Knowledge

Elliptic curve primality

Source 📝

7792: 1960:
using Schoof's algorithm, which is the preferred algorithm for the Goldwasser–Kilian algorithm. However, the original algorithm by Schoof is not efficient enough to provide the number of points in short time. These comments have to be seen in the historical context, before the improvements by Elkies
2058:
In a 1993 paper, Atkin and Morain described an algorithm ECPP which avoided the trouble of relying on a cumbersome point counting algorithm (Schoof's). The algorithm still relies on the proposition stated above, but rather than randomly generating elliptic curves and searching for a proper
6496: 4727: 5138: 5584:. In fact, due to their special structure, which allows for easier verification of primality, the six largest known prime numbers are all Mersenne numbers. There has been a method in use for some time to verify primality of Mersenne numbers, known as the 1030: 86:; modern algorithms treat the problems of determining whether a number is prime and what its factors are separately. It became of practical importance with the advent of modern cryptography. Although many current tests result in a probabilistic output ( 7629: 519:
is a properly chosen elliptic curve. We will now state a proposition on which to base our test, which is analogous to the Pocklington criterion, and gives rise to the Goldwasser–Kilian–Atkin form of the elliptic curve primality test.
6194: 3947:, for it does not satisfy the necessary inequality. We are saved, however, by an analogous proposition to that which we stated before the Goldwasser–Kilian algorithm, which comes from a paper by Morain. It states, that given our 3239: 2392: 4486: 4311: 4401: 6334: 6110: 4952: 5848: 6853: 6408: 6916: 3419: 3347: 4810: 4627: 1313: 5419: 1557: 6983: 466: 3767: 6797: 513: 227: 4622: 2594: 2440: 718: 4573: 597: 5975: 5674: 2475: 639: 6041: 5003: 4107: 2280: 1137: 9033: 7025: 6630: 5544: 2525: 7553: 4223: 5680:
odd can be proven prime (or composite) using elliptic curves. Of course this will also provide a method for proving primality of Mersenne numbers, which correspond to the case where
906: 3935: 406: 163:, meaning it does not depend on the number being of a special form. ECPP is currently in practice the fastest known algorithm for testing the primality of general numbers, but the 7420: 5884: 5484: 4017: 2788: 2664: 2230: 2164: 6570: 4614: 6753: 4860: 3690: 3595: 1464: 797: 256: 7126: 1635: 7478: 3864: 1081: 5795: 5570: 282: 7367: 7071: 6401: 1956:
Atkin and Morain state "the problem with GK is that Schoof's algorithm seems almost impossible to implement." It is very slow and cumbersome to count all of the points on
7787:{\displaystyle \left({\frac {m}{N}}\right)=\left({\frac {\frac {x^{3}-y^{2}}{x}}{N}}\right)=\left({\frac {x}{N}}\right)\left({\frac {x^{3}-y^{2}}{N}}\right)=-1\cdot 1=-1.} 5929: 7163: 5628: 8415: 5720: 5353: 5228: 5192: 3074: 3031: 2991: 2947: 2888: 2859: 1922: 1825: 6690: 4992: 3820: 3529: 2717: 1738: 1384: 7864: 7189: 1346: 129: 7982: 7944: 7909: 7830: 7289: 7242: 6657: 6368: 6268: 5293: 5266: 4163: 4044: 3627: 3489: 1202: 1167: 894: 867: 828: 1893: 1712: 336: 9037: 7312: 7593: 7573: 7498: 7440: 7262: 7209: 6719: 2050:, is not the same as the distribution of primes in the group orders, counting curves with multiplicity. However, this is not a significant problem in practice. 310: 149: 2044: 41:
techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by
8545: 6115: 3122: 54: 2994: 9105: 2288: 17: 8578: 4412: 420:
The elliptic curve primality tests are based on criteria analogous to the Pocklington criterion, on which that test is based, where the group
4231: 3491:
is prime using the Atkin–Morain ECPP test. First proceed through the set of 13 possible discriminants, testing whether the Legendre Symbol
4329: 46: 5150:
If one accepts this conjecture then the Goldwasser–Kilian algorithm terminates in expected polynomial time for every input. Also, if our
8348: 9528: 8902: 8538: 8217: 6273: 6052: 4886: 6491:{\displaystyle n\leq {\frac {\sqrt {p}}{\lambda }}\qquad {\text{and}}\qquad \lambda {\sqrt {p}}>\left({\sqrt{p}}+1\right)^{2}.} 5800: 8507: 6802: 8770: 9620: 9257: 9217: 9098: 8166: 6858: 897: 1670:
is prime. If the point-counting algorithm stops at an undefined expression this allows to determine a non-trivial factor of
8712: 8531: 3352: 3280: 65: 3033:
has integer coefficients, which allows us to estimate these coefficients accurately enough to discover their true values.
