Knowledge

Air shower (physics)

Source 📝

1699: 658: 31: 515: 2575: 156:
was centered underneath with additional shielding. From the detection of air-shower particles passing through the Geiger counters in coincidence, he assumed that secondary particles are being produced by cosmic rays in the first shielding layer as well as in the rooftop of the laboratory, unknowing that the particles he measured were
116:, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that cosmic-ray particles are of extremely high energies and interact with nuclei high up in the atmosphere, initiating a cascade of secondary interactions that produce extensive showers of subatomic particles. 319:, Rossi and others), assuming that in the vicinity of nuclear fields high-energy gamma rays will undergo pair-production of electrons and positrons, and electrons and positrons will produce gamma rays by radiation. Work on extensive air showers continued mainly after the war, as many key figures were involved in the 1187: 104:
are produced in the first interactions, which then fuel a hadronic shower component that produces shower particles mostly through pion decay. Primary photons and electrons, on the other hand, produce mainly electromagnetic showers. Depending on the energy of the primary particle, the detectable size
2353: 544:
that develops along the extended trajectory of the primary cosmic ray, until it is fully absorbed by either the atmosphere or the ground. The interaction and decay of particles in the shower core feeds the main particle components of the shower, which are hadrons, muons, and purely electromagnetic
258:
above sea level, and at sea level. They found that the rate of coincidences reduces with increasing distance of the detectors, but does not vanish, even at high altitudes. Thus confirming that cosmic rays produce air showers of secondary particles in the atmosphere. They estimated that the primary
155:
conducted an experiment in the Institute of Physics in Florence, using shielded Geiger counters to confirm the penetrating character of the cosmic radiation. He used different arrangements of Geiger counters, including a setup of three counters, where two were placed next to each other and a third
2650:
can be given for example by the longitudinal profile function. The lateral distribution of hadronic showers (i.e. initiated by a primary hadron, such as a proton), which contain a significantly increased amount of muons, can be well approximated by a superposition of NKG-like functions, in which
1694:
The number of particles present in an air shower is approximately proportional to the calorimetric energy deposit of the shower. The energy deposit as a function of the surpassed atmospheric matter, as it can for example be seen by fluorescence detector telescopes, is known as the longitudinal
2731:
clusters. Finally, air showers emit radio waves due to the deflection of electrons and positrons by the geomagnetic field. As advantage over the optical techniques, radio detection is possible around the clock and not only during dark and clear nights. Thus, several modern experiments, e.g.,
444:
A novel detection technique for extensive air showers was proposed by Greisen in 1965. He suggested to directly observe Cherenkov radiation of the shower particles, and fluorescence light produced by excited nitrogen molecules in the atmosphere. In this way, one would be able to measure the
1855: 650:. The same holds true for charged and neutral kaons. In addition, kaons also produce pions. Neutrinos from pion and kaon decay are usually not accounted for as parts of the shower because of their very low cross-section, and are referred to as part of the 522:
The air shower is formed by interaction of the primary cosmic ray with the atmosphere, and then by subsequent interaction of the secondary particles, and so on. Depending on the type of the primary particle, the shower particles will be created mostly by
96:. Upon entering the atmosphere, they interact with molecules and initiate a particle cascade that lasts for several generations, until the energy of the primary particle is fully converted. If the primary particle is a hadron, mostly light mesons like 2710:, so the products of the collisions tend also to move generally in the same direction as the primary, while to some extent spreading sidewise. In addition, the secondary particles produce a widespread flash of light in forward direction due to the 1695:
profile of the shower. For the longitudinal profile of the shower, only the electromagnetic particles (electrons, positrons, and photons) are relevant, as they dominate the particle content and the contribution to the calorimetric energy deposit.
1685:
is assumed to be the depth of the first interaction of the cosmic ray in the atmosphere. This approximation is, however, not accurate for all types of primary particles. Especially showers from heavy nuclei will reach their maximum much earlier.
665:
Qualitatively, the particle content of a shower can be described by a simplified model, in which all particles partaking in any interaction of the shower will equally share the available energy. One can assume that in each hadronic interaction,
3402:
Bird, D. J.; Corbato, S. C.; Dai, H. Y.; Elbert, J. W.; Green, K. D.; Huang, M. A.; Kieda, D. B.; Ko, S.; Larsen, C. G.; Loh, E. C.; Luo, M. Z.; Salamon, M. H.; Smith, J. D.; Sokolsky, P.; Sommers, P.; Tang, J. K. K.; Thomas, S. B. (1995).
445:
longitudinal development of a shower in the atmosphere. This method was first applied successfully and reported in 1977 at Volcano Ranch, using 67 optical modules. Volcano Ranch finished its operation shortly after due to lack of funding.
2718:
that is emitted isotropically from the excitation of nitrogen molecules. The particle cascade and the light produced in the atmosphere can be detected with surface detector arrays and optical telescopes. Surface detectors typically use
1653: 1282: 1061: 2570:{\displaystyle \varrho (r)={\frac {N}{2\pi r_{\text{M}}^{2}}}{\frac {\Gamma ({\tfrac {9}{2}})}{\Gamma (s)\Gamma ({\frac {9}{2}}-2s)}}\left({\frac {r}{r_{\text{M}}}}\right)^{s-2}\,\left(1+{\frac {r}{r_{\text{M}}}}\right)^{s-9/2},} 1371:
and pair production. For the sake of simplicity, photons, electrons, and positrons are often treated as equivalent particles in the shower. The electromagnetic cascade continues, until the particles reach a critical energy of
3347:
Bergeson, H. E.; Cassiday, G. L.; Chiu, T. -W.; Cooper, D. A.; Elbert, J. W.; Loh, E. C.; Steck, D.; West, W. J.; Linsley, J.; Mason, G. W. (1977-09-26). "Measurement of Light Emission from Remote Cosmic-Ray Air Showers".
