Knowledge

Wave–particle duality relation

Source 📝

2770:
wave before the observation and B) consider the particle aspect after the detection (this is called the Heisenberg–von Neumann collapse postulate). Indeed, since one could only observe the photon in one point of space (a photon can not be absorbed twice) this implies that the meaning of the wave function is essentially statistical and cannot be confused with a classical wave (such as those that occur in air or water).
2769:
For the relation to be a precise formulation of Bohr complementarity, one must introduce wave–particle duality in the discussion. This means one must consider both wave and particle behavior of light on an equal footing. Wave–particle duality implies that one must A) use the unitary evolution of the
2761:
The mathematical discussion presented above does not require quantum mechanics at its heart. In particular, the derivation is essentially valid for waves of any sort. With slight modifications to account for the squaring of amplitudes, the derivation could be applied to, for example, sound waves or
2773:
In this context the direct observation of a photon in the aperture plane precludes the following recording of the same photon in the focal plane (F). Reciprocally the observation in (F) means that we did not absorb the photon before. If both holes are open this implies that we don't know where we
392:. The formulation is in terms of the diffraction and interference of waves. The culmination of the development is a presentation of two numbers that characterizes the visibility of the interference fringes in the experiment, linked together as the 1463: 1614: 1750: 2406: 876: 2025: 1300: 1172: 491: 230:, in 1996, derived a related relation dealing with experimentally acquiring knowledge of the two paths using an apparatus, as opposed to predicting the path based on initial preparation. This relation is 3227:
Wootters, William K., and Wojciech H. Zurek. "Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle." Physical Review D 19.2 (1979): 473.
316:, says that the wave and particle aspects of quantum objects cannot be observed at the same time. The wave–particle duality relations makes Bohr's statement more quantitative – an experiment can yield 320:
information about the wave and particle aspects of a photon simultaneously, but the more information a particular experiment gives about one, the less it will give about the other. The predictability
2268: 2175: 1918: 1834: 578: 1676: 380:
is a measure of the wave information. The relations shows that they are inversely related, as one goes up, the other goes down. Fringes are visible over a wide range of distinguishability.
1520:
for a single aperture (perfect distinguishability). In the far-field of the two pinholes the two waves interfere and produce fringes. The intensity of the interference pattern at a point
3326:
Demonstrates that quantum interference effects are destroyed by irreversible object-apparatus correlations ("measurement"), not by Heisenberg's uncertainty principle itself. See also
360:
which is the degree to which one can experimentally acquire information about the path of the particle, are measures of the particle information, while the visibility of the fringes
2698: 275: 192: 138: 975: 771: 2865:
means that both holes are open and play a symmetric role. If we detect the photon at (F), we don't know where the photon would have been detected in the aperture plane and
2459: 2464:
There are two extremal cases with a straightforward intuitive interpretation: In a single hole experiment, the fringe visibility is zero (as there are no fringes). That is,
2751: 2645: 726: 2573: 2082: 2055: 1856:
is the distance between the aperture screen and the far field analysis plane. If a lens is used to observe the fringes in the rear focal plane, the angle is given by
2516:
since we know (by definition) which hole the photon passed through. On the other hand, for a two slit configuration, where the two slits are indistinguishable with
1032: 1005: 690: 663: 612: 1311: 17: 2996: 2970: 2944: 2918: 2889: 2863: 2829: 2599: 2540: 2514: 2488: 1518: 1492: 909: 3184: 143:
Although it is treated as a single relation, it actually involves two separate relations, which mathematically look very similar. The first relation, derived by
3274: 3254: 2792: 1938: 1854: 1770: 636: 378: 358: 338: 295: 224: 84: 60: 1534: 1685: 914:
To distinguish which pinhole a photon passed through, one needs some measure of the distinguishability between pinholes. Such a measure is given by
2279: 779: 3188: 206:
in 1995. This relation involves correctly guessing which of the two paths the particle would have taken, based on the initial preparation. Here
3081: 195: 396:. The next section will discuss the orthodox quantum mechanical interpretation of the duality relation in terms of wave–particle duality. 1953: 1183: 1055: 2084:
denote the maximum and minimum intensity of the fringes respectively. By the rules of constructive and destructive interference we have
2946:
and this means that a statistical accumulation of photons at (F) builds up an interference pattern with maximal visibility. Conversely,
732:; the pinhole shape is irrelevant, and the pinholes are considered to be idealized. The wave is taken to have a fixed incident momentum 413: 340:
which expresses the degree of probability with which path of the particle can be correctly guessed, and the distinguishability
728:
is the single hole wave function for an aperture centered on the origin. The single-hole wave-function is taken to be that of
300:
The significance of the relations is that they express quantitatively the complementarity of wave and particle viewpoints in
2183: 2090: 2650:
The above presentation was limited to a pure quantum state. More generally, for a mixture of quantum states, one will have
1859: 1775: 502: 1622: 3290:
Englert, Berthold-Georg; Scully, Marlan O.; Walther, Herbert (1991). "Quantum Optical Tests of Complementarity".
3362: 2656: 233: 150: 96: 920: 735: 2835:) is open. If now we detect the photon at (F), we know that that photon would have been detected in 2417: 305: 2710: 2604: 695: 3385: 3142: 2545: 3137: 2060: 2033: 729: 404: 389: 301: 227: 3040:
Bera, Manabendra Nath; Qureshi, Tabish; Siddiqui, Mohd Asad; Pati, Arun Kumar (22 July 2015).