8641: 4738: 8818: 6701:
We provide the following algorithm, which relies mainly on Theorems 3 and 4. To verify the primality of a given number
1210: 9686: 9308: 9207: 5358: 4880:
Goldwasser and Kilian's elliptic curve primality proving algorithm terminates in expected polynomial time for at least
1491: 53:
the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and
6924: 4722:{\displaystyle {\begin{aligned}r&=0\\3k&\equiv 140{\pmod {167}}\\2k&\equiv 149{\pmod {167}}\end{aligned}}} 423: 9676: 8268: 8116: 3699: 6758: 471: 365:
must be performed. The certificate can be verified quickly, allowing a check of operation to take very little time.
177: 9386: 9091: 8765: 8727: 8702: 8616: 5133:{\displaystyle \exists c_{1},c_{2}>0:\pi (x+{\sqrt {x}})-\pi (x)\geq {\frac {c_{2}{\sqrt {x}}}{\log ^{c_{1}}x}}} 2558: 2404: 671: 4497: 534: 8907: 8798: 8717: 8707: 8646: 8609: 5934: 5633: 2445: 606: 5986: 4055: 2250: 1093: 1025:{\displaystyle m_{p}\leq p+1+2{\sqrt {p}}=\left({\sqrt {p}}+1\right)^{2}\leq \left({\sqrt{N}}+1\right)^{2}<q} 9533: 9454: 9444: 9381: 8735: 8583: 6988: 6583: 5495: 2495: 91: 7509: 5580:
For some forms of numbers, it is possible to find 'short-cuts' to a primality proof. This is the case for the
4168: 9131: 8988: 83: 9351: 9247: 8983: 8950: 8912: 8813: 8441: 3877: 371: 354: 7375: 5853: 5434: 3962: 2733: 9610: 9574: 9273: 9186: 8864: 3429:
Just as with the Goldwasser–Killian test, this one leads to a down-run procedure. Again, the culprit is
2606: 2172: 2131: 6525: 4590: 9584: 9222: 9029: 9019: 8978: 8754: 8748: 8722: 8593: 6730: 4826: 3632: 3538: 1419: 772: 235: 102: 7076: 2086:, just as in the Goldwasser–Kilian test, that will fulfill the proposition and prove the primality of 1585: 98:), the elliptic curve test proves primality (or compositeness) with a quickly verifiable certificate. 9630: 9014: 8955: 8288: 7445: 4320:. In order to construct the curve, we make use of complex multiplication. In our case we compute the 3825: 3693: 2670: 1791:. If any of the two calculations produce an undefined expression, we can get a non-trivial factor of 1038: 164: 8316: 5751: 5588:. This test does not rely on elliptic curves. However we present a result where numbers of the form 5549: 261: 9711: 9543: 9523: 9459: 9376: 9237: 8917: 8790: 8636: 8456: 7316: 6380: 8498:, a computer algebra system with functions to create Atkin-Morain and Primo primality certificates 8482: 312:
is prime. For ECPP the group is an elliptic curve over a finite set of quadratic forms such that
9434: 9242: 8932: 8152: 5889: 8823: 5591: 5233:
Now consider another conjecture, which will give us a bound on the total time of the algorithm.
