Knowledge

Elliptic surface

Source 📝

491: 457: 322: 593: 559: 285: 661: 627: 353: 521: 251: 484: 450: 423: 315: 360: 416: 278: 244: 668: 634: 600: 566: 528: 676:
This table can be found as follows. Geometric arguments show that the intersection matrix of the components of the fiber must be negative semidefinite, connected, symmetric, and have no diagonal entries equal to −1 (by minimality). Such a matrix must be 0 or a multiple of the Cartan matrix of an
1919:, the smooth locus of each fiber has a group structure. For singular fibers, this group structure on the smooth locus is described in the table, assuming for convenience that the base field is the complex numbers. (For a singular fiber with intersection matrix given by an affine Dynkin diagram 152:
Most of the fibers of an elliptic fibration are (non-singular) elliptic curves. The remaining fibers are called singular fibers: there are a finite number of them, and each one consists of a union of rational curves, possibly with singularities or non-zero multiplicities (so the fibers may be
2130: 164:
elliptic fibration. ("Minimal" means roughly one that cannot be factored through a "smaller" one; precisely, the singular fibers should contain no smooth rational curves with self-intersection number −1.) It gives:
1448: 839: 1631: 1294: 1178: 1851: 1741: 1065: 971: 2429: 906: 1521: 1370: 1783: 1673: 1559: 1220: 1107: 1896:
at such a fiber. That is, after a ramified finite covering of the base curve, the singular fiber can be replaced by a smooth elliptic curve. Which smooth curve appears is described by the
2674: 94:
Elliptic surfaces form a large class of surfaces that contains many of the interesting examples of surfaces, and are relatively well understood in the theories of complex manifolds and
2742: 2203: 1946: 2524: 2809: 2841: 1877: 1318: 997: 2769: 1966: 1469: 860: 2889:. It can be reversed, so fibers of high multiplicity can all be turned into fibers of multiplicity 1, and this can be used to eliminate all multiple fibers. 2014: 2892:
Logarithmic transformations can be quite violent: they can change the Kodaira dimension, and can turn algebraic surfaces into non-algebraic surfaces.
2591:
has nonnegative degree, and it has degree zero if and only if the elliptic surface is isotrivial, meaning that all the smooth fibers are isomorphic.
2744:. This is an explicit rational number between 0 and 1, depending on the type of singular fiber. Explicitly, the lct is 1 for a smooth fiber or type 1908:-invariant 1728 is the unique elliptic curve with automorphism group of order 4. (All other elliptic curves have automorphism group of order 2.) 161: 3415: 3354: 1391: 2236: 1948:, the group of components of the smooth locus is isomorphic to the center of the simply connected simple Lie group with Dynkin diagram 791: 1577: 1240: 1124: 1800: 1690: 1014: 920: 751:) changes as we go around a singular fiber. Representatives for these conjugacy classes associated to singular fibers are given by: 2340: 866: 3174: 1475: 1324: 3081: 1985: 1750: 1640: 1526: 1187: 1074: 3216: 2244: 2600: 2863: 703:, there are 2 components with intersection multiplicity 2. They can meet either in 2 points with order 1 (type I 714:, there are 3 components each meeting the other two. They can meet either in pairs at 3 distinct points (type I 2694: 2142: 3405: 1969: 3410: 1922: 2938:
is an elliptic fibration. We will show how to replace the fiber over 0 with a fiber of multiplicity 2.
61: 3400: 2473: 2778: 1893: 3330: 2814: 1860: 1301: 980: 114:
The product of any elliptic curve with any curve is an elliptic surface (with no singular fibers).
3322: 2851: 1904:-invariant 0 is the unique elliptic curve with automorphism group of order 6, and the curve with 95: 3105:
Barth et al. (2004), section V.10, Tables 5 and 6; Cossec and Dolgachev (1989), Corollary 5.2.3.
1912: 744: 141: 3086: 2747: 1951: 1454: 845: 3375: 3338: 3298: 3258: 3226: 3184: 1973: 190: 3383: 3306: 3266: 153:
non-reduced schemes). Kodaira and Néron independently classified the possible fibers, and
8: 2563: 2321:, Takao Fujita (1986) gave a useful variant of the canonical bundle formula, showing how 154: 45: 33: 678: 1976:
of an elliptic fibration (the group of sections), in particular its torsion subgroup.
3349: 3314: 3212: 3170: 157:
can be used to find the type of the fibers of an elliptic curve over a number field.
136: 118: 75:, depending on the context). The fibers that are not elliptic curves are called the 3379: 3363: 3345: 3326: 3302: 3286: 3274: 3262: 3246: 3234: 3204: 3162: 2881:) of an elliptic surface or fibration turns a fiber of multiplicity 1 over a point 2843:, 5/6 for II, 3/4 for III, 2/3 for IV, 1/3 for IV*, 1/4 for III*, and 1/6 for II*. 2125:{\displaystyle K_{X}=f^{*}(L)\otimes O_{S}{\big (}\sum _{i}(m_{i}-1)D_{i}{\big )}.} 1989: 172: 125: 80: 68: 1972:.) Knowing the group structure of the singular fibers is useful for computing the 3371: 3334: 3294: 3254: 3222: 3180: 3158: 2847: 732: 688:
If the intersection matrix is 0 the fiber can be either an elliptic curve (type I
178:
The number of irreducible components of the fiber (all rational except for type I
131: 37: 29: 3192: 3029:). (The two fibers over 0 are non-isomorphic elliptic curves, so the fibration 194: 72: 53: 49: 3208: 3166: 3394: 84: 57: 41: 3200: 2571: 102: 101:. They are similar to (have analogies with, that is), elliptic curves over 3350:"Modèles minimaux des variétés abéliennes sur les corps locaux et globaux" 3150: 2539: 1897: 740: 684:
The intersection matrix determines the fiber type with three exceptions:
186: 17: 2846:
The canonical bundle formula (in Fujita's form) has been generalized by
3367: 3146: 2318: 98: 2862:"Logarithmic transformation" redirects here. Not to be confused with 728: 490: 456: 321: 200:
The multiplicities of each fiber are indicated in the Dynkin diagram.