3020: 1458:{\displaystyle P=\left|\;{\frac {|C_{A}|^{2}-|C_{B}|^{2}}{|C_{A}|^{2}+|C_{B}|^{2}}}\,\right|} 3301: 3202: 3150: 3103: 3015: 1010: 983: 668: 641: 590: 8: 3330: 2975: 2949: 2923: 2897: 2868: 2842: 2808: 2578: 2519: 2493: 2467: 1497: 1471: 884: 194:. It was later extended to, providing an equality for the case of pure quantum states by 63: 3305: 3206: 3154: 3107: 1772:
is the separation between the two pinholes. The angle α from the horizontal is given by
3340: 3317: 3259: 3239: 3053: 2777: 1923: 1839: 1755: 621: 363: 343: 323: 280: 209: 144: 69: 45: 3041: 3214: 3166: 3119: 3010: 3001:
The above treatment formalizes wave particle duality for the double-slit experiment.
309: 2411:
And hence we get, for a single photon in a pure quantum state, the duality relation
3321: 3309: 3292: 3210: 3158: 3111: 3063: 1046: 1609:{\displaystyle I(y)\propto 1+V\cos \left({\frac {p_{y}d}{\hbar }}+\varphi \right)} 3193: 3094: 3191:(1988). "Simultaneous wave and particle knowledge in a neutron interferometer". 3162: 1745:{\displaystyle \varphi =\operatorname {Arg} (C_{A})-\operatorname {Arg} (C_{B})} 3067: 87: 2998:
and thus, no fringes appear after a statistical recording of several photons.
3379: 3367: 3085: 2401:{\displaystyle V=2{\frac {|C_{A}\cdot C_{B}^{*}|}{|C_{A}|^{2}+|C_{B}|^{2}}}.} 871:{\displaystyle \Psi _{0}(x)\propto {\frac {e^{ip_{0}\cdot |x|/\hbar }}{|x|}}} 400: 199: 3170: 3115: 1941: 1034:
are the probabilities of finding that the particle passed through aperture
3123: 3345: 3089: 2763: 1525: 203: 692:
are proportionality factors for the corresponding wave amplitudes, and
313: 3140:(1996). "Fringe Visibility and Which-Way Information: An Inequality". 2703:
For the remainder of the development, we assume the light source is a
3313: 3339:
Drezet, Aurelien (2005). "Complementarity and Afshar's experiment".
2020:{\displaystyle V={\frac {I_{\max }-I_{\min }}{I_{\max }+I_{\min }}}} 1295:{\displaystyle P_{B}={\frac {|C_{B}|^{2}}{|C_{A}|^{2}+|C_{B}|^{2}}}} 1167:{\displaystyle P_{A}={\frac {|C_{A}|^{2}}{|C_{A}|^{2}+|C_{B}|^{2}}}} 3058: 486:{\displaystyle \Psi _{\text{Total}}(x)=\Psi _{A}(x)+\Psi _{B}(x).} 2753:
holds, following from the coherence properties of laser light.
638:
is a position in space downstream of the slits. The constants
2704: 3042:"Duality of quantum coherence and path distinguishability" 383: 3360: 388:
This section reviews the mathematical formulation of the
3039: 2774:
would have detected the photon in the aperture plane.
2263:{\displaystyle I_{\min }\propto ||C_{A}|-|C_{B}||^{2}} 2170:{\displaystyle I_{\max }\propto ||C_{A}|+|C_{B}||^{2}} 3363:"Wave–particle duality quantified for the first time" 3262: 3242: 2978: 2952: 2926: 2900: 2871: 2845: 2811: 2780: 2713: 2659: 2607: 2581: 2548: 2522: 2496: 2470: 2420: 2282: 2186: 2093: 2063: 2036: 1956: 1926: 1913:{\displaystyle \sin(\alpha )\simeq \tan(\alpha )=y/f} 1862: 1842: 1829:{\displaystyle \sin(\alpha )\simeq \tan(\alpha )=y/L} 1778: 1758: 1688: 1625: 1537: 1500: 1474: 1314: 1186: 1058: 1013: 986: 923: 887: 782: 738: 698: 671: 644: 624: 593: 505: 416: 366: 346: 326: 283: 236: 212: 153: 99: 72: 48: 3289: 3080: 3074: 583:
is the wave function associated with the pinhole at
