B 4682:1996Geo....24..255P 4620:2014GSAB..126..289C 4570:2004Palai..19...96K 4476:1992Geo....20..556S 4436:2007Geo....35..227A 4383:1986Geo....14..868S 4331:1997JGSoc.154..265M 4125:(1688): 1675–1683. 4071:1995Sci...267..637F 3927:2009PNAS..106.5218F 3840:2013PLoSO...876683R 3753:2012PNAS..10921396L 3687:2011PNAS..10815253L 3681:(37): 15253–15257. 3611:2020PNAS..11717084C 3605:(29): 17084–17093. 3530:2020Sci...367..266H 3362:2019PNAS..11622500H 3356:(45): 22500–22504. 3282:1991Geo....19..867H 3222:2014PNAS..111.7537V 3155:1980Sci...208.1095A 3149:(4448): 1095–1108. 2997:2010Sci...327.1214S 2991:(5970): 1214–1218. 2927:2023MarMP.180j2214F 2869:2023PPP...61011334I 2810:2023GSAB..135.2451J 1949:siderophile element 1915:-winning physicist 1872:Evidence for impact 1805:Signor–Lipps effect 1660:organisms, such as 1625:even-toed ungulates 1621:whales and dolphins 1493:Ojo Alamo Sandstone 1402:dinosaur physiology 1379:Non-avian dinosaurs 1251:Sphenodon punctatus 1049:carbonate platforms 1011:(which had already 909:, a class of small 893:Owl Creek Formation 886:Discoscaphites iris 766:Salamanca Formation 421:Extinction patterns 169:Cretaceous–Tertiary 16759:Mesozoic volcanism 16729:Cenozoic volcanism 15785:Rainforest collaps 15615:Alvarez hypothesis 15545:Chicxulub asteroid 15533:. pp. 52–65. 15384:Cowen, R. (2000). 15309:– via JSTOR. 14022:Chatterjee, Sankar 13939:"Multiple impacts" 13586:The New York Times 13388:Scientific Reports 13102:Scientific Reports 12378:10.1002/jgrg.20018 10929:. 23 February 2022 10184:Rethinking Ecology 9700:(1833): 20153026. 8149:10.1017/pab.2024.5 8052:10.1111/pala.12638 7405:(1792): 20140811. 7265:Scientific Reports 7230:10.1111/pala.12486 7075:Journal of Anatomy 6524:Historical Biology 5696:10.1007/BF02536880 4011:Systematic Biology 3486:The New York Times 3313:The New York Times 3188:on 24 August 2019. 2643:' (abbreviated as 2549: 2335: 2312:tropospheric ozone 2210:infrared radiation 2166: 2125:argon–argon dating 2102: 2062: 2034:Chicxulub asteroid 1909: 1897: 1863:Alvarez hypothesis 1751: 1648:Terrestrial plants 1537:hesperornithiforms 1505:dead clade walking 1443:Pachycephalosaurus 1394: 1337:, only the family 1109:cartilaginous fish 1069:Naktodemasis bowni 997: 897: 853:The occurrence of 699:primary production 589:of North America, 566:for more details. 542: 447: 395:adaptive radiation 289:Alvarez hypothesis 16701: 16700: 16653:Extinction symbol 16572: 16571: 16436:Triassic–Jurassic 16406:Extinction events 16282:Extinction vortex 16242:Genetic pollution 16164: 16163: 15883:Triassic–Jurassic 15809:Smithian-Spathian 15737:Toarcian turnover 15682:Extinction events 15648: 15647: 15473:978-0-375-70620-2 15416:(17): 8190–8199. 15280:Micropaleontology 15005:Gondwana Research 14905:(6429): 866–870. 14877:978-0-691-01630-6 14464:on 6 October 2022 14174:(6176): 843–846. 14110:(6176): 841–843. 14039:978-90-6764-254-5 13882:978-0-06-236480-7 13843:10.1029/98JE02496 13510:(21): 7537–7541. 13401:10.1038/srep28427 13209:(11): 1033–1040. 13202:Nature Geoscience 13161:Nature Geoscience 13020:10.1119/1.3192770 12920:10.1029/97JE01743 12677:978-3-319-06133-7 12637:(12): 1119–1122. 12531:978-0-674-03173-9 12231:(12): 1917–1927. 11710:(17): 8190–8199. 11511:(4865): 567–570. 11458:(4802): 705–709. 11198:(6120): 684–687. 11055:978-0-8137-2190-3 11040:Schultz, Peter H. 10492:(14): 5737–5742. 10009:978-0-393-96657-2 9983:978-0-8137-2247-4 9418:978-0-231-11012-9 9268:(7135): 507–512. 9159:(6186): 989–900. 9020:(7023): 305–308. 8829:(4750): 629–633. 8694:978-0-691-05900-6 8575:978-3-540-25735-6 8530:978-0-520-24209-8 7379:978-0-931625-43-5 7368:Lutz, D. (2005). 7325:(6958): 609–612. 7175:978-0-8137-2503-1 7088:10.1111/joa.12414 6916:978-0-8137-2247-4 6803:Geologica Belgica 6580:(6634): 802–806. 6507:978-0-412-39380-8 6498:The Fossil Record 6442:978-0-511-12388-7 6051:(12): 1181–1184. 5742:(5110): 971–973. 5422:978-0-442-31167-4 5198:978-0-393-96657-2 5075:Micropaleontology 5018:978-0-521-58392-3 4791:Nature Geoscience 4444:10.1130/G23197A.1 4217:(10): 1254–1266. 4181:978-0-520-24209-8 4065:(5198): 637–638. 3806:978-0-8137-2361-7 3747:(52): 21396–401. 3589:Morgan, Joanna V. 3524:(6475): 266–272. 3429:978-90-481-3427-4 2772:978-1-55868-522-2 2747:978-0-375-70261-7 2691:978-0-521-78142-8 2599:Explanatory notes 2516:marine regression 2470:continental shelf 2455:mountain building 2300:calcium carbonate 2170:teratonnes of TNT 2155:in what is today 2153:Yucatán Peninsula 2143:Effects of impact 2132:Baptistina family 1579:multituberculates 1491:recovered in the 1235:rhynchocephalians 1035:, as well as the 823:at the boundary. 762:ecological niches 727:freshwater snails 711:Coccolithophorids 475: 301:Yucatán Peninsula 16:(Redirected from 16776: 16691: 16690: 16681: 16680: 16658:Human extinction 16549:Eocene–Oligocene 16431:Permian–Triassic 16411: 16410: 16381:Field of Bullets 16338:Overexploitation 16323:Muller's ratchet 16308:Invasive species 16269: 16257:Pseudoextinction 16252:Local extinction 16191: 16184: 16177: 16168: 16167: 15921: 15916: 15909: 15904: 15897: 15892: 15885: 15880: 15873: 15868: 15861: 15856: 15849: 15844: 15835: 15830: 15823: 15818: 15811: 15806: 15799: 15794: 15787: 15782: 15775: 15770: 15763: 15758: 15751: 15746: 15739: 15734: 15727: 15722: 15715: 15710: 15703: 15698: 15675: 15668: 15661: 15652: 15651: 15640:Silverpit crater 15629:Chicxulub crater 15599: 15592: 15585: 15576: 15575: 15548: 15523:(8 April 2019). 15521:Preston, Douglas 15516: 15514: 15512: 15485: 15453: 15443: 15433: 15400: 15398: 15396: 15370: 15369: 15359: 15317: 15311: 15310: 15308: 15306: 15271: 15265: 15264: 15234: 15228: 15227: 15225: 15223: 15186: 15180: 15179: 15141: 15135: 15134: 15123:10.1130/B31167.1 15098: 15089: 15083: 15082: 15072: 15038: 15032: 15031: 15029: 14995: 14989: 14988: 14986: 14984: 14964:(3–4): 303–332. 14947: 14941: 14940: 14922: 14888: 14882: 14881: 14865: 14855: 14849: 14848: 14846: 14844: 14830:10.1130/G39992.1 14799: 14793: 14792: 14790: 14788: 14761: 14755: 14754: 14752: 14750: 14730:(3–4): 165–196. 14713: 14707: 14706: 14678: 14669: 14663: 14662: 14660: 14658: 14621: 14615: 14614: 14612: 14610: 14590:(6): 3462–3472. 14573: 14567: 14566: 14528: 14522: 14521: 14519: 14517: 14480: 14474: 14473: 14471: 14469: 14463: 14457:. Archived from 14430: 14421: 14415: 14414: 14404: 14371:(40): eadg8284. 14364:Science Advances 14354: 14348: 14347: 14330:(3–4): 293–311. 14317: 14311: 14310: 14308: 14306: 14269: 14263: 14262: 14260: 14258: 14238:(3–4): 361–374. 14221: 14215: 14214: 14212: 14210: 14188:10.1038/333843a0 14157: 14151: 14150: 14148: 14146: 14124:10.1038/333841a0 14093: 14084: 14083: 14081: 14079: 14050: 14044: 14043: 14018: 14012: 14011: 14005: 13997: 13995: 13993: 13975: 13969: 13968: 13962: 13954: 13952: 13950: 13934: 13928: 13927: 13921: 13913: 13911: 13909: 13893: 13887: 13886: 13868: 13862: 13861: 13859: 13857: 13812: 13806: 13805: 13803: 13801: 13764: 13758: 13757: 13755: 13753: 13725:(3–4): 719–725. 13708: 13702: 13701: 13699: 13697: 13660: 13654: 13653: 13651: 13649: 13629:(3–4): 543–559. 13612: 13603: 13602: 13600: 13598: 13577: 13571: 13570: 13554: 13548: 13547: 13537: 13527: 13493: 13487: 13486: 13484: 13482: 13437: 13431: 13430: 13420: 13378: 13372: 13371: 13361: 13343: 13317: 13311: 13310: 13300: 13282: 13256: 13250: 13249: 13247: 13245: 13192: 13186: 13185: 13182:10.1038/ngeo2095 13155: 13144: 13143: 13133: 13093: 13087: 13086: 13084: 13082: 13045: 13039: 13038: 13036: 13034: 12997: 12991: 12990: 12988: 12986: 12973: 12939: 12933: 12932: 12922: 12888: 12882: 12881: 12879: 12877: 12866:www.lpi.usra.edu 12858: 12852: 12851: 12821: 12815: 12814: 12784: 12778: 12777: 12775: 12773: 12767: 12756: 12746: 12740: 12739: 12700: 12694: 12693: 12691: 12689: 12661: 12655: 12654: 12624: 12618: 12617: 12600:(1–4): 189–201. 12585: 12579: 12578: 12575:10.1130/G21057.1 12549: 12543: 12542: 12540: 12538: 12519: 12510: 12504: 12503: 12467: 12458: 12449: 12448: 12438: 12428: 12394: 12383: 12382: 12380: 12346: 12337: 12336: 12334: 12332: 12308: 12297: 12296: 12294: 12292: 12273: 12267: 12266: 12248: 12218: 12212: 12211: 12201: 12178: 12172: 12171: 12125: 12119: 12118: 12116: 12114: 12084: 12078: 12077: 12075: 12073: 12056:Perlman, David. 12053: 12047: 12046: 12044: 12042: 12022:(7): 1127–1144. 12005: 11999: 11998: 11988: 11978: 11944: 11938: 11937: 11935: 11933: 11913:(3–4): 251–279. 11898: 11892: 11891: 11845: 11839: 11838: 11836: 11834: 11828: 11816: 11810: 11799: 11793: 11782: 11776: 11775: 11770: 11768: 11754: 11748: 11747: 11737: 11727: 11692: 11686: 11685: 11683: 11681: 11661:(7): 1035–1067. 11644: 11638: 11637: 11599: 11593: 11592: 11590: 11588: 11551: 11545: 11544: 11498: 11492: 11491: 11441: 11435: 11434: 11388: 11382: 11381: 11379: 11377: 11340: 11334: 11333: 11322:10.1038/292047a0 11295: 11289: 11288: 11266: 11260: 11259: 11257: 11255: 11240: 11231: 11230: 11228: 11226: 11181: 11175: 11174: 11172: 11138: 11132: 11131: 11095: 11086: 11080: 11079: 11077: 11075: 11035: 11029: 11028: 11026: 11024: 11004: 10998: 10997: 10979: 10945: 10939: 10938: 10936: 10934: 10917: 10911: 10910: 10900: 10860: 10854: 10853: 10843: 10802: 10796: 10795: 10785: 10744: 10738: 10737: 10726:10.1038/352420a0 10697: 10691: 10690: 10680: 10670: 10653:(5): 2155–2158. 10636: 10630: 10629: 10627: 10625: 10564: 10558: 10557: 10555: 10553: 10536: 10530: 10529: 10519: 10509: 10475: 10469: 10468: 10466: 10464: 10446: 10440: 10439: 10437: 10435: 10420: 10414: 10413: 10395: 10369: 10363: 10362: 10332: 10326: 10325: 10283: 10274: 10273: 10263: 10223: 10217: 10216: 10214: 10212: 10199: 10175: 10169: 10168: 10166: 10164: 10127: 10121: 10120: 10118: 10116: 10079: 10073: 10072: 10062: 10020: 10014: 10013: 9994: 9988: 9987: 9969: 9963: 9962: 9916: 9905: 9904: 9878: 9842: 9833: 9827: 9826: 9824: 9822: 9805: 9799: 9794: 9788: 9787: 9751: 9742: 9736: 9735: 9725: 9683: 9677: 9676: 9666: 9656: 9639:(3): 1056–1061. 9622: 9613: 9612: 9603: 11286128. 9570: 9564: 9563: 9553: 9535: 9509: 9503: 9502: 9492: 9458: 9452: 9451: 9449: 9447: 9429: 9423: 9422: 9404: 9398: 9397: 9361: 9355: 9354: 9352: 9335: 9322: 9316: 9315: 9309: 9301: 9255: 9246: 9245: 9235: 9209: 9203: 9202: 9184: 9145: 9139: 9138: 9128: 9094: 9088: 9087: 9085: 9083: 9068: 9062: 9061: 9009: 9000: 8994: 8993: 8947: 8941: 8940: 8938: 8936: 8912: 8906: 8905: 8903: 8901: 8895: 8880: 8869: 8863: 8862: 8816: 8810: 8809: 8770: 8764: 8763: 8743: 8737: 8736: 8705: 8699: 8698: 8682: 8669: 8663: 8662: 8660: 8626: 8620: 8619: 8617: 8615: 8586: 8580: 8579: 8555: 8544: 8535: 8534: 8518: 8509: 8494: 8493: 8483: 8473: 8449: 8443: 8442: 8406: 8397: 8391: 8390: 8351: 8345: 8344: 8316: 8307: 8301: 8300: 8294: 8286: 8276: 8267:(6): 1144–1155. 8250: 8244: 8243: 8241: 8239: 8233: 8218: 8209: 8203: 8202: 8174: 8168: 8167: 8165: 8163: 8126: 8120: 8119: 8071: 8065: 8064: 8054: 8020: 8014: 8013: 7985: 7976: 7970: 7969: 7944:(6): 1375–1382. 7931: 7925: 7924: 7914: 7904: 7870: 7864: 7863: 7821: 7815: 7814: 7802: 7796: 7795: 7759: 7753: 7752: 7750: 7748: 7711: 7705: 7704: 7686: 7660: 7654: 7653: 7651: 7649: 7620: 7614: 7613: 7603: 7561: 7555: 7554: 7544: 7512: 7506: 7505: 7495: 7447: 7441: 7440: 7430: 7390: 7384: 7383: 7365: 7359: 7358: 7314: 7308: 7307: 7297: 7255: 7249: 7248: 7246: 7244: 7207: 7201: 7200: 7194: 7189: 7187: 7179: 7157: 7151: 7150: 7116: 7110: 7109: 7099: 7065: 7059: 7058: 7028: 7022: 7021: 7011: 6993: 6967: 6961: 6960: 6946: 6940: 6939: 6927: 6921: 6920: 6894: 6888: 6887: 6885: 6883: 6838: 6832: 6831: 6829: 6827: 6814: 6794: 6788: 6787: 6785: 6779:. Archived from 6769:10.1130/B25402.1 6755:(5–6): 760–768. 6744: 6735: 6716: 6715: 6713: 6711: 6706: 6672: 6666: 6665: 6627: 6621: 6620: 6618: 6616: 6563: 6557: 6556: 6518: 6512: 6511: 6493: 6487: 6486: 6456: 6447: 6446: 6428: 6422: 6421: 6419: 6417: 6372: 6366: 6365: 6319: 6313: 6312: 6302: 6292: 6275:(4): 2061–2066. 6258: 6249: 6248: 6238: 6220: 6194: 6188: 6187: 6171: 6165: 6164: 6162: 6160: 6146:10.1130/G31724.1 6115: 6109: 6108: 6078: 6069: 6068: 6037: 6028: 6027: 6025: 6023: 5986: 5980: 5979: 5969: 5951: 5942:(5): 2478–2482. 5925: 5919: 5918: 5916: 5914: 5877: 5871: 5870: 5824: 5813: 5812: 5787:(5): 1048–1066. 