921: 1468: 539:
Shortly after entering the atmosphere, the primary cosmic ray (which is assumed to be a proton or nucleus in the following) is scattered by a nucleus in the atmosphere and creates a shower core - a region of high-energy
1365: 135:. The latter is the largest observatory for cosmic rays ever built, operating with 4 fluorescence detector buildings and 1600 surface detector stations spanning an area of 3,000 km in the Argentinean desert. 1414: 1054: 160:, which are produced in air showers and which would only be discovered three years later. He also noted that the coincidence rate drops significantly for cosmic rays that are detected at a zenith angle below 1922: 835: 3690: : Interactive animated 3d models of several different cosmic ray air showers, and instructions on how to make your own using AIRES simulations. From the COSMUS group at the University of Chicago. 1567: 47: 2308:
For idealized electromagnetic showers, the angular and lateral distribution functions for electromagnetic particles have been derived by Japanese physicists Nishimura and Kamata. For a shower of age
460:. In 1995, the latter reported the detection of an ultrahigh-energy cosmic ray with an energy beyond the theoretically expected spectral cutoff. The air shower of the cosmic ray was detected by the 198:, together with three colleagues, suggested that secondary particles are created by cosmic rays in the atmosphere, and conducted experiments using shielded scintillators and Wilson chambers on the 2022: 302: 723:
neutral pions are produced. The neutral pions will decay into photons, which fuel the electromagnetic part of the shower. The charged pions will then continue to interact hadronically. After
1736: 1010: 500: 1747: 1511: 326:
In 1955, the first surface detector array to detect air showers with sufficient precision to detect the arrival direction of the primary cosmic rays was built at the Agassiz station at
2225: 2075: 402: 35: 1470:, the electromagnetic particles dominate the number of particles in the shower by far. A good approximation for the number of (electromagnetic) particles produced in a shower is 464:
fluorescence detector system and was estimated to contain approximately 240 billion particles at its maximum. This corresponds to a primary energy for the cosmic ray of about
256: 226: 435: 354: 2298: 694: 721: 2696: 2624: 2097:
is introduced to compare showers with different starting depths and different primary energies to highlight their universal features, as for example at the shower maximum
3666:(AIRshower Extended Simulations) : Large and well documented Fortran package for simulating cosmic ray showers by Sergio Sciutto at the Department of Physics of the 636: 185: 2273:
The longitudinal profiles of showers are particularly interesting in the context of measuring the total calorimetric energy deposit and the depth of the shower maximum,
1963: 2727:
to detect the charged secondary particles at ground level. The telescopes used to measure the fluorescence and Cherenkov light use large mirrors to focus the light on
605: 575: 2154: 323:. In the 1950s, the lateral and angular structure of electromagnetic particles in air showers were calculated by Japanese scientists Koichi Kamata and Jun Nishimura. 2049: 1683: 768: 1182:{\displaystyle n_{\text{c}}=\left\lceil {\frac {\ln \left(E_{0}/\epsilon _{\text{c}}^{\pi }\right)}{\ln \left({\tfrac {3}{2}}\,N_{\text{ch}}\right)}}\right\rceil } 2121: 1574: 1194: 2669: 2648: 2597: 2346: 2326: 2300:, since the latter is an observable that is sensitive to type of the primary particle. The shower appears brightest in a fluorescence telescope at its maximum. 2268: 2248: 2174: 2095: 944: 741: 307:
Based on the idea of quantum theory, theoretical work on air showers was carried between 1935 and 1940 out by many well-known physicists of the time (including
404:
was reported. With a footprint of several kilometers, the shower size at the ground was twice as large as any event recorded before, approximately producing
845: 3226:
CLARK, G.; EARL, J.; KRAUSHAAR, W.; LINSLEY, J.; ROSSI, B.; SCHERB, F. (1957). "An Experiment on Air Showers Produced by High-Energy Cosmic Rays".
1423: 457: 1287: 2230:
The image shows the ideal longitudinal profile of showers using different primary energies, as a function of the surpassed atmospheric depth
1375: 1015: 1862: 1706:
The shower profile is characterized by a fast rise in the number of particles, before the average energy of the particles falls below
437:
particles in the shower. Furthermore, it was confirmed that the lateral distribution of the particles detected at the ground matched
3696: : Movies and instructions for how to make them, showing how air showers interact with the Milagro detector. By Miguel Morales. 1738:
around the shower maximum, and a slow decay afterwards. Mathematically the profile can be well described by a slanted Gaussian, the
775: 120: 39: 1516: 34:
Cosmic ray air shower created by a 1TeV proton hitting the atmosphere 20 km above the Earth. The shower was simulated using the
3461:
Gaisser, T. K., Engel, R., & Resconi, E. (2016). Cosmic Rays and Particle Physics: 2nd Edition. Cambridge University Press.
3687: 518:
Air shower formation in the atmosphere. First proton collides with a particle in the air creating pions, protons and neutrons.
356:
diameter circular array. The results of the experiment on the arrival directions of cosmic rays, however, where inconclusive.
3405:"Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation" 1968: 17: 262: 3631: 3642: 3485: 1709: 3667: 2950:
Auger, Pierre; Ehrenfest, P.; Maze, R.; Daudin, J.; Fréon, Robley A. (1939-07-01). "Extensive Cosmic-Ray Showers".
1850:{\displaystyle N(t)={\frac {\epsilon }{\sqrt {\beta }}}\,{\text{e}}^{\left((t-t_{1})-{\tfrac {3}{2}}\ln s\right)}.} 949: 611:
into pairs of oppositely spinning photons, which fuel the electromagnetic component of the shower. Charged pions,
467: 502:. To this day, no single particle with a larger energy was recorded. It is therefore publicly referred to as the 3699: 1473: 2181: 3637: 3677: 2054: 453: 368: 374: 3681: 2737: 2848:
Rossi, Bruno (1933). "Über die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau".
235: 205: 407: 333: 2276: 1702:
Number of particles for different primary energies as a function of the surpassed atmospheric depth.
669: 3732: 2741: 699: 360: 132: 2674: 2602: 1739: 614: 608: 528: 163: 128: 3702: : Animations of different cosmic ray air showers by Hajo Dreschler of New York University. 3693: 2753: 1927: 229: 3277:
Linsley, John (1963-02-15). "Evidence for a Primary Cosmic-Ray Particle with Energy 10^20eV".
583: 560: 2724: 2126: 66: 1648:{\displaystyle X_{\text{max}}\simeq X_{1}+X_{0}\ln \left({\frac {E_{0}}{\text{GeV}}}\right)} 3737: 3602: 3557: 3510: 3426: 3357: 3321: 3235: 3190: 3143: 3098: 3051: 3006: 2959: 2908: 2857: 2822: 2787: 2027: 1661: 1277:{\displaystyle (N_{\text{ch}})^{n_{\text{c}}}=(E_{0}/\epsilon _{\text{c}}^{\pi })^{\beta }} 746: 8: 3727: 2999:
Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences
2100: 195: 113: 46: 3614: 3606: 3561: 3522: 3514: 3430: 3361: 3333: 3325: 3239: 3194: 3147: 3102: 3091:
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
3055: 3010: 2963: 2912: 2861: 2826: 2791: 3416: 3390: 3259: 2932: 2881: 2720: 2654: 2633: 2582: 2331: 2311: 2253: 2233: 2159: 2080: 1417: 929: 726: 503: 1513:. Assuming each electromagnetic interaction occurs after the average radiation length 3575: 3526: 3481: 3444: 3373: 3294: 3251: 3208: 3159: 3116: 3067: 3024: 2975: 2936: 2924: 2885: 2873: 320: 3610: 3565: 3518: 3434: 3365: 3329: 3286: 3263: 3243: 3198: 3151: 3106: 3059: 3014: 2967: 2916: 2865: 2830: 2795: 2733: 2711: 647: 3475: 2758: 2728: 438: 62: 3369: 3290: 2707: 2627: 1368: 916:{\displaystyle E_{\gamma }=\left(1-\left({\frac {2}{3}}\right)^{n}\right)E_{0}} 308: 81: 3663: 3155: 3042:
Carlson, J. F.; Oppenheimer, J. R. (1937-02-15). "On Multiplicative Showers".
2971: 2799: 3721: 3579: 3530: 3448: 3377: 3298: 3255: 3212: 3163: 3120: 3071: 3028: 2979: 2928: 2899:
Hilgert, R.; Bothe, W. (1936). "Zur Struktur der kosmischen Ultrastrahlung".
2877: 2744:
use radio antennas in addition to particle detectors and optical techniques.