573:{\displaystyle \Psi _{A}(x)=C_{A}\Psi _{0}(x-x_{A})} 2601:. Hence in both these extremal cases we also have 1671:{\displaystyle p_{y}=h/\lambda \cdot \sin(\alpha )} 3268: 3248: 2990: 2964: 2938: 2912: 2883: 2857: 2823: 2786: 2745: 2692: 2639: 2593: 2567: 2534: 2508: 2482: 2453: 2400: 2262: 2169: 2076: 2049: 2019: 1932: 1912: 1848: 1828: 1764: 1744: 1670: 1608: 1512: 1486: 1457: 1294: 1166: 1026: 999: 969: 903: 870: 765: 720: 684: 657: 630: 606: 572: 485: 372: 352: 332: 289: 269: 218: 186: 132: 78: 54: 3256:" here is usually referred to as "predictability 3092:(1995). "Two interferometric complementarities". 2794:defines thus the predictability of the two holes 3377: 3183: 2554: 2192: 2099: 2069: 2042: 2009: 1996: 1984: 1971: 226:can be called the predictability. A year later 3230: 3361:Karmela Padavic-Callaghan (1 September 2021). 66:with the definiteness, or distinguishability, 3236:Actually, what is called "distinguishability 1947:The visibility of the fringes is defined by 147:and Allaine Yasin in 1988, is expressed as 3177: 1678:is the momentum of the particle along the 1326: 36:Englert–Greenberger–Yasin duality relation 3344: 3057: 2689: 2450: 1449: 966: 911:is the radial distance from the pinhole. 266: 183: 129: 3130: 3136: 3026: 614:; a similar relation holds for pinhole 384:The mathematics of two-slit diffraction 14: 3378: 3338: 2273:Equivalently, this can be written as 2693:{\displaystyle V^{2}+P^{2}\leq 1.\,} 394:Englert–Greenberger duality relation 18:Englert–Greenberger duality relation 3328:"The Duality in Matter and Light". 270:{\displaystyle D^{2}+V^{2}\leq 1\,} 187:{\displaystyle P^{2}+V^{2}\leq 1\,} 133:{\displaystyle D^{2}+V^{2}\leq 1\,} 24: 3283: 2805:A maximal value of predictability 2756: 2542:, one has perfect visibility with 970:{\displaystyle P=|P_{A}-P_{B}|,\,} 784: 700: 539: 507: 462: 440: 418: 297:is called the distinguishability. 25: 3397: 3354: 1590: 846: 766:{\displaystyle p_{0}=h/\lambda } 405:Young double-aperture experiment 2454:{\displaystyle V^{2}+P^{2}=1\,} 3221: 3033: 2831:means that only one hole (say 2382: 2366: 2352: 2336: 2329: 2296: 2250: 2244: 2229: 2221: 2206: 2201: 2157: 2151: 2136: 2128: 2113: 2108: 1893: 1887: 1875: 1869: 1809: 1803: 1791: 1785: 1739: 1726: 1714: 1701: 1665: 1659: 1547: 1541: 1436: 1420: 1406: 1390: 1377: 1361: 1347: 1331: 1279: 1263: 1249: 1233: 1220: 1204: 1151: 1135: 1121: 1105: 1092: 1076: 959: 931: 897: 889: 861: 853: 837: 829: 799: 793: 715: 709: 567: 548: 522: 516: 477: 471: 455: 449: 433: 427: 32:wave–particle duality relation 13: 1: 2891:characterizes our ignorance. 2746:{\displaystyle V^{2}+P^{2}=1} 2640:{\displaystyle V^{2}+P^{2}=1} 3215:10.1016/0375-9601(88)90114-4 1752:is a fixed phase shift, and 1494:for two symmetric holes and 721:{\displaystyle \Psi _{0}(x)} 40:Englert–Greenberger relation 27:A relation of quantum optics 7: 3163:10.1103/PhysRevLett.77.2154 3004: 2568:{\displaystyle I_{\min }=0} 86:, of the photons' paths in 10: 3402: 3068:10.1103/PhysRevA.92.012118 42:, relates the visibility, 2839:necessarily. Conversely, 2077:{\displaystyle I_{\min }} 2050:{\displaystyle I_{\max }} 306:complementarity principle 2707:, so that we can assume 3138:Englert, Berthold-Georg 302:double-slit experiments 3270: 3250: 3185:Greenberger, Daniel M. 3116:10.1103/PhysRevA.51.54 2992: 2966: 2940: 2914: 2885: 2859: 2825: 2788: 2747: 2694: 2641: 2595: 2569: 2536: 2510: 2484: 2455: 2402: 2264: 2171: 2078: 2051: 2021: 1934: 1914: 1850: 1830: 1766: 1746: 1672: 1610: 1514: 1488: 1468:We have in particular 1459: 1296: 1168: 1028: 1001: 971: 905: 872: 767: 730:Fraunhofer diffraction 722: 686: 659: 632: 608: 574: 487: 390:double-slit experiment 374: 354: 334: 291: 271: 228:Berthold-Georg Englert 220: 188: 134: 80: 56: 3271: 3251: 3021:Quantum indeterminacy 2993: 2967: 2941: 2915: 2886: 2860: 2826: 2789: 2748: 2695: 2642: 2596: 2570: 2537: 2511: 2485: 2456: 2403: 2265: 2172: 2079: 2052: 2022: 1935: 1915: 1851: 1831: 1767: 1747: 1673: 1611: 1515: 1489: 1460: 1297: 1169: 1029: 1027:{\displaystyle P_{B}} 1002: 1000:{\displaystyle P_{A}} 972: 906: 873: 768: 723: 687: 685:{\displaystyle C_{B}} 660: 