185:
The intersection matrix of the components. This is either a 1×1
25: 3290: 3277:(1964). "On the structure of compact complex analytic surfaces. I". 3250: 1443:{\displaystyle {\begin{pmatrix}-1&-\nu \\0&-1\end{pmatrix}}} 660: 626: 592: 558: 520: 483: 449: 422: 415: 352: 314: 284: 277: 250: 243: 128:
is elliptic, and has an elliptic fibration over the projective line.
3064:
is obtained by applying a logarithmic transformation of order 2 to
667: 633: 599: 565: 527: 359: 88: 2330:
depends on the variation of the smooth fibers. Namely, there is a
834:{\displaystyle {\begin{pmatrix}1&\nu \\0&1\end{pmatrix}}} 2223:
whose coefficients have greatest common divisor equal to 1, and
1626:{\displaystyle {\begin{pmatrix}-1&-1\\1&0\end{pmatrix}}} 1289:{\displaystyle {\begin{pmatrix}-1&0\\0&-1\end{pmatrix}}} 1173:{\displaystyle {\begin{pmatrix}0&1\\-1&-1\end{pmatrix}}} 3052:
has a fiber of multiplicity 2 over 0, and otherwise looks like
1846:{\displaystyle {\begin{pmatrix}0&-1\\1&1\end{pmatrix}}} 1736:{\displaystyle {\begin{pmatrix}0&-1\\1&0\end{pmatrix}}} 1060:{\displaystyle {\begin{pmatrix}0&1\\-1&0\end{pmatrix}}} 966:{\displaystyle {\begin{pmatrix}1&1\\-1&0\end{pmatrix}}} 67:
The surface and the base curve are assumed to be non-singular (
56:, perhaps without a chosen origin.) This is equivalent to the 3317:(2007), "Kodaira's canonical bundle formula and adjunction", 2424:{\displaystyle K_{X}\sim _{\bf {Q}}f^{*}(K_{S}+B_{S}+M_{S}),} 2594:
The discriminant divisor in Fujita's formula is defined by
3145: 2004:. Over the complex numbers, Kodaira proved the following 1892:). This reflects the fact that an elliptic fibration has 1888:, IV, III, or II, the monodromy has finite order in SL(2, 901:{\displaystyle \mathbf {Z} /\nu \times \mathbf {C} ^{*}} 1900:
in the table. Over the complex numbers, the curve with
1516:{\displaystyle (\mathbf {Z} /2)^{2}\times \mathbf {C} } 1365:{\displaystyle (\mathbf {Z} /2)^{2}\times \mathbf {C} } 1809: 1699: 1586: 1400: 1249: 1133: 1023: 929: 800: 2817: 2781: 2750: 2697: 2603: 2476: 2343: 2145: 2017: 1954: 1925: 1863: 1803: 1753: 1693: 1643: 1580: 1529: 1478: 1457: 1394: 1327: 1304: 1243: 1190: 1127: 1077: 1017: 983: 923: 869: 848: 794: 147: 83:. Both elliptic and singular fibers are important in 60:
being a smooth curve of genus one. This follows from
3153:; Peters, Chris A.M.; Van de Ven, Antonius (2004) , 2235:is projective (or equivalently, compact), then the 160:The following table lists the possible fibers of a 48:1. (Over an algebraically closed field such as the 2835: 2803: 2763: 2736: 2668: 2518: 2423: 2197: 2124: 1960: 1940: 1871: 1845: 1777: 1735: 1667: 1625: 1553: 1515: 1463: 1442: 1364: 1312: 1288: 1214: 1172: 1101: 1059: 991: 965: 900: 854: 833: 2306:; it is essential here that the elliptic surface 1984:To understand how elliptic surfaces fit into the 1778:{\displaystyle \mathbf {Z} /2\times \mathbf {C} } 1668:{\displaystyle \mathbf {Z} /3\times \mathbf {C} } 1554:{\displaystyle \mathbf {Z} /4\times \mathbf {C} } 1215:{\displaystyle \mathbf {Z} /3\times \mathbf {C} } 1102:{\displaystyle \mathbf {Z} /2\times \mathbf {C} } 3392: 2562:-divisors, using the identification between the 747:group of a smooth fiber (which is isomorphic to 3190: 2885:of the base space into a fiber of multiplicity 2857: 3033:is certainly not isomorphic to the fibration 2298:-linearly equivalent to the pullback of some 2285:). The canonical bundle formula implies that 2114: 2065: 743:1. The monodromy describes the way the first 731:around each singular fiber is a well-defined 3237:(1963). "On compact analytic surfaces. II". 2669:{\displaystyle B_{S}=\sum _{p\in S}(1-c(p))} 1979: 718:), or all meet at the same point (type IV). 707:), or at one point with order 2 (type III). 