2706:
The original particle arrives with high energy and hence a velocity near the
1463:{\displaystyle \epsilon _{\text{c}}^{\gamma }\ll \epsilon _{\text{c}}^{\pi }} 524: 441:'s approximation of the structure functions derived by Kamata and Nishimura. 51: 3680:: Another code for simulating cosmic ray air showers by Dieter Heck of the 3111: 3086: 3063: 3019: 2994: 2834: 2715: 461: 364: 199: 3421: 2813:
Rossi, Bruno (August 1930). "On the Magnetic Deflection of Cosmic Rays".
2328:, the density of electromagnetic particles as a function of the distance 1360:{\displaystyle \beta =\ln N_{\text{ch}}/\ln(3N_{\text{ch}}/2)\simeq 0.95} 661:
Sketch of the hadronic and electromagnetic sub-cascades in an air shower.
312: 152: 148: 119:
The most important experiments detecting extensive air showers today are
109: 330:. The Agassiz array consisted of 16 plastic scintillators arranged in a 2920: 2869: 2651:
different particle components are described using effective values for
316: 188: 144: 73: 3570: 3545: 3203: 3178: 1698: 38:
package. Animated 3d models of this and other showers can be found on
3546:"The Lateral and the Angular Structure Functions of Electron Showers" 3247: 3179:"The Lateral and the Angular Structure Functions of Electron Showers" 1409:{\displaystyle \epsilon _{\text{c}}^{\gamma }\simeq 87\,{\text{MeV}}} 643: 448:
Many air-shower experiments followed in the decades after, including
187:. A similar experiment was conducted in 1936 by Hilgert and Bothe in 2778:
Auger, P.; et al. (July 1939), "Extensive Cosmic-Ray Showers",
367:, was the first surface detector array of sufficient size to detect 3705: 3439: 3404: 93: 85: 3134:
Rossi, Bruno; Greisen, Kenneth (1941-10-01). "Cosmic-Ray Theory".
1367:. The electromagnetic part of the cascade develops in parallel by 1049:{\displaystyle \epsilon _{\text{c}}^{\pi }\simeq 20\,{\text{GeV}}} 1012:. The reaction continues, until the pions reach a critical energy 3673: 3501:
Matthews, J. (2005). "A Heitler model of extensive air showers".
657: 449: 2995:"The passage of fast electrons and the theory of cosmic showers" 1917:{\displaystyle \beta =\ln(E_{0}/\epsilon _{\text{c}}^{\gamma })} 1569:, the shower will reach its maximum at a depth of approximately 3711: 541: 124: 89: 77: 30: 1416:, from which on they start losing most of their energy due to 545:
particles. The hadronic part of the shower consists mostly of
3647: 830:{\displaystyle E_{\pi }=\left({\frac {2}{3}}\right)^{n}E_{0}} 639: 550: 514: 76:
enters the atmosphere. Particles of cosmic radiation can be
3660:(High School Project on Astrophysics Research with Cosmics) 2348:
to the shower axis can be approximated by the NKG function
554: 546: 157: 101: 97: 65:
of subatomic particles and ionized nuclei, produced in the
3346: 3234:(4582). Springer Science and Business Media LLC: 353–356. 1562:{\displaystyle X_{0}\simeq 37\,{\text{g}}/{\text{cm}}^{2}} 3657: 3225: 2907:(5–6). Springer Science and Business Media LLC: 353–362. 2856:(3–4). Springer Science and Business Media LLC: 151–178. 327: 259:
particles of this phenomenon must have energies of up to
3652: 2949: 2777: 840:
and the electromagnetic part thus approximately carries
108:
The air shower phenomenon was unknowingly discovered by
105:
of the shower can reach several kilometers in diameter.
2412: 2077:
is a dimensionless constant. The shower age parameter
1817: 1145: 2677: 2657: 2636: 2605: 2585: 2356: 2334: 2314: 2279: 2256: 2236: 2184: 2162: 2129: 2103: 2083: 2057: 2030: 2017:{\displaystyle X_{0}=37\,{\text{g}}/{\text{cm}}^{-2}} 1971: 1930: 1865: 1750: 1712: 1664: 1577: 1519: 1476: 1426: 1378: 1290: 1197: 1064: 1018: 952: 932: 848: 778: 749: 729: 702: 672: 617: 586: 563: 470: 410: 377: 336: 265: 238: 208: 166: 3401: 363:
experiment, which was built in 1959 and operated by
297:{\displaystyle 10^{15}\,{\text{eV}}=1\,{\text{PeV}}} 1965:using the electromagnetic radiation length in air, 1056:, at which they decay into muons. Thus, a total of 3041: 2690: 2663: 2642: 2618: 2591: 2569: 2340: 2320: 2292: 2262: 2250:or, equivalently, the number of radiation lengths 2242: 2219: 2168: 2148: 2115: 2089: 2069: 2043: 2016: 1957: 1916: 1849: 1730: 1677: 1647: 1561: 1505: 1462: 1408: 1359: 1276: 1181: 1048: 1004: 938: 915: 829: 762: 735: 715: 688: 630: 599: 569: 494: 429: 396: 371:. In 1962, the first cosmic ray with an energy of 348: 296: 250: 220: 179: 3708: : South-Pole Air Shower Experiment (SPASE). 3084: 2992: 2958:(3–4). American Physical Society (APS): 288–291. 3719: 3356:(13). American Physical Society (APS): 847–849. 770:deposited in the hadronic component is given by 3543: 3312:Greisen, Kenneth (1960). "Cosmic Ray Showers". 3285:(4). American Physical Society (APS): 146–148. 3176: 3142:(4). American Physical Society (APS): 240–309. 3050:(4). American Physical Society (APS): 220–231. 3593:Greisen, Kennet (1960). "Cosmic Ray Showers". 