9227: 9043: 8993: 8973: 8184: 2822: 2282:
with complex multiplication (described in detail below), and the number of points is given by:
2068: 72:
in 1985, and the implications for its use in primality testing (and proving) followed quickly.
9341: 8384: 8345: 8095: 7033: 5689: 5301: 5197: 5161: 3043: 3000: 2960: 2916: 2864: 2835: 1898: 1801: 9605: 9303: 9252: 9141: 9053: 8694: 8669: 8598: 6662: 5585: 4968: 3787: 3494: 2684: 1717: 1646: 1363: 642: 350: 95: 7839: 7168: 1321: 151:
is prime. As a result, these methods required some luck and are generally slow in practice.
108: 59: 9681: 9553: 9212: 9048: 8940: 8922: 8897: 8859: 8603: 7960: 7922: 7887: 7808: 7267: 7220: 7134: 6635: 6346: 6246: 5271: 5244: 4141: 4022: 3603: 3468: 3248: 2809:
does not have a large prime factor or cannot be factored quickly enough, another choice of
2531:, which are the elements of {−3, −4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67, −163} 1180: 1145: 872: 845: 806: 9464: 8224: 1869: 1688: 8: 9518: 9396: 9361: 9318: 9298: 9058: 9024: 8945: 8849: 8808: 8803: 8780: 8684: 3437:
that works, we must check it to be prime, so in fact we are doing the whole test now for
1933: 315: 289: 7294: 9648: 9439: 9419: 9232: 8889: 8836: 8833: 8674: 8623: 8573: 8418: 8323: 8108: 8076: 7578: 7558: 7483: 7425: 7247: 7194: 6704: 6189:{\displaystyle E(\mathbb {F} _{p})\cong \mathbb {Z} _{2}\oplus \mathbb {Z} _{2^{k-1}n}} 295: 168: 134: 9391: 8630: 1979: 9548: 9495: 9366: 9181: 9176: 9009: 8965: 8679: 8656: 8453: 8327: 8299: 8264: 8162: 8112: 6201: 3234:{\displaystyle y^{2}=x^{3}-3kc^{2r}x+2kc^{3r},{\text{ where }}k={\frac {j}{j-1728}},} 2482: 75: 3445:. This leads to a nested certificate where at each level we have an elliptic curve 2890:(these cases are much more easily done). It is necessary to calculate the elliptic 9538: 9424: 9401: 8854: 8256: 8104: 8066: 5581: 346: 42: 9653: 9469: 9411: 9313: 9136: 9115: 8844: 8743: 8352: 2478: 8489: 1976:
in polynomially many attempts. The distribution of primes on the Hasse interval
368:
As of May 2023, the largest prime that has been proved with ECPP method is
284:
for some versions by heuristic arguments. ECPP works the same way as most other
9336: 9161: 9146: 9123: 8874: 8775: 8760: 8664: 8565: 8445: 2907: 2387:{\displaystyle |E(\mathbb {Z} /N\mathbb {Z} )|=N+1-\pi -{\bar {\pi }}=N+1-a.\,} 1972:, as above. There is no known theorem which guarantees we can find a suitable 1745: 342: 285: 50: 36: 8523: 408:. The certification was performed by Andreas Enge using his fastECPP software 9705: 9668: 9449: 9429: 9356: 9151: 9083: 8869: 8554: 8260: 1948:
is considered small enough to apply a non-recursive deterministic algorithm.