1884:For singular fibers of type II, III, IV, I 3331:10.1093/acprof:oso/9780198570615.003.0008 3114:Barth et al. (2004), Corollary III.12.3. 2737:{\displaystyle {\text{lct}}(X,f^{*}(p))} 2227:is some line bundle on the smooth curve 3273: 3233: 2198:{\displaystyle f^{*}(p_{i})=m_{i}D_{i}} 3393: 3313: 710:If the intersection matrix is affine A 699:If the intersection matrix is affine A 3344: 2454:associated to the singular fibers of 3355:Publications Mathématiques de l'IHÉS 3416:Mathematical classification systems 3009:minus the fiber over 0 by mapping ( 2997:. We construct an isomorphism from 13: 1955: 1941:{\displaystyle {\tilde {\Gamma }}} 1929: 1458: 849: 342:v (v distinct intersection points) 304:2 (2 distinct intersection points) 148:Kodaira's table of singular fibers 24:is a surface that has an elliptic 14: 3427: 2245:holomorphic Euler characteristics 1988:, it is important to compute the 1911:For an elliptic fibration with a 739:) of 2 × 2 integer matrices with 692:), or have a double point (type I 2360: 1865: 1771: 1755: 1661: 1645: 1547: 1531: 1509: 1483: 1358: 1332: 1306: 1208: 1192: 1095: 1079: 985: 888: 871: 772:Group structure on smooth locus 666: 659: 632: 625: 598: 591: 564: 557: 526: 519: 489: 482: 455: 448: 439:2 (meet at one point of order 2) 421: 414: 358: 351: 320: 313: 283: 276: 249: 242: 40:such that almost all fibers are 3082:Enriques–Kodaira classification 2926:. Then the projection map from 2864:Logarithmic data transformation 2582:projective, the moduli divisor 2519:{\displaystyle (1/12)j^{*}O(1)} 169:Kodaira's symbol for the fiber, 3126: 3117: 3108: 3099: 2977:by this group action. We make 2804:{\displaystyle {}_{m}I_{\nu }} 2731: 2728: 2722: 2703: 2663: 2657: 2654: 2651: 2645: 2633: 2513: 2507: 2491: 2477: 2415: 2376: 2169: 2156: 2099: 2080: 2047: 2041: 1992:of a minimal elliptic surface 1932: 1496: 1479: 1345: 1328: 677:affine Dynkin diagram of type 1: 3319:Flips for 3-folds and 4-folds 3139: 2558:-linear equivalence class of 2941:There is an automorphism of 2836:{\displaystyle I_{\nu }^{*}} 2545:of the smooth fibers. (Thus 2135:Here the multiple fibers of 1872:{\displaystyle \mathbf {C} } 1313:{\displaystyle \mathbf {C} } 992:{\displaystyle \mathbf {C} } 722: 7: 3132:Kollár (2007), section 8.5. 3123:Kollár (2007), section 8.2. 3075: 2858:Logarithmic transformations 2538:is the function giving the 1917:Jacobian elliptic fibration 108: 10: 3432: 3001:minus the fiber over 0 to 2871:logarithmic transformation 2861: 2850:and others to families of 1986:classification of surfaces 3209:10.1007/978-1-4612-3696-2 3167:10.1007/978-3-642-57739-0 2446:is an explicit effective 2214:at least 2 and a divisor 3155:Compact Complex Surfaces 3092: 2981:into a fiber space over 2764:{\displaystyle I_{\nu }} 2139:(if any) are written as 2006:canonical bundle formula 1980:Canonical bundle formula 1894:potential good reduction 175:'s symbol for the fiber, 121:1 are elliptic surfaces. 3323:Oxford University Press 2690:log canonical threshold 2578:).) In particular, for 1961:{\displaystyle \Gamma } 1464:{\displaystyle \infty } 855:{\displaystyle \infty } 696:), or a cusp (type II). 473:3 (all meet in 1 point) 142:Shioda modular surfaces 79:and were classified by 2949:of order 2 that maps ( 2918:be the elliptic curve 2837: 2805: 2765: 2738: 2670: 2520: 2425: 2199: 2126: 1962: 1942: 1873: 1847: 1779: 1737: 1669: 1627: 1555: 1517: 1465: 1444: 1366: 1314: 1290: 1216: 1174: 1103: 1061: 993: 967: 902: 856: 835: 2838: 2806: 2775:for a multiple fiber 2766: 2739: 2671: 2521: 2426: 2243:is determined by the 2200: 2127: 1963: 1943: 1874: 1848: 1780: 1738: 1670: 1628: 1556: 1518: 1466: 1445: 1367: 1315: 1291: 1217: 1175: 1104: 1062: 994: 968: 903: 857: 836: 270:1 (with double point) 3325:, pp. 134–162, 2852:Calabi–Yau varieties 2815: 2779: 