2051:marks the point of the first interaction, and 1731:{\displaystyle \epsilon _{\text{c}}^{\gamma }} 743:interactions, the share of the primary energy 3595:Annual Review of Nuclear and Particle Science 3314:Annual Review of Nuclear and Particle Science 3714: : High mountain Air Shower Experiment. 3133: 2898: 2812: 1005:{\displaystyle E_{0}/(3N_{\text{ch}}/2)^{n}} 495:{\displaystyle 3.2\times 10^{20}{\text{eV}}} 112:in 1933 in a laboratory experiment. In 1937 2123:. For a shower with a first interaction at 3550:Progress of Theoretical Physics Supplement 3183:Progress of Theoretical Physics Supplement 3087:"The cascade theory of electronic showers" 1506:{\displaystyle N\simeq E_{0}/{\text{GeV}}} 1420:with molecules in the atmosphere. Because 534: 27:Cascade of atmospheric subatomic particles 3569: 3556:. Oxford University Press (OUP): 93–155. 3438: 3420: 3202: 3189:. Oxford University Press (OUP): 93–155. 3110: 3018: 2509: 2220:{\displaystyle s={\frac {3t}{t+2\beta }}} 1988: 1778: 1536: 1400: 1191:interactions are expected and a total of 1156: 1040: 388: 340: 288: 276: 242: 212: 3500: 3469: 3467: 1697: 946:th generation thus carries an energy of 656: 513: 143:In 1933, shortly after the discovery of 45: 29: 3592: 3544:Kamata, Koichi; Nishimura, Jun (1958). 3311: 3276: 3177:Kamata, Koichi; Nishimura, Jun (1958). 1689: 509: 14: 3720: 3415:. American Astronomical Society: 144. 3464: 2847: 2070:{\displaystyle \epsilon \approx 0.31} 1742:or the generalized Greisen function, 3085:Landau, L.; Rumer, G. (1938-05-19). 397:{\displaystyle 10^{20}\,{\text{eV}}} 3615:10.1146/annurev.ns.10.120160.000431 3523:10.1016/j.astropartphys.2004.09.003 3473: 3334:10.1146/annurev.ns.10.120160.000431 3097:(925). The Royal Society: 213–228. 3005:(898). The Royal Society: 432–458. 24: 2440: 2428: 2405: 2303: 25: 3749: 3638:Buckland Park Air Shower Detector 3625: 3668:Universidad Nacional de La Plata 3480:. World Scientific. p. 10. 251:{\displaystyle 2900\,{\text{m}}} 221:{\displaystyle 3500\,{\text{m}}} 3586: 3537: 3494: 3455: 3395: 3384: 3340: 3305: 3270: 3219: 3170: 430:{\displaystyle 5\times 10^{10}} 349:{\displaystyle 460\,{\text{m}}} 3127: 3078: 3035: 2986: 2943: 2892: 2841: 2806: 2771: 2579:using the number of particles 2465: 2443: 2437: 2431: 2423: 2408: 2366: 2360: 2293:{\displaystyle X_{\text{max}}} 1911: 1878: 1810: 1791: 1760: 1754: 1348: 1324: 1265: 1231: 1212: 1198: 993: 968: 689:{\displaystyle 2N_{\text{ch}}} 13: 1: 3643:Haverah Park Detection System 3509:(5–6). Elsevier BV: 387–397. 2764: 716:{\displaystyle N_{\text{ch}}} 2701: 2691:{\displaystyle r_{\text{M}}} 2619:{\displaystyle r_{\text{M}}} 638:, preferentially decay into 369:ultrahigh-energy cosmic rays 7: 3682:Forschungszentrum Karlsruhe 2747: 631:{\displaystyle \pi ^{\pm }} 180:{\displaystyle 60^{\circ }} 10: 3754: 3370:10.1103/physrevlett.39.847 3291:10.1103/physrevlett.10.146 194:In a publication in 1939, 138: 3409:The Astrophysical Journal 3156:10.1103/revmodphys.13.240 3136:Reviews of Modern Physics 2972:10.1103/revmodphys.11.288 2952:Reviews of Modern Physics 2800:10.1103/RevModPhys.11.288 2780:Reviews of Modern Physics 1958:{\displaystyle t=X/X_{0}} 1284:muons are produced, with 50:Air shower detected in a 3653:Pierre Auger Observatory 2993:Bhabha; Heitler (1937). 2742:Pierre Auger Observatory 600:{\displaystyle \pi ^{0}} 570:{\displaystyle \varrho } 228:above sea level, and on 133:Pierre Auger Observatory 3350:Physical Review Letters 3279:Physical Review Letters 2149:{\displaystyle t_{0}=0} 1740:Gaisser-Hillas function 609:electroweak interaction 535:Simplified shower model 129:Telescope Array Project 3112:10.1098/rspa.1938.0088 3064:10.1103/physrev.51.220 3020:10.1098/rspa.1937.0082 2901:Zeitschrift für Physik 2850:Zeitschrift für Physik 2835:10.1103/PhysRev.36.606 2754:Cosmic-ray observatory 2725:scintillation counters 2692: 2665: 2644: 2620: 2593: 2571: 2342: 2322: 2294: 2264: 2244: 2221: 2176:is usually defined as 2170: 2150: 2117: 2091: 2071: 2045: 2018: 1959: 1918: 1851: 1732: 1703: 1679: 1649: 1563: 1507: 1464: 1410: 1361: 1278: 1183: 1050: 1006: 940: 917: 831: 764: 737: 717: 690: 662: 632: 601: 571: 519: 496: 431: 398: 350: 298: 252: 222: 181: 55: 43: 3648:HiRes Detector System 3632:Extensive Air Showers 3503:Astroparticle Physics 3477:Extensive Air Showers 2693: 2666: 2645: 2621: 2594: 2572: 2343: 2323: 2295: 2265: 2245: 2222: 2171: 2151: 2118: 2092: 2072: 2046: 2044:{\displaystyle t_{1}} 2019: 1960: 1919: 1852: 1733: 1701: 1680: 1678:{\displaystyle X_{1}} 1650: 1564: 1508: 1465: 1411: 1362: 1279: 1184: 1051: 1007: 941: 918: 832: 765: 763:{\displaystyle E_{0}} 738: 718: 691: 660: 633: 602: 572: 517: 497: 432: 399: 351: 299: 253: 223: 182: 49: 33: 2675: 2655: 2634: 2603: 2583: 2354: 2332: 2312: 2277: 2254: 2234: 2182: 2160: 2127: 2101: 2081: 2055: 2028: 1969: 1928: 1863: 1748: 1710: 1690:Longitudinal profile 1662: 1575: 1517: 1474: 1424: 1376: 1288: 1195: 1062: 1016: 950: 