658:{\displaystyle C_{A}} 633: 609: 607:{\displaystyle x_{A}} 575: 488: 375: 355: 335: 292: 272: 221: 189: 135: 81: 57: 3260: 3240: 3027:References and notes 3016:Quantum entanglement 2976: 2950: 2924: 2898: 2869: 2843: 2809: 2778: 2711: 2657: 2605: 2579: 2546: 2520: 2494: 2468: 2418: 2280: 2184: 2091: 2061: 2034: 1954: 1924: 1860: 1840: 1776: 1756: 1686: 1623: 1535: 1498: 1472: 1312: 1184: 1056: 1049:measure is given by 1011: 984: 921: 885: 780: 736: 696: 669: 642: 622: 591: 503: 414: 364: 344: 324: 281: 234: 210: 151: 97: 90:. As an inequality: 70: 64:interference fringes 46: 3331:Scientific American 3306:1991Natur.351..111S 3207:1988PhLA..128..391G 3155:1996PhRvL..77.2154E 3108:1995PhRvA..51...54J 2991:{\displaystyle V=0} 2965:{\displaystyle P=1} 2939:{\displaystyle V=1} 2913:{\displaystyle P=0} 2884:{\displaystyle P=0} 2858:{\displaystyle P=0} 2824:{\displaystyle P=1} 2594:{\displaystyle V=1} 2535:{\displaystyle P=0} 2509:{\displaystyle P=1} 2483:{\displaystyle V=0} 2327: 1513:{\displaystyle P=1} 1487:{\displaystyle P=0} 904:{\displaystyle |x|} 3266: 3246: 2988: 2962: 2936: 2910: 2881: 2855: 2821: 2784: 2743: 2690: 2637: 2591: 2565: 2532: 2506: 2480: 2451: 2398: 2313: 2260: 2167: 2074: 2047: 2017: 1930: 1910: 1846: 1826: 1762: 1742: 1668: 1606: 1510: 1484: 1455: 1292: 1164: 1024: 997: 967: 901: 868: 763: 718: 682: 655: 628: 604: 570: 483: 407:can be written as 370: 350: 330: 287: 267: 216: 184: 145:Daniel Greenberger 130: 76: 52: 34:, also called the 3300:(6322): 111–116. 3269:{\displaystyle P} 3249:{\displaystyle D} 3149:(11): 2154–2157. 3046:Physical Review A 3011:Afshar experiment 2787:{\displaystyle P} 2762:water waves in a 2393: 2015: 1933:{\displaystyle f} 1849:{\displaystyle L} 1765:{\displaystyle d} 1593: 1447: 1290: 1162: 866: 631:{\displaystyle x} 424: 373:{\displaystyle V} 353:{\displaystyle D} 333:{\displaystyle P} 310:quantum mechanics 290:{\displaystyle D} 219:{\displaystyle P} 79:{\displaystyle D} 55:{\displaystyle V} 16:(Redirected from 3393: 3372: 3350: 3348: 3346:quant-ph/0508091 3335: 3334:. December 1994. 3325: 3314:10.1038/351111a0 3277: 3275: 3273: 3272: 3267: 3255: 3253: 3252: 3247: 3234: 3228: 3225: 3219: 3218: 3181: 3175: 3174: 3143:Phys. Rev. Lett. 3134: 3128: 3127: 3078: 3072: 3071: 3061: 3037: 2997: 2995: 2994: 2989: 2971: 2969: 2968: 2963: 2945: 2943: 2942: 2937: 2919: 2917: 2916: 2911: 2890: 2888: 2887: 2882: 2864: 2862: 2861: 2856: 2830: 2828: 2827: 2822: 2793: 2791: 2790: 2785: 2752: 2750: 2749: 2744: 2736: 2735: 2723: 2722: 2699: 2697: 2696: 2691: 2682: 2681: 2669: 2668: 2646: 2644: 2643: 2638: 2630: 2629: 2617: 2616: 2600: 2598: 2597: 2592: 2574: 2572: 2571: 2566: 2558: 2557: 2541: 2539: 2538: 2533: 2515: 2513: 2512: 2507: 2489: 2487: 2486: 2481: 2460: 2458: 2457: 2452: 2443: 2442: 2430: 2429: 2407: 2405: 2404: 2399: 2394: 2392: 2391: 2390: 2385: 2379: 2378: 2369: 2361: 2360: 2355: 2349: 2348: 2339: 2333: 2332: 2326: 2321: 2309: 2308: 2299: 2293: 2269: 2267: 2266: 2261: 2259: 2258: 2253: 2247: 2242: 2241: 2232: 2224: 2219: 2218: 2209: 2204: 2196: 2195: 2176: 2174: 2173: 2168: 2166: 2165: 2160: 2154: 2149: 2148: 2139: 2131: 2126: 2125: 2116: 2111: 2103: 2102: 2083: 2081: 2080: 2075: 2073: 2072: 2056: 2054: 2053: 2048: 2046: 2045: 2026: 2024: 2023: 2018: 2016: 2014: 2013: 2012: 2000: 1999: 1989: 1988: 1987: 1975: 1974: 1964: 1939: 1937: 1936: 1931: 1919: 1917: 1916: 1911: 1906: 1855: 1853: 1852: 1847: 1835: 1833: 1832: 1827: 1822: 1771: 1769: 1768: 1763: 1751: 1749: 1748: 1743: 1738: 1737: 1713: 1712: 1677: 1675: 1674: 1669: 1646: 1635: 1634: 1615: 1613: 1612: 1607: 1605: 1601: 1594: 1589: 1585: 1584: 1574: 1519: 1517: 1516: 1511: 1493: 1491: 1490: 1485: 1464: 