1928:
is prime. However, there is one possible problem, which is the primality of
69: 8471: 9615: 9589: 9579: 9569: 9371: 9191: 8879: 8501: 8364: 8317:"Implementation of the Atkin-Goldwasser-Kilian primality testing algorithm" 4316:
But before we can do this, we must construct our curve, and choose a point
2117: 1944:
and indeed smaller 'probable primes' until some threshold is reached where
1474:
From this proposition an algorithm can be constructed to prove an integer,
1783:
Assuming we find a curve which passes the criterion, proceed to calculate
357:
and then attempts to verify the certificate. The step that takes the most
9490: 9328: 8475: 8451: 8136: 4481:{\displaystyle k={\frac {j}{1728-j}}{\pmod {167}}\equiv 158{\pmod {167}}} 4321: 2891: 362: 31: 8156: 8036: 4123:
satisfies the inequality, and its prime factors satisfy the above, then
9485: 8132: 8080: 4306:{\displaystyle (143/11)P=13P\qquad {\text{ and }}\qquad (143/13)P=11P.} 1964:
A second problem Koblitz notes is the difficulty of finding the curve
1932:. This is verified using the same algorithm. So we have described a 1674:. If it succeeds, we apply a criterion for deciding whether our curve 9346: 8557: 8461: 4396:{\displaystyle j\equiv -960^{3}{\pmod {167}}\equiv 107{\pmod {167}}.} 2481:). This is a necessary condition, and we achieve sufficiency if the 1752:. Otherwise, we discard our curve and randomly select another triple 160: 8517: 8423: 8094:
Lenstra, A.K.; Lenstra, H.W. (1990). "Algorithms in Number Theory".
8071: 8054: 7995:
is large; however, for this we refer to the aforementioned article.
2053: 8495: 8161:. Providence, RI: American Mathematical Society. pp. 187–188. 2243:
in terms of either of these forms, we can create an elliptic curve
8289:
https://openaccess.leidenuniv.nl/bitstream/1887/2141/1/346_081.pdf
2801:
on it. Then we can use our proposition to verify the primality of
2078:
for which primality needs to be proven we need to find a suitable
9658: 9643: 3943:= 143 = 11×13. So unfortunately we cannot choose 11 or 13 as our 9638: 6329:{\displaystyle E(\mathbb {F} _{p})\cong \mathbb {Z} _{2^{k}n}.} 2825:, the way in which an elliptic curve can be created, given our 90:
is either shown composite, or probably prime, such as with the
82:, in whose time most algorithms were based on factoring, which 79: 6105:{\displaystyle E(\mathbb {F} _{p})\cong \mathbb {Z} _{2^{k}n}} 4947:{\displaystyle 1-O\left(2^{-N{\frac {1}{\log \log n}}}\right)} 1637:. Next we need an algorithm to count the number of points on 8511: 5867: 5828: 5424:
Then the Goldwasser Kilian algorithm proves the primality of
3441:. Then again we may have to perform the test for factors of 2793:
use the complex multiplication method to construct the curve
1744:
a large probable prime (a number that passes a probabilistic
1110: 577: 361:
time is the certificate generation, because factoring over a
5843:{\displaystyle m\in \mathbb {Z} ,m\not \equiv 0{\bmod {p}},} 4019:, but is not necessarily prime, and check whether, for each 2113:) to be easily computed. We will now describe this method: 8520:, another free library that contains an ECPP implementation 8346:
http://www.iai.uni-bonn.de/~adrian/ecpp/p316-goldwasser.pdf