930: 846: 776: 747: 727: 700: 670: 615: 584: 561: 510:Air shower formation 468: 408: 375: 334: 263: 236: 206: 164: 18:Extensive air shower 3607:1960ARNPS..10...63G 3562:1958PThPS...6...93K 3515:2005APh....22..387M 3431:1995ApJ...441..144B 3362:1977PhRvL..39..847B 3326:1960ARNPS..10...63G 3240:1957Natur.180..353C 3195:1958PThPS...6...93K 3148:1941RvMP...13..240R 3103:1938RSPSA.166..213L 3056:1937PhRv...51..220C 3011:1937RSPSA.159..432B 2964:1939RvMP...11..288A 2913:1936ZPhy...99..353H 2862:1933ZPhy...82..151R 2827:1930PhRv...36..606R 2792:1939RvMP...11..288A 2721:Cherenkov detectors 2398: 2116:{\displaystyle s=1} 1910: 1727: 1459: 1441: 1393: 1263: 1125: 1033: 549:, and some heavier 3694:Milagro Animations 3391:Oh-My-God particle 2921:10.1007/bf01330786 2870:10.1007/bf01341486 2716:fluorescence light 2688: 2661: 2640: 2616: 2589: 2567: 2421: 2384: 2338: 2318: 2290: 2260: 2240: 2217: 2166: 2146: 2113: 2087: 2067: 2041: 2014: 1955: 1914: 1896: 1847: 1826: 1728: 1713: 1704: 1675: 1645: 1559: 1503: 1460: 1445: 1427: 1406: 1379: 1357: 1274: 1249: 1179: 1154: 1111: 1046: 1019: 1002: 936: 913: 827: 760: 733: 713: 696:charged pions and 686: 663: 628: 597: 567: 520: 504:Oh-My-God particle 492: 427: 394: 346: 294: 248: 232:at an altitude of 218: 202:at an altitude of 177: 56: 44: 3706:SPASE2 Experiment 3700:CASSIM Animations 3571:10.1143/ptps.6.93 3204:10.1143/ptps.6.93 2685: 2664:{\displaystyle s} 2643:{\displaystyle N} 2613: 2599:, Molière radius 2592:{\displaystyle N} 2537: 2534: 2491: 2488: 2469: 2454: 2420: 2400: 2391: 2341:{\displaystyle r} 2321:{\displaystyle s} 2287: 2263:{\displaystyle t} 2243:{\displaystyle X} 2215: 2169:{\displaystyle s} 2156:, the shower age 2090:{\displaystyle s} 2003: 1992: 1903: 1825: 1783: 1776: 1775: 1720: 1639: 1638: 1585: 1551: 1540: 1501: 1452: 1434: 1404: 1386: 1337: 1310: 1256: 1223: 1208: 1173: 1164: 1153: 1118: 1072: 1044: 1026: 981: 939:{\displaystyle n} 886: 805: 736:{\displaystyle n} 710: 683: 490: 392: 344: 321:Manhattan project 292: 280: 246: 216: 16:(Redirected from 3745: 3712:GAMMA Experiment 3619: 3618: 3590: 3584: 3583: 3573: 3541: 3535: 3534: 3498: 3492: 3491: 3474:Rao, M. (1998). 3471: 3462: 3459: 3453: 3452: 3442: 3424: 3422:astro-ph/9410067 3399: 3393: 3388: 3382: 3381: 3344: 3338: 3337: 3309: 3303: 3302: 3274: 3268: 3267: 3248:10.1038/180353a0 3223: 3217: 3216: 3206: 3174: 3168: 3167: 3131: 3125: 3124: 3114: 3082: 3076: 3075: 3039: 3033: 3032: 3022: 2990: 2984: 2983: 2947: 2941: 2940: 2896: 2890: 2889: 2845: 2839: 2838: 2810: 2804: 2803: 2786:(3–4): 288–291, 2775: 2712:Cherenkov effect 2697: 2695: 2694: 2689: 2687: 2686: 2683: 2670: 2668: 2667: 2662: 2649: 2647: 2646: 2641: 2625: 2623: 2622: 2617: 2615: 2614: 2611: 2598: 2596: 2595: 2590: 2576: 2574: 2573: 2568: 2563: 2562: 2558: 2543: 2539: 2538: 2536: 2535: 2532: 2523: 2508: 2507: 2496: 2492: 2490: 2489: 2486: 2477: 2470: 2468: 2455: 2447: 2426: 2422: 2413: 2403: 2401: 2399: 2397: 2392: 2389: 2373: 2347: 2345: 2344: 2339: 2327: 2325: 2324: 2319: 2299: 2297: 2296: 2291: 2289: 2288: 2285: 2269: 2267: 2266: 2261: 2249: 2247: 2246: 2241: 2226: 2224: 2223: 2218: 2216: 2214: 2200: 2192: 2175: 2173: 2172: 2167: 2155: 2153: 2152: 2147: 2139: 2138: 2122: 2120: 2119: 2114: 2096: 2094: 2093: 2088: 2076: 2074: 2073: 2068: 2050: 2048: 2047: 2042: 2040: 2039: 2023: 2021: 2020: 2015: 2013: 2012: 2004: 2001: 1998: 1993: 1990: 1981: 1980: 1964: 1962: 1961: 1956: 1954: 1953: 1944: 1923: 1921: 1920: 1915: 1909: 1904: 1901: 1895: 1890: 1889: 1856: 1854: 1853: 1848: 1843: 1842: 1841: 1837: 1827: 1818: 1809: 1808: 1784: 1781: 1777: 1771: 1767: 1737: 1735: 1734: 1729: 1726: 1721: 1718: 1684: 1682: 1681: 1676: 1674: 1673: 1654: 1652: 1651: 1646: 1644: 1640: 1636: 1635: 1634: 1625: 1613: 1612: 1600: 1599: 1587: 1586: 1583: 1568: 1566: 1565: 1560: 1558: 1557: 1552: 1549: 1546: 1541: 1538: 1529: 1528: 1512: 1510: 1509: 1504: 1502: 1499: 1497: 1492: 1491: 1469: 1467: 1466: 1461: 1458: 1453: 1450: 1440: 1435: 1432: 1415: 1413: 1412: 1407: 1405: 1402: 1392: 1387: 1384: 1366: 1364: 1363: 1358: 1344: 1339: 1338: 1335: 1317: 1312: 1311: 1308: 1283: 1281: 1280: 1275: 1273: 1272: 1262: 1257: 1254: 1248: 1243: 1242: 1227: 1226: 1225: 1224: 1221: 1210: 1209: 1206: 1188: 1186: 1185: 1180: 1178: 1174: 1172: 1171: 1167: 1166: 1165: 1162: 1155: 1146: 1131: 1130: 1126: 1124: 1119: 1116: 1110: 1105: 1104: 1083: 1074: 1073: 1070: 1055: 1053: 1052: 1047: 1045: 1042: 1032: 1027: 1024: 1011: 1009: 1008: 1003: 1001: 1000: 988: 983: 982: 979: 967: 962: 961: 945: 943: 942: 937: 922: 920: 919: 914: 912: 911: 902: 898: 897: 896: 891: 887: 879: 858: 857: 836: 834: 833: 828: 826: 825: 816: 815: 810: 806: 798: 788: 787: 769: 767: 766: 761: 759: 758: 742: 740: 739: 734: 722: 720: 719: 714: 712: 711: 708: 695: 693: 692: 687: 685: 684: 681: 652:invisible energy 648:weak interaction 637: 635: 634: 629: 627: 626: 606: 604: 603: 598: 596: 595: 576: 574: 573: 568: 501: 