5774: 5768: 5767: 5729: 5723: 5722: 5714: 5708: 5707: 5671: 5665: 5664: 5662: 5660: 5631: 5625: 5624: 5622: 5620: 5583: 5577: 5576: 5574: 5572: 5567: 5535: 5529: 5528: 5518: 5478: 5472: 5471: 5433: 5427: 5426: 5408: 5402: 5401: 5381: 5375: 5374: 5345: 5339: 5338: 5336: 5334: 5305: 5299: 5298: 5296: 5294: 5257: 5251: 5250: 5248: 5246: 5209: 5203: 5202: 5183: 5177: 5176: 5174: 5172: 5135: 5129: 5128: 5126: 5124: 5097: 5091: 5090: 5069: 5063: 5062: 5060: 5058: 5029: 5023: 5022: 5002: 4996: 4995: 4959: 4953: 4952: 4920: 4914: 4913: 4877: 4871: 4870: 4868: 4866: 4829: 4823: 4822: 4820: 4818: 4781: 4775: 4774: 4746: 4737: 4731: 4730: 4727:10.1130/G21566.1 4700: 4694: 4693: 4663: 4657: 4656: 4654: 4652: 4639: 4628:10.1130/B30915.1 4614:(3–4): 289–306. 4596: 4590: 4589: 4553: 4544: 4538: 4537: 4527: 4510:(49): eadd5040. 4504:Science Advances 4494: 4488: 4487: 4457: 4448: 4447: 4416: 4410: 4409: 4407: 4401:. Archived from 4366: 4357: 4351: 4350: 4311: 4276: 4275: 4245: 4234: 4233: 4231: 4229: 4200: 4194: 4193: 4169: 4159: 4153: 4152: 4142: 4108: 4099: 4098: 4049: 4038: 4037: 4027: 3998: 3989: 3988: 3968: 3959: 3958: 3948: 3938: 3904: 3898: 3897: 3885: 3872: 3871: 3861: 3851: 3817: 3811: 3810: 3791: 3785: 3784: 3774: 3764: 3730: 3719: 3718: 3708: 3698: 3664: 3651: 3650: 3640: 3622: 3584: 3575: 3574: 3572: 3570: 3549: 3507: 3498: 3497: 3495: 3493: 3476: 3467: 3466: 3464: 3462: 3440: 3434: 3433: 3413: 3400: 3394: 3393: 3383: 3373: 3339: 3330: 3329: 3327: 3325: 3303: 3294: 3293: 3263: 3254: 3253: 3243: 3233: 3199: 3190: 3189: 3187: 3181:. Archived from 3138: 3129: 3116: 3115: 3113: 3111: 3089: 3083: 3082: 3080: 3078: 3058: 3052: 3051: 3049: 3047: 3031: 3025: 3024: 2980: 2971: 2954: 2953: 2951: 2949: 2905: 2896: 2895: 2893: 2891: 2846: 2837: 2836: 2834: 2832: 2818:10.1130/B36487.1 2786: 2777: 2776: 2758: 2752: 2751: 2728: 2722: 2721: 2719: 2717: 2702: 2696: 2695: 2677: 2661: 2658: 2652: 2637: 2631: 2608: 2463:mid-ocean ridges 2386: 2384: 2373:Silverpit crater 2370: 2368: 2353:Chicxulub crater 2345:Shoemaker–Levy 9 2175: 2157:Southeast Mexico 2122: 2120: 2118: 2098:Chicxulub crater 2077: 2076: 2070: 2026:Upper Cretaceous 2008:in southwestern 1996:on the coast of 1990:Chicxulub crater 1947:because it is a 1931:discovered that 1887:, right, at the 1867:Chicxulub crater 1853:Chicxulub impact 1844:nearly 2 years. 1838:Chicxulub impact 1591:meridiolestidans 1533:enantiornithines 1509:reworked fossils 1502: 1207: 1061:flowering plants 958:Most species of 791:that formed the 564:Extinction event 519: 512: 505: 498: 491: 484: 477: 473: 468: 463: 462: 456: 293:Chicxulub crater 269:massive asteroid 212:species such as 177: 165:extinction event 87: 78: 67: 58: 47: 32:Extinction event 21: 16784: 16783: 16779: 16778: 16777: 16775: 16774: 16773: 16704: 16703: 16702: 16697: 16669: 16626: 16595: 16578:Extinct species 16568: 16524:Carnian Pluvial 16469:Great Oxidation 16457: 16400: 16366:Extinction debt 16358: 16352: 16303:Genetic erosion 16286: 16270: 16261: 16200: 16195: 16165: 16160: 16159: 16158: 16157: 16156: 16153: 16152: 16151: 16146: 16145: 16140: 16139: 16134: 16133: 16128: 16127: 16122: 16121: 16116: 16115: 16110: 16109: 16104: 16103: 16098: 16097: 16092: 16091: 16086: 16085: 16080: 16079: 16073: 16072: 16071: 16070: 16065: 16064: 16063: 16058: 16057: 16056: 16051: 16050: 16049: 16043: 16042: 16041: 16040: 16033: 16032: 16031: 16024: 16023: 16022: 16015: 16014: 16013: 16006: 16005: 16004: 15997: 15996: 15995: 15988: 15987: 15986: 15979: 15978: 15977: 15970: 15969: 15968: 15961: 15960: 15959: 15952: 15951: 15950: 15943: 15942: 15941: 15934: 15933: 15932: 15924: 15923: 15922: 15917: 15914: 15911: 15910: 15905: 15902: 15899: 15898: 15893: 15890: 15887: 15886: 15881: 15878: 15875: 15874: 15869: 15866: 15863: 15862: 15857: 15854: 15851: 15850: 15845: 15842: 15838: 15837: 15836: 15831: 15828: 15825: 15824: 15819: 15816: 15813: 15812: 15807: 15804: 15801: 15800: 15795: 15792: 15789: 15788: 15783: 15780: 15777: 15776: 15771: 15768: 15765: 15764: 15759: 15756: 15753: 15752: 15747: 15744: 15741: 15740: 15735: 15732: 15729: 15728: 15723: 15720: 15717: 15716: 15711: 15708: 15705: 15704: 15699: 15696: 15684: 15679: 15649: 15644: 15608: 15603: 15556: 15551: 15510: 15508: 15507:on 29 June 2007 15474: 15458:Fortey, Richard 15394: 15392: 15379: 15377:Further reading 15374: 15373: 15318: 15314: 15304: 15302: 15292:10.2307/1485619 15272: 15268: 15261: 15235: 15231: 15221: 15219: 15187: 15183: 15154:(11): 995–998. 15142: 15138: 15096: 15090: 15086: 15055:(6256): 76–78. 15039: 15035: 14996: 14992: 14982: 14980: 14948: 14944: 14889: 14885: 14878: 14856: 14852: 14842: 14840: 14800: 14796: 14786: 14784: 14762: 14758: 14748: 14746: 14714: 14710: 14676: 14670: 14666: 14656: 14654: 14622: 14618: 14608: 14606: 14574: 14570: 14529: 14525: 14515: 14513: 14481: 14477: 14467: 14465: 14461: 14428: 14422: 14418: 14355: 14351: 14318: 14314: 14304: 14302: 14270: 14266: 14256: 14254: 14222: 14218: 14208: 14206: 14158: 14154: 14144: 14142: 14094: 14087: 14077: 14075: 14051: 14047: 14040: 14024:(August 1997). 14019: 14015: 13999: 13998: 13991: 13989: 13976: 13972: 13956: 13955: 13948: 13946: 13935: 13931: 13915: 13914: 13907: 13905: 13894: 13890: 13883: 13869: 13865: 13855: 13853: 13813: 13809: 13799: 13797: 13765: 13761: 13751: 13749: 13709: 13705: 13695: 13693: 13661: 13657: 13647: 13645: 13613: 13606: 13596: 13594: 13579: 13578: 13574: 13555: 13551: 13494: 13490: 13480: 13478: 13438: 13434: 13379: 13375: 13318: 13314: 13257: 13253: 13243: 13241: 13193: 13189: 13156: 13147: 13094: 13090: 13080: 13078: 13046: 13042: 13032: 13030: 12998: 12994: 12984: 12982: 12940: 12936: 12889: 12885: 12875: 12873: 12860: 12859: 12855: 12822: 12818: 12785: 12781: 12771: 12769: 12765: 12754: 12748: 12747: 12743: 12701: 12697: 12687: 12685: 12678: 12662: 12658: 12625: 12621: 12586: 12582: 12550: 12546: 12536: 12534: 12532: 12517: 12511: 12507: 12465: 12459: 12452: 12395: 12386: 12347: 12340: 12330: 12328: 12309: 12300: 12290: 12288: 12275: 12274: 12270: 12246:10.1.1.712.8165 12219: 12215: 12179: 12175: 12138:(7158): 48–53. 12126: 12122: 12112: 12110: 12085: 12081: 12071: 12069: 12054: 12050: 12040: 12038: 12006: 12002: 11945: 11941: 11931: 11929: 11899: 11895: 11858:(6435): 10–11. 11846: 11842: 11832: 11830: 11826: 11817: 11813: 11800: 11796: 11783: 11779: 11766: 11764: 11756: 11755: 11751: 11693: 11689: 11679: 11677: 11645: 11641: 11600: 11596: 11586: 11584: 11552: 11548: 11499: 11495: 11442: 11438: 11401:(4651): 867–9. 11389: 11385: 11375: 11373: 11341: 11337: 11308:(5818): 47–49. 11296: 11292: 11267: 11263: 11253: 11251: 11249:livescience.com 11241: 11234: 11224: 11222: 11182: 11178: 11139: 11135: 11093: 11087: 11083: 11073: 11071: 11056: 11036: 11032: 11022: 11020: 11005: 11001: 10946: 10942: 10932: 10930: 10919: 10918: 10914: 10875:(7899): 91–94. 10861: 10857: 10803: 10799: 10760:(7899): 91–94. 10745: 10741: 10698: 10694: 10637: 10633: 10623: 10621: 10581:(6537): 63–68. 10565: 10561: 10551: 10549: 10538: 10537: 10533: 10476: 10472: 10462: 10460: 10447: 10443: 10433: 10431: 10422: 10421: 10417: 10379:Current Biology 10370: 10366: 10345:(11): 963–967. 10333: 10329: 10284: 10277: 10232:Biology Letters 10224: 10220: 10210: 10208: 10176: 10172: 10162: 10160: 10128: 10124: 10114: 10112: 10080: 10076: 10021: 10017: 10010: 9995: 9991: 9984: 9970: 9966: 9917: 9908: 9853:(6588): 80–85. 9834: 9830: 9820: 9818: 9817:. 31 March 2022 9807: 9806: 9802: 9795: 9791: 9762:(5364): 731–4. 9749: 9743: 9739: 9684: 9680: 9623: 9616: 9571: 9567: 9510: 9506: 9475:(9): 20180458. 9468:Biology Letters 9459: 9455: 9445: 9443: 9430: 9426: 9419: 9405: 9401: 9362: 9358: 9350: 9333: 9323: 9319: 9303: 9302: 9256: 9249: 9219:Current Biology 9210: 9206: 9146: 9142: 9104:Biology Letters 9095: 9091: 9081: 9079: 9070: 9069: 9065: 9007: 9001: 8997: 8948: 8944: 8934: 8932: 8931:on 8 April 2011 8913: 8909: 8899: 8897: 8893: 8878: 8870: 8866: 8817: 8813: 8771: 8767: 8744: 8740: 8706: 8702: 8695: 8670: 8666: 8627: 8623: 8613: 8611: 8587: 8583: 8576: 8545: 8538: 8531: 8516: 8510: 8497: 8464:(3): e2001663. 8450: 8446: 8404: 8398: 8394: 8352: 8348: 8327:(10): 516–522. 8314: 8308: 8304: 8288: 8287: 8251: 8247: 8237: 8235: 8231: 8216: 8210: 8206: 8175: 8171: 8161: 8159: 8127: 8123: 8072: 8068: 8021: 8017: 7983: 7977: 7973: 7932: 7928: 7871: 7867: 7822: 7818: 7803: 7799: 7760: 7756: 7746: 7744: 7712: 7708: 7670:Current Biology 7661: 7657: 7647: 7645: 7621: 7617: 7562: 7558: 7513: 7509: 7448: 7444: 7391: 7387: 7380: 7366: 7362: 7315: 7311: 7256: 7252: 7242: 7240: 7208: 7204: 7192: 7190: 7181: 7180: 7176: 7158: 7154: 7139:10.2307/2666178 7117: 7113: 7066: 7062: 7029: 7025: 6968: 6964: 6947: 6943: 6928: 6924: 6917: 6895: 6891: 6881: 6879: 6839: 6835: 6825: 6823: 6795: 6791: 6783: 6742: 6736: 6719: 6709: 6707: 6673: 6669: 6628: 6624: 6614: 6612: 6564: 6560: 6519: 6515: 6508: 6494: 6490: 6457: 6450: 6443: 6429: 6425: 6415: 6413: 6373: 6369: 6320: 6316: 6259: 6252: 6211:(8): e0288046. 6195: 6191: 6172: 6168: 6158: 6156: 6116: 6112: 6091:(10): 954–955. 6079: 6072: 6038: 6031: 6021: 6019: 5987: 5983: 5926: 5922: 5912: 5910: 5878: 5874: 5825: 5816: 5775: 5771: 5730: 5726: 5715: 5711: 5672: 5668: 5658: 5656: 5632: 5628: 5618: 5616: 5584: 5580: 5570: 5568: 5536: 5532: 5479: 5475: 5460:10.2307/3515168 5434: 5430: 5423: 5409: 5405: 5382: 5378: 5346: 5342: 5332: 5330: 5322:(1–2): 77–109. 5306: 5302: 5292: 5290: 5258: 5254: 5244: 5242: 5210: 5206: 5199: 5184: 5180: 5170: 5168: 5136: 5132: 5122: 5120: 5098: 5094: 5070: 5066: 5056: 5054: 5030: 5026: 5019: 5003: 4999: 4960: 4956: 4949: 4921: 4917: 4878: 4874: 4864: 4862: 4830: 4826: 4816: 4814: 4804:10.1038/ngeo775 4782: 4778: 4744: 4738: 4734: 4701: 4697: 4664: 4660: 4650: 4648: 4597: 4593: 4551: 4545: 4541: 4495: 4491: 4458: 4451: 4417: 4413: 4405: 4377:(10): 868–870. 4364: 4358: 4354: 4312: 4279: 4246: 4237: 4227: 4225: 4201: 4197: 4182: 4160: 4156: 4109: 4102: 4050: 4041: 3999: 3992: 3979:(1307): 11–17. 3969: 3962: 3905: 3901: 3886: 3875: 3818: 3814: 3807: 3792: 3788: 3731: 3722: 3665: 3654: 3585: 3578: 3568: 3566: 3508: 3501: 3491: 3489: 3477: 3470: 3460: 3458: 3441: 3437: 3430: 3401: 3397: 3340: 3333: 3323: 3321: 3304: 3297: 3264: 3257: 3216:(21): 7537–41. 3200: 3193: 3185: 3136: 3130: 3119: 3109: 3107: 3099:BBC News Online 3090: 3086: 3076: 3074: 3059: 3055: 3045: 3043: 3042:. PBS-WGBH/Nova 3032: 3028: 2978: 2972: 2957: 2947: 2945: 2906: 2899: 2889: 2887: 2847: 2840: 2830: 2828: 2787: 2780: 2773: 2759: 2755: 2748: 2732:Fortey, Richard 2729: 2725: 2715: 2713: 2704: 2703: 2699: 2692: 2678: 2674: 2669: 2664: 2659: 2655: 2638: 2634: 2609: 2605: 2601: 2554: 2511: 2509:Multiple causes 2446: 2411: 2405: 2382: 2380: 2366: 2364: 2340: 2319:mass extinction 2216:. This is the " 2173: 2161:mass extinction 2145: 2116: 2114: 2113: 2090: 2089: 2088: 2086: 2080: 2079: 2078: 1992:, buried under 1923:, and chemists 1874: 1869: 1857:Main articles: 1855: 1850: 1800: 1782:inferences and 1776:palaeobotanical 1756: 1722: 1650: 1599:deltatheroidans 1570: 1525:Origin of birds 1521:paleontologists 1517: 1500: 1381: 1360:ornithocheirids 1348: 1331:marine reptiles 1314: 1286: 1284:Marine reptiles 1231: 1214: 1205: 1189: 1184: 1171:albanerpetontid 1156: 1089: 1073:Lilliput effect 1057: 879: 812:microbial cysts 808:dinoflagellates 774: 683:lake ecosystems 576: 575: 574: 544: 543: 539: 521: 520: 515: 513: 508: 506: 501: 499: 494: 492: 487: 485: 480: 478: 471: 469: 466: 464: 459: 457: 451: 448: 444: 423: 373:and devastated 344:asteroid impact 305:asteroid impact 234:geologic record 183:mass extinction 171: 153: 152: 151: 150: 90: 89: 88: 80: 79: 70: 69: 68: 60: 59: 50: 49: 48: 35: 28: 23: 22: 15: 12: 11: 5: 16782: 16772: 16771: 16766: 16761: 16756: 16751: 16746: 16741: 16736: 16731: 16726: 16721: 16716: 16699: 16698: 16696: 16695: 16685: 16674: 16671: 16670: 16668: 16667: 16660: 16655: 16650: 16645: 16640: 16634: 16632: 16628: 16627: 16625: 16624: 16619: 16614: 16609: 16603: 16601: 16597: 16596: 16594: 16593: 16588: 16582: 16580: 16574: 16573: 16570: 16569: 16567: 16566: 16561: 16556: 16554:Middle Miocene 16551: 16546: 16541: 16536: 16531: 16526: 16521: 16519:End-Capitanian 16516: 16511: 16506: 16501: 16496: 16491: 16486: 16481: 16476: 16471: 16465: 16463: 16459: 16458: 16456: 16455: 16454: 16453: 16443: 16438: 16433: 16428: 16423: 16417: 16415: 16408: 16402: 16401: 16399: 16398: 16393: 16388: 16383: 16378: 16373: 16368: 16362: 16360: 16354: 16353: 16351: 16350: 16345: 16340: 16335: 16330: 16325: 16320: 16315: 16310: 16305: 16300: 16294: 16292: 16288: 16287: 16285: 16284: 16278: 16276: 16272: 16271: 16264: 16262: 16260: 16259: 16254: 16249: 16244: 16239: 16234: 16229: 16224: 16219: 16214: 16208: 16206: 16202: 16201: 16194: 16193: 16186: 16179: 16171: 16162: 16161: 16154: 16149: 16147: 16143: 16141: 16137: 16135: 16131: 16129: 16125: 16123: 16119: 16117: 16113: 16111: 16107: 16105: 16101: 16099: 16095: 16093: 16089: 16087: 16083: 16081: 16077: 16075: 16068: 16067: 16066: 16061: 16060: 16059: 16054: 16053: 16052: 16048:Neoproterozoic 16047: 16046: 16045: 16044: 16036: 16035: 16034: 16027: 16026: 16025: 16018: 16017: 16016: 16009: 16008: 16007: 16000: 15999: 15998: 15991: 15990: 15989: 15982: 15981: 15980: 15973: 15972: 15971: 15964: 15963: 15962: 15955: 15954: 15953: 15946: 15945: 15944: 15937: 15936: 15935: 15928: 15927: 15926: 15925: 15913: 15912: 15901: 15900: 15889: 15888: 15877: 15876: 15871:Permo-Triassic 15865: 15864: 15853: 15852: 15841: 15840: 15839: 15827: 15826: 15815: 15814: 15803: 15802: 15791: 15790: 15779: 15778: 15773:Middle Miocene 15767: 15766: 15755: 15754: 15743: 15742: 15731: 15730: 15719: 15718: 15713:End-Ediacaran? 