2748: 2695: 2601: 2474: 2436:discriminant divisor 2341: 2334:-linear equivalence 2317:Building on work of 2143: 2015: 1952: 1923: 1861: 1801: 1751: 1691: 1641: 1578: 1527: 1476: 1455: 1392: 1325: 1302: 1241: 1188: 1125: 1075: 1015: 981: 921: 867: 846: 792: 191:affine Cartan matrix 3406:Birational geometry 3087:Néron minimal model 3048:Then the fibration 2969:be the quotient of 2832: 2564:divisor class group 760:Intersection matrix 216:Intersection matrix 52:, these fibers are 28:, in other words a 3411:Algebraic surfaces 3368:10.1007/BF02684271 3191:Cossec, François; 2854:of any dimension. 2833: 2818: 2801: 2761: 2734: 2666: 2632: 2516: 2421: 2195: 2122: 2079: 1974:Mordell-Weil group 1958: 1938: 1869: 1843: 1837: 1775: 1733: 1727: 1665: 1623: 1617: 1551: 1513: 1461: 1440: 1434: 1362: 1310: 1286: 1280: 1212: 1170: 1164: 1099: 1057: 1051: 989: 963: 957: 898: 852: 831: 825: 735:in the group SL(2, 389:with multiplicity 137:Dolgachev surfaces 62:proper base change 3275:Kodaira, Kunihiko 3235:Kodaira, Kunihiko 3197:Enriques Surfaces 3176:978-3-540-00832-3 2701: 2617: 2205:, for an integer 2070: 1935: 1882: 1881: 674: 673: 119:Kodaira dimension 69:complex manifolds 3423: 3401:Complex surfaces 3387: 3341: 3310: 3270: 3230: 3187: 3133: 3130: 3124: 3121: 3115: 3112: 3106: 3103: 2842: 2840: 2839: 2834: 2831: 2826: 2810: 2808: 2807: 2802: 2800: 2799: 2790: 2789: 2784: 2770: 2768: 2767: 2762: 2760: 2759: 2743: 2741: 2740: 2735: 2721: 2720: 2702: 2699: 2675: 2673: 2672: 2667: 2631: 2613: 2612: 2525: 2523: 2522: 2517: 2503: 2502: 2487: 2430: 2428: 2427: 2422: 2414: 2413: 2401: 2400: 2388: 2387: 2375: 2374: 2365: 2364: 2363: 2353: 2352: 2204: 2202: 2201: 2196: 2194: 2193: 2184: 2183: 2168: 2167: 2155: 2154: 2131: 2129: 2128: 2123: 2118: 2117: 2111: 2110: 2092: 2091: 2078: 2069: 2068: 2062: 2061: 2040: 2039: 2027: 2026: 1990:canonical bundle 1967: 1965: 1964: 1959: 1947: 1945: 1944: 1939: 1937: 1936: 1928: 1878: 1876: 1875: 1870: 1868: 1852: 1850: 1849: 1844: 1842: 1841: 1784: 1782: 1781: 1776: 1774: 1763: 1758: 1742: 1740: 1739: 1734: 1732: 1731: 1674: 1672: 1671: 1666: 1664: 1653: 1648: 1632: 1630: 1629: 1624: 1622: 1621: 1560: 1558: 1557: 1552: 1550: 1539: 1534: 1522: 1520: 1519: 1514: 1512: 1504: 1503: 1491: 1486: 1470: 1468: 1467: 1462: 1449: 1447: 1446: 1441: 1439: 1438: 1371: 1369: 1368: 1363: 1361: 1353: 1352: 1340: 1335: 1319: 1317: 1316: 1311: 1309: 1295: 1293: 1292: 1287: 1285: 1284: 1221: 1219: 1218: 1213: 1211: 1200: 1195: 1179: 1177: 1176: 1171: 1169: 1168: 1108: 1106: 1105: 1100: 1098: 1087: 1082: 1066: 1064: 1063: 1058: 1056: 1055: 998: 996: 995: 990: 988: 972: 970: 969: 964: 962: 961: 907: 905: 904: 899: 897: 896: 891: 879: 874: 861: 859: 858: 853: 840: 838: 837: 832: 830: 829: 754: 753: 670: 663: 636: 629: 602: 595: 568: 561: 530: 523: 493: 486: 459: 452: 425: 418: 362: 355: 324: 317: 287: 280: 253: 246: 204: 203: 155:Tate's algorithm 132:Kodaira surfaces 126:Enriques surface 117:All surfaces of 87:, especially in 81:Kunihiko Kodaira 22:elliptic surface 3431: 3430: 3426: 3425: 3424: 3422: 3421: 3420: 3391: 3390: 3291:10.2307/2373157 3251:10.2307/1970131 3219: 3193:Dolgachev, Igor 3177: 3142: 3137: 3136: 3131: 3127: 3122: 3118: 3113: 3109: 3104: 3100: 3095: 3078: 3072:with center 0. 