1462: 1461: 1456: 1454: 1450: 1448: 1446: 1445: 1444: 1439: 1433: 1432: 1423: 1415: 1414: 1409: 1403: 1402: 1393: 1387: 1386: 1385: 1380: 1374: 1373: 1364: 1356: 1355: 1350: 1344: 1343: 1334: 1328: 1301: 1299: 1298: 1293: 1291: 1289: 1288: 1287: 1282: 1276: 1275: 1266: 1258: 1257: 1252: 1246: 1245: 1236: 1230: 1229: 1228: 1223: 1217: 1216: 1207: 1201: 1196: 1195: 1173: 1171: 1170: 1165: 1163: 1161: 1160: 1159: 1154: 1148: 1147: 1138: 1130: 1129: 1124: 1118: 1117: 1108: 1102: 1101: 1100: 1095: 1089: 1088: 1079: 1073: 1068: 1067: 1047:Born probability 1033: 1031: 1030: 1025: 1023: 1022: 1006: 1004: 1003: 998: 996: 995: 976: 974: 973: 968: 962: 957: 956: 944: 943: 934: 910: 908: 907: 902: 900: 892: 877: 875: 874: 869: 867: 865: 864: 856: 850: 849: 845: 840: 832: 824: 823: 806: 792: 791: 772: 770: 769: 764: 759: 748: 747: 727: 725: 724: 719: 708: 707: 691: 689: 688: 683: 681: 680: 664: 662: 661: 656: 654: 653: 637: 635: 634: 629: 618:. The variable 613: 611: 610: 605: 603: 602: 579: 577: 576: 571: 566: 565: 547: 546: 537: 536: 515: 514: 492: 490: 489: 484: 470: 469: 448: 447: 426: 425: 422: 379: 377: 376: 371: 359: 357: 356: 351: 339: 337: 336: 331: 312:, formulated by 296: 294: 293: 288: 276: 274: 273: 268: 259: 258: 246: 245: 225: 223: 222: 217: 193: 191: 190: 185: 176: 175: 163: 162: 139: 137: 136: 131: 122: 121: 109: 108: 85: 83: 82: 77: 61: 59: 58: 53: 21: 3401: 3400: 3396: 3395: 3394: 3392: 3391: 3390: 3376: 3375: 3357: 3327: 3286: 3284:Further reading 3281: 3280: 3261: 3258: 3257: 3241: 3238: 3237: 3235: 3231: 3226: 3222: 3182: 3178: 3135: 3131: 3079: 3075: 3038: 3034: 3029: 3007: 2977: 2974: 2973: 2951: 2948: 2947: 2925: 2922: 2921: 2899: 2896: 2895: 2870: 2867: 2866: 2844: 2841: 2840: 2810: 2807: 2806: 2779: 2776: 2775: 2759: 2757:Complementarity 2731: 2727: 2718: 2714: 2712: 2709: 2708: 2677: 2673: 2664: 2660: 2658: 2655: 2654: 2625: 2621: 2612: 2608: 2606: 2603: 2602: 2580: 2577: 2576: 2553: 2549: 2547: 2544: 2543: 2521: 2518: 2517: 2495: 2492: 2491: 2469: 2466: 2465: 2438: 2434: 2425: 2421: 2419: 2416: 2415: 2386: 2381: 2380: 2374: 2370: 2365: 2356: 2351: 2350: 2344: 2340: 2335: 2334: 2328: 2322: 2317: 2304: 2300: 2295: 2294: 2292: 2281: 2278: 2277: 2254: 2249: 2248: 2243: 2237: 2233: 2228: 2220: 2214: 2210: 2205: 2200: 2191: 2187: 2185: 2182: 2181: 2161: 2156: 2155: 2150: 2144: 2140: 2135: 2127: 2121: 2117: 2112: 2107: 2098: 2094: 2092: 2089: 2088: 2068: 2064: 2062: 2059: 2058: 2041: 2037: 2035: 2032: 2031: 2008: 2004: 1995: 1991: 1990: 1983: 1979: 1970: 1966: 1965: 1963: 1955: 1952: 1951: 1925: 1922: 1921: 1902: 1861: 1858: 1857: 1841: 1838: 1837: 1818: 1777: 1774: 1773: 1757: 1754: 1753: 1733: 1729: 1708: 1704: 1687: 1684: 1683: 1642: 1630: 1626: 1624: 1621: 1620: 1580: 1576: 1575: 1573: 1572: 1568: 1536: 1533: 1532: 1499: 1496: 1495: 1473: 1470: 1469: 1440: 1435: 1434: 1428: 1424: 1419: 1410: 1405: 1404: 1398: 1394: 1389: 1388: 1381: 1376: 1375: 1369: 1365: 1360: 1351: 1346: 1345: 1339: 1335: 1330: 1329: 1327: 1325: 1321: 1313: 1310: 1309: 1283: 1278: 1277: 1271: 1267: 1262: 1253: 1248: 1247: 1241: 1237: 1232: 1231: 1224: 1219: 1218: 1212: 1208: 1203: 1202: 1200: 1191: 1187: 1185: 1182: 1181: 1155: 1150: 1149: 1143: 1139: 1134: 1125: 1120: 1119: 1113: 1109: 1104: 1103: 1096: 1091: 1090: 1084: 1080: 1075: 1074: 1072: 1063: 1059: 1057: 1054: 1053: 1018: 1014: 1012: 1009: 1008: 991: 987: 985: 982: 981: 958: 952: 948: 939: 935: 930: 922: 919: 918: 896: 888: 886: 883: 882: 860: 852: 851: 841: 836: 828: 819: 815: 811: 807: 805: 787: 783: 781: 778: 777: 755: 743: 739: 737: 734: 733: 703: 699: 697: 694: 693: 676: 672: 670: 667: 666: 649: 645: 643: 640: 639: 623: 620: 619: 598: 594: 592: 589: 588: 561: 557: 542: 538: 532: 528: 510: 506: 504: 501: 500: 465: 461: 443: 439: 421: 417: 415: 412: 411: 386: 365: 362: 361: 345: 342: 341: 325: 322: 321: 282: 279: 278: 254: 250: 241: 237: 235: 232: 231: 211: 208: 207: 171: 167: 158: 154: 152: 149: 148: 117: 113: 104: 100: 98: 95: 94: 71: 68: 67: 47: 44: 43: 28: 23: 22: 15: 12: 11: 5: 3399: 3389: 3388: 3386:Quantum optics 3374: 3373: 3356: 3355:External links 3353: 3352: 3351: 3336: 3285: 3282: 3279: 3278: 3265: 3245: 3229: 3220: 3201:(8): 391–394. 