15707: 15706: 15695: 15694: 15693: 15692: 15691: 15690: 15689: 15686: 15685: 15678: 15677: 15670: 15663: 15655: 15646: 15645: 15643: 15642: 15637: 15632: 15626: 15624:Boltysh crater 15620: 15618: 15610: 15609: 15602: 15601: 15594: 15587: 15579: 15573: 15572: 15563: 15555: 15554:External links 15552: 15550: 15549: 15530:The New Yorker 15517: 15496: 15486: 15472: 15454: 15401: 15380: 15378: 15375: 15372: 15371: 15312: 15266: 15259: 15229: 15203:(3): 287–332. 15181: 15136: 15084: 15033: 14990: 14942: 14883: 14876: 14850: 14816:(3): 271–274. 14794: 14776:(3): 239–263. 14756: 14708: 14689:(8): 817–830. 14664: 14616: 14568: 14523: 14475: 14416: 14349: 14312: 14286:(3): 291–299. 14264: 14216: 14152: 14085: 14067:(2): 233–243. 14045: 14038: 14013: 13970: 13929: 13888: 13881: 13863: 13807: 13781:(1–4): 56–64. 13759: 13703: 13655: 13604: 13572: 13549: 13488: 13432: 13373: 13312: 13251: 13187: 13168:(4): 279–282. 13145: 13088: 13062:(5): 338–354. 13040: 13014:(6): 567–573. 12992: 12956:(2): 175–185. 12934: 12883: 12853: 12816: 12779: 12741: 12695: 12676: 12656: 12619: 12580: 12544: 12530: 12505: 12478:(1): 419–427. 12450: 12384: 12363:(1): 329–336. 12338: 12298: 12268: 12213: 12173: 12120: 12079: 12048: 12000: 11939: 11893: 11840: 11811: 11794: 11777: 11749: 11687: 11639: 11612:(6): 527–530. 11594: 11546: 11493: 11436: 11383: 11335: 11290: 11279:(1): 207–218. 11261: 11232: 11176: 11133: 11081: 11054: 11030: 10999: 10940: 10912: 10855: 10797: 10739: 10692: 10631: 10559: 10548:. 2 April 2021 10531: 10470: 10441: 10415: 10364: 10327: 10300:(5663): 1489. 10275: 10218: 10170: 10144:(7): 689–747. 10122: 10074: 10015: 10008: 10002:. W W Norton. 9989: 9982: 9964: 9906: 9828: 9800: 9789: 9737: 9678: 9614: 9565: 9504: 9453: 9424: 9417: 9399: 9372:(1): 135–144. 9356: 9317: 9247: 9204: 9140: 9089: 9063: 8995: 8942: 8907: 8864: 8811: 8784:(5): 482–506. 8765: 8754:(6): 547–559. 8738: 8719:(1–4): 82–92. 8700: 8693: 8664: 8621: 8603:(3): 225–231. 8581: 8574: 8536: 8529: 8521:The Dinosauria 8495: 8444: 8417:(2): 288–321. 8392: 8365:(3): 432–446. 8346: 8302: 8245: 8204: 8185:(3): 319–333. 8169: 8143:(2): 285–307. 8121: 8066: 8015: 7996:(2): 409–421. 7971: 7950:10.1554/03-509 7926: 7865: 7816: 7797: 7770:(1): 197–215. 7754: 7706: 7655: 7615: 7556: 7507: 7442: 7385: 7378: 7372:. DIMI Press. 7360: 7309: 7250: 7224:(5): 753–774. 7202: 7193:|author2= 7174: 7152: 7133:(2): 230–258. 7111: 7082:(3): 414–429. 7060: 7041:(1): 171–184. 7023: 6962: 6941: 6922: 6915: 6889: 6855:(4): 688–696. 6833: 6789: 6786:on 7 May 2019. 6717: 6667: 6640:(3): 556–571. 6622: 6558: 6531:(1–3): 71–77. 6513: 6506: 6488: 6469:(3): 181–194. 6448: 6441: 6423: 6367: 6314: 6250: 6189: 6166: 6132:(5): 483–486. 6110: 6070: 6029: 6003:(4): 507–521. 5981: 5920: 5894:(2): 251–265. 5872: 5814: 5769: 5724: 5709: 5682:(1): 123–139. 5666: 5626: 5578: 5530: 5473: 5446:(2): 140–154. 5428: 5421: 5403: 5376: 5357:(1–2): 57–76. 5340: 5300: 5274:(2): 143–177. 5252: 5226:(3): 221–254. 5204: 5197: 5178: 5130: 5092: 5064: 5046:(3): 229–252. 5024: 5017: 4997: 4970:(1): 217–246. 4954: 4947: 4915: 4888:(1): 257–273. 4872: 4846:(4): 661–679. 4824: 4798:(4): 280–285. 4776: 4757:(4): 522–542. 4732: 4713:(8): 653–656. 4695: 4676:(3): 255–258. 4658: 4591: 4539: 4489: 4470:(6): 556–560. 4449: 4430:(3): 227–230. 4411: 4352: 4325:(2): 265–292. 4277: 4258:(3): 347–368. 4235: 4195: 4180: 4166:The Dinosauria 4154: 4100: 4053:Feduccia, Alan 4039: 4018:(1): 107–118. 3990: 3960: 3899: 3873: 3834:(10): e76683. 3812: 3805: 3786: 3720: 3652: 3576: 3499: 3468: 3435: 3428: 3395: 3331: 3295: 3276:(9): 867–871. 3255: 3191: 3117: 3084: 3053: 3026: 2955: 2897: 2838: 2804:(9–10): 2451. 2778: 2771: 2753: 2746: 2723: 2712:on 30 May 2014 2697: 2690: 2671: 2670: 2668: 2665: 2663: 2662: 2653: 2632: 2602: 2600: 2597: 2596: 2595: 2589: 2583: 2577: 2571: 2566: 2560: 2553: 2550: 2544:Thescelosaurus 2528:Seymour Island 2510: 2507: 2487:coastal plains 2481:, such as the 2445: 2442: 2407:Main article: 2404: 2401: 2357:Boltysh crater 2339: 2336: 2222:nuclear winter 2144: 2141: 2082: 2081: 2072: 2071: 2065: 2064: 2063: 1981:Shocked quartz 1921:Walter Alvarez 1885:Walter Alvarez 1873: 1870: 1854: 1851: 1849: 1846: 1799: 1796: 1772:acipenseriform 1768:stable isotope 1755: 1752: 1721: 1718: 1649: 1646: 1634:evolutionarily 1595:gondwanatheres 1569: 1566: 1553:enantiornithes 1516: 1513: 1497:San Juan River 1470:Red Deer River 1420:(Montana) and 1380: 1377: 1372:thalassodromid 1364:pteranodontids 1347: 1344: 1319:crocodyliforms 1313: 1312:Crocodyliforms 1310: 1298:Elasmosauridae 1285: 1282: 1230: 1227: 1213: 1210: 1188: 1185: 1183: 1180: 1155: 1152: 1144:Seymour Island 1098:apex predators 1088: 1085: 1056: 1053: 878: 875: 773: 770: 687:crocodyliforms 626:photosynthesis 545: 522: 449: 427: 426: 425: 424: 422: 419: 340:climate change 297:Gulf of Mexico 277:photosynthesis 149: 148: 138: 128: 121: 103: 92: 91: 82: 81: 73: 72: 71: 62: 61: 53: 52: 51: 42: 41: 40: 39: 38: 26: 9: 6: 4: 3: 2: 16781: 16770: 16767: 16765: 16762: 16760: 16757: 16755: 16752: 16750: 16747: 16745: 16742: 16740: 16737: 16735: 16732: 16730: 16727: 16725: 16722: 16720: 16717: 16715: 16712: 16711: 16709: 16694: 16686: 16684: 16676: 16675: 16672: 16666: 16665: 16661: 16659: 16656: 16654: 16651: 16649: 16646: 16644: 16641: 16639: 16636: 16635: 16633: 16629: 16623: 16620: 16618: 16615: 16613: 16610: 16608: 16605: 16604: 16602: 16600:Organizations 16598: 16592: 16589: 16587: 16584: 16583: 16581: 16579: 16575: 16565: 16562: 16560: 16557: 16555: 16552: 16550: 16547: 16545: 16542: 16540: 16537: 16535: 16532: 16530: 16527: 16525: 16522: 16520: 16517: 16515: 16512: 16510: 16509:Carboniferous 16507: 16505: 16502: 16500: 16497: 16495: 16492: 16490: 16487: 16485: 16482: 16480: 16477: 16475: 16474:End-Ediacaran 16472: 16470: 16467: 16466: 16464: 16460: 16452: 16449: 16448: 16447: 16444: 16442: 16439: 16437: 16434: 16432: 16429: 16427: 16426:Late Devonian 16424: 16422: 16419: 16418: 16416: 16412: 16409: 16407: 16403: 16397: 16396:Living fossil 16394: 16392: 16389: 16387: 16384: 16382: 16379: 16377: 16374: 16372: 16369: 16367: 16364: 16363: 16361: 16355: 16349: 16346: 16344: 16341: 16339: 16336: 16334: 16331: 16329: 16326: 16324: 16321: 16319: 16316: 16314: 16311: 16309: 16306: 16304: 16301: 16299: 16296: 16295: 16293: 16289: 16283: 16280: 16279: 16277: 16273: 16268: 16258: 16255: 16253: 16250: 16248: 16247:Lazarus taxon 16245: 16243: 16240: 16238: 16235: 16233: 16230: 16228: 16225: 16223: 16222:De-extinction 16220: 16218: 16215: 16213: 16210: 16209: 16207: 16203: 16199: 16192: 16187: 16185: 16180: 16178: 16173: 16172: 16169: 16039: 16030: 16021: 16012: 16003: 15994: 15985: 15976: 15975:Carboniferous 15967: 15958: 15949: 15940: 15931: 15920: 15908: 15896: 15884: 15872: 15860: 15859:Late Devonian 15848: 15834: 15822: 15810: 15798: 15786: 15774: 15762: 15750: 15738: 15726: 15714: 15702: 15687: 15683: 15676: 15671: 15669: 15664: 15662: 15657: 15656: 15653: 15641: 15638: 15636: 15633: 15630: 15627: 15625: 15622: 15621: 15619: 15616: 15611: 15607: 15600: 15595: 15593: 15588: 15586: 15581: 15580: 15577: 15571: 15567: 15564: 15561: 15558: 15557: 15547: 15546: 15542: 15538: 15532: 15531: 15526: 15522: 15518: 15506: 15502: 15497: 15494: 15490: 15487: 15483: 15479: 15475: 15469: 15465: 15464: 15459: 15455: 15451: 15447: 15442: 15437: 15432: 15427: 15423: 15419: 15415: 15411: 15407: 15402: 15391: 15387: 15382: 15381: 15367: 15363: 15358: 15353: 15349: 15345: 15341: 15337: 15333: 15329: 15328: 15323: 15316: 15301: 15297: 15293: 15289: 15285: 15281: 15277: 15270: 15262: 15260:9780813722474 15256: 15252: 15248: 15244: 15240: 15233: 15218: 15214: 15210: 15206: 15202: 15198: 15197: 15192: 15185: 15177: 15173: 15169: 15165: 15161: 15157: 15153: 15149: 15148: 15140: 15132: 15128: 15124: 15120: 15116: 15112: 15108: 15104: 15103: 15095: 15088: 15080: 15076: 15071: 15066: 15062: 15058: 15054: 15050: 15049: 15044: 15037: 15028: 15023: 15019: 15015: 15011: 15007: 15006: 15001: 14994: 14979: 14975: 14971: 14967: 14963: 14959: 14958: 14953: 14946: 14938: 14934: 14930: 14926: 14921: 14916: 14912: 14908: 14904: 14900: 14899: 14894: 14887: 14879: 14873: 14869: 14864: 14863: 14854: 14839: 14835: 14831: 14827: 14823: 14819: 14815: 14811: 14810: 14805: 14798: 14783: 14779: 14775: 14771: 14767: 14760: 14745: 14741: 14737: 14733: 14729: 14725: 14724: 14719: 14712: 14704: 14700: 14696: 14692: 14688: 14684: 14683: 14675: 14668: 14653: 14649: 14645: 14641: 14637: 14633: 14632: 14627: 14620: 14605: 14601: 14597: 14593: 14589: 14585: 14584: 14579: 14572: 14564: 14560: 14556: 14552: 14548: 14544: 14540: 14536: 14535: 14527: 14512: 14508: 14504: 14500: 14497:(1–2): 1–51. 14496: 14492: 14491: 14486: 14479: 14460: 14456: 14452: 14448: 14444: 14440: 14436: 14435: 14427: 14420: 14412: 14408: 14403: 14398: 14394: 14390: 14386: 14382: 14378: 14374: 14370: 14366: 14365: 14360: 14353: 14345: 14341: 14337: 14333: 14329: 14325: 14324: 14316: 14301: 14297: 14293: 14289: 14285: 14281: 14280: 14275: 14268: 14253: 14249: 14245: 14241: 14237: 14233: 14232: 14227: 14220: 14205: 14201: 14197: 14193: 14189: 14185: 14181: 14177: 14173: 14169: 14168: 14163: 14156: 14141: 14137: 14133: 14129: 14125: 14121: 14117: 14113: 14109: 14105: 14104: 14099: 14092: 14090: 14074: 14070: 14066: 14062: 14061: 14056: 14049: 14041: 14035: 14031: 14027: 14023: 14017: 14009: 14003: 13987: 13986: 13981: 13974: 13966: 13960: 13944: 13940: 13933: 13925: 13919: 13903: 13899: 13892: 13884: 13878: 13874: 13867: 13852: 13848: 13844: 13840: 13836: 13832: 13828: 13824: 13823: 13818: 13811: 13796: 13792: 13788: 13784: 13780: 13776: 13775: 13770: 13763: 13748: 13744: 13740: 13736: 13732: 13728: 13724: 13720: 13719: 13714: 13707: 13692: 13688: 13684: 13680: 13677:(1–4): 1–15. 13676: 13672: 13671: 13666: 13659: 13644: 13640: 13636: 13632: 13628: 13624: 13623: 13618: 13611: 13609: 13592: 13588: 13587: 13582: 13576: 13568: 13564: 13560: 13553: 13545: 13541: 13536: 13531: 13526: 13521: 13517: 13513: 13509: 13505: 13504: 13499: 13492: 13477: 13473: 13469: 13465: 13461: 13457: 13454:(1): 99–118. 13453: 13449: 13448: 13443: 13436: 13428: 13424: 13419: 13414: 13410: 13406: 13402: 13398: 13394: 13390: 13389: 13384: 13377: 13369: 13365: 13360: 13355: 13351: 13347: 13342: 13337: 13333: 13329: 13328: 13323: 13316: 13308: 13304: 13299: 13294: 13290: 13286: 13281: 13276: 13272: 13268: 13267: 13262: 13255: 13240: 13236: 13232: 13228: 13224: 13220: 13216: 13212: 13208: 13204: 13203: 13198: 13191: 13183: 13179: 13175: 13171: 13167: 13163: 13162: 13154: 13152: 13150: 13141: 13137: 13132: 13127: 13123: 13119: 13115: 13111: 13107: 13103: 13099: 13092: 13077: 13073: 13069: 13065: 13061: 13057: 13056: 13051: 13044: 13029: 13025: 13021: 13017: 13013: 13009: 13008: 13003: 12996: 12981: 12977: 12972: 12971:10044/1/18936 12967: 12963: 12959: 12955: 12951: 12950: 12945: 12938: 12930: 12926: 12921: 12916: 12912: 12908: 12904: 12900: 12899: 12894: 12887: 12871: 12867: 12863: 12857: 12849: 12845: 12841: 12837: 12834:(1–2): 4–21. 12833: 12829: 12828: 12820: 12812: 12808: 12804: 12800: 12796: 12792: 12791: 12783: 12764: 12760: 12753: 12752: 12745: 12737: 12733: 12729: 12725: 12721: 12717: 12714:(2): 99–103. 