499: 498: 493: 491: 488: 486: 485: 436: 434: 433: 428: 426: 425: 403: 401: 400: 395: 393: 390: 387: 386: 355: 353: 352: 347: 345: 342: 303: 301: 300: 295: 293: 290: 281: 278: 275: 274: 257: 255: 254: 249: 247: 244: 227: 225: 224: 219: 217: 214: 186: 184: 183: 178: 176: 175: 145:cosmic radiation 21: 3753: 3752: 3748: 3747: 3746: 3744: 3743: 3742: 3733:Earth phenomena 3718: 3717: 3628: 3623: 3622: 3591: 3587: 3542: 3538: 3499: 3495: 3488: 3472: 3465: 3460: 3456: 3400: 3396: 3389: 3385: 3345: 3341: 3310: 3306: 3275: 3271: 3224: 3220: 3175: 3171: 3132: 3128: 3083: 3079: 3044:Physical Review 3040: 3036: 2991: 2987: 2948: 2944: 2897: 2893: 2846: 2842: 2815:Physical Review 2811: 2807: 2776: 2772: 2767: 2759:Particle shower 2750: 2704: 2682: 2678: 2676: 2673: 2672: 2656: 2653: 2652: 2635: 2632: 2631: 2626:and the common 2610: 2606: 2604: 2601: 2600: 2584: 2581: 2580: 2554: 2544: 2531: 2527: 2522: 2515: 2511: 2510: 2497: 2485: 2481: 2476: 2472: 2471: 2446: 2427: 2411: 2404: 2402: 2393: 2388: 2377: 2372: 2355: 2352: 2351: 2333: 2330: 2329: 2313: 2310: 2309: 2306: 2304:Lateral profile 2284: 2280: 2278: 2275: 2274: 2255: 2252: 2251: 2235: 2232: 2231: 2201: 2193: 2191: 2183: 2180: 2179: 2161: 2158: 2157: 2134: 2130: 2128: 2125: 2124: 2102: 2099: 2098: 2082: 2079: 2078: 2056: 2053: 2052: 2035: 2031: 2029: 2026: 2025: 2005: 2000: 1999: 1994: 1989: 1976: 1972: 1970: 1967: 1966: 1949: 1945: 1940: 1929: 1926: 1925: 1905: 1900: 1891: 1885: 1881: 1864: 1861: 1860: 1816: 1804: 1800: 1790: 1786: 1785: 1780: 1779: 1766: 1749: 1746: 1745: 1722: 1717: 1711: 1708: 1707: 1692: 1669: 1665: 1663: 1660: 1659: 1630: 1626: 1624: 1620: 1608: 1604: 1595: 1591: 1582: 1578: 1576: 1573: 1572: 1553: 1548: 1547: 1542: 1537: 1524: 1520: 1518: 1515: 1514: 1498: 1493: 1487: 1483: 1475: 1472: 1471: 1454: 1449: 1436: 1431: 1425: 1422: 1421: 1401: 1388: 1383: 1377: 1374: 1373: 1340: 1334: 1330: 1313: 1307: 1303: 1289: 1286: 1285: 1268: 1264: 1258: 1253: 1244: 1238: 1234: 1220: 1216: 1215: 1211: 1205: 1201: 1196: 1193: 1192: 1161: 1157: 1144: 1143: 1139: 1132: 1120: 1115: 1106: 1100: 1096: 1095: 1091: 1084: 1082: 1078: 1069: 1065: 1063: 1060: 1059: 1041: 1028: 1023: 1017: 1014: 1013: 996: 992: 984: 978: 974: 963: 957: 953: 951: 948: 947: 931: 928: 927: 907: 903: 892: 878: 874: 873: 866: 862: 853: 849: 847: 844: 843: 821: 817: 811: 797: 793: 792: 783: 779: 777: 774: 773: 754: 750: 748: 745: 744: 728: 725: 724: 707: 703: 701: 698: 697: 680: 676: 671: 668: 667: 654:of the shower. 622: 618: 616: 613: 612: 607:, decay by the 591: 587: 585: 582: 581: 580:Neutral pions, 562: 559: 558: 537: 529:electromagnetic 512: 487: 481: 477: 469: 466: 465: 439:Kenneth Greisen 421: 417: 409: 406: 405: 389: 382: 378: 376: 373: 372: 341: 335: 332: 331: 289: 277: 270: 266: 264: 261: 260: 243: 237: 234: 233: 213: 207: 204: 203: 171: 167: 165: 162: 161: 141: 28: 23: 22: 15: 12: 11: 5: 3751: 3741: 3740: 3735: 3730: 3716: 3715: 3709: 3703: 3697: 3691: 3685: 3671: 3661: 3655: 3650: 3645: 3640: 3635: 3627: 3626:External links 3624: 3621: 3620: 3585: 3536: 3493: 3486: 3463: 3454: 3440:10.1086/175344 3394: 3383: 3339: 3304: 3269: 3218: 3169: 3126: 3077: 3034: 2985: 2942: 2891: 2840: 2805: 2769: 2768: 2766: 2763: 2762: 2761: 2756: 2749: 2746: 2708:speed of light 2703: 2700: 2681: 2660: 2639: 2628:Gamma function 2609: 2588: 2566: 2561: 2557: 2553: 2550: 2547: 2542: 2530: 2526: 2521: 2518: 2514: 2506: 2503: 2500: 2495: 2484: 2480: 2475: 2467: 2464: 2461: 2458: 2453: 2450: 2445: 2442: 2439: 2436: 2433: 2430: 2425: 2419: 2416: 2410: 2407: 2396: 2387: 2383: 2380: 2376: 2371: 2368: 2365: 2362: 2359: 2337: 2317: 2305: 2302: 2283: 2259: 2239: 2213: 2210: 2207: 2204: 2199: 2196: 2190: 2187: 2165: 2145: 2142: 2137: 2133: 2112: 2109: 2106: 2086: 2066: 2063: 2060: 2038: 2034: 2011: 2008: 1997: 1987: 1984: 1979: 1975: 1952: 1948: 1943: 1939: 1936: 1933: 1913: 1908: 1899: 1894: 1888: 1884: 1880: 1877: 1874: 1871: 1868: 1846: 1840: 1836: 1833: 1830: 1824: 1821: 1815: 1812: 1807: 1803: 1799: 1796: 1793: 1789: 1774: 1770: 1765: 1762: 1759: 1756: 1753: 1725: 1716: 1691: 1688: 1672: 1668: 1643: 1633: 1629: 1623: 1619: 1616: 1611: 1607: 1603: 1598: 1594: 1590: 1581: 1556: 1545: 1535: 1532: 1527: 1523: 1496: 1490: 1486: 1482: 1479: 1457: 1448: 1444: 1439: 1430: 1399: 1396: 1391: 1382: 1369:bremsstrahlung 1356: 1353: 1350: 1347: 1343: 1333: 1329: 1326: 1323: 1320: 1316: 1306: 1302: 1299: 1296: 1293: 1271: 1267: 1261: 1252: 1247: 1241: 1237: 1233: 1230: 1219: 1214: 1204: 1200: 1177: 1170: 1160: 1152: 1149: 1142: 1138: 1135: 1129: 1123: 1114: 1109: 1103: 1099: 1094: 1090: 1087: 1081: 1077: 1068: 1039: 1036: 1031: 1022: 999: 995: 991: 987: 977: 973: 970: 966: 960: 956: 935: 926:A pion in the 910: 906: 901: 895: 890: 885: 882: 877: 872: 869: 865: 861: 856: 852: 824: 820: 814: 809: 804: 801: 796: 791: 786: 782: 757: 753: 732: 706: 679: 675: 625: 621: 594: 590: 566: 536: 533: 531:interactions. 