Knowledge

Reversal potential

Source 📝

89:, and a negatively charged membrane, as it is commonly the case in most organisms. The membrane voltage opposes the flow of the potassium ions out of the cell and the ions can leave the interior of the cell only if they have sufficient thermal energy to overcome the energy barrier produced by the negative membrane voltage. However, this biasing effect can be overcome by an opposing concentration gradient if the interior concentration is high enough which favours the potassium ions leaving the cell. 455:
lowers (makes more negative) the Na equilibrium potential and produces a negative shift in reversal potential. Conversely, increasing the external K concentration raises (makes more positive) the K equilibrium potential and produces a positive shift in reversal potential. A general expression for reversal potential of synaptic events, including for decreases in conductance, has been derived.
454:
This line of reasoning led to the development of experiments (by Akira Takeuchi and Noriko Takeuchi in 1960) that demonstrated that acetylcholine-activated ion channels are approximately equally permeable to Na and K ions. The experiment was performed by lowering the external Na concentration, which
72:
for that ion. This gradient consists of two parts, the difference in the concentration of that ion across the membrane, and the voltage gradient. When these two influences balance each other, the electrochemical gradient for the ion is zero and there is no net flow of the ion through the channel;
39:
at which the direction of ionic current reverses. At the reversal potential, there is no net flow of ions from one side of the membrane to the other. For channels that are permeable to only a single type of ion, the reversal potential is identical to the
280: 73:
this also translates to no current across the membrane so long as only one ionic species is involved. The voltage gradient at which this equilibrium is reached is the equilibrium potential for the ion and it can be calculated from the
436:) receptors are nonselective cation channels that pass Na and K in nearly equal proportions, giving the reversal potential close to zero. The inhibitory ionotropic ligand-gated neurotransmitter receptors that carry 365:, or conductance per unit area. Note that the ionic current will be zero if the membrane is impermeable to that ion in question or if the membrane voltage is exactly equal to the equilibrium potential of that ion. 393:
is equal to 0), the identity of the ions that flow during an EPC can be deduced by comparing the reversal potential of the EPC to the equilibrium potential for various ions. For instance several excitatory
330: 144: 176: 359: 204: 717:
Brown JE, Muller KJ, Murray G (October 14, 1971). "Reversal potential for an electrophysiological event generated by conductance changes: mathematical analysis".
196: 655: 548: 362: 693: 631: 514: 17: 99:
Driving force is simply defined as the difference between the actual membrane potential and an ion's equilibrium potential
778: 288: 102: 803: 178:
refers to the equilibrium potential for a specific ion. Relatedly, the membrane current per unit area due to the type
595: 559: 768: 504: 773: 149: 808: 798: 451:
receptors, have reversal potentials close to the resting potential (approximately –70 mV) in neurons.