12713: 12709: 12708: 12699: 12683: 12679: 12673: 12669: 12668: 12660: 12652: 12648: 12644: 12640: 12636: 12632: 12631: 12623: 12615: 12611: 12607: 12603: 12599: 12595: 12591: 12584: 12576: 12572: 12568: 12564: 12560: 12556: 12548: 12533: 12527: 12523: 12516: 12509: 12501: 12497: 12493: 12489: 12485: 12481: 12477: 12473: 12472: 12464: 12457: 12455: 12446: 12442: 12437: 12432: 12427: 12422: 12418: 12414: 12410: 12406: 12405: 12400: 12393: 12391: 12389: 12379: 12374: 12370: 12366: 12362: 12358: 12357: 12352: 12345: 12343: 12326: 12322: 12318: 12314: 12307: 12305: 12303: 12286: 12282: 12278: 12272: 12264: 12260: 12256: 12252: 12247: 12242: 12238: 12234: 12230: 12226: 12225: 12217: 12209: 12205: 12200: 12195: 12191: 12187: 12186: 12177: 12169: 12165: 12161: 12157: 12153: 12149: 12145: 12141: 12137: 12133: 12132: 12124: 12109: 12105: 12101: 12097: 12096: 12091: 12083: 12067: 12063: 12059: 12052: 12037: 12033: 12029: 12025: 12021: 12017: 12016: 12011: 12004: 11996: 11992: 11987: 11982: 11977: 11972: 11968: 11964: 11960: 11956: 11955: 11950: 11943: 11928: 11924: 11920: 11916: 11912: 11908: 11904: 11897: 11889: 11885: 11881: 11877: 11873: 11869: 11865: 11861: 11857: 11853: 11852: 11844: 11825: 11824: 11815: 11808: 11804: 11798: 11791: 11787: 11781: 11774: 11763: 11759: 11753: 11745: 11741: 11736: 11731: 11726: 11721: 11717: 11713: 11709: 11705: 11704: 11699: 11691: 11676: 11672: 11668: 11664: 11660: 11656: 11655: 11650: 11643: 11635: 11631: 11627: 11623: 11619: 11615: 11611: 11607: 11606: 11598: 11583: 11579: 11575: 11571: 11567: 11563: 11562: 11557: 11550: 11542: 11538: 11534: 11530: 11526: 11522: 11518: 11514: 11510: 11506: 11505: 11497: 11489: 11485: 11481: 11477: 11473: 11469: 11465: 11461: 11457: 11453: 11452: 11447: 11440: 11432: 11428: 11424: 11420: 11416: 11412: 11408: 11404: 11400: 11396: 11395: 11387: 11372: 11368: 11364: 11360: 11356: 11352: 11351: 11346: 11339: 11331: 11327: 11323: 11319: 11315: 11311: 11307: 11303: 11302: 11294: 11286: 11282: 11278: 11274: 11273: 11265: 11250: 11246: 11239: 11237: 11221: 11217: 11213: 11209: 11205: 11201: 11197: 11193: 11192: 11187: 11180: 11171: 11166: 11162: 11158: 11154: 11150: 11149: 11144: 11137: 11129: 11125: 11121: 11117: 11113: 11109: 11105: 11101: 11100: 11092: 11085: 11069: 11065: 11061: 11057: 11051: 11047: 11046: 11041: 11034: 11019: 11018: 11013: 11009: 11003: 10995: 10991: 10987: 10983: 10978: 10973: 10969: 10965: 10961: 10957: 10956: 10951: 10944: 10928: 10927: 10922: 10916: 10908: 10904: 10899: 10894: 10890: 10886: 10882: 10878: 10874: 10870: 10866: 10859: 10851: 10847: 10842: 10837: 10833: 10829: 10825: 10821: 10817: 10813: 10809: 10801: 10793: 10789: 10784: 10779: 10775: 10771: 10767: 10763: 10759: 10755: 10751: 10743: 10735: 10731: 10727: 10723: 10719: 10715: 10712:(6334): 420. 10711: 10707: 10703: 10696: 10688: 10684: 10679: 10674: 10669: 10664: 10660: 10656: 10652: 10648: 10647: 10642: 10635: 10620: 10616: 10612: 10608: 10604: 10600: 10596: 10592: 10588: 10584: 10580: 10576: 10575: 10570: 10563: 10547: 10546: 10541: 10535: 10527: 10523: 10518: 10513: 10508: 10503: 10499: 10495: 10491: 10487: 10486: 10481: 10474: 10458: 10454: 10453: 10445: 10429: 10425: 10419: 10411: 10407: 10403: 10399: 10394: 10389: 10385: 10381: 10380: 10375: 10368: 10360: 10356: 10352: 10348: 10344: 10340: 10339: 10331: 10323: 10319: 10315: 10311: 10307: 10303: 10299: 10295: 10294: 10289: 10282: 10280: 10271: 10267: 10262: 10257: 10253: 10249: 10245: 10241: 10237: 10233: 10229: 10222: 10207: 10203: 10198: 10193: 10189: 10185: 10181: 10174: 10159: 10155: 10151: 10147: 10143: 10139: 10138: 10133: 10126: 10111: 10107: 10103: 10099: 10095: 10091: 10090: 10085: 10078: 10070: 10066: 10061: 10056: 10052: 10048: 10044: 10040: 10036: 10032: 10031: 10026: 10019: 10011: 10005: 10001: 9993: 9985: 9979: 9975: 9968: 9960: 9956: 9952: 9948: 9944: 9940: 9936: 9932: 9928: 9924: 9923: 9915: 9913: 9911: 9902: 9898: 9894: 9890: 9886: 9882: 9877: 9872: 9868: 9864: 9860: 9856: 9852: 9848: 9847: 9841: 9832: 9816: 9815: 9810: 9804: 9798: 9793: 9785: 9781: 9777: 9773: 9769: 9765: 9761: 9757: 9756: 9748: 9741: 9733: 9729: 9724: 9719: 9715: 9711: 9707: 9703: 9699: 9695: 9694: 9689: 9682: 9674: 9670: 9665: 9660: 9655: 9650: 9646: 9642: 9638: 9634: 9633: 9628: 9621: 9619: 9610: 9606: 9602: 9598: 9594: 9590: 9586: 9582: 9578: 9577: 9569: 9561: 9557: 9552: 9547: 9543: 9539: 9534: 9529: 9525: 9521: 9520: 9515: 9508: 9500: 9496: 9491: 9486: 9482: 9478: 9474: 9470: 9469: 9464: 9457: 9441: 9437: 9436: 9428: 9420: 9414: 9410: 9403: 9395: 9391: 9387: 9383: 9379: 9375: 9371: 9367: 9360: 9349: 9345: 9341: 9340: 9339:Geodiversitas 9332: 9330: 9321: 9313: 9307: 9299: 9295: 9291: 9287: 9283: 9279: 9275: 9271: 9267: 9263: 9262: 9254: 9252: 9243: 9239: 9234: 9229: 9225: 9221: 9220: 9215: 9208: 9200: 9196: 9192: 9188: 9183: 9178: 9174: 9170: 9166: 9162: 9158: 9154: 9153: 9144: 9136: 9132: 9127: 9122: 9118: 9114: 9110: 9106: 9105: 9100: 9093: 9077: 9073: 9067: 9059: 9055: 9051: 9047: 9043: 9039: 9035: 9031: 9027: 9023: 9019: 9015: 9014: 9006: 8999: 8991: 8987: 8983: 8979: 8975: 8971: 8967: 8963: 8959: 8955: 8954: 8946: 8930: 8926: 8922: 8918: 8911: 8892: 8888: 8884: 8877: 8876: 8868: 8860: 8856: 8852: 8848: 8844: 8840: 8836: 8832: 8828: 8824: 8823: 8815: 8807: 8803: 8799: 8795: 8791: 8787: 8783: 8779: 8778: 8769: 8761: 8757: 8753: 8749: 8742: 8734: 8730: 8726: 8722: 8718: 8714: 8713: 8704: 8696: 8690: 8686: 8681: 8680: 8674: 8673:Dodson, Peter 8668: 8659: 8654: 8650: 8646: 8642: 8638: 8637: 8632: 8625: 8610: 8606: 8602: 8598: 8597: 8592: 8585: 8577: 8571: 8567: 8563: 8559: 8554: 8553: 8543: 8541: 8532: 8526: 8522: 8515: 8508: 8506: 8504: 8502: 8500: 8491: 8487: 8482: 8477: 8472: 8467: 8463: 8459: 8455: 8448: 8440: 8436: 8432: 8431:10.1666/13030 8428: 8424: 8420: 8416: 8412: 8411: 8403: 8396: 8388: 8384: 8380: 8376: 8372: 8368: 8364: 8360: 8359: 8350: 8342: 8338: 8334: 8330: 8326: 8322: 8321: 8313: 8306: 8298: 8292: 8284: 8280: 8275: 8270: 8266: 8262: 8261: 8256: 8249: 8230: 8226: 8222: 8215: 8208: 8200: 8196: 8192: 8188: 8184: 8180: 8173: 8158: 8154: 8150: 8146: 8142: 8138: 8137: 8132: 8125: 8117: 8113: 8109: 8105: 8101: 8097: 8093: 8089: 8085: 8081: 8077: 8070: 8062: 8058: 8053: 8048: 8044: 8040: 8036: 8032: 8031: 8030:Palaeontology 8026: 8019: 8011: 8007: 8003: 7999: 7995: 7991: 7990: 7982: 7975: 7967: 7963: 7959: 7955: 7951: 7947: 7943: 7939: 7938: 7930: 7922: 7918: 7913: 7908: 7903: 7898: 7894: 7890: 7886: 7882: 7881: 7876: 7869: 7861: 7857: 7853: 7849: 7845: 7841: 7837: 7833: 7832: 7827: 7820: 7812: 7808: 7801: 7793: 7789: 7785: 7781: 7777: 7773: 7769: 7765: 7758: 7743: 7739: 7735: 7731: 7727: 7723: 7722: 7717: 7710: 7702: 7698: 7694: 7690: 7685: 7680: 7676: 7672: 7671: 7666: 7659: 7644: 7640: 7636: 7632: 7631: 7626: 7619: 7611: 7607: 7602: 7597: 7593: 7589: 7585: 7581: 7577: 7573: 7572: 7567: 7560: 7552: 7548: 7543: 7538: 7534: 7530: 7526: 7522: 7518: 7511: 7503: 7499: 7494: 7489: 7485: 7481: 7477: 7473: 7469: 7465: 7461: 7457: 7453: 7446: 7438: 7434: 7429: 7424: 7420: 7416: 7412: 7408: 7404: 7400: 7396: 7389: 7381: 7375: 7371: 7364: 7356: 7352: 7348: 7344: 7340: 7336: 7332: 7328: 7324: 7320: 7313: 7305: 7301: 7296: 7291: 7287: 7283: 7279: 7275: 7271: 7267: 7266: 7261: 7254: 7239: 7235: 7231: 7227: 7223: 7219: 7218: 7217:Palaeontology 7213: 7206: 7198: 7185: 7177: 7171: 7167: 7163: 7156: 7148: 7144: 7140: 7136: 7132: 7128: 7127: 7122: 7115: 7107: 7103: 7098: 7093: 7089: 7085: 7081: 7077: 7076: 7071: 7064: 7056: 7052: 7048: 7044: 7040: 7036: 7035: 7027: 7019: 7015: 7010: 7005: 7001: 6997: 6992: 6987: 6983: 6979: 6978: 6973: 6966: 6959:(3): 349–388. 6958: 6954: 6953: 6952:Geodiversitas 6945: 6937: 6933: 6926: 6918: 6912: 6908: 6904: 6900: 6893: 6878: 6874: 6870: 6866: 6862: 6858: 6854: 6850: 6849: 6844: 6837: 6822: 6818: 6813: 6808: 6804: 6800: 6793: 6782: 6778: 6774: 6770: 6766: 6762: 6758: 6754: 6750: 6749: 6741: 6734: 6732: 6730: 6728: 6726: 6724: 6722: 6705: 6700: 6696: 6692: 6688: 6684: 6683: 6678: 6671: 6663: 6659: 6655: 6651: 6647: 6643: 6639: 6635: 6634: 6626: 6611: 6607: 6603: 6599: 6595: 6591: 6587: 6583: 6579: 6575: 6574: 6569: 6562: 6554: 6550: 6546: 6542: 6538: 6534: 6530: 6526: 6525: 6517: 6509: 6503: 6499: 6492: 6484: 6480: 6476: 6472: 6468: 6464: 6463: 6455: 6453: 6444: 6438: 6434: 6427: 6412: 6408: 6404: 6400: 6396: 6392: 6388: 6384: 6383: 6378: 6371: 6363: 6359: 6355: 6351: 6347: 6343: 6339: 6335: 6331: 6327: 6326: 6318: 6310: 6306: 6301: 6296: 6291: 6286: 6282: 6278: 6274: 6270: 6269: 6264: 6257: 6255: 6246: 6242: 6237: 6232: 6228: 6224: 6219: 6214: 6210: 6206: 6205: 6200: 6193: 6185: 6181: 6177: 6170: 6155: 6151: 6147: 6143: 6139: 6135: 6131: 6127: 6126: 6121: 6114: 6106: 6102: 6098: 6094: 6090: 6086: 6085: 6077: 6075: 6066: 6062: 6058: 6054: 6050: 6046: 6045: 6036: 6034: 6018: 6014: 6010: 6006: 6002: 5998: 5997: 5992: 5985: 5977: 5973: 5968: 5963: 5959: 5955: 5950: 5945: 5941: 5937: 5936: 5931: 5924: 5909: 5905: 5901: 5897: 5893: 5889: 5888: 5883: 5876: 5868: 5864: 5860: 5856: 5852: 5848: 5844: 5840: 5836: 5832: 5831: 5823: 5821: 5819: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5782: 5781: 5773: 5765: 5761: 5757: 5753: 5749: 5745: 5741: 5737: 5736: 5728: 5720: 5713: 5705: 5701: 5697: 5693: 5689: 5685: 5681: 5677: 5670: 5655: 5651: 5647: 5643: 5642: 5637: 5630: 5615: 5611: 5607: 5603: 5599: 5595: 5594: 5589: 5582: 5566: 5565:10400.1/18610 5561: 5557: 5553: 5549: 5545: 5541: 5534: 5526: 5522: 5517: 5512: 5508: 5504: 5500: 5496: 5492: 5488: 5484: 5477: 5469: 5465: 5461: 5457: 5453: 5449: 5445: 5441: 5440: 5432: 5424: 5418: 5414: 5407: 5399: 5395: 5391: 5387: 5380: 5372: 5368: 5364: 5360: 5356: 5352: 5344: 5329: 5325: 5321: 5317: 5316: 5311: 5304: 5289: 5285: 5281: 5277: 5273: 5269: 5268: 5263: 5256: 5241: 5237: 5233: 5229: 5225: 5221: 5220: 5215: 5208: 5200: 5194: 5190: 5182: 5167: 5163: 5159: 5155: 5151: 5147: 5146: 5141: 5134: 5119: 5115: 5112:(1–3): 1–45. 5111: 5107: 5103: 5096: 5088: 5084: 5080: 5076: 5068: 5053: 5049: 5045: 5041: 5040: 5035: 5028: 5020: 5014: 5010: 5009: 5001: 4993: 4989: 4985: 4981: 4977: 4973: 4969: 4965: 4958: 4950: 4948:9781565763098 4944: 4940: 4936: 4932: 4931: 4926: 4919: 4911: 4907: 4903: 4899: 4895: 4891: 4887: 4883: 4876: 4861: 4857: 4853: 4849: 4845: 4841: 4840: 4835: 4828: 4813: 4809: 4805: 4801: 4797: 4793: 4792: 4787: 4780: 4772: 4768: 4764: 4760: 4756: 4752: 4751: 4743: 4736: 4728: 4724: 4720: 4716: 4712: 4708: 4707: 4699: 4691: 4687: 4683: 4679: 4675: 4671: 4670: 4662: 4647: 4643: 4638: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4608: 4603: 4595: 4587: 4583: 4579: 4575: 4571: 4567: 4564:(1): 96–100. 4563: 4559: 4558: 4550: 4543: 4535: 4531: 4526: 4521: 4517: 4513: 4509: 4505: 4501: 4493: 4485: 4481: 4477: 4473: 4469: 4465: 4464: 4456: 4454: 4445: 4441: 4437: 4433: 4429: 4425: 4424: 4415: 4404: 4400: 4396: 4392: 4388: 4384: 4380: 4376: 4372: 4371: 4363: 4356: 4348: 4344: 4340: 4336: 4332: 4328: 4324: 4320: 4319: 4310: 4308: 4306: 4304: 4302: 4300: 4298: 4296: 4294: 4292: 4290: 4288: 4286: 4284: 4282: 4273: 4269: 4265: 4261: 4257: 4253: 4252: 4244: 4242: 4240: 4224: 4220: 4216: 4212: 4211: 4206: 4199: 4191: 4187: 4183: 4177: 4173: 4168: 4167: 4158: 4150: 4146: 4141: 4136: 4132: 4128: 4124: 4120: 4119: 4114: 4107: 4105: 4096: 4092: 4088: 4084: 4080: 4076: 4072: 4068: 4064: 4060: 4059: 4054: 4048: 4046: 4044: 4035: 4031: 4026: 4021: 4017: 4013: 4012: 4007: 4003: 3997: 3995: 3986: 3982: 3978: 3974: 3967: 3965: 3956: 3952: 3947: 3942: 3937: 3932: 3928: 3924: 3920: 3916: 3915: 3910: 3903: 3895: 3891: 3884: 3882: 3880: 3878: 3869: 3865: 3860: 3855: 3850: 3845: 3841: 3837: 3833: 3829: 3828: 3823: 3816: 3808: 3802: 3798: 3790: 3782: 3778: 3773: 3768: 3763: 3758: 3754: 3750: 3746: 3742: 3741: 3736: 3729: 3727: 3725: 3716: 3712: 3707: 3702: 3697: 3692: 3688: 3684: 3680: 3676: 3675: 3670: 3663: 3661: 3659: 3657: 3648: 3644: 3639: 3634: 3630: 3626: 3621: 3616: 3612: 3608: 3604: 3600: 3599: 3594: 3590: 3583: 3581: 3565: 3561: 3557: 3553: 3548: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3518: 3513: 3506: 3504: 3488: 3487: 3482: 3475: 3473: 3456: 3452: 3451: 3446: 3439: 3431: 3425: 3421: 3417: 3412: 3411: 3405: 3404:Keller, Gerta 3399: 3391: 3387: 3382: 3377: 3372: 3367: 3363: 3359: 3355: 3351: 3350: 3345: 3338: 3336: 3319: 3315: 3314: 3309: 3302: 3300: 3291: 3287: 3283: 3279: 3275: 3271: 3270: 3262: 3260: 3251: 3247: 3242: 3237: 3232: 3227: 3223: 3219: 3215: 3211: 3210: 3205: 3198: 3196: 3184: 3180: 3176: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3143: 3135: 3128: 3126: 3124: 3122: 3105: 3101: 3100: 3095: 3088: 3072: 3068: 3064: 3057: 3041: 3037: 3030: 3022: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2985: 2977: 2970: 2968: 2966: 2964: 2962: 2960: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2904: 2902: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2857: 2852: 2845: 2843: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2799: 2798: 2793: 2785: 2783: 2774: 2768: 2764: 2763:Primal Forces 2757: 2749: 2743: 2739: 2738: 2733: 2727: 2711: 2707: 2701: 2693: 2687: 2683: 2676: 2672: 2657: 