2902:be the lattice 2867: 2860: 2848:Yujiro Kawamata 2827: 2822: 2816: 2813: 2812: 2795: 2791: 2785: 2783: 2782: 2780: 2777: 2776: 2755: 2751: 2749: 2746: 2745: 2716: 2712: 2698: 2696: 2693: 2692: 2621: 2608: 2604: 2602: 2599: 2598: 2590: 2553: 2498: 2494: 2483: 2475: 2472: 2471: 2469: 2445: 2409: 2405: 2396: 2392: 2383: 2379: 2370: 2366: 2359: 2358: 2354: 2348: 2344: 2342: 2339: 2338: 2329: 2293: 2284: 2271: 2222: 2213: 2189: 2185: 2179: 2175: 2163: 2159: 2150: 2146: 2144: 2141: 2140: 2113: 2112: 2106: 2102: 2087: 2083: 2074: 2064: 2063: 2057: 2053: 2035: 2031: 2022: 2018: 2016: 2013: 2012: 1982: 1953: 1950: 1949: 1927: 1926: 1924: 1921: 1920: 1887: 1864: 1862: 1859: 1858: 1836: 1835: 1830: 1824: 1823: 1815: 1805: 1804: 1802: 1799: 1798: 1795: 1770: 1759: 1754: 1752: 1749: 1748: 1726: 1725: 1720: 1714: 1713: 1705: 1695: 1694: 1692: 1689: 1688: 1685: 1660: 1649: 1644: 1642: 1639: 1638: 1616: 1615: 1610: 1604: 1603: 1595: 1582: 1581: 1579: 1576: 1575: 1572: 1546: 1535: 1530: 1528: 1525: 1524: 1508: 1499: 1495: 1487: 1482: 1477: 1474: 1473: 1456: 1453: 1452: 1433: 1432: 1424: 1418: 1417: 1409: 1396: 1395: 1393: 1390: 1389: 1386: 1379: 1357: 1348: 1344: 1336: 1331: 1326: 1323: 1322: 1305: 1303: 1300: 1299: 1279: 1278: 1270: 1264: 1263: 1258: 1245: 1244: 1242: 1239: 1238: 1235: 1229: 1207: 1196: 1191: 1189: 1186: 1185: 1163: 1162: 1154: 1145: 1144: 1139: 1129: 1128: 1126: 1123: 1122: 1119: 1094: 1083: 1078: 1076: 1073: 1072: 1050: 1049: 1044: 1035: 1034: 1029: 1019: 1018: 1016: 1013: 1012: 1009: 984: 982: 979: 978: 956: 955: 950: 941: 940: 935: 925: 924: 922: 919: 918: 892: 887: 886: 875: 870: 868: 865: 864: 847: 844: 843: 824: 823: 818: 812: 811: 806: 796: 795: 793: 790: 789: 786: 780: 733:conjugacy class 725: 717: 713: 706: 702: 695: 691: 656: 647: 622: 613: 588: 579: 554: 545: 538: 516: 507: 501: 479: 470: 445: 436: 405: 388: 375: 371: 348: 339: 332: 310: 301: 295: 267: 261: 230: 181: 150: 111: 77:singular fibers 73:regular schemes 54:elliptic curves 50:complex numbers 38:algebraic curve 32:with connected 30:proper morphism 12: 11: 5: 3429: 3419: 3418: 3413: 3408: 3403: 3389: 3388: 3342: 3311: 3271: 3231: 3217: 3188: 3175: 3147:Barth, Wolf P. 3141: 3138: 3135: 3134: 3125: 3116: 3107: 3097: 3096: 3094: 3091: 3090: 3089: 3084: 3077: 3074: 3060:. We say that 2859: 2856: 2830: 2825: 2821: 2798: 2794: 2788: 2771:, and it is 1/ 2758: 2754: 2733: 2730: 2727: 2724: 2719: 2715: 2711: 2708: 2705: 2678: 2677: 2665: 2662: 2659: 2656: 2653: 2650: 2647: 2644: 2641: 2638: 2635: 2630: 2627: 2624: 2620: 2616: 2611: 2607: 2586: 2549: 2515: 2512: 2509: 2506: 2501: 2497: 2493: 2490: 2486: 2482: 2479: 2465: 2460:moduli divisor 2441: 2432: 2431: 2420: 2417: 2412: 2408: 2404: 2399: 2395: 2391: 2386: 2382: 2378: 2373: 2369: 2362: 2357: 2351: 2347: 2325: 2289: 2280: 2267: 2218: 2209: 2192: 2188: 2182: 2178: 2174: 2171: 2166: 2162: 2158: 2153: 2149: 2133: 2132: 2121: 2116: 2109: 2105: 2101: 2098: 2095: 2090: 2086: 2082: 2077: 2073: 2067: 2060: 2056: 2052: 2049: 2046: 2043: 2038: 2034: 2030: 2025: 2021: 1981: 1978: 1957: 1934: 1931: 1885: 1880: 1879: 1867: 1856: 1853: 1840: 1834: 1831: 1829: 1826: 1825: 1822: 1819: 1816: 1814: 1811: 1810: 1808: 1796: 1793: 1790: 1786: 1785: 1773: 1769: 1766: 1762: 1757: 1746: 1743: 1730: 1724: 1721: 1719: 1716: 1715: 1712: 1709: 1706: 1704: 1701: 1700: 1698: 1686: 1683: 1680: 1676: 1675: 1663: 1659: 1656: 1652: 1647: 1636: 1633: 1620: 1614: 1611: 1609: 1606: 1605: 1602: 1599: 1596: 1594: 1591: 1588: 1587: 1585: 1573: 1570: 1567: 1563: 1562: 1549: 1545: 1542: 1538: 1533: 1523:if ν is even, 1511: 1507: 1502: 1498: 1494: 1490: 1485: 1481: 1471: 1460: 1450: 1437: 1431: 1428: 1425: 1423: 1420: 1419: 1416: 1413: 1410: 1408: 1405: 1402: 1401: 1399: 1387: 1384: 1381: 1377: 1373: 1372: 1360: 1356: 1351: 1347: 1343: 1339: 1334: 1330: 1320: 1308: 1296: 1283: 1277: 1274: 1271: 1269: 1266: 1265: 1262: 1259: 1257: 1254: 1251: 1250: 1248: 1236: 1233: 1230: 1227: 1223: 1222: 1210: 1206: 1203: 1199: 1194: 1183: 1180: 1167: 1161: 1158: 1155: 1153: 1150: 1147: 1146: 1143: 1140: 1138: 1135: 1134: 1132: 1120: 1117: 1114: 1110: 1109: 1097: 1093: 1090: 1086: 1081: 1070: 1067: 1054: 1048: 1045: 1043: 1040: 1037: 1036: 1033: 1030: 1028: 1025: 1024: 1022: 1010: 1007: 1004: 1000: 999: 987: 976: 973: 960: 954: 951: 949: 946: 943: 942: 939: 936: 