3189:Yasin, Allaine 3176: 3129: 3086:Shimony, Abner 3073: 3031: 3030: 3028: 3025: 3024: 3023: 3018: 3013: 3006: 3003: 2987: 2984: 2981: 2961: 2958: 2955: 2935: 2932: 2929: 2909: 2906: 2903: 2894:Similarly, if 2880: 2877: 2874: 2854: 2851: 2848: 2820: 2817: 2814: 2783: 2758: 2755: 2742: 2739: 2734: 2730: 2726: 2721: 2717: 2701: 2700: 2688: 2685: 2680: 2676: 2672: 2667: 2663: 2636: 2633: 2628: 2624: 2620: 2615: 2611: 2590: 2587: 2584: 2564: 2561: 2556: 2552: 2531: 2528: 2525: 2505: 2502: 2499: 2479: 2476: 2473: 2462: 2461: 2449: 2446: 2441: 2437: 2433: 2428: 2424: 2409: 2408: 2397: 2389: 2384: 2377: 2373: 2368: 2364: 2359: 2354: 2347: 2343: 2338: 2331: 2325: 2320: 2316: 2312: 2307: 2303: 2298: 2291: 2288: 2285: 2271: 2270: 2257: 2252: 2246: 2240: 2236: 2231: 2227: 2223: 2217: 2213: 2208: 2203: 2199: 2194: 2190: 2178: 2177: 2164: 2159: 2153: 2147: 2143: 2138: 2134: 2130: 2124: 2120: 2115: 2110: 2106: 2101: 2097: 2071: 2067: 2044: 2040: 2028: 2027: 2011: 2007: 2003: 1998: 1994: 1986: 1982: 1978: 1973: 1969: 1962: 1959: 1929: 1909: 1905: 1901: 1898: 1895: 1892: 1889: 1886: 1883: 1880: 1877: 1874: 1871: 1868: 1865: 1845: 1825: 1821: 1817: 1814: 1811: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1761: 1741: 1736: 1732: 1728: 1725: 1722: 1719: 1716: 1711: 1707: 1703: 1700: 1697: 1694: 1691: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1645: 1641: 1638: 1633: 1629: 1617: 1616: 1604: 1600: 1597: 1592: 1588: 1583: 1579: 1571: 1567: 1564: 1561: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1509: 1506: 1503: 1483: 1480: 1477: 1466: 1465: 1453: 1443: 1438: 1431: 1427: 1422: 1418: 1413: 1408: 1401: 1397: 1392: 1384: 1379: 1372: 1368: 1363: 1359: 1354: 1349: 1342: 1338: 1333: 1324: 1320: 1317: 1303: 1302: 1286: 1281: 1274: 1270: 1265: 1261: 1256: 1251: 1244: 1240: 1235: 1227: 1222: 1215: 1211: 1206: 1199: 1194: 1190: 1175: 1174: 1158: 1153: 1146: 1142: 1137: 1133: 1128: 1123: 1116: 1112: 1107: 1099: 1094: 1087: 1083: 1078: 1071: 1066: 1062: 1042:respectively. 1021: 1017: 994: 990: 978: 977: 965: 961: 955: 951: 947: 942: 938: 933: 929: 926: 899: 895: 891: 879: 878: 863: 859: 855: 848: 844: 839: 835: 831: 827: 822: 818: 814: 810: 804: 801: 798: 795: 790: 786: 762: 758: 754: 751: 746: 742: 717: 714: 711: 706: 702: 679: 675: 652: 648: 627: 601: 597: 581: 580: 569: 564: 560: 556: 553: 550: 545: 541: 535: 531: 527: 524: 521: 518: 513: 509: 494: 493: 482: 479: 476: 473: 468: 464: 460: 457: 454: 451: 446: 442: 438: 435: 432: 429: 420: 385: 382: 369: 349: 329: 286: 265: 262: 257: 253: 249: 244: 240: 215: 182: 179: 174: 170: 166: 161: 157: 141: 140: 128: 125: 120: 116: 112: 107: 103: 88:quantum optics 75: 51: 26: 9: 6: 4: 3: 2: 3398: 3387: 3384: 3383: 3381: 3370: 3369: 3368:Physics World 3364: 3359: 3358: 3347: 3342: 3337: 3333: 3332: 3323: 3319: 3315: 3311: 3307: 3303: 3299: 3295: 3294: 3288: 3287: 3263: 3243: 3233: 3224: 3216: 3212: 3208: 3204: 3200: 3196: 3195: 3194:Phys. Lett. A 3190: 3186: 3180: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3145: 3144: 3139: 3133: 3125: 3121: 3117: 3113: 3109: 3105: 3101: 3097: 3096: 3091: 3087: 3083: 3082:Jaeger, Gregg 3077: 3069: 3065: 3060: 3055: 3052:(1): 012118. 