2650: 2646: 2642: 2636: 2629: 2625: 2621: 2617: 2613: 2607: 2603: 2593: 2590: 2587: 2584: 2581: 2578: 2575: 2572: 2570: 2567: 2564: 2561: 2559: 2556: 2555: 2546: 2545: 2539: 2535: 2533: 2529: 2524: 2521: 2517: 2506: 2502: 2500: 2496: 2492: 2488: 2484: 2480: 2476: 2471: 2466: 2464: 2460: 2456: 2451: 2441: 2437: 2435: 2430: 2426: 2422: 2419: 2418:flood basalts 2416: 2410: 2400: 2398: 2394: 2390: 2378: 2374: 2362: 2358: 2354: 2350: 2346: 2330: 2326: 2324: 2320: 2315: 2313: 2307: 2305: 2301: 2295: 2293: 2289: 2284: 2280: 2276: 2272: 2267: 2263: 2259: 2255: 2251: 2248: 2247:sulfuric acid 2244: 2240: 2234: 2231: 2230:impact winter 2227: 2223: 2219: 2215: 2211: 2206: 2204: 2199: 2195: 2190: 2185: 2183: 2179: 2171: 2162: 2158: 2154: 2149: 2140: 2138: 2133: 2128: 2126: 2111: 2107: 2099: 2094: 2085: 2069: 2059: 2055: 2051: 2046: 2042: 2039: 2038:microtektites 2035: 2031: 2027: 2023: 2019: 2015: 2014:United States 2011: 2007: 2003: 1999: 1995: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1945:Earth's crust 1942: 1938: 1937:concentration 1934: 1930: 1926: 1922: 1918: 1914: 1906: 1901: 1895:, Italy, 1981 1894: 1890: 1886: 1882: 1878: 1868: 1864: 1860: 1845: 1843: 1839: 1835: 1830: 1826: 1822: 1818: 1813: 1810: 1806: 1795: 1793: 1789: 1785: 1784:stratigraphic 1781: 1777: 1773: 1769: 1766:evidence and 1765: 1761: 1749: 1745: 1741: 1739: 1734: 1732: 1728: 1717: 1715: 1711: 1707: 1703: 1700: 1697: 1692: 1689: 1685: 1683: 1678: 1674: 1670: 1665: 1663: 1659: 1654: 1645: 1643: 1639: 1635: 1630: 1626: 1622: 1618: 1612: 1610: 1606: 1605: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1565: 1563: 1558: 1554: 1550: 1545: 1542: 1538: 1534: 1530: 1526: 1522: 1512: 1510: 1506: 1498: 1494: 1490: 1487: 1483: 1479: 1474: 1471: 1466: 1461: 1457: 1456: 1451: 1450: 1445: 1444: 1439: 1438: 1433: 1432: 1431:Tyrannosaurus 1427: 1423: 1419: 1415: 1411: 1405: 1403: 1398: 1391: 1390: 1389:Tyrannosaurus 1385: 1376: 1373: 1370:, a possible 1369: 1366:, a possible 1365: 1361: 1357: 1356:Nyctosauridae 1353: 1343: 1340: 1336: 1332: 1328: 1324: 1320: 1309: 1307: 1303: 1302:Polycotylidae 1299: 1295: 1290: 1281: 1279: 1275: 1270: 1265: 1263: 1261: 1256: 1252: 1248: 1244: 1243:South America 1240: 1236: 1226: 1223: 1219: 1209: 1204: 1203: 1202:Champsosaurus 1198: 1194: 1193:choristoderes 1187:Choristoderes 1179: 1177: 1176: 1172: 1168: 1167: 1161: 1151: 1149: 1145: 1141: 1136: 1133: 1128: 1126: 1122: 1118: 1114: 1113:neoselachians 1110: 1106: 1103: 1099: 1094: 1084: 1082: 1076: 1074: 1070: 1067: 1062: 1052: 1050: 1045: 1040: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 994: 990: 986: 984: 980: 976: 972: 967: 965: 961: 956: 954: 950: 946: 942: 938: 935: 934:scleractinian 930: 928: 924: 919: 917: 912: 908: 904: 902: 894: 890: 887: 883: 874: 871: 867: 862: 859: 856: 851: 849: 845: 841: 837: 832: 828: 824: 822: 818: 813: 809: 804: 802: 798: 794: 790: 787: 783: 782:fossil record 779: 778:K–Pg boundary 769: 767: 763: 759: 755: 750: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 704: 703:phytoplankton 700: 696: 692: 688: 684: 680: 677: 672: 670: 666: 662: 658: 654: 651: 648:nor strictly 647: 643: 639: 635: 631: 627: 623: 618: 616: 612: 608: 604: 600: 596: 592: 588: 587:Maastrichtian 584: 579: 573: 571: 565: 561: 556: 553: 549: 526: 518: 511: 504: 497: 490: 483: 476: 455: 431: 418: 416: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 351: 349: 345: 341: 337: 332: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 275:which halted 274: 273:impact winter 270: 266: 262: 257: 255: 254:Earth's crust 251: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 204:. Most other 203: 199: 195: 192: 188: 184: 180: 175: 170: 166: 162: 158: 146: 142: 139: 136: 132: 129: 126: 122: 119: 118:K–Pg boundary 115: 111: 107: 104: 101: 97: 96: 95: 86: 77: 66: 57: 46: 37: 33: 19: 16754:Megatsunamis 16662: 16638:Anthropocene 16479:End-Botomian 16440: 16359:and concepts 16217:Coextinction 15919:Major events 15918: 15894: 15701:Minor events 15700: 15635:Shiva crater 15605: 15534: 15528: 15509:. Retrieved 15505:the original 15462: 15413: 15409: 15393:. Retrieved 15331: 15325: 15315: 15303:. Retrieved 15283: 15279: 15269: 15242: 15232: 15220:. Retrieved 15200: 15194: 15184: 15151: 15145: 15139: 15106: 15100: 15087: 15052: 15046: 15036: 15009: 15003: 14993: 14981:. Retrieved 14961: 14955: 14945: 14902: 14896: 14886: 14861: 14853: 14841:. Retrieved 14813: 14807: 14797: 14785:. Retrieved 14773: 14769: 14759: 14747:. Retrieved 14727: 14721: 14711: 14686: 14680: 14667: 14655:. Retrieved 14635: 14629: 14619: 14607:. Retrieved 14587: 14581: 14571: 14541:(4): 85–92. 14538: 14532: 14526: 14514:. Retrieved 14494: 14488: 14478: 14466:. Retrieved 14459:the original 14438: 14432: 14419: 14368: 14362: 14352: 14327: 14321: 14315: 14303:. Retrieved 14283: 14277: 14267: 14255:. Retrieved 14235: 14229: 14219: 14207:. Retrieved 14171: 14165: 14155: 14143:. Retrieved 14107: 14101: 14076:. Retrieved 14064: 14058: 14048: 14029: 14016: 14002:cite journal 13990:. Retrieved 13983: 13973: 13959:cite journal 13947:. Retrieved 13942: 13932: 13918:cite journal 13906:. Retrieved 13901: 13891: 13872: 13866: 13854:. Retrieved 13826: 13820: 13810: 13798:. Retrieved 13778: 13772: 13762: 13750:. Retrieved 13722: 13716: 13706: 13694:. Retrieved 13674: 13668: 13658: 13646:. Retrieved 13626: 13620: 13595:. Retrieved 13584: 13575: 13558: 13552: 13507: 13501: 13491: 13479:. Retrieved 13451: 13447:Astrobiology 13445: 13435: 13395:(1): 28427. 13392: 13386: 13376: 13331: 13325: 13315: 13270: 13264: 13254: 13242:. Retrieved 13206: 13200: 13190: 13165: 13159: 13105: 13101: 13091: 13079:. Retrieved 13059: 13053: 13043: 13031:. Retrieved 13011: 13005: 12995: 12983:. Retrieved 12953: 12947: 12937: 12902: 12896: 12886: 12874:. Retrieved 12865: 12856: 12831: 12825: 12819: 12794: 12788: 12782: 12770:. Retrieved 12750: 12744: 12711: 12705: 12698: 12686:. Retrieved 12666: 12659: 12634: 12628: 12622: 12597: 12593: 12583: 12561:(2): 81–84. 12558: 12554: 12547: 12535:. Retrieved 12521: 12508: 12475: 12469: 12408: 12402: 12360: 12354: 12329:. Retrieved 12291:21 September 12289:. Retrieved 12281:ScienceDaily 12280: 12271: 12228: 12222: 12216: 12189: 12183: 12176: 12135: 12129: 12123: 12111:. Retrieved 12099: 12093: 12082: 12070:. Retrieved 12061: 12051: 12039:. Retrieved 12019: 12013: 12003: 11958: 11952: 11942: 11930:. Retrieved 11910: 11906: 11896: 11855: 11849: 11843: 11831:. Retrieved 11822: 11814: 11802: 11801:DePalma, R. 11797: 11785: 11780: 11772: 11765:. Retrieved 11761: 11752: 11707: 11701: 11690: 11678:. Retrieved 11658: 11652: 11642: 11609: 11603: 11597: 11585:. Retrieved 11565: 11559: 11549: 11508: 11502: 11496: 11455: 11449: 11439: 11398: 11392: 11386: 11374:. Retrieved 11354: 11348: 11338: 11305: 11299: 11293: 11276: 11270: 11264: 11252:. Retrieved 11248: 11223:. Retrieved 11195: 11189: 11179: 11152: 11146: 11136: 11103: 11097: 11084: 11072:. Retrieved 11044: 11033: 11021:. Retrieved 11017:Ars Technica 11015: 11002: 10962:(7899): 17. 10959: 10953: 10943: 10931:. Retrieved 10924: 10915: 10872: 10868: 10858: 10818:(1): 23704. 10815: 10811: 10800: 10757: 10753: 10742: 10709: 10705: 10695: 10650: 10644: 10634: 10622:. Retrieved 10578: 10572: 10562: 10550:. Retrieved 10543: 10534: 10489: 10483: 10473: 10461:. Retrieved 10451: 10444: 10432:. Retrieved 10428:the original 10418: 10383: 10377: 10367: 10342: 10336: 10330: 10297: 10291: 10235: 10231: 10221: 10209:. Retrieved 10187: 10183: 10173: 10161:. Retrieved 10141: 10135: 10125: 10113:. Retrieved 10096:(1): 79–97. 10093: 10087: 10077: 10034: 10028: 10018: 9999: 9992: 9973: 9967: 9926: 9920: 9850: 9844: 9831: 9819:. Retrieved 9814:Science News 9812: 9803: 9792: 9759: 9753: 9740: 9697: 9691: 9681: 9636: 9630: 9580: 9574: 9568: 9523: 9517: 9507: 9472: 9466: 9456: 9444:. Retrieved 9434: 9427: 9408: 9402: 9369: 9365: 9359: 9348:the original 9343: 9337: 9328: 9320: 9306:cite journal 9265: 9259: 9226:(1): 68–77. 9223: 9217: 9207: 9156: 9150: 9143: 9111:(4): 543–7. 9108: 9102: 9092: 9082:20 September 9080:. Retrieved 9066: 9017: 9011: 8998: 8957: 8951: 8945: 8933:. Retrieved 8929:the original 8924: 8920: 8910: 8898:. Retrieved 8874: 8867: 8826: 8820: 8814: 8781: 8775: 8768: 8751: 8747: 8741: 8716: 8710: 8703: 8678: 8667: 8640: 8634: 8624: 8612:. Retrieved 8600: 8594: 8584: 8551: 8520: 8461: 8458:PLOS Biology 8457: 8447: 8414: 8410:Paleobiology 8408: 8395: 8362: 8358:Paleobiology 8356: 8349: 8324: 8318: 8305: 8291:cite journal 8264: 8258: 8248: 8236:. Retrieved 8224: 8220: 8207: 8182: 8178: 8172: 8160:. Retrieved 8140: 8136:Paleobiology 8134: 8124: 8083: 8079: 8069: 8037:(1): 12638. 8034: 8028: 8018: 7993: 7987: 7974: 7941: 7935: 7929: 7887:(1): 10825. 7884: 7878: 7868: 7835: 7829: 7819: 7810: 7806: 7800: 7767: 7763: 7757: 7745:. Retrieved 7725: 7719: 7709: 7674: 7668: 7658: 7646:. Retrieved 7634: 7628: 7618: 7575: 7569: 7559: 7524: 7520: 7510: 7459: 7455: 7445: 7402: 7398: 7388: 7369: 7363: 7322: 7318: 7312: 7269: 7263: 7253: 7241:. Retrieved 7221: 7215: 7205: 7165: 7155: 7130: 7124: 7114: 7079: 7073: 7063: 7038: 7032: 7026: 6981: 6975: 6965: 6956: 6950: 6944: 6935: 6931: 6925: 6898: 6892: 6880:. Retrieved 6852: 6846: 6836: 6824:. Retrieved 6802: 6792: 6781:the original 6752: 6746: 6708:. Retrieved 6686: 6680: 6670: 6637: 6631: 6625: 6613:. Retrieved 6577: 6571: 6561: 6528: 6522: 6516: 6497: 6491: 6466: 6460: 6432: 6426: 6414:. Retrieved 6386: 6380: 6370: 6329: 6323: 6317: 6272: 6266: 6208: 6202: 6192: 6183: 6179: 6169: 6157:. Retrieved 6129: 6123: 6113: 6088: 6082: 6048: 6042: 6020:. Retrieved 6000: 5996:Paleobiology 5994: 5984: 5939: 5933: 5923: 5911:. Retrieved 5891: 5887:Paleobiology 5885: 5875: 5834: 5828: 5784: 5778: 5772: 5739: 5733: 5727: 5718: 5712: 5679: 5675: 5669: 5657:. Retrieved 5645: 5639: 5629: 5617:. Retrieved 5597: 5591: 5581: 5569:. Retrieved 5547: 5543: 5533: 5490: 5486: 5476: 5443: 5437: 5431: 5412: 5406: 5389: 5385: 5379: 5354: 5350: 5343: 5331:. Retrieved 5319: 5313: 5303: 5291:. Retrieved 5271: 5267:Paleobiology 5265: 5255: 5243:. Retrieved 5223: 5217: 5207: 5188: 5181: 5169:. Retrieved 5152:(11): 1439. 5149: 5143: 5133: 5121:. Retrieved 5109: 5105: 5095: 5081:(1): 31–49. 5078: 5074: 5067: 5055:. Retrieved 5043: 5037: 5027: 5007: 5000: 4967: 4963: 4957: 4929: 4918: 4885: 4881: 4875: 4863:. Retrieved 4843: 4839:Paleobiology 4837: 4827: 4815:. Retrieved 4795: 4789: 4779: 4754: 4750:Paleobiology 4748: 4735: 4710: 4704: 4698: 4673: 4667: 4661: 4649:. Retrieved 4611: 4605: 4594: 4561: 4555: 4542: 4507: 4503: 4492: 4467: 4461: 4427: 4421: 4414: 4403:the original 4374: 4368: 4355: 4322: 4316: 4255: 4251:Paleobiology 4249: 4226:. Retrieved 4214: 4208: 4198: 4165: 4157: 4122: 4116: 4062: 4056: 4015: 4009: 3976: 3972: 3918: 3912: 3902: 3889: 3831: 3825: 3815: 3796: 3789: 3744: 3738: 3678: 3672: 3602: 3596: 3567:. Retrieved 3521: 3515: 3490:. Retrieved 3484: 3459:. Retrieved 3448: 3438: 3409: 3398: 3353: 3347: 3322:. Retrieved 3311: 3273: 3267: 3213: 3207: 3183:the original 3146: 3140: 3108:. Retrieved 3097: 3087: 3075:. Retrieved 3056: 3044:. Retrieved 3039: 3029: 2988: 2982: 2946:. Retrieved 2918: 2914: 2888:. Retrieved 2860: 2854: 2829:. Retrieved 2801: 2795: 2762: 2756: 2736: 2726: 2714:. Retrieved 2710:the original 2700: 2681: 2675: 2656: 2644: 2635: 2623: 2619: 2611: 2606: 2542: 2525: 2512: 2503: 2479:epeiric seas 2467: 2458: 2447: 2438: 2431: 2427: 2423: 2415:Deccan Traps 2412: 2409:Deccan Traps 2403:Deccan Traps 2397:Tethys Ocean 2393:Shiva crater 2385:14.5 Ma 2369:0.64 Ma 2347:impact with 2341: 2316: 2308: 2296: 2279:core samples 2254:stratosphere 2235: 2207: 2186: 2167: 2129: 2103: 2010:North Dakota 1985:tsunami beds 1973:impact event 1957:Earth's core 1929:Helen Michel 1917:Luis Alvarez 1910: 1889:K-T boundary 1817:Denver Basin 1814: 1801: 1792:North Dakota 1778:identities, 1764:osteological 1757: 1735: 1723: 1693: 1686: 1666: 1658:saprotrophic 1655: 1651: 1613: 1604:Gurbanodelta 1602: 1583:metatherians 1571: 1546: 1518: 1501:64.5 Ma 1475: 1453: 1447: 1441: 1437:Ankylosaurus 1435: 1429: 1406: 1399: 1395: 1387: 1352:Azhdarchidae 1349: 1323:Dyrosauridae 1315: 1306:ichthyosaurs 1288: 1287: 1266: 1258: 1250: 1232: 1229:Lepidosauria 1215: 1200: 1190: 1173: 1164: 1157: 1137: 1129: 1125:teleost fish 1093:jawed fishes 1090: 1077: 1068: 1058: 1041: 1015:into modern 998: 969:The numbers 968: 957: 931: 927:Costacopluma 926: 920: 905: 898: 885: 863: 858:foraminifera 852: 825: 820: 816: 805: 789:nanoplankton 784:for various 775: 751: 701:from living 695:water column 691:champsosaurs 673: 638:insectivores 630:solar energy 619: 580: 577: 567: 547: 481: 391:evolutionary 385:(especially 352: 336:Deccan Traps 333: 263:and his son 261:Luis Alvarez 258: 252:than in the 218:crocodilians 178: 173: 168: 164: 160: 156: 154: 145:Deccan Traps 93: 36: 16484:Dresbachian 14983:18 November 14843:18 November 14749:18 November 14657:23 November 14638:: 153–164. 