934: 931: 930: 928: 916: 913: 909: 908: 895: 890: 885: 882: 878: 873: 862: 851: 841: 828: 822: 819: 817: 814: 813: 810: 807: 805: 802: 801: 799: 787: 784: 781: 778: 774: 773: 770: 764: 761: 758: 724: 721: 720: 719: 715: 711: 708: 704: 700: 697: 693: 689: 672: 671: 664: 657: 654: 651: 648: 645: 642: 638: 637: 630: 623: 620: 617: 614: 611: 608: 604: 603: 596: 589: 586: 583: 580: 577: 574: 570: 569: 562: 555: 552: 549: 546: 543: 540: 536: 532: 531: 524: 517: 514: 511: 508: 505: 502: 499: 495: 494: 487: 480: 477: 474: 471: 468: 465: 461: 460: 453: 446: 443: 440: 437: 434: 431: 427: 426: 419: 412: 409: 406: 403: 400: 396: 395: 393: 386: 383: 381: 373: 367: 364: 363: 356: 349: 346: 343: 340: 337: 334: 330: 326: 325: 318: 311: 308: 305: 302: 299: 296: 293: 289: 288: 281: 274: 271: 268: 265: 262: 259: 255: 254: 247: 240: 237: 234: 231: 228: 224: 223: 220: 219:Dynkin diagram 217: 214: 211: 208: 202: 201: 198: 195:Dynkin diagram 183: 179: 176: 170: 149: 146: 145: 144: 139: 134: 129: 124:Every complex 122: 115: 110: 107: 9: 6: 4: 3: 2: 3428: 3417: 3414: 3412: 3409: 3407: 3404: 3402: 3399: 3398: 3396: 3385: 3381: 3377: 3373: 3369: 3365: 3361: 3358:(in French). 3357: 3356: 3351: 3347: 3343: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3315:Kollár, János 3312: 3308: 3304: 3300: 3296: 3292: 3288: 3284: 3280: 3276: 3272: 3268: 3264: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3224: 3220: 3218:3-7643-3417-7 3214: 3210: 3206: 3202: 3198: 3194: 3189: 3186: 3182: 3178: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3143: 3129: 3120: 3111: 3102: 3098: 3088: 3085: 3083: 3080: 3079: 3073: 3071: 3067: 3063: 3059: 3055: 3051: 3046: 3044: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2939: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2901: 2897: 2893: 2890: 2888: 2884: 2880: 2876: 2872: 2865: 2855: 2853: 2849: 2844: 2828: 2823: 2819: 2796: 2792: 2786: 2774: 2756: 2752: 2725: 2717: 2713: 2709: 2706: 2691: 2687: 2683: 2660: 2648: 2642: 2639: 2636: 2628: 2625: 2622: 2618: 2614: 2609: 2605: 2597: 2596: 2595: 2592: 2589: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2552: 2548: 2544: 2542: 2537: 2533: 2529: 2510: 2504: 2499: 2495: 2488: 2484: 2480: 2468: 2464: 2461: 2457: 2453: 2449: 2444: 2440: 2437: 2418: 2410: 2406: 2402: 2397: 2393: 2389: 2384: 2380: 2371: 2367: 2355: 2349: 2345: 2337: 2336: 2335: 2333: 2328: 2324: 2320: 2315: 2313: 2309: 2305: 2301: 2297: 2292: 2288: 2283: 2279: 2275: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2221: 2217: 2212: 2208: 2190: 2186: 2180: 2176: 2172: 2164: 2160: 2151: 2147: 2138: 2119: 2107: 2103: 2096: 2093: 2088: 2084: 2075: 2071: 2058: 2054: 2050: 2044: 2036: 2032: 2028: 2023: 2019: 2011: 2010: 2009: 2007: 2003: 1999: 1995: 1991: 1987: 1977: 1975: 1971: 1918: 1914: 1909: 1907: 1903: 1899: 1895: 1891: 1857: 1854: 1838: 1832: 1827: 1820: 1817: 1812: 1806: 1797: 1791: 1788: 1787: 1767: 1764: 1760: 1747: 1744: 1728: 1722: 1717: 1710: 1707: 1702: 1696: 1687: 1681: 1678: 1677: 1657: 1654: 1650: 1637: 1634: 1618: 1612: 1607: 1600: 1597: 1592: 1589: 1583: 1574: 1568: 1565: 1564: 1543: 1540: 1536: 1505: 1500: 1492: 1488: 1472: 1451: 1435: 1429: 1426: 1421: 1414: 1411: 1406: 1403: 1397: 1388: 1382: 1375: 1374: 1354: 1349: 1341: 1337: 1321: 1297: 1281: 1275: 1272: 1267: 1260: 1255: 1252: 1246: 1237: 1231: 1225: 1224: 1204: 1201: 1197: 1184: 1181: 1165: 1159: 1156: 1151: 1148: 1141: 1136: 1130: 1121: 1115: 1112: 1111: 1091: 1088: 1084: 1071: 1068: 1052: 1046: 1041: 1038: 1031: 1026: 1020: 1011: 1005: 1002: 1001: 977: 974: 958: 952: 947: 944: 937: 932: 926: 917: 914: 911: 910: 893: 883: 880: 876: 863: 842: 826: 820: 815: 808: 803: 797: 788: 782: 776: 775: 771: 768: 765: 762: 759: 756: 755: 752: 750: 746: 742: 738: 734: 730: 709: 698: 687: 686: 685: 682: 680: 669: 