3051: 3047: 3043: 3036: 3032: 3022: 3019: 3017: 3014: 3012: 3009: 3008: 3002: 2999: 2985: 2982: 2979: 2959: 2956: 2953: 2933: 2930: 2927: 2907: 2904: 2901: 2892: 2878: 2875: 2872: 2852: 2849: 2846: 2838: 2834: 2818: 2815: 2812: 2803: 2801: 2797: 2781: 2771: 2767: 2765: 2754: 2740: 2737: 2732: 2728: 2724: 2719: 2715: 2706: 2686: 2683: 2678: 2674: 2670: 2665: 2661: 2653: 2652: 2651: 2648: 2634: 2631: 2626: 2622: 2618: 2613: 2609: 2588: 2585: 2582: 2562: 2559: 2550: 2529: 2526: 2523: 2503: 2500: 2497: 2477: 2474: 2471: 2447: 2444: 2439: 2435: 2431: 2426: 2422: 2414: 2413: 2412: 2395: 2387: 2375: 2371: 2362: 2357: 2345: 2341: 2323: 2318: 2314: 2310: 2305: 2301: 2289: 2286: 2283: 2276: 2275: 2274: 2255: 2238: 2234: 2225: 2215: 2211: 2197: 2188: 2180: 2179: 2162: 2145: 2141: 2132: 2122: 2118: 2104: 2095: 2087: 2086: 2085: 2065: 2038: 2005: 2001: 1992: 1980: 1976: 1967: 1960: 1957: 1950: 1949: 1948: 1945: 1944:of the lens. 1943: 1927: 1907: 1903: 1899: 1896: 1890: 1884: 1881: 1878: 1872: 1866: 1863: 1843: 1823: 1819: 1815: 1812: 1806: 1800: 1797: 1794: 1788: 1782: 1779: 1759: 1734: 1730: 1723: 1720: 1717: 1709: 1705: 1698: 1695: 1692: 1689: 1681: 1662: 1656: 1653: 1650: 1647: 1643: 1639: 1636: 1631: 1627: 1602: 1598: 1595: 1586: 1581: 1577: 1569: 1565: 1562: 1559: 1556: 1553: 1550: 1544: 1538: 1531: 1530: 1529: 1527: 1523: 1507: 1504: 1501: 1481: 1478: 1475: 1451: 1441: 1429: 1425: 1416: 1411: 1399: 1395: 1382: 1370: 1366: 1357: 1352: 1340: 1336: 1322: 1318: 1315: 1308: 1307: 1306: 1305:then we get: 1284: 1272: 1268: 1259: 1254: 1242: 1238: 1225: 1213: 1209: 1197: 1192: 1188: 1180: 1179: 1178: 1156: 1144: 1140: 1131: 1126: 1114: 1110: 1097: 1085: 1081: 1069: 1064: 1060: 1052: 1051: 1050: 1048: 1043: 1041: 1038:and aperture 1037: 1019: 1015: 992: 988: 963: 953: 949: 945: 940: 936: 927: 924: 917: 916: 915: 912: 893: 857: 842: 833: 825: 820: 816: 812: 808: 802: 796: 788: 776: 775: 774: 760: 756: 752: 749: 744: 740: 731: 712: 704: 677: 673: 650: 646: 625: 617: 599: 595: 586: 562: 558: 554: 551: 543: 533: 529: 525: 519: 511: 499: 498: 497: 496:The function 480: 474: 466: 458: 452: 444: 436: 430: 410: 409: 408: 406: 402: 401:wave function 397: 395: 391: 381: 367: 347: 327: 319: 315: 311: 307: 303: 298: 284: 263: 260: 255: 251: 247: 242: 238: 229: 213: 205: 201: 200:Abner Shimony 197: 180: 177: 172: 168: 164: 159: 155: 146: 126: 123: 118: 114: 110: 105: 101: 93: 92: 91: 89: 73: 65: 49: 41: 37: 33: 19: 3366: 3329: 3297: 3291: 3232: 3223: 3198: 3192: 3179: 3146: 3141: 3132: 3102:(1): 54–67. 3099: 3095:Phys. Rev. A 3093: 3090:Vaidman, Lev 3076: 3049: 3045: 3035: 3000: 2893: 2836: 2832: 2804: 2799: 2795: 2772: 2768: 2760: 2702: 2649: 2463: 2410: 2272: 2029: 1946: 1942:focal length 1679: 1618: 1528:is given by 1521: 1467: 1304: 1176: 1044: 1039: 1035: 979: 913: 880: 615: 587:centered on 584: 582: 495: 398: 393: 387: 317: 299: 196:Gregg Jaeger 142: 39: 35: 31: 29: 2764:ripple tank 1682:direction, 1526:focal plane 204:Lev Vaidman 3059:1503.02990 2575:and hence 1045:Since the 314:Niels Bohr 2798:and  2684:≤ 2324:∗ 2311:⋅ 2226:− 2198:∝ 2105:∝ 1977:− 1891:α 1885:⁡ 1879:≃ 1873:α 1867:⁡ 1807:α 1801:⁡ 1795:≃ 1789:α 1783:⁡ 1724:⁡ 1718:− 1699:⁡ 1690:φ 1663:α 1657:⁡ 1651:⋅ 1648:λ 1599:φ 1591:ℏ 1566:⁡ 1551:∝ 1358:− 946:− 847:ℏ 826:⋅ 803:∝ 785:Ψ 761:λ 701:Ψ 555:− 540:Ψ 508:Ψ 463:Ψ 441:Ψ 419:Ψ 261:≤ 178:≤ 124:≤ 38:, or the 3380:Category 3171:10061872 3005:See also 2972:implies 3322:4311842 3302:Bibcode 3203:Bibcode 3151:Bibcode 3124:9911555 3104:Bibcode 1940:is the 1524:in the 403:in the 318:partial 304:. The 277:. Here 3320:  3293:Nature 3169:  3122:  2030:where 1920:where 1836:where 1619:where 980:where 881:where 202:, and 3341:arXiv 3318:S2CID 3054:arXiv 2920:then 2705:laser 423:Total 62:, of 3167:PMID 3120:PMID 2490:but 2057:and 1177:and 1007:and 665:and 399:The 30:The 3310:doi 3298:351 3211:doi 3199:128 3159:doi 3112:doi 3064:doi 2555:min 2193:min 2100:max 2070:min 2043:max 2010:min 1997:max 1985:min 1972:max 1882:tan 1864:sin 1798:tan 1780:sin 1721:Arg 1696:Arg 1654:sin 1563:cos 308:in 3382:: 3365:. 