511: 508: 484: 480: 476: 473: 424: 420: 416: 413: 385: 381: 339: 287: 284: 273: 269: 241: 211: 174: 170: 140: 137: 92:, or (rarely) 61:are extensive 26: 9: 6: 4: 3: 2: 3750: 3739: 3736: 3734: 3731: 3729: 3726: 3725: 3723: 3713: 3710: 3707: 3704: 3701: 3698: 3695: 3692: 3689: 3686: 3683: 3679: 3675: 3672: 3669: 3665: 3662: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3633: 3630: 3629: 3616: 3612: 3608: 3604: 3600: 3596: 3589: 3581: 3577: 3572: 3567: 3563: 3559: 3555: 3551: 3547: 3540: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3504: 3497: 3489: 3487:9789810228880 3483: 3479: 3478: 3470: 3468: 3458: 3450: 3446: 3441: 3436: 3432: 3428: 3423: 3418: 3414: 3410: 3406: 3398: 3392: 3387: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3343: 3335: 3331: 3327: 3323: 3319: 3315: 3308: 3300: 3296: 3292: 3288: 3284: 3280: 3273: 3265: 3261: 3257: 3253: 3249: 3245: 3241: 3237: 3233: 3229: 3222: 3214: 3210: 3205: 3200: 3196: 3192: 3188: 3184: 3180: 3173: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3130: 3122: 3118: 3113: 3108: 3104: 3100: 3096: 3092: 3088: 3081: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3038: 3030: 3026: 3021: 3016: 3012: 3008: 3004: 3000: 2996: 2989: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2946: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2903:(in German). 2902: 2895: 2887: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2852:(in German). 2851: 2844: 2836: 2832: 2828: 2824: 2820: 2816: 2809: 2801: 2797: 2793: 2789: 2785: 2781: 2774: 2770: 2760: 2757: 2755: 2752: 2751: 2745: 2743: 2739: 2735: 2730: 2726: 2722: 2717: 2714:, as well as 2713: 2709: 2699: 2679: 2658: 2637: 2629: 2607: 2586: 2577: 2564: 2559: 2555: 2551: 2548: 2545: 2540: 2528: 2524: 2519: 2516: 2512: 2504: 2501: 2498: 2493: 2482: 2478: 2473: 2462: 2459: 2456: 2451: 2448: 2434: 2417: 2414: 2394: 2385: 2381: 2378: 2374: 2369: 2363: 2357: 2349: 2335: 2315: 2301: 2281: 2271: 2257: 2237: 2228: 2211: 2208: 2205: 2202: 2197: 2194: 2188: 2185: 2177: 2163: 2143: 2140: 2135: 2131: 2110: 2107: 2104: 2084: 2064: 2061: 2058: 2036: 2032: 2009: 2006: 1995: 1985: 1982: 1977: 1973: 1950: 1946: 1941: 1937: 1934: 1931: 1906: 1897: 1892: 1886: 1882: 1875: 1872: 1869: 1866: 1857: 1844: 1838: 1834: 1831: 1828: 1822: 1819: 1813: 1805: 1801: 1797: 1794: 1787: 1772: 1768: 1763: 1757: 1751: 1743: 1741: 1723: 1714: 1700: 1696: 1687: 1670: 1666: 1656: 1641: 1631: 1627: 1621: 1617: 1614: 1609: 1605: 1601: 1596: 1592: 1588: 1579: 1570: 1554: 1543: 1533: 1530: 1525: 1521: 1494: 1488: 1484: 1480: 1477: 1455: 1446: 1442: 1437: 1428: 1419: 1397: 1394: 1389: 1380: 1370: 1354: 1351: 1345: 1341: 1331: 1327: 1321: 1318: 1314: 1304: 1300: 1297: 1294: 1291: 1269: 1259: 1250: 1245: 1239: 1235: 1228: 1217: 1202: 1189: 1175: 1168: 1158: 1150: 1147: 1140: 1136: 1133: 1127: 1121: 1112: 1107: 1101: 1097: 1092: 1088: 1085: 1079: 1075: 1066: 1057: 1037: 1034: 1029: 1020: 997: 989: 985: 975: 971: 964: 958: 954: 933: 924: 908: 904: 899: 893: 888: 883: 880: 875: 870: 867: 863: 859: 854: 850: 841: 838: 822: 818: 812: 807: 802: 799: 794: 789: 784: 780: 771: 755: 751: 730: 704: 677: 673: 659: 655: 653: 649: 645: 641: 623: 619: 610: 592: 588: 578: 564: 556: 552: 548: 543: 532: 530: 526: 516: 507: 505: 482: 478: 474: 471: 463: 459: 455: 451: 446: 442: 440: 422: 418: 414: 411: 383: 379: 370: 366: 362: 361:Volcano Ranch 357: 337: 329: 324: 322: 318: 314: 310: 305: 285: 282: 271: 267: 239: 231: 209: 201: 197: 192: 190: 172: 168: 159: 154: 150: 146: 136: 134: 130: 126: 122: 117: 115: 111: 106: 103: 99: 95: 91: 87: 83: 79: 75: 72: 68: 64: 60: 53: 52:cloud chamber 48: 41: 37: 32: 19: 3598: 3594: 3588: 3553: 3549: 3539: 3506: 3502: 3496: 3476: 3457: 3412: 3408: 3397: 3386: 3353: 3349: 3342: 3317: 3313: 3307: 3282: 3278: 3272: 3231: 3227: 3221: 3186: 3182: 3172: 3139: 3135: 3129: 3094: 3090: 3080: 3047: 3043: 3037: 3002: 2998: 2988: 2955: 2951: 2945: 2904: 2900: 2894: 2853: 2849: 2843: 2818: 2814: 2808: 2783: 2779: 2773: 2705: 2578: 2350: 2307: 2272: 2229: 2178: 1858: 1744: 1705: 1693: 1657: 1571: 1190: 1058: 925: 842: 839: 772: 664: 651: 579: 538: 521: 447: 443: 365:John Linsley 358: 325: 306: 200:Jungfraujoch 196:Pierre Auger 193: 142: 118: 114:Pierre Auger 107: 70: 58: 57: 3738:Cosmic rays 3670:, Argentina 313:Oppenheimer 230:Pic du Midi 153:Bruno Rossi 149:Victor Hess 110:Bruno Rossi 59:Air showers 3728:Atmosphere 3722:Categories 3601:: 63–108. 3320:: 63–108. 2821:(3): 606. 2765:References 1418:scattering 642:and (anti) 553:, such as 189:Heidelberg 74:cosmic ray 67:atmosphere 3684:, Germany 3580:0375-9687 3531:0927-6505 3449:0004-637X 3378:0031-9007 3299:0031-9007 3256:0028-0836 3213:0375-9687 3164:0034-6861 3121:0080-4630 3072:0031-899X 3029:0080-4630 2980:0034-6861 2937:119935508 2929:1434-6001 2886:121427439 2878:1434-6001 2740:, or the 2702:Detection 2549:− 2502:− 2457:− 2441:Γ 2429:Γ 2406:Γ 2382:π 2358:ϱ 2212:β 2062:≈ 2059:ϵ 2007:− 1907:γ 1898:ϵ 1876:⁡ 1867:β 1832:⁡ 1814:− 1798:− 1773:β 1769:ϵ 1724:γ 1715:ϵ 1618:⁡ 1589:≃ 1531:≃ 1481:≃ 1456:π 1447:ϵ 1443:≪ 1438:γ 1429:ϵ 1395:≃ 1390:γ 1381:ϵ 1352:≃ 1322:⁡ 1301:⁡ 1292:β 1270:β 1260:π 1251:ϵ 1137:⁡ 1122:π 1113:ϵ 1089:⁡ 1035:≃ 1030:π 1021:ϵ 871:− 855:γ 785:π 644:neutrinos 624:± 620:π 589:π 565:ϱ 475:× 462:Fly's Eye 415:× 173:∘ 94:positrons 86:electrons 2748:See also 1176:⌉ 1080:⌈ 646:via the 577:mesons. 