665: 662: 658: 652: 649: 643: 640: 639: 635: 631: 628: 624: 618: 615: 609: 606: 605: 601: 597: 594: 590: 584: 581: 575: 572: 571: 567: 563: 560: 556: 550: 547: 541: 534: 533: 529: 525: 522: 518: 512: 509: 503: 497: 496: 492: 488: 485: 481: 475: 472: 466: 463: 462: 458: 454: 451: 447: 441: 438: 432: 429: 428: 424: 420: 417: 413: 410: 408:1 (with cusp) 407: 401: 398: 397: 394: 392: 384: 382: 379: 370: 366: 365: 361: 357: 354: 350: 344: 341: 335: 328: 327: 323: 319: 316: 312: 306: 303: 297: 291: 290: 286: 282: 279: 275: 272: 269: 263: 257: 256: 252: 248: 245: 241: 238: 235: 232: 226: 225: 221: 218: 215: 212: 209: 206: 205: 199: 196: 192: 188: 184: 177: 174: 171: 168: 167: 166: 163: 158: 156: 143: 140: 138: 135: 133: 130: 127: 123: 120: 116: 113: 112: 106: 104: 103:number fields 100: 97: 92: 90: 86: 85:string theory 82: 78: 74: 70: 65: 63: 59: 58:generic fiber 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 3359: 3353: 3346:Néron, André 3318: 3282: 3278: 3242: 3239:Ann. of Math 3238: 3196: 3154: 3151:Hulek, Klaus 3128: 3119: 3110: 3101: 3069: 3065: 3061: 3057: 3053: 3049: 3047: 3042: 3041:over all of 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2985:by mapping ( 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2940: 2935: 2931: 2927: 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2894: 2891: 2886: 2882: 2878: 2877:with center 2874: 2870: 2868: 2845: 2772: 2689: 2685: 2681: 2679: 2593: 2587: 2583: 2579: 2575: 2572:Picard group 2567: 2559: 2555: 2550: 2546: 2540: 2535: 2531: 2527: 2466: 2462: 2459: 2455: 2451: 2450:-divisor on 2447: 2442: 2438: 2435: 2433: 2331: 2326: 2322: 2316: 2314:is minimal. 2311: 2307: 2303: 2302:-divisor on 2299: 2295: 2290: 2286: 2281: 2277: 2273: 2268: 2264: 2260: 2256: 2252: 2248: 2240: 2232: 2228: 2224: 2219: 2215: 2210: 2206: 2136: 2134: 2005: 2001: 1997: 1993: 1983: 1968:, as listed 1916: 1910: 1905: 1901: 1889: 1883: 1561:if ν is odd 766: 748: 736: 726: 683: 675: 390: 377: 368: 236:1 (elliptic) 159: 151: 93: 76: 66: 21: 15: 3285:: 751–798. 3279:Am. J. Math 3245:: 563–626. 1915:, called a 1898:j-invariant 741:determinant 187:zero matrix 173:André Néron 99:4-manifolds 18:mathematics 3395:Categories 3384:0132.41403 3307:0137.17501 3267:0118.15802 3201:Birkhäuser 3199:. Boston: 3140:References 2965:). We let 2914:, and let 2873:(of order 2811:, 1/2 for 2570:) and the 2543:-invariant 2458:, and the 2434:where the 2319:Kenji Ueno 769:-invariant 213:Components 44:curves of 3362:: 5–128. 2829:∗ 2824:ν 2797:ν 2757:ν 2718:∗ 2688:) is the 2640:− 2626:∈ 2619:∑ 2500:∗ 2372:∗ 2356:∼ 2152:∗ 2094:− 2072:∑ 2051:⊗ 2037:∗ 1956:Γ 1933:~ 1930:Γ 1818:− 1768:× 1708:− 1658:× 1598:− 1590:− 1544:× 1506:× 1459:∞ 1427:− 1415:ν 1412:− 1404:− 1355:× 1273:− 1253:− 1205:× 1157:− 1149:− 1092:× 1039:− 945:− 894:∗ 884:× 881:ν 850:∞ 809:ν 763:Monodromy 729:monodromy 723:Monodromy 197:is given. 26:fibration 3348:(1964). 3195:(1989). 3159:Springer 3076:See also 2963:−s 2896:Example: 2526:, where 1792:affine E 1682:affine E 1569:affine E 1383:affine D 1232:affine D 1116:affine A 1006:affine A 783:affine A 745:homology 653:affine E 619:affine E 585:affine E 551:affine D 513:affine D 476:affine A 442:affine A 345:affine A 307:affine A 193:, whose 189:, or an 109:Examples 89:F-theory 3376:0179172 3339:2359346 3299:0187255 3259:0184257 3227:0986969 3185:2030225 2272:) − 2χ( 1913:section 207:Kodaira 162:minimal 3382:  3374:  3337:  3305:  3297:  3265:  3257:  3225:  3215:  3183:  3173:  3068:× 3056:× 3037:× 3025:)/2πi, 3017:) to ( 3005:× 2973:× 2961:+1/2, 2957:) to ( 2945:× 2930:× 2680:where 2259:) = χ( 2255:: deg( 2237:degree 376:(v≥0, 222:Fiber 96:smooth 42:smooth 36:to an 34:fibers 3093:Notes 3021:-log( 2993:) to 2554:is a 2231:. If 1380:(ν≥1) 757:Fiber 539:(v≥1) 333:(v≥2) 210:Néron 46:genus 20:, an 3213:ISBN 3171:ISBN 2898:Let 2574:Pic( 2251:and 1970:here 1745:1728 1069:1728 727:The 3380:Zbl 3364:doi 3327:doi 3303:Zbl 3287:doi 3263:Zbl 3247:doi 3205:doi 3163:doi 3045:.) 