14516:18 November 14468:18 November 14305:18 November 14257:18 November 14209:18 November 14145:18 November 14078:18 November 13856:18 November 13800:18 November 13752:18 November 13696:18 November 13648:18 November 13481:18 November 13244:18 November 12192:(1): 7–10. 11932:18 November 11762:www.nps.gov 11254:17 November 11155:: 272–280. 11023:26 February 10933:24 February 9042:11336/80763 8643:: 368–390. 7747:21 December 7728:: 295–317. 7578:(1): 5335. 7272:(1): 1489. 6704:11336/99687 6689:: 250–265. 6416:18 November 6389:: 161–169. 6186:(1): 51–61. 6159:18 November 5648:: 142–156. 5619:18 November 5392:: 203–216. 4651:21 December 4637:11336/80135 4002:Alroy, John 3418:. pp.  3077:30 December 2520:particulate 2499:vertebrates 2434:sparse data 2304:nitric acid 2198:megatsunami 2189:megatsunami 2054:Raton Basin 1933:sedimentary 1925:Frank Asaro 1913:Nobel Prize 1731:saprophytes 1696:neotropical 1638:brain sizes 1449:Triceratops 1294:plesiosaurs 1255:New Zealand 1253:) found in 1140:bony fishes 1102:durophagous 999:Except for 979:inoceramids 960:brachiopods 945:photic zone 911:crustaceans 717:(including 707:ocean floor 679:communities 650:carnivorous 646:herbivorous 615:New Zealand 454:Phanerozoic 367:plesiosaurs 240:called the 214:sea turtles 210:ectothermic 141:Rajgad Fort 16708:Categories 16564:Quaternary 16198:Extinction 16038:Quaternary 16011:Cretaceous 15948:Ordovician 15797:Capitanian 15286:(3): 232. 13597:14 October 12797:: 75–113. 12072:8 February 12062:sfgate.com 11784:Smit, J., 11568:(4): 331. 11357:(8): 759. 11074:25 October 11064:4434434112 10190:: 89–101. 9182:2328/35953 8227:: 61–107. 8221:Zitteliana 7838:: 105339. 5550:: 101959. 3569:17 January 3492:17 January 3461:30 January 3324:24 October 2921:: 102214. 2863:: 111334. 2616:Cretaceous 2532:Antarctica 2491:freshwater 2459:regression 2214:firestorms 2106:Paul Renne 2028:and lower 2006:Tanis site 1825:fern spike 1780:taphonomic 1699:rainforest 1688:Polyploidy 1677:angiosperm 1669:fern spike 1587:eutherians 1575:monotremes 1473:research. 1465:taphonomic 1455:Torosaurus 1346:Pterosaurs 1335:Notosuchia 1267:The order 1154:Amphibians 1148:Antarctica 1081:Termitidae 1066:ichnotaxon 1033:belemnoids 1025:cuttlefish 1001:nautiloids 962:, a small 855:planktonic 848:Cretaceous 831:Ordovician 827:Radiolaria 801:speciation 786:calcareous 772:Microbiota 735:food chain 603:New Mexico 599:Antarctica 548:percentage 363:pterosaurs 325:food chain 222:Cretaceous 181:, was the 179:extinction 110:Drumheller 16769:Dinosaurs 16343:Overshoot 16205:Phenomena 16055:Palæozoic 16020:Paleogene 15930:Ediacaran 15725:Lau event 15631:(primary) 15613:Proposed 15537:dinosaurs 15334:: 12079. 15305:22 August 15222:22 August 15217:0883-8305 15176:115136793 15012:: 19–31. 14929:0036-8075 14838:0091-7613 14787:22 August 14609:22 August 14604:0094-8276 14455:1052-5173 14441:(12): 4. 14393:2375-2548 14196:0028-0836 14132:0028-0836 13851:0148-0227 13468:1531-1074 13409:2045-2322 13350:0027-8424 13289:0027-8424 13239:264805571 13231:1752-0894 13081:22 August 13076:2662-138X 13033:22 August 13028:0002-9505 12985:22 August 12980:0016-7649 12688:30 August 12594:Sed. Geol 12241:CiteSeerX 12199:0811.0171 12113:22 August 12102:: 12–30. 12041:22 August 12036:1086-9379 11680:22 August 11675:1086-9379 11587:22 August 11582:0091-7613 11376:22 August 11371:0091-7613 11225:22 August 11212:0036-8075 10994:247083600 10619:232484243 10603:0036-8075 10252:1744-957X 10206:196664424 10163:22 August 10158:0869-5938 10115:22 August 10110:0869-5938 10051:0962-8452 9901:247853831 9885:0036-8075 9714:0962-8452 9597:1471-2954 9542:1664-8021 9394:129493664 9199:206555952 8806:130116586 8614:22 August 8238:31 August 8162:22 August 8157:0094-8373 8116:258361595 8108:0272-4634 8061:0031-0239 7966:198156470 7937:Evolution 7860:251749728 7792:140639013 7693:0960-9822 7648:22 August 7551:1477-2019 7484:2054-5703 7419:0962-8452 7286:2045-2322 7243:22 August 7238:0031-0239 7184:cite book 7000:0027-8424 6882:22 August 6869:2397-334X 6826:22 August 6821:1374-8505 6710:22 August 6662:132206016 6610:257103123 6553:129579498 6411:0031-0182 6227:1932-6203 6154:1943-2682 6022:22 August 6017:0094-8373 5958:0027-8424 5913:22 August 5908:0094-8373 5809:132641572 5704:129296658 5659:22 August 5614:0278-0372 5571:22 August 5507:0962-8452 5333:22 August 5293:22 August 5288:0094-8373 5245:22 August 5240:0031-0182 5171:22 August 5166:0016-7606 5123:22 August 5057:22 August 4992:129875020 4910:128771186 4865:22 August 4860:0094-8373 4817:22 August 4812:1752-0908 4646:129962470 4586:130690035 4347:129654916 4228:22 August 4190:441742117 3629:0027-8424 3564:210698721 2943:256834649 2885:254345541 2826:256021543 2667:Citations 2628:Paleogene 2377:North Sea 2283:peak ring 2281:from the 2271:predators 2252:into the 2243:anhydrite 2226:biosphere 2052:, in the 2030:Paleocene 2002:volcanism 1994:Chicxulub 1977:spherules 1969:asteroids 1714:diversity 1704:like the 1629:marsupial 1529:theropods 1486:hadrosaur 1368:tapejarid 1339:Sebecidae 1327:crocodile 1278:mosasaurs 1222:Paleogene 1037:ammonoids 1029:molluscan 1017:octopodes 1005:Nautilida 949:symbiosis 907:Ostracods 891:from the 840:Paleocene 743:mosasaurs 739:ammonites 719:ammonites 634:Omnivores 583:dinosaurs 399:Paleogene 387:ammonites 371:mosasaurs 355:dinosaurs 348:volcanism 309:peak ring 250:asteroids 232:. In the 206:tetrapods 202:dinosaurs 16683:Category 16631:See also 16529:Toarcian 16494:Ireviken 16451:Timeline 16446:Holocene 16357:Theories 16069:Cenozoic 16062:Mesozoic 16002:Jurassic 15993:Triassic 15966:Devonian 15957:Silurian 15939:Cambrian 15907:Holocene 15511:2 August 15482:54537112 15460:(2005). 15450:30936306 15395:2 August 15366:27377632 15079:26430116 14937:30792301 14563:11536474 14411:37792933 14402:10550224 13992:29 March 13949:29 March 13908:29 March 13747:11539442 13591:Archived 13544:24821785 13476:12804368 13427:27414998 13368:32989138 13307:28827324 13140:29123110 12929:11541145 12870:Archived 12763:Archived 12761:. 1994. 12736:11537752 12682:Archived 12537:29 March 12500:53631053 12325:Archived 12285:Archived 12263:39644763 12160:17805288 12066:Archived 11995:15004276 11888:96434764 11880:30948530 11833:11 April 11767:22 March 11744:30936306 11634:11539331 11533:17774578 11488:31383614 11480:17748309 11431:25887801 11423:17743194 11220:23393261 11128:11239153 11068:Archived 11042:(eds.). 10986:35197589 10907:35197634 10850:34880389 10792:35197634 10687:11607638 10611:33795451 10545:BBC News 10526:19325131 10457:Archived 10410:44075214 10402:29804807 10322:44720346 10314:15001770 10270:37700701 10261:10498348 10211:23 March 10069:19776074 9959:40364945 9951:11721051 9893:35357913 9732:27358361 9673:12552136 9609:38955231 9583:(2026). 9560:31850081 9526:: 1241. 9499:30258031 9440:Archived 9290:17392779 9242:27989673 9191:24855267 9135:17148284 9076:Archived 9050:15662422 8990:30639866 8891:Archived 8859:31638639 8851:17781415 8675:(1996). 8490:29534059 8439:85673254 8387:84324007 8341:16701316 8283:16533822 8229:Archived 8199:73638590 8010:86503283 7958:15266985 7921:26953824 7742:86073650 7701:28552352 7610:34521829 7502:33959350 7437:25143041 7347:14534584 7304:32001765 7191:Missing 7106:26573112 7055:84097919 7018:28673970 6938:: 1–180. 6877:29531346 6777:44010682 6615:23 March 6602:36821692 6362:52801127 6354:16931760 6309:11854501 6245:37556403 6236:10411753 6204:PLOS ONE 5976:12601147 5764:11537491 5525:32811315 5493:(1933). 4771:17279135 4534:36475805 4399:54860261 4272:33880578 4149:20133356 4095:42829066 4087:17745839 4034:12078635 4004:(1999). 3955:19276106 3868:24194843 3827:PLOS ONE 3781:23236177 3715:21914849 3647:32601204 3556:31949074 3455:Archived 3416:Springer 3390:31636204 3318:Archived 3250:24821785 3179:16017767 3171:17783054 3110:16 March 3104:Archived 3071:Archived 3013:20203042 2948:23 March 2890:23 March 2831:23 March 2734:(1999). 2716:29 April 2641:Tertiary 2552:See also 2275:detritus 2250:aerosols 2203:mangrove 2194:Atlantic 2058:Colorado 1905:Turonian 1829:Cenozoic 1821:Colorado 1798:Duration 1706:Amazonia 1549:avialans 1460:Pyrenees 1269:Squamata 1239:Mesozoic 1182:Reptiles 1169:and the 1115:(modern 1105:demersal 1100:and the 1013:diverged 1009:coleoids 983:scallops 941:tropical 923:decapods 916:Cenozoic 889:ammonite 747:reptiles 715:mollusks 669:detritus 593:, Asia, 415:primates 383:mollusks 346:and not 285:plankton 238:sediment 230:Cenozoic 226:Mesozoic 106:Badlands 100:asteroid 16693:Commons 16514:Olson's 16029:Neogene 15984:Permian 15833:Olson's 15617:craters 15441:6486721 15418:Bibcode 15357:4935969 15336:Bibcode 15300:1485619 15156:Bibcode 15147:Geology 15131:3463018 15111:Bibcode 15057:Bibcode 15048:Science 15014:Bibcode 14966:Bibcode 14907:Bibcode 14898:Science 14818:Bibcode 14809:Geology 14732:Bibcode 14691:Bibcode 14640:Bibcode 14543:Bibcode 14499:Bibcode 14373:Bibcode 14332:Bibcode 14288:Bibcode 14240:Bibcode 14204:4326163 14176:Bibcode 14140:4351454 14112:Bibcode 13831:Bibcode 13783:Bibcode 13727:Bibcode 13679:Bibcode 13631:Bibcode 13559:Science 13535:4040585 13512:Bibcode 13418:4944614 13359:7568312 13298:5594694 13211:Bibcode 13170:Bibcode 13131:5680197 13110:Bibcode 12907:Bibcode 12876:25 June 12836:Bibcode 12799:Bibcode 12772:25 June 12716:Bibcode 12707:Geology 12639:Bibcode 12630:Geology 12602:Bibcode 12563:Bibcode 12555:Geology 12480:Bibcode 12445:9736679 12413:Bibcode 12365:Bibcode 12233:Bibcode 12204:Bibcode 12168:4322622 12140:Bibcode 11963:Bibcode 11915:Bibcode 11860:Bibcode 11851:Science 11805:(2017) 11788:(2017) 11735:6486721 11712:Bibcode 11614:Bibcode 11605:Geology 11561:Geology 11541:7447635 11513:Bibcode 11504:Science 11460:Bibcode 11451:Science 11403:Bibcode 11394:Science 11350:Geology 11330:4331801 11310:Bibcode 11285:1300393 11191:Science 11157:Bibcode 11108:Bibcode 11099:Science 10964:Bibcode 10926:Science 10898:8891016 10877:Bibcode 10841:8655067 10820:Bibcode 10783:8891016 10762:Bibcode 10734:4242454 10714:Bibcode 10655:Bibcode 10583:Bibcode 10574:Science 10517:2667025 10494:Bibcode 10347:Bibcode 10338:Geology 10293:Science 10060:2817104 9931:Bibcode 9922:Science 9855:Bibcode 9846:Science 9784:9563948 9764:Bibcode 9755:Science 9723:4936024 9641:Bibcode 9551:6896846 9490:6170748 9446:3 April 9374:Bibcode 9298:4314965 9270:Bibcode 9161:Bibcode 9152:Science 9126:1834003 9058:4354309 9022:Bibcode 8982:8895459 8962:Bibcode 8953:Science 8883:Bibcode 8831:Bibcode 8822:Science 8786:Bibcode 8777:PALAIOS 8721:Bibcode 8685:279–281 8645:Bibcode 8481:5849296 8419:Bibcode 8367:Bibcode 8088:Bibcode 8039:Bibcode 7912:4786747 7889:Bibcode 7840:Bibcode 7813:: 1–63. 7772:Bibcode 7601:8440539 7580:Bibcode 7529:Bibcode 7493:8074880 7464:Bibcode 7428:4150314 7355:4425130 7327:Bibcode 7295:6992736 7147:2666178 7097:5341546 7009:5530686 6757:Bibcode 6642:Bibcode 6582:Bibcode 6573:Science 6533:Bibcode 6471:Bibcode 6391:Bibcode 6334:Bibcode 6325:Science 6277:Bibcode 6134:Bibcode 6125:Geology 6093:Bibcode 6084:Geology 6053:Bibcode 6044:Geology 5867:1837900 5859:8910273 5839:Bibcode 5830:Science 5789:Bibcode 5744:Bibcode 5735:Science 5684:Bibcode 5516:7482269 5468:3515168 5448:Bibcode 5439:PALAIOS 5359:Bibcode 5087:1486024 4972:Bibcode 4890:Bibcode 4715:Bibcode 4706:Geology 4678:Bibcode 4669:Geology 4616:Bibcode 4566:Bibcode 4557:PALAIOS 4525:9728968 4472:Bibcode 4463:Geology 4432:Bibcode 4423:Geology 4379:Bibcode 4370:Geology 4327:Bibcode 4140:2871855 4067:Bibcode 4058:Science 3946:2664034 3923:Bibcode 3859:3806776 3836:Bibcode 3772:3535637 3749:Bibcode 3706:3174646 3683:Bibcode 3638:7382232 3607:Bibcode 3526:Bibcode 3517:Science 3381:6842625 3358:Bibcode 3278:Bibcode 3269:Geology 3241:4040585 3218:Bibcode 3151:Bibcode 3142:Science 3046:12 June 3021:2659741 2993:Bibcode 2984:Science 2923:Bibcode 2865:Bibcode 2806:Bibcode 2375:in the 2361:Ukraine 2349:Jupiter 2292:sulfate 2164:decade. 