3316:. 3308:. 3296:. 3276:". 3209:. 3197:. 3187:; 3165:. 3157:. 3147:77 3118:. 3110:. 3100:51 3098:. 3088:; 3084:; 3062:. 3050:92 3048:. 3044:. 2802:. 2766:. 2687:1. 2647:. 773:: 198:, 3371:. 3349:. 3343:: 3324:. 3312:: 3304:: 3264:P 3244:D 3217:. 3213:: 3205:: 3173:. 3161:: 3153:: 3126:. 3114:: 3106:: 3070:. 3066:: 3056:: 2986:0 2983:= 2980:V 2960:1 2957:= 2954:P 2934:1 2931:= 2928:V 2908:0 2905:= 2902:P 2879:0 2876:= 2873:P 2853:0 2850:= 2847:P 2837:A 2833:A 2819:1 2816:= 2813:P 2800:B 2796:A 2782:P 2741:1 2738:= 2733:2 2729:P 2725:+ 2720:2 2716:V 2679:2 2675:P 2671:+ 2666:2 2662:V 2635:1 2632:= 2627:2 2623:P 2619:+ 2614:2 2610:V 2589:1 2586:= 2583:V 2563:0 2560:= 2551:I 2530:0 2527:= 2524:P 2504:1 2501:= 2498:P 2478:0 2475:= 2472:V 2448:1 2445:= 2440:2 2436:P 2432:+ 2427:2 2423:V 2396:. 2388:2 2383:| 2376:B 2372:C 2367:| 2363:+ 2358:2 2353:| 2346:A 2342:C 2337:| 2330:| 2319:B 2315:C 2306:A 2302:C 2297:| 2290:2 2287:= 2284:V 2256:2 2251:| 2245:| 2239:B 2235:C 2230:| 2222:| 2216:A 2212:C 2207:| 2202:| 2189:I 2163:2 2158:| 2152:| 2146:B 2142:C 2137:| 2133:+ 2129:| 2123:A 2119:C 2114:| 2109:| 2096:I 2066:I 2039:I 2006:I 2002:+ 1993:I 1981:I 1968:I 1961:= 1958:V 1928:f 1908:f 1904:/ 1900:y 1897:= 1894:) 1888:( 1876:) 1870:( 1844:L 1824:L 1820:/ 1816:y 1813:= 1810:) 1804:( 1792:) 1786:( 1760:d 1740:) 1735:B 1731:C 1727:( 1715:) 1710:A 1706:C 1702:( 1693:= 1680:y 1666:) 1660:( 1644:/ 1640:h 1637:= 1632:y 1628:p 1603:) 1596:+ 1587:d 1582:y 1578:p 1570:( 1560:V 1557:+ 1554:1 1548:) 1545:y 1542:( 1539:I 1522:y 1508:1 1505:= 1502:P 1482:0 1479:= 1476:P 1452:| 1442:2 1437:| 1430:B 1426:C 1421:| 1417:+ 1412:2 1407:| 1400:A 1396:C 1391:| 1383:2 1378:| 1371:B 1367:C 1362:| 1353:2 1348:| 1341:A 1337:C 1332:| 1323:| 1319:= 1316:P 1285:2 1280:| 1273:B 1269:C 1264:| 1260:+ 1255:2 1250:| 1243:A 1239:C 1234:| 1226:2 1221:| 1214:B 1210:C 1205:| 1198:= 1193:B 1189:P 1157:2 1152:| 1145:B 1141:C 1136:| 1132:+ 1127:2 1122:| 1115:A 1111:C 1106:| 1098:2 1093:| 1086:A 1082:C 1077:| 1070:= 1065:A 1061:P 1040:B 1036:A 1020:B 1016:P 993:A 989:P 964:, 960:| 954:B 950:P 941:A 937:P 932:| 928:= 925:P 898:| 894:x 890:| 862:| 858:x 854:| 843:/ 838:| 834:x 830:| 821:0 817:p 813:i 809:e 800:) 797:x 794:( 789:0 757:/ 753:h 750:= 745:0 741:p 716:) 713:x 710:( 705:0 678:B 674:C 651:A 647:C 626:x 616:B 600:A 596:x 585:A 568:) 563:A 559:x 552:x 549:( 544:0 534:A 530:C 526:= 523:) 520:x 517:( 512:A 481:. 478:) 475:x 472:( 467:B 459:+ 456:) 453:x 450:( 445:A 437:= 434:) 431:x 428:( 368:V 348:D 328:P 285:D 264:1 256:2 252:V 248:+ 243:2 239:D 214:P 181:1 173:2 169:V 165:+ 160:2 156:P 127:1 119:2 115:V 111:+ 106:2 102:D 74:D 50:V 20:)

Index

Englert–Greenberger duality relation
interference fringes
quantum optics
Daniel Greenberger
Gregg Jaeger
Abner Shimony
Lev Vaidman
Berthold-Georg Englert
double-slit experiments
complementarity principle
quantum mechanics
Niels Bohr
double-slit experiment
wave function
Young double-aperture experiment
Fraunhofer diffraction
Born probability
focal plane
focal length
laser
ripple tank
Afshar experiment
Quantum entanglement
Quantum indeterminacy
"Duality of quantum coherence and path distinguishability"
arXiv
1503.02990
doi
10.1103/PhysRevA.92.012118
Jaeger, Gregg

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.