335: 793: 464: 69: 585: 813: 402: 275:{\displaystyle i_{\mathrm {i} }=g_{\mathrm {i} }\left(V_{\mathrm {m} }-E_{\mathrm {i} }\right)} 41: 547: 8: 28: 742: 649: 469: 406: 181: 53: 36: 734: 699: 689: 637: 627: 591: 555: 510: 56:
at which there is no net movement of the ion. The flow of any inorganic ion, such as
746: 763: 726: 474: 399: 685:
Theoretical Neuroscience Computational and Mathematical Modeling of Neural Systems
730: 74: 703: 787: 641: 425: 683: 738: 621: 543: 65: 377:
is at the reversal potential for an event such as a synaptic potential (
395: 590:(4th Enhanced ed.). Jones & Barlet Learning. p. 64-127. 429: 422: 86: 61: 68:(since membranes are normally impermeable to ions) is driven by the 437: 448: 418: 92:
An important concept related to the equilibrium potential is the
85:
We can consider as an example a positively charged ion, such as
57: 80: 441: 414: 410: 688:. Peter Dayan. Cambridge: MIT Press. pp. 158–160. 554:(6th ed.). Sinauer Associates. pp. 39–106. 338: 291: 207: 184: 152: 105: 325:{\displaystyle V_{\mathrm {m} }-E_{\mathrm {i} }\ } 139:{\displaystyle V_{\mathrm {m} }-E_{\mathrm {i} }\ } 353: 324: 274: 190: 170: 138: 716: 198:ion channel is given by the following equation: 785: 626:(6th ed.). New York, NY. pp. 615–616. 509:(4th ed.). Academic Press. pp. 93–97. 52:The equilibrium potential for an ion is the 677: 675: 673: 671: 669: 667: 665: 583: 498: 496: 494: 492: 490: 654:: CS1 maint: location missing publisher ( 579: 577: 575: 573: 571: 502: 615: 613: 611: 609: 607: 81:Mathematical models and the driving force 779:Electrochemical Driving Force Calculator 774:Goldman-Hodgkin-Katz Equation Calculator 662: 538: 536: 534: 532: 530: 528: 526: 487: 47: 619: 568: 14: 786: 681: 604: 542: 523: 503:Squire, Larry; Berg, Darwin (2014). 584:Mark, Bear; Connors, Barry (2016). 24: 368: 345: 313: 298: 261: 246: 229: 214: 171:{\displaystyle E_{\mathrm {i} }\ } 159: 127: 112: 25: 825: 764:Nernst/Goldman Equation Simulator 757: 587:Neuroscience: Exploring the Brain 354:{\displaystyle g_{\mathrm {i} }} 710: 13: 1: 623:Molecular biology of the cell 480: 731:10.1126/science.174.4006.318 682:Abbott, Laurence F. (2001). 7: 458: 10: 830: 769:Nernst Equation Calculator 804:Cardiac electrophysiology 465:Electrochemical potential 332:is the driving force and 506:Fundamental Neuroscience 70:electrochemical gradient 620:Alberts, Bruce (2015). 546:; et al. (2017). 355: 326: 276: 192: 172: 140: 356: 327: 277: 193: 173: 141: 48:Equilibrium potential 42:equilibrium potential 18:Equilibrium potential 363:specific conductance 336: 289: 205: 182: 150: 103: 407:glutamate receptors 29:biological membrane 351: 322: 272: 188: 168: 136: 54:membrane potential 37:membrane potential 33:reversal potential 809:Action potentials 799:Electrophysiology 725:(4006): 318–318. 695:978-0-262-31142-7 633:978-0-8153-4432-2 516:978-0-12-385870-2 321: 191:{\displaystyle i} 167: 135: 16:(Redirected from 821: 794:Membrane biology 751: 750: 714: 708: 707: 679: 660: 659: 653: 645: 617: 602: 601: 581: 566: 565: 553: 540: 521: 520: 500: 475:Goldman equation 400:neurotransmitter 392: 360: 358: 357: 352: 350: 349: 348: 331: 329: 328: 323: 319: 318: 317: 316: 303: 302: 301: 281: 279: 278: 273: 271: 267: 266: 265: 264: 251: 250: 249: 234: 233: 232: 219: 218: 217: 197: 195: 194: 189: 177: 175: 174: 169: 165: 164: 163: 162: 145: 143: 142: 137: 133: 132: 131: 130: 