2121:million 2108:of the 1998:Yucatán 1959:during 1941:iridium 1809:species 1568:Mammals 1562:Ratites 1557:Neoaves 1495:at the 1426:Alberta 1414:Montana 1247:tuatara 1212:Turtles 1197:Miocene 1160:Montana 1121:batoids 975:rudists 971:bivalve 870:biomass 866:benthic 793:calcium 731:mussels 723:rudists 657:insects 653:mammals 642:carrion 375:teleost 359:insects 321:aerosol 313:granite 295:in the 246:iridium 194:species 135:iridium 131:Wyoming 125:Geulhem 114:Alberta 16539:Aptian 16291:Causes 16275:Models 15915:  15749:Aptian 15697:  15480:  15470:  15448:  15438:  15364:  15354:  15298:  15257:  15215:  15174:  15129:  15077:  14935:  14927:  14874:  14870:–146. 14836:  14602:  14561:  14453:  14409:  14399:  14391:  14202:  14194:  14167:Nature 14138:  14130:  14103:Nature 14036:  13879:  13849:  13745:  13542:  13532:  13474:  13466:  13425:  13415:  13407:  13366:  13356:  13348:  13305:  13295:  13287:  13237:  13229:  13138:  13128:  13074:  13026:  12978:  12927:  12734:  12674:  12528:  12498:  12443:  12433:  12331:18 May 12317:London 12261:  12243:  12166:  12158:  12131:Nature 12034:  11993:  11986:374316 11983:  11886:  11878:  11803:et al. 11786:et al. 11742:  11732:  11673:  11632:  11580:  11539:  11531:  11486:  11478:  11429:  11421:  11369:  11328:  11301:Nature 11283:  11218:  11210:  11126:  11062:  11052:  10992:  10984:  10955:Nature 10905:  10895:  10869:Nature 10848:  10838:  10812:Nature 10790:  10780:  10754:Nature 10732:  10706:Nature 10685:  10675:  10617:  10609:  10601:  10524:  10514:  10463:9 July 10434:8 July 10408:  10400:  10320:  10312:  10268:  10258:  10250:  10204:  10156:  10108:  10067:  10057:  10049:  10006:  9980:  9957:  9949:  9899:  9891:  9883:  9821:14 May 9782:  9730:  9720:  9712:  9671:  9664:298725 9661:  9607:  9595:  9558:  9548:  9540:  9497:  9487:  9415:  9392:  9296:  9288:  9261:Nature 9240:  9197:  9189:  9133:  9123:  9056:  9048:  9013:Nature 8988:  8980:  8935:2 July 8900:18 May 8857:  8849:  8804:  8691:  8572:  8560:–219. 8527:  8488:  8478:  8437:  8385:  8339:  8281:  8197:  8155:  8114:  8106:  8059:  8008:  7964:  7956:  7919:  7909:  7858:  7790:  7740:  7699:  7691:  7608:  7598:  7549:  7500:  7490:  7482:  7435:  7425:  7417:  7376:  7353:  7345:  7319:Nature 7302:  7292:  7284:  7236:  7172:  7145:  7104:  7094:  7053:  7016:  7006:  6998:  6913:  6875:  6867:  6819:  6775:  6660:  6608:  6600:  6551:  6504:  6439:  6409:  6360:  6352:  6307:  6300:122319 6297:  6243:  6233:  6225:  6152:  6015:  5974:  5967:151366 5964:  5956:  5906:  5865:  5857:  5807:  5762:  5702:  5676:Facies 5612:  5523:  5513:  5505:  5466:  5419:  5286:  5238:  5195:  5164:  5085:  5015:  4990:  4945:  4908:  4858:  4810:  4769:  4644:  4584:  4532:  4522:  4397:  4345:  4270:  4188:  4178:  4174:–606. 4147:  4137:  4093:  4085:  4032:  3953:  3943:  3866:  3856:  3803:  3779:  3769:  3713:  3703:  3645:  3635:  3627:  3562:  3554:  3426:  3422:–793. 3388:  3378:  3248:  3238:  3177:  3169:  3019:  3011:  2941:  2883:  2824:  2769:  2744:  2688:  2622:, and 2620:Kreide 2495:oceans 2475:albedo 2389:bolide 2333:event. 2288:Gypsum 2239:gypsum 2178:joules 2115:66.043 2022:fossil 1965:comets 1893:Gubbio 1865:, and 1848:Causes 1754:Dating 1702:biomes 1682:pollen 1642:Eocene 1593:, and 1541:ratite 1452:, and 1218:turtle 1117:sharks 1023:, and 1021:squids 1007:) and 993:Rudist 964:phylum 921:Among 844:diatom 797:marine 729:, and 676:stream 665:snails 663:, and 640:, and 622:clades 613:, and 607:Alaska 595:Africa 591:Europe 555:genera 552:animal 510:Late D 413:, and 407:whales 403:horses 379:sharks 377:fish, 317:gypsum 281:plants 265:Walter 191:animal 16499:Mulde 16462:Other 16414:Major 15541:Earth 15491:—The 15296:JSTOR 15172:S2CID 15127:S2CID 15097:(PDF) 14677:(PDF) 14462:(PDF) 14429:(PDF) 14200:S2CID 14136:S2CID 13235:S2CID 12766:(PDF) 12755:(PDF) 12518:(PDF) 12496:S2CID 12466:(PDF) 12436:33889 12259:S2CID 12194:arXiv 12164:S2CID 11884:S2CID 11827:(PDF) 11537:S2CID 11484:S2CID 11427:S2CID 11326:S2CID 11281:JSTOR 11094:(PDF) 10990:S2CID 10730:S2CID 10678:39926 10624:9 May 10615:S2CID 10552:9 May 10406:S2CID 10318:S2CID 10238:(9). 10202:S2CID 9955:S2CID 9897:S2CID 9750:(PDF) 9390:S2CID 9351:(PDF) 9334:(PDF) 9294:S2CID 9195:S2CID 9054:S2CID 9008:(PDF) 8986:S2CID 8894:(PDF) 8879:(PDF) 8855:S2CID 8802:S2CID 8517:(PDF) 8435:S2CID 8405:(PDF) 8383:S2CID 8315:(PDF) 8232:(PDF) 8217:(PDF) 8195:S2CID 8112:S2CID 8086:(4). 8006:S2CID 7984:(PDF) 7962:S2CID 7856:S2CID 7788:S2CID 7738:S2CID 7527:(1). 7351:S2CID 7143:JSTOR 7051:S2CID 6784:(PDF) 6773:S2CID 6743:(PDF) 6658:S2CID 6606:S2CID 6549:S2CID 6358:S2CID 5863:S2CID 5805:S2CID 5700:S2CID 5600:(2). 5464:JSTOR 5083:JSTOR 4988:S2CID 4906:S2CID 4767:S2CID 4745:(PDF) 4642:S2CID 4582:S2CID 4552:(PDF) 4406:(PDF) 4395:S2CID 4365:(PDF) 4343:S2CID 4268:S2CID 4091:S2CID 3560:S2CID 3186:(PDF) 3175:S2CID 3137:(PDF) 3017:S2CID 2979:(PDF) 2939:S2CID 2881:S2CID 2822:S2CID 2450:stage 2365:65.17 2290:is a 2119:0.011 1955:into 1788:Tanis 1760:dated 1727:hypha 1720:Fungi 1662:fungi 1519:Most 1515:Birds 1489:femur 1206:' 1146:near 1132:shark 953:algae 937:coral 661:worms 611:China 198:Earth 187:plant 108:near 16138:−100 16132:−150 16126:−200 16120:−250 16114:−300 16108:−350 16102:−400 16096:−450 16090:−500 16084:−550 16078:−600 15513:2007 15478:OCLC 15468:ISBN 15446:PMID 15410:PNAS 15397:2007 15362:PMID 15307:2024 15255:ISBN 15224:2024 15213:ISSN 15075:PMID 14985:2023 14933:PMID 14925:ISSN 14872:ISBN 14845:2023 14834:ISSN 14789:2024 14751:2023 14659:2022 14611:2024 14600:ISSN 14559:PMID 14518:2023 14470:2023 14451:ISSN 14407:PMID 14389:ISSN 14307:2023 14259:2023 14211:2023 14192:ISSN 14147:2023 14128:ISSN 14080:2023 14034:ISBN 14008:link 13994:2012 13965:link 13951:2012 13924:link 13910:2012 13877:ISBN 13858:2023 13847:ISSN 13802:2023 13754:2023 13743:PMID 13698:2023 13650:2023 13599:2017 13540:PMID 13483:2023 13472:PMID 13464:ISSN 13423:PMID 13405:ISSN 13364:PMID 13346:ISSN 13303:PMID 13285:ISSN 13246:2023 13227:ISSN 13136:PMID 13083:2024 13072:ISSN 13035:2024 13024:ISSN 12987:2024 12976:ISSN 12925:PMID 12878:2019 12774:2019 12732:PMID 12690:2017 12672:ISBN 12539:2012 12526:ISBN 12441:PMID 12333:2022 12293:2011 12156:PMID 12115:2024 12074:2013 12043:2024 12032:ISSN 11991:PMID 11934:2023 11876:PMID 11835:2021 11769:2019 11740:PMID 11682:2024 11671:ISSN 11630:PMID 11589:2024 11578:ISSN 11529:PMID 11476:PMID 11419:PMID 11378:2024 11367:ISSN 11256:2022 11227:2024 11216:PMID 11208:ISSN 11124:PMID 11076:2015 11060:OCLC 11050:ISBN 11025:2022 10982:PMID 10935:2022 10903:PMID 10846:PMID 10788:PMID 10683:PMID 10626:2021 10607:PMID 10599:ISSN 10554:2021 10522:PMID 10465:2007 10436:2007 10398:PMID 10310:PMID 10266:PMID 10248:ISSN 10213:2023 10165:2024 10154:ISSN 10117:2024 10106:ISSN 10065:PMID 10047:ISSN 10004:ISBN 9978:ISBN 9947:PMID 9889:PMID 9881:ISSN 9823:2022 9780:PMID 9728:PMID 9710:ISSN 9669:PMID 9605:PMID 9593:ISSN 9556:PMID 9538:ISSN 9495:PMID 9448:2015 9413:ISBN 9312:link 9286:PMID 9238:PMID 9187:PMID 9131:PMID 9084:2011 9046:PMID 8978:PMID 8937:2007 8902:2007 8847:PMID 8689:ISBN 8616:2024 8570:ISBN 8525:ISBN 8486:PMID 8337:PMID 8297:link 8279:PMID 8240:2015 8164:2024 8153:ISSN 8104:ISSN 8057:ISSN 7954:PMID 7917:PMID 7749:2022 7697:PMID 7689:ISSN 7650:2024 7606:PMID 7547:ISSN 7498:PMID 7480:ISSN 7433:PMID 7415:ISSN 7374:ISBN 7343:PMID 7300:PMID 7282:ISSN 7245:2024 7234:ISSN 7197:help 7170:ISBN 7102:PMID 7014:PMID 6996:ISSN 6911:ISBN 6884:2024 6873:PMID 6865:ISSN 6828:2024 6817:ISSN 6712:2024 6617:2023 6598:PMID 6502:ISBN 6437:ISBN 6418:2023 6407:ISSN 6350:PMID 6305:PMID 6241:PMID 6223:ISSN 6161:2023 6150:ISSN 6024:2024 6013:ISSN 5972:PMID 5954:ISSN 5915:2024 5904:ISSN 5855:PMID 5760:PMID 5661:2024 5621:2023 5610:ISSN 5573:2024 5521:PMID 5503:ISSN 5417:ISBN 5335:2024 5295:2024 5284:ISSN 5247:2024 5236:ISSN 5193:ISBN 5173:2024 5162:ISSN 5125:2024 5059:2024 5013:ISBN 4943:ISBN 4867:2024 4856:ISSN 4819:2024 4808:ISSN 4653:2022 4530:PMID 4230:2024 4186:OCLC 4176:ISBN 4145:PMID 4083:PMID 4030:PMID 3951:PMID 3864:PMID 3801:ISBN 3777:PMID 3711:PMID 3643:PMID 3625:ISSN 3571:2020 3552:PMID 3494:2020 3463:2019 3424:ISBN 3386:PMID 3326:2019 3246:PMID 3167:PMID 3112:2018 3079:2016 3048:2020 3040:IMDB 3009:PMID 2950:2023 2892:2023 2833:2023 2767:ISBN 2742:ISBN 2718:2015 2686:ISBN 2381:59.5 2241:and 2172:(4.2 1967:and 1953:iron 1927:and 1881:Luis 1623:and 1617:bats 1609:rats 1535:and 1354:and 1300:and 1233:The 1191:The 1087:Fish 1044:taxa 819:and 776:The 713:and 689:and 681:and 496:P–Tr 489:Tr–J 482:K–Pg 411:bats 369:and 283:and 216:and 189:and 161:K–Pg 155:The 16504:Lau 16144:−50 15436:PMC 15426:doi 15414:116 15352:PMC 15344:doi 15288:doi 15247:doi 15205:doi 15164:doi 15119:doi 15107:127 15065:doi 15053:350 15022:doi 14974:doi 14962:216 14915:doi 14903:363 14868:130 14826:doi 14778:doi 14740:doi 14728:178 14699:doi 14648:doi 14636:387 14592:doi 14551:doi 14539:263 14507:doi 14495:159 14443:doi 14397:PMC 14381:doi 14340:doi 14328:268 14296:doi 14248:doi 14184:doi 14172:333 14120:doi 14108:333 14069:doi 13839:doi 13827:103 13791:doi 13779:282 13735:doi 13723:128 13687:doi 13639:doi 13627:109 13563:doi 13530:PMC 13520:doi 13508:111 13456:doi 13413:PMC 13397:doi 13354:PMC 13336:doi 13332:117 13293:PMC 13275:doi 13271:114 13219:doi 13178:doi 13126:PMC 13118:doi 13064:doi 13016:doi 12966:hdl 12958:doi 12954:172 12915:doi 12903:102 12844:doi 12832:255 12807:doi 12724:doi 12647:doi 12610:doi 12598:104 12571:doi 12488:doi 12431:PMC 12421:doi 12373:doi 12361:118 12251:doi 12190:103 12148:doi 12136:449 12104:doi 12100:281 12024:doi 11981:PMC 11971:doi 11959:101 11923:doi 11868:doi 11856:364 11730:PMC 11720:doi 11708:116 11663:doi 11622:doi 11570:doi 11521:doi 11509:241 11468:doi 11456:236 11411:doi 11399:224 11359:doi 11318:doi 11306:292 11200:doi 11196:339 11165:doi 11153:452 11116:doi 11104:291 10972:doi 10960:603 10893:PMC 10885:doi 10873:603 10836:PMC 10828:doi 10778:PMC 10770:doi 10758:603 10722:doi 10710:352 10673:PMC 10663:doi 10591:doi 10579:372 10512:PMC 10502:doi 10490:106 10388:doi 10355:doi 10302:doi 10298:303 10256:PMC 10240:doi 10192:doi 10146:doi 10098:doi 10055:PMC 10039:doi 10035:276 9939:doi 9927:294 9871:hdl 9863:doi 9851:376 9772:doi 9760:280 9718:PMC 9702:doi 9698:283 9659:PMC 9649:doi 9637:100 9601:PMC 9585:doi 9581:291 9546:PMC 9528:doi 9485:PMC 9477:doi 9382:doi 9370:258 9278:doi 9266:446 9228:doi 9177:hdl 9169:doi 9157:344 9121:PMC 9113:doi 9038:hdl 9030:doi 9018:433 8970:doi 8958:274 8839:doi 8827:232 8794:doi 8756:doi 8752:183 8729:doi 8717:288 8653:doi 8605:doi 8601:214 8562:doi 8558:197 8476:PMC 8466:doi 8427:doi 8375:doi 8329:doi 8269:doi 8187:doi 8145:doi 8096:doi 8047:doi 7998:doi 7946:doi 7907:PMC 7897:doi 7848:doi 7836:140 7811:213 7780:doi 7730:doi 7679:doi 7639:doi 7596:PMC 7588:doi 7537:doi 7488:PMC 7472:doi 7423:PMC 7407:doi 7403:281 7335:doi 7323:425 7290:PMC 7274:doi 7226:doi 7135:doi 7092:PMC 7084:doi 7080:228 7043:doi 7004:PMC 6986:doi 6982:114 6903:doi 6857:doi 6807:doi 6765:doi 6753:116 6699:hdl 6691:doi 6650:doi 6590:doi 6578:379 6541:doi 6479:doi 6467:214 6399:doi 6387:491 6342:doi 6330:313 6295:PMC 6285:doi 6231:PMC 6213:doi 6184:168 6142:doi 6101:doi 6061:doi 6005:doi 5962:PMC 5944:doi 5940:100 5896:doi 5847:doi 5835:274 5797:doi 5752:doi 5740:260 5692:doi 5650:doi 5602:doi 5560:hdl 5552:doi 5548:174 5511:PMC 5495:doi 5491:287 5456:doi 5394:doi 5390:149 5367:doi 5324:doi 5320:184 5276:doi 5228:doi 5224:119 5154:doi 5150:103 5114:doi 5048:doi 4980:doi 4968:140 4935:doi 4898:doi 4886:230 4848:doi 4800:doi 4759:doi 4723:doi 4686:doi 4632:hdl 4624:doi 4612:126 4574:doi 4520:PMC 4512:doi 4480:doi 4440:doi 4387:doi 4335:doi 4323:154 4260:doi 4219:doi 4215:106 4172:517 4135:PMC 4127:doi 4123:277 4075:doi 4063:267 4020:doi 3981:doi 3977:344 3941:PMC 3931:doi 3919:106 3854:PMC 3844:doi 3767:PMC 3757:doi 3745:109 3701:PMC 3691:doi 3679:108 3633:PMC 3615:doi 3603:117 3542:hdl 3534:doi 3522:367 3420:759 3376:PMC 3366:doi 3354:116 3286:doi 3236:PMC 3226:doi 3214:111 3159:doi 3147:208 3001:doi 2989:327 2931:doi 2919:180 2873:doi 2861:610 2814:doi 2802:135 2530:in 2359:in 2176:10 2056:of 1939:of 1891:in 1819:of 1790:in 1511:). 1412:of 674:In 517:O–S 503:Cap 474:(H) 299:'s 279:in 196:on 174:K–T 16710:: 15527:. 15476:. 15444:. 15434:. 15424:. 15412:. 15408:. 15388:. 15360:. 15350:. 15342:. 15330:. 15324:. 15294:. 15284:32 15282:. 15278:. 15253:. 15211:. 15199:. 15193:. 15170:. 15162:. 15152:26 15150:. 15125:. 15117:. 15105:. 15099:. 15073:. 15063:. 15051:. 15045:. 15020:. 15010:85 15008:. 15002:. 14972:. 14960:. 14954:. 14931:. 14923:. 14913:. 14901:. 14895:. 14832:. 14824:. 14814:46 14812:. 14806:. 14774:13 14772:. 14768:. 14738:. 14726:. 14720:. 14697:. 14687:49 14685:. 14679:. 14646:. 14634:. 14628:. 14598:. 14588:46 14586:. 