525:hadronic 131:and the 63:cascades 3678:CORSIKA 3674:CORSIKA 3658:HiSPARC 3603:Bibcode 3558:Bibcode 3511:Bibcode 3427:Bibcode 3358:Bibcode 3322:Bibcode 3264:4173505 3236:Bibcode 3191:Bibcode 3144:Bibcode 3099:Bibcode 3052:Bibcode 3007:Bibcode 2960:Bibcode 2909:Bibcode 2858:Bibcode 2823:Bibcode 2788:Bibcode 542:hadrons 450:KASCADE 139:History 90:photons 78:protons 71:primary 69:when a 3688:COSMUS 3578:  3529:  3484:  3447:  3376:  3297:  3262:  3254:  3228:Nature 3211:  3162:  3119:  3070:  3027:  2978:  2935:  2927:  2884:  2876:  1658:where 551:mesons 456:, and 317:Landau 309:Bhabha 127:, the 125:LHAASO 82:nuclei 40:COSMUS 3664:AIRES 3417:arXiv 3260:S2CID 2933:S2CID 2882:S2CID 2738:LOFAR 2734:TAIGA 1859:Here 640:muons 555:kaons 547:pions 458:HIRES 454:AGASA 158:muons 102:kaons 98:pions 36:AIRES 3576:ISSN 3527:ISSN 3482:ISBN 3445:ISSN 3374:ISSN 3295:ISSN 3252:ISSN 3209:ISSN 3160:ISSN 3117:ISSN 3068:ISSN 3025:ISSN 2976:ISSN 2925:ISSN 2874:ISSN 2671:and 2065:0.31 1924:and 1355:0.95 557:and 359:The 240:2900 210:3500 121:HAWC 100:and 3611:doi 3566:doi 3519:doi 3435:doi 3413:441 3366:doi 3330:doi 3287:doi 3244:doi 3232:180 3199:doi 3152:doi 3107:doi 3095:166 3060:doi 3015:doi 3003:159 2968:doi 2917:doi 2866:doi 2831:doi 2796:doi 2729:PMT 2723:or 2286:max 2270:. 1637:GeV 1584:max 1500:GeV 1403:MeV 1043:GeV 527:or 472:3.2 338:460 328:MIT 291:PeV 147:by 3724:: 3676:, 3609:. 3599:10 3597:. 3574:. 3564:. 3552:. 3548:. 3525:. 3517:. 3507:22 3505:. 3466:^ 3443:. 3433:. 3425:. 3411:. 3407:. 3372:. 3364:. 3354:39 3352:. 3328:. 3318:10 3316:. 3293:. 3283:10 3281:. 3258:. 3250:. 3242:. 3230:. 3207:. 3197:. 3185:. 3181:. 3158:. 3150:. 3140:13 3138:. 3115:. 3105:. 3093:. 3089:. 3066:. 3058:. 3048:51 3046:. 3023:. 3013:. 3001:. 2997:. 2974:. 2966:. 2956:11 2954:. 2931:. 2923:. 2915:. 2905:99 2880:. 2872:. 2864:. 2854:82 2829:. 2819:36 2817:. 2794:, 2784:11 2782:, 2736:, 2698:. 2630:. 2227:. 2024:. 2002:cm 1986:37 1873:ln 1829:ln 1655:, 1615:ln 1550:cm 1534:37 1398:87 1336:ch 1319:ln 1309:ch 1298:ln 1207:ch 1163:ch 1134:ln 1086:ln 1038:20 980:ch 923:. 837:, 709:ch 682:ch 506:. 489:eV 483:20 479:10 452:, 423:10 419:10 391:eV 384:20 380:10 315:, 311:, 304:. 279:eV 272:15 268:10 191:. 169:60 151:, 123:, 88:, 84:, 80:, 3634:. 3617:. 3613:: 3605:: 3582:. 3568:: 3560:: 3554:6 3533:. 3521:: 3513:: 3490:. 3451:. 3437:: 3429:: 3419:: 3380:. 3368:: 3360:: 3336:. 3332:: 3324:: 3301:. 3289:: 3266:. 3246:: 3238:: 3215:. 3201:: 3193:: 3187:6 3166:. 3154:: 3146:: 3123:. 3109:: 3101:: 3074:. 3062:: 3054:: 3031:. 3017:: 3009:: 2982:. 2970:: 2962:: 2939:. 2919:: 2911:: 2888:. 2868:: 2860:: 2837:. 2833:: 2825:: 2802:. 2798:: 2790:: 2684:M 2680:r 2659:s 2638:N 2612:M 2608:r 2587:N 2565:, 2560:2 2556:/ 2552:9 2546:s 2541:) 2533:M 2529:r 2525:r 2520:+ 2517:1 2513:( 2505:2 2499:s 2494:) 2487:M 2483:r 2479:r 2474:( 2466:) 2463:s 2460:2 2452:2 2449:9 2444:( 2438:) 2435:s 2432:( 2424:) 2418:2 2415:9 2409:( 2395:2 2390:M 2386:r 2379:2 2375:N 2370:= 2367:) 2364:r 2361:( 2336:r 2316:s 2282:X 2258:t 2238:X 2209:2 2206:+ 2203:t 2198:t 2195:3 2189:= 2186:s 2164:s 2144:0 2141:= 2136:0 2132:t 2111:1 2108:= 2105:s 2085:s 2037:1 2033:t 2010:2 1996:/ 1991:g 1983:= 1978:0 1974:X 1951:0 1947:X 1942:/ 1938:X 1935:= 1932:t 1912:) 1902:c 1893:/ 1887:0 1883:E 1879:( 1870:= 1845:. 1839:) 1835:s 1823:2 1820:3 1811:) 1806:1 1802:t 1795:t 1792:( 1788:( 1782:e 1764:= 1761:) 1758:t 1755:( 1752:N 1719:c 1671:1 1667:X 1642:) 1632:0 1628:E 1622:( 1610:0 1606:X 1602:+ 1597:1 1593:X 1580:X 1555:2 1544:/ 1539:g 1526:0 1522:X 1495:/ 1489:0 1485:E 1478:N 1451:c 1433:c 1385:c 1349:) 1346:2 1342:/ 1332:N 1328:3 1325:( 1315:/ 1305:N 1295:= 1266:) 1255:c 1246:/ 1240:0 1236:E 1232:( 1229:= 1222:c 1218:n 1213:) 1203:N 1199:( 1169:) 1159:N 1151:2 1148:3 1141:( 1128:) 1117:c 1108:/ 1102:0 1098:E 1093:( 1076:= 1071:c 1067:n 1025:c 998:n 994:) 990:2 986:/ 976:N 972:3 969:( 965:/ 959:0 955:E 934:n 909:0 905:E 900:) 894:n 889:) 884:3 881:2 876:( 868:1 864:( 860:= 851:E 823:0 819:E 813:n 808:) 803:3 800:2 795:( 790:= 781:E 756:0 752:E 731:n 705:N 678:N 674:2 593:0 412:5 343:m 286:1 283:= 245:m 215:m 54:. 42:. 20:)

Index

Extensive air shower

AIRES
COSMUS

cloud chamber
cascades
atmosphere
cosmic ray
protons
nuclei
electrons
photons
positrons
pions
kaons
Bruno Rossi
Pierre Auger
HAWC
LHAASO
Telescope Array Project
Pierre Auger Observatory
cosmic radiation
Victor Hess
Bruno Rossi
muons
Heidelberg
Pierre Auger
Jungfraujoch
Pic du Midi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.