2934:to 2910:of 2700:lct 2566:Cl( 2470:is 2294:is 2247:of 2239:of 1679:III 1385:4+ν 1298:in 1003:III 785:ν-1 679:ADE 607:III 553:4+v 548:5+v 544:5,v 430:III 380:≥2) 347:v-1 71:or 16:In 3397:: 3378:. 3372:MR 3370:. 3360:21 3352:. 3335:MR 3333:, 3321:, 3301:. 3295:MR 3293:. 3283:86 3281:. 3261:. 3255:MR 3253:. 3243:77 3241:. 3223:MR 3221:. 3211:. 3203:. 3181:MR 3179:, 3169:, 3161:, 3157:, 3149:; 2906:+i 2869:A 2534:→ 2530:: 2489:12 2310:→ 2008:: 2000:→ 1996:: 1789:II 1566:IV 1113:IV 912:II 681:. 641:II 573:IV 464:IV 399:II 105:. 91:. 64:. 3386:. 3366:: 3329:: 3309:. 3289:: 3269:. 3249:: 3229:. 3207:: 3165:: 3070:C 3066:E 3062:X 3058:C 3054:E 3050:X 3043:C 3039:C 3035:E 3031:X 3027:s 3023:s 3019:c 3015:s 3013:, 3011:c 3007:C 3003:E 2999:X 2995:s 2991:s 2989:, 2987:c 2983:C 2979:X 2975:C 2971:E 2967:X 2959:c 2955:s 2953:, 2951:c 2947:C 2943:E 2936:C 2932:C 2928:E 2924:L 2922:/ 2920:C 2916:E 2912:C 2908:Z 2904:Z 2900:L 2887:m 2883:p 2879:p 2875:m 2866:. 2820:I 2793:I 2787:m 2773:m 2753:I 2732:) 2729:) 2726:p 2723:( 2714:f 2710:, 2707:X 2704:( 2686:p 2684:( 2682:c 2676:, 2664:] 2661:p 2658:[ 2655:) 2652:) 2649:p 2646:( 2643:c 2637:1 2634:( 2629:S 2623:p 2615:= 2610:S 2606:B 2588:S 2584:M 2580:S 2576:S 2568:S 2560:Q 2556:Q 2551:S 2547:M 2541:j 2536:P 2532:S 2528:j 2514:) 2511:1 2508:( 2505:O 2496:j 2492:) 2485:/ 2481:1 2478:( 2467:S 2463:M 2456:f 2452:S 2448:Q 2443:S 2439:B 2419:, 2416:) 2411:S 2407:M 2403:+ 2398:S 2394:B 2390:+ 2385:S 2381:K 2377:( 2368:f 2361:Q 2350:X 2346:K 2332:Q 2327:X 2323:K 2312:S 2308:X 2304:S 2300:Q 2296:Q 2291:X 2287:K 2282:S 2278:O 2276:, 2274:S 2269:X 2265:O 2263:, 2261:X 2257:L 2253:S 2249:X 2241:L 2233:S 2229:S 2225:L 2220:i 2216:D 2211:i 2207:m 2191:i 2187:D 2181:i 2177:m 2173:= 2170:) 2165:i 2161:p 2157:( 2148:f 2137:f 2120:. 2115:) 2108:i 2104:D 2100:) 2097:1 2089:i 2085:m 2081:( 2076:i 2066:( 2059:S 2055:O 2048:) 2045:L 2042:( 2033:f 2029:= 2024:X 2020:K 2002:S 1998:X 1994:f 1906:j 1902:j 1890:Z 1886:0 1866:C 1855:0 1839:) 1833:1 1828:1 1821:1 1813:0 1807:( 1794:8 1772:C 1765:2 1761:/ 1756:Z 1729:) 1723:0 1718:1 1711:1 1703:0 1697:( 1684:7 1662:C 1655:3 1651:/ 1646:Z 1635:0 1619:) 1613:0 1608:1 1601:1 1593:1 1584:( 1571:6 1548:C 1541:4 1537:/ 1532:Z 1510:C 1501:2 1497:) 1493:2 1489:/ 1484:Z 1480:( 1436:) 1430:1 1422:0 1407:1 1398:( 1378:ν 1376:I 1359:C 1350:2 1346:) 1342:2 1338:/ 1333:Z 1329:( 1307:C 1282:) 1276:1 1268:0 1261:0 1256:1 1247:( 1234:4 1228:0 1226:I 1209:C 1202:3 1198:/ 1193:Z 1182:0 1166:) 1160:1 1152:1 1142:1 1137:0 1131:( 1118:2 1096:C 1089:2 1085:/ 1080:Z 1053:) 1047:0 1042:1 1032:1 1027:0 1021:( 1008:1 986:C 975:0 959:) 953:0 948:1 938:1 933:1 927:( 915:0 889:C 877:/ 872:Z 827:) 821:1 816:0 804:1 798:( 779:ν 777:I 767:j 749:Z 737:Z 716:3 712:2 705:2 701:1 694:1 690:0 655:8 650:9 646:8 644:C 621:7 616:8 612:7 610:C 587:6 582:7 578:6 576:C 542:C 537:v 535:I 515:4 510:5 506:4 504:C 500:0 498:I 478:2 469:3 467:C 444:1 435:2 433:C 411:0 404:1 402:C 391:m 387:v 385:I 378:m 374:v 372:I 369:m 338:v 336:B 331:v 329:I 309:1 300:2 298:B 294:2 292:I 273:0 266:1 264:B 260:1 258:I 239:0 233:A 229:0 227:I 182:) 180:0

Index

mathematics
fibration
proper morphism
fibers
algebraic curve
smooth
genus
complex numbers
elliptic curves
generic fiber
proper base change
complex manifolds
regular schemes
Kunihiko Kodaira
string theory
F-theory
smooth
4-manifolds
number fields
Kodaira dimension
Enriques surface
Kodaira surfaces
Dolgachev surfaces
Shioda modular surfaces
Tate's algorithm
minimal
André Néron
zero matrix
affine Cartan matrix
Dynkin diagram

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.