14580:. 14557:. 14549:. 14537:. 14505:. 14493:. 14487:. 14449:. 14439:13 14437:. 14431:. 14405:. 14395:. 14387:. 14379:. 14367:. 14361:. 14338:. 14326:. 14294:. 14284:89 14282:. 14276:. 14246:. 14236:80 14234:. 14228:. 14198:. 14190:. 14182:. 14170:. 14164:. 14134:. 14126:. 14118:. 14106:. 14100:. 14088:^ 14065:46 14063:. 14057:. 14028:. 14004:}} 14000:{{ 13982:. 13961:}} 13957:{{ 13941:. 13920:}} 13916:{{ 13900:. 13845:. 13837:. 13825:. 13819:. 13789:. 13777:. 13771:. 13741:. 13733:. 13721:. 13715:. 13685:. 13675:83 13673:. 13667:. 13637:. 13625:. 13619:. 13607:^ 13583:. 13561:. 13538:. 13528:. 13518:. 13506:. 13500:. 13470:. 13462:. 13450:. 13444:. 13421:. 13411:. 13403:. 13391:. 13385:. 13362:. 13352:. 13344:. 13330:. 13324:. 13301:. 13291:. 13283:. 13269:. 13263:. 13233:. 13225:. 13217:. 13207:16 13205:. 13199:. 13176:. 13164:. 13148:^ 13134:. 13124:. 13116:. 13104:. 13100:. 13070:. 13058:. 13052:. 13022:. 13012:78 13010:. 13004:. 12974:. 12964:. 12952:. 12946:. 12923:. 12913:. 12901:. 12895:. 12868:. 12864:. 12842:. 12830:. 12805:. 12795:27 12793:. 12757:. 12730:. 12722:. 12712:20 12710:. 12680:. 12645:. 12635:28 12633:. 12608:. 12596:. 12592:. 12569:. 12559:33 12557:. 12494:. 12486:. 12476:44 12474:. 12468:. 12453:^ 12439:. 12429:. 12419:. 12409:95 12407:. 12401:. 12387:^ 12371:. 12359:. 12353:. 12341:^ 12323:. 12319:: 12315:. 12301:^ 12279:. 12257:. 12249:. 12239:. 12229:44 12227:. 12202:. 12188:. 12162:. 12154:. 12146:. 12134:. 12098:. 12092:. 12064:. 12060:. 12030:. 12020:39 12018:. 12012:. 11989:. 11979:. 11969:. 11957:. 11951:. 11921:. 11911:48 11909:. 11905:. 11882:. 11874:. 11866:. 11854:. 11771:. 11760:. 11738:. 11728:. 11718:. 11706:. 11700:. 11669:. 11659:39 11657:. 11651:. 11628:. 11620:. 11610:24 11608:. 11576:. 11566:26 11564:. 11558:. 11535:. 11527:. 11519:. 11507:. 11482:. 11474:. 11466:. 11454:. 11448:. 11425:. 11417:. 11409:. 11397:. 11365:. 11355:25 11353:. 11347:. 11324:. 11316:. 11304:. 11277:30 11275:. 11247:. 11235:^ 11214:. 11206:. 11194:. 11188:. 11163:. 11151:. 11145:. 11122:. 11114:. 11102:. 11096:. 11066:. 11058:. 11014:. 10988:. 10980:. 10970:. 10958:. 10952:. 10923:. 10901:. 10891:. 10883:. 10871:. 10867:. 10844:. 10834:. 10826:. 10816:11 10814:. 10810:. 10786:. 10776:. 10768:. 10756:. 10752:. 10728:. 10720:. 10708:. 10704:. 10681:. 10671:. 10661:. 10651:93 10649:. 10643:. 10613:. 10605:. 10597:. 10589:. 10577:. 10571:. 10542:. 10520:. 10510:. 10500:. 10488:. 10482:. 10404:. 10396:. 10384:28 10382:. 10376:. 10353:. 10343:24 10341:. 10316:. 10308:. 10296:. 10290:. 10278:^ 10264:. 10254:. 10246:. 10236:19 10234:. 10230:. 10200:. 10186:. 10182:. 10152:. 10142:21 10140:. 10134:. 10104:. 10094:17 10092:. 10086:. 10063:. 10053:. 10045:. 10033:. 10027:. 9953:. 9945:. 9937:. 9925:. 9909:^ 9895:. 9887:. 9879:. 9869:. 9861:. 9849:. 9843:. 9811:. 9778:. 9770:. 9758:. 9752:. 9726:. 9716:. 9708:. 9696:. 9690:. 9667:. 9657:. 9647:. 9635:. 9629:. 9617:^ 9599:. 9591:. 9579:. 9554:. 9544:. 9536:. 9524:10 9522:. 9516:. 9493:. 9483:. 9473:14 9471:. 9465:. 9388:. 9380:. 9344:23 9342:. 9336:. 9308:}} 9304:{{ 9292:. 9284:. 9276:. 9264:. 9250:^ 9236:. 9224:27 9222:. 9216:. 9193:. 9185:. 9175:. 9167:. 9155:. 9129:. 9119:. 9107:. 9101:. 9052:. 9044:. 9036:. 9028:. 9016:. 9010:. 8984:. 8976:. 8968:. 8956:. 8925:35 8923:. 8919:. 8889:. 8853:. 8845:. 8837:. 8825:. 8800:. 8792:. 8782:16 8780:. 8750:. 8727:. 8715:. 8687:. 8651:. 8641:57 8639:. 8633:. 8599:. 8593:. 8568:. 8539:^ 8498:^ 8484:. 8474:. 8462:16 8460:. 8456:. 8433:. 8425:. 8415:40 8413:. 8407:. 8381:. 8373:. 8363:35 8361:. 8335:. 8325:19 8323:. 8317:. 8293:}} 8289:{{ 8277:. 8265:23 8263:. 8257:. 8225:28 8223:. 8219:. 8193:. 8183:78 8181:. 8151:. 8141:50 8139:. 8133:. 8110:. 8102:. 8094:. 8084:42 8082:. 8078:. 8055:. 8045:. 8035:66 8033:. 8027:. 8004:. 7994:28 7992:. 7986:. 7960:. 7952:. 7942:58 7940:. 7915:. 7905:. 7895:. 7883:. 7877:. 7854:. 7846:. 7834:. 7828:. 7809:. 7786:. 7778:. 7768:47 7736:. 7726:36 7724:. 7718:. 7695:. 7687:. 7675:27 7673:. 7667:. 7637:. 7635:68 7633:. 7627:. 7604:. 7594:. 7586:. 7576:12 7574:. 7568:. 7545:. 7535:. 7525:21 7523:. 7519:. 7496:. 7486:. 7478:. 7470:. 7458:. 7454:. 7431:. 7421:. 7413:. 7401:. 7397:. 7349:. 7341:. 7333:. 7321:. 7298:. 7288:. 7280:. 7270:10 7268:. 7262:. 7232:. 7222:63 7220:. 7214:. 7188:: 7186:}} 7182:{{ 7141:. 7131:86 7129:. 7123:. 7100:. 7090:. 7078:. 7072:. 7049:. 7039:25 7037:. 7012:. 7002:. 6994:. 6980:. 6974:. 6957:22 6955:. 6936:49 6934:. 6909:. 6871:. 6863:. 6851:. 6845:. 6815:. 6805:. 6801:. 6771:. 6763:. 6751:. 6745:. 6720:^ 6697:. 6687:85 6685:. 6679:. 6656:. 6648:. 6638:72 6636:. 6604:. 6596:. 6588:. 6576:. 6570:. 6547:. 6539:. 6529:22 6527:. 6477:. 6465:. 6451:^ 6405:. 6397:. 6385:. 6379:. 6356:. 6348:. 6340:. 6328:. 6303:. 6293:. 6283:. 6273:99 6271:. 6265:. 6253:^ 6239:. 6229:. 6221:. 6209:18 6207:. 6201:. 6182:. 6178:. 6148:. 6140:. 6130:39 6128:. 6122:. 6099:. 6089:30 6087:. 6073:^ 6059:. 6049:19 6047:. 6032:^ 6011:. 6001:30 5999:. 5993:. 5970:. 5960:. 5952:. 5938:. 5932:. 5902:. 5892:19 5890:. 5884:. 5861:. 5853:. 5845:. 5833:. 5817:^ 5803:. 5795:. 5785:68 5783:. 5758:. 5750:. 5738:. 5698:. 5690:. 5680:36 5678:. 5646:57 5644:. 5638:. 5608:. 5598:43 5596:. 5590:. 5558:. 5546:. 5542:. 5519:. 5509:. 5501:. 5489:. 5485:. 5462:. 5454:. 5442:. 5365:. 5355:44 5353:. 5318:. 5312:. 5282:. 5272:20 5270:. 5264:. 5234:. 5222:. 5216:. 5160:. 5148:. 5142:. 5110:21 5108:. 5104:. 5079:46 5077:. 5042:. 5036:. 4986:. 4978:. 4966:. 4941:. 4904:. 4896:. 4884:. 4854:. 4844:41 4842:. 4836:. 4806:. 4794:. 4788:. 4765:. 4755:30 4753:. 4747:. 4721:. 4711:33 4709:. 4684:. 4674:24 4672:. 4640:. 4630:. 4622:. 4610:. 4604:. 4580:. 4572:. 4562:19 4560:. 4554:. 4528:. 4518:. 4506:. 4502:. 4478:. 4468:20 4466:. 4452:^ 4438:. 4428:35 4426:. 4393:. 4385:. 4375:14 4373:. 4367:. 4341:. 4333:. 4321:. 4280:^ 4266:. 4256:30 4254:. 4238:^ 4213:. 4207:. 4184:. 4143:. 4133:. 4121:. 4115:. 4103:^ 4089:. 4081:. 4073:. 4061:. 4042:^ 4028:. 4016:48 4014:. 4008:. 3993:^ 3975:. 3963:^ 3949:. 3939:. 3929:. 3917:. 3911:. 3876:^ 3862:. 3852:. 3842:. 3830:. 3824:. 3775:. 3765:. 3755:. 3743:. 3737:. 3723:^ 3709:. 3699:. 3689:. 3677:. 3671:. 3655:^ 3641:. 3631:. 3623:. 3613:. 3601:. 3595:. 3579:^ 3558:. 3550:. 3540:. 3532:. 3520:. 3514:. 3502:^ 3483:. 3471:^ 3453:. 3447:. 3414:. 3384:. 3374:. 3364:. 3352:. 3346:. 3334:^ 3316:. 3310:. 3298:^ 3284:. 3274:19 3272:. 3258:^ 3244:. 3234:. 3224:. 3212:. 3206:. 3194:^ 3173:. 3165:. 3157:. 3145:. 3139:. 3120:^ 3102:. 3096:. 3069:. 3065:. 3038:. 3015:. 3007:. 2999:. 2987:. 2981:. 2958:^ 2937:. 2929:. 2917:. 2913:. 2900:^ 2879:. 2871:. 2859:. 2853:. 2841:^ 2820:. 2812:. 2800:. 2794:. 2781:^ 2624:Pg 2012:, 1861:, 1716:. 1644:. 1581:, 1551:, 1446:, 1440:, 1434:, 1362:, 1019:, 725:, 721:, 659:, 636:, 609:, 605:, 409:, 405:, 381:, 350:. 256:. 163:) 112:, 16190:e 16183:t 16176:v 16150:0 16148:│ 16142:│ 16136:│ 16130:│ 16124:│ 16118:│ 16112:│ 16106:│ 16100:│ 16094:│ 16088:│ 16082:│ 16076:│ 15903:↓ 15891:↓ 15879:↓ 15867:↓ 15855:↓ 15843:↓ 15829:↓ 15817:↓ 15805:↓ 15793:↓ 15781:↓ 15769:↓ 15757:↓ 15745:↓ 15733:↓ 15721:↓ 15709:↓ 15674:e 15667:t 15660:v 15598:e 15591:t 15584:v 15568:— 15515:. 15484:. 15452:. 15428:: 15420:: 15399:. 15368:. 15346:: 15338:: 15332:7 15290:: 15263:. 15249:: 15226:. 15207:: 15201:4 15178:. 15166:: 15158:: 15133:. 15121:: 15113:: 15081:. 15067:: 15059:: 15030:. 15024:: 15016:: 14987:. 14976:: 14968:: 14939:. 14917:: 14909:: 14880:. 14847:. 14828:: 14820:: 14780:: 14753:. 14742:: 14734:: 14705:. 14701:: 14693:: 14661:. 14650:: 14642:: 14613:. 14594:: 14565:. 14553:: 14545:: 14520:. 14509:: 14501:: 14472:. 14445:: 14413:. 14383:: 14375:: 14369:9 14346:. 14342:: 14334:: 14309:. 14298:: 14290:: 14261:. 14250:: 14242:: 14213:. 14186:: 14178:: 14149:. 14122:: 14114:: 14082:. 14071:: 14042:. 14010:) 13996:. 13967:) 13953:. 13926:) 13912:. 13885:. 13860:. 13841:: 13833:: 13804:. 13793:: 13785:: 13756:. 13737:: 13729:: 13700:. 13689:: 13681:: 13652:. 13641:: 13633:: 13601:. 13569:. 13565:: 13546:. 13522:: 13514:: 13485:. 13458:: 13452:3 13429:. 13399:: 13393:6 13370:. 13338:: 13309:. 13277:: 13248:. 13221:: 13213:: 13184:. 13180:: 13172:: 13166:7 13142:. 13120:: 13112:: 13106:7 13085:. 13066:: 13060:3 13037:. 13018:: 12968:: 12960:: 12931:. 12917:: 12909:: 12880:. 12850:. 12846:: 12838:: 12813:. 12809:: 12801:: 12776:. 12738:. 12726:: 12718:: 12692:. 12653:. 12649:: 12641:: 12616:. 12612:: 12604:: 12577:. 12573:: 12565:: 12541:. 12502:. 12490:: 12482:: 12447:. 12423:: 12415:: 12381:. 12375:: 12367:: 12335:. 12295:. 12265:. 12253:: 12235:: 12210:. 12206:: 12196:: 12170:. 12150:: 12142:: 12106:: 12076:. 12026:: 11997:. 11973:: 11965:: 11936:. 11925:: 11917:: 11890:. 11870:: 11862:: 11837:. 11746:. 11722:: 11714:: 11665:: 11636:. 11624:: 11616:: 11572:: 11543:. 11523:: 11515:: 11490:. 11470:: 11462:: 11433:. 11413:: 11405:: 11361:: 11332:. 11320:: 11312:: 11287:. 11258:. 11229:. 11202:: 11173:. 11167:: 11159:: 11130:. 11118:: 11110:: 11078:. 11027:. 10996:. 10974:: 10966:: 10937:. 10909:. 10887:: 10879:: 10852:. 10830:: 10822:: 10794:. 10772:: 10764:: 10736:. 10724:: 10716:: 10689:. 10665:: 10657:: 10628:. 10593:: 10585:: 10556:. 10528:. 10504:: 10496:: 10467:. 10438:. 10412:. 10390:: 10361:. 10357:: 10349:: 10324:. 10304:: 10272:. 10242:: 10215:. 10194:: 10188:4 10148:: 10100:: 10071:. 10041:: 10012:. 9986:. 9961:. 9941:: 9933:: 9903:. 9873:: 9865:: 9857:: 9825:. 9786:. 9774:: 9766:: 9734:. 9704:: 9675:. 9651:: 9643:: 9611:. 9587:: 9562:. 9530:: 9501:. 9479:: 9450:. 9421:. 9396:. 9384:: 9376:: 9327:" 9314:) 9300:. 9280:: 9272:: 9244:. 9230:: 9179:: 9171:: 9163:: 9137:. 9115:: 9109:2 9086:. 9060:. 9040:: 9032:: 9024:: 8992:. 8972:: 8964:: 8939:. 8904:. 8885:: 8861:. 8841:: 8833:: 8808:. 8796:: 8788:: 8762:. 8758:: 8735:. 8731:: 8723:: 8697:. 8661:. 8655:: 8647:: 8607:: 8578:. 8564:: 8533:. 8492:. 8468:: 8441:. 8429:: 8421:: 8389:. 8377:: 8369:: 8343:. 8331:: 8299:) 8285:. 8271:: 8242:. 8201:. 8189:: 8147:: 8118:. 8098:: 8090:: 8063:. 8049:: 8041:: 8012:. 8000:: 7968:. 7948:: 7923:. 7899:: 7891:: 7885:7 7862:. 7850:: 7842:: 7794:. 7782:: 7774:: 7751:. 7732:: 7703:. 7681:: 7652:. 7641:: 7612:. 7590:: 7582:: 7553:. 7539:: 7531:: 7504:. 7474:: 7466:: 7460:8 7439:. 7409:: 7382:. 7357:. 7337:: 7329:: 7306:. 7276:: 7228:: 7199:) 7195:( 7178:. 7149:. 7137:: 7108:. 7086:: 7057:. 7045:: 7020:. 6988:: 6919:. 6905:: 6886:. 6859:: 6853:2 6830:. 6809:: 6767:: 6759:: 6701:: 6693:: 6664:. 6652:: 6644:: 6619:. 6592:: 6584:: 6555:. 6543:: 6535:: 6510:. 6485:. 6481:: 6473:: 6445:. 6420:. 6401:: 6393:: 6364:. 6344:: 6336:: 6311:. 6287:: 6279:: 6247:. 6215:: 6163:. 6144:: 6136:: 6107:. 6103:: 6095:: 6067:. 6063:: 6055:: 6007:: 5978:. 5946:: 5898:: 5869:. 5849:: 5841:: 5811:. 5799:: 5791:: 5766:. 5754:: 5746:: 5706:. 5694:: 5686:: 5652:: 5623:. 5604:: 5562:: 5554:: 5527:. 5497:: 5470:. 5458:: 5450:: 5444:8 5425:. 5400:. 5396:: 5373:. 5369:: 5361:: 5326:: 5278:: 5230:: 5201:. 5156:: 5116:: 5089:. 5050:: 5044:8 5021:. 4994:. 4982:: 4974:: 4951:. 4937:: 4912:. 4900:: 4892:: 4850:: 4821:. 4802:: 4796:3 4773:. 4761:: 4729:. 4725:: 4717:: 4692:. 4688:: 4680:: 4655:. 4634:: 4626:: 4618:: 4588:. 4576:: 4568:: 4536:. 4514:: 4508:8 4486:. 4482:: 4474:: 4446:. 4442:: 4434:: 4389:: 4381:: 4349:. 4337:: 4329:: 4274:. 4262:: 4221:: 4192:. 4151:. 4129:: 4097:. 4077:: 4069:: 4036:. 4022:: 3987:. 3983:: 3957:. 3933:: 3925:: 3896:. 3870:. 3846:: 3838:: 3832:8 3809:. 3783:. 3759:: 3751:: 3717:. 3693:: 3685:: 3649:. 3617:: 3609:: 3573:. 3544:: 3536:: 3528:: 3496:. 3465:. 3432:. 3392:. 3368:: 3360:: 3328:. 3292:. 3288:: 3280:: 3252:. 3228:: 3220:: 3161:: 3153:: 3114:. 3081:. 3050:. 3023:. 3003:: 2995:: 2952:. 2933:: 2925:: 2894:. 2875:: 2867:: 2835:. 2816:: 2808:: 2775:. 2750:. 2720:. 2694:. 2651:. 2645:T 2630:. 2612:K 2383:± 2379:( 2367:± 2363:( 2174:× 2117:± 2100:. 1907:) 1424:( 1289:∆ 1262:, 1249:( 572:) 568:( 461:% 176:) 172:( 159:( 120:; 34:. 20:)

Index

Extinction of the dinosaurs
Extinction event
Meteoroid entering the atmosphere with fireball
dark rocky hill sourrounded by a small semi-desert plateau and deep cliffs
rock hillside with rock striations
rock in museum with layering
Cretaceous Paleogene clay layer with finger just below the boundary
asteroid
Badlands
Drumheller
Alberta
K–Pg boundary
Geulhem
Wyoming
iridium
Rajgad Fort
Deccan Traps
mass extinction
plant
animal
species
Earth
dinosaurs
tetrapods
ectothermic
sea turtles
crocodilians
Cretaceous
Mesozoic
Cenozoic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.