117: 116: 115: 21: 829: 828: 824: 823: 822: 820: 819: 818: 784: 783: 760: 755: 754: 715: 711: 696: 680: 663: 647: 646: 634: 618: 605: 598: 582: 569: 562: 541: 524: 517: 501: 488: 483: 461: 446: 435: 391: 384: 378: 376: 371: 369:Use in research 344: 343: 339: 337: 334: 333: 312: 311: 307: 297: 296: 292: 290: 287: 286: 260: 259: 255: 245: 244: 240: 239: 235: 228: 227: 223: 213: 212: 208: 206: 203: 202: 183: 180: 179: 158: 157: 153: 151: 148: 147: 126: 125: 121: 111: 110: 106: 104: 101: 100: 83: 75:Nernst equation 50: 23: 22: 15: 12: 11: 5: 827: 817: 816: 814:Walther Nernst 811: 806: 801: 796: 782: 781: 776: 771: 766: 759: 758:External links 756: 753: 752: 709: 694: 661: 632: 603: 596: 567: 560: 522: 515: 485: 484: 482: 479: 478: 477: 472: 470:Cell potential 467: 460: 457: 444: 433: 389: 382: 374: 370: 367: 347: 342: 315: 310: 306: 300: 295: 283: 282: 270: 263: 258: 254: 248: 243: 238: 231: 226: 222: 216: 211: 187: 161: 156: 129: 124: 120: 114: 109: 82: 79: 64:, through an 49: 46: 9: 6: 4: 3: 2: 826: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 791: 789: 780: 777: 775: 772: 770: 767: 765: 762: 761: 748: 744: 740: 736: 732: 728: 724: 720: 713: 705: 701: 697: 691: 687: 686: 678: 676: 674: 672: 670: 668: 666: 657: 651: 643: 639: 635: 629: 625: 624: 616: 614: 612: 610: 608: 599: 597:9781284211283 593: 589: 588: 580: 578: 576: 574: 572: 563: 561:9781605353807 557: 552: 551: 545: 539: 537: 535: 533: 531: 529: 527: 518: 512: 508: 507: 499: 497: 495: 493: 491: 486: 476: 473: 471: 468: 466: 463: 462: 456: 452: 450: 443: 439: 431: 427: 426:acetylcholine 424: 420: 416: 412: 408: 404: 401: 398:ligand-gated 397: 388: 381: 366: 364: 340: 308: 304: 293: 268: 256: 252: 241: 236: 224: 220: 209: 201: 200: 199: 185: 154: 122: 118: 107: 98: 95: 94:driving force 90: 88: 78: 76: 71: 67: 63: 59: 55: 45: 44:of the ion. 43: 38: 34: 30: 19: 722: 718: 712: 684: 622: 586: 550:Neuroscience 549: 544:Purves, Dale 505: 453: 428:(nACh), and 386: 379: 372: 284: 96: 93: 91: 84: 51: 32: 26: 66:ion channel 788:Categories 704:1225555646 481:References 440:, such as 405:including 396:ionotropic 650:cite book 642:887605755 430:serotonin 423:nicotinic 403:receptors 305:− 253:− 119:− 747:34404730 459:See also 739:5119107 719:Science 449:glycine 419:kainate 361:is the 35:is the 745:  737:  702:  692:  640:  630:  594:  558:  513:  417:, and 373:When V 320:  285:where 166:  146:where 134:  31:, the 743:S2CID 432:(5-HT 27:In a 735:PMID 700:OCLC 690:ISBN 656:link 638:OCLC 628:ISBN 592:ISBN 556:ISBN 511:ISBN 447:and 442:GABA 415:NMDA 411:AMPA 727:doi 723:174 421:), 390:rev 77:. 60:or 790:: 741:. 733:. 721:. 698:. 664:^ 652:}} 648:{{ 636:. 606:^ 570:^ 525:^ 489:^ 438:Cl 413:, 385:− 58:Na 749:. 729:: 706:. 658:) 644:. 600:. 564:. 519:. 445:A 434:3 409:( 387:E 383:m 380:V 375:m 346:i 341:g 314:i 309:E 299:m 294:V 269:) 262:i 257:E 247:m 242:V 237:( 230:i 225:g 221:= 215:i 210:i 186:i 160:i 155:E 128:i 123:E 113:m 108:V 97:. 87:K 62:K 20:)

Index

Equilibrium potential
biological membrane
membrane potential
equilibrium potential
membrane potential
Na
K
ion channel
electrochemical gradient
Nernst equation
K
specific conductance
ionotropic
neurotransmitter
receptors
glutamate receptors
AMPA
NMDA
kainate
nicotinic
acetylcholine
serotonin
Cl
GABA
glycine
Electrochemical potential
Cell potential
Goldman equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.