7915:
is composite, it truly is composite. (2) and (3) check if
6848:{\displaystyle y\in \mathbb {Z} ,y\not \equiv 0{\pmod {2}}} 5489:
For the Atkin–Morain algorithm, the running time stated is
8472:"Primality Proving 4.2: Elliptic curves and the ECPP test" 2116:
Utilization of complex multiplication requires a negative
8019:
Handbook of Elliptic and Hyperelliptic Curve Cryptography
8016: 2166:, or completely equivalently, we can write the equation: 358: 2101:
ECPP uses complex multiplication to construct the curve
1795:. If both calculations succeed, we examine the results. 9074:
indicate that algorithm is for numbers of special forms
6911:{\displaystyle \left({\frac {x^{3}-y^{2}}{N}}\right)=1} 8151: 830:
as the elliptic curve defined by the same equation as
8387: 7963: 7925: 7890: 7842: 7811: 7632: 7581: 7561: 7512: 7486: 7448: 7428: 7378: 7319: 7297: 7270: 7250: 7223: 7197: 7171: 7137: 7079: 7036: 6991: 6927: 6861: 6805: 6761: 6733: 6707: 6665: 6638: 6586: 6528: 6411: 6383: 6349: 6276: 6249: 6118: 6055: 5989: 5937: 5892: 5856: 5803: 5754: 5692: 5636: 5594: 5552: 5498: 5437: 5361: 5304: 5274: 5247: 5200: 5164: 5006: 4971: 4889: 4864:
It is simple to check that 13(6, 6) = (12, 65) and 11
4829: 4741: 4625: 4593: 4500: 4415: 4332: 4234: 4171: 4144: 4058: 4025: 3965: 3880: 3828: 3790: 3702: 3635: 3606: 3541: 3497: 3471: 3414:{\displaystyle |E(\mathbb {Z} /N\mathbb {Z} )|=N+1+a} 3355: 3342:{\displaystyle |E(\mathbb {Z} /N\mathbb {Z} )|=N+1-a} 3283: 3266:
there are only two possible nonisomorphic choices of
3125: 3046: 3003: 2963: 2919: 2867: 2838: 2829:(which can be written as a product of two elements). 2736: 2687: 2609: 2561: 2498: 2448: 2407: 2291: 2253: 2175: 2134: 1982: 1901: 1872: 1804: 1720: 1691: 1588: 1494: 1422: 1366: 1324: 1213: 1183: 1148: 1096: 1041: 909: 875: 848: 809: 775: 674: 609: 537: 474: 426: 374: 318: 298: 264: 238: 180: 137: 111: 8485:(includes old ECPP software for some architectures). 2997:. From complex multiplication theory, we know that 5158:, then the algorithm creates a certificate of size 4805:{\displaystyle E:y^{2}=x^{3}+140x+149{\pmod {167}}} 154: 101:Previously-known prime-proving methods such as the 8409: 8365:"The Largest Known prime by Year: A Brief History" 8250: 7976: 7938: 7903: 7858: 7824: 7786: 7587: 7567: 7547: 7492: 7472: 7434: 7414: 7361: 7306: 7283: 7256: 7236: 7203: 7183: 7157: 7120: 7065: 7019: 6977: 6910: 6847: 6791: 6747: 6713: 6684: 6651: 6624: 6564: 6490: 6395: 6362: 6328: 6262: 6188: 6104: 6035: 5969: 5923: 5878: 5842: 5789: 5714: 5684:= 1. The following method is drawn from the paper 5668: 5622: 5564: 5538: 5478: 5413: 5347: 5287: 5260: 5222: 5186: 5132: 4986: 4946: 4854: 4804: 4721: 4608: 4567: 4480: 4395: 4305: 4217: 4157: 4101: 4038: 4011: 3929: 3858: 3814: 3761: 3684: 3621: 3589: 3523: 3483: 3413: 3341: 3233: 3068: 3025: 2985: 2941: 2910:. There are several formulas to calculate these. 2882: 2853: 2782: 2711: 2658: 2588: 2519: 2469: 2434: 2386: 2274: 2224: 2158: 2038: 1916: 1887: 1819: 1732: 1706: 1629: 1551: 1458: 1378: 1340: 1308:{\displaystyle (m/q)P_{p}=uq(m/q)P_{p}=umP_{p}=0,} 1307: 1196: 1161: 1131: 1075: 1024: 888: 861: 822: 791: 712: 633: 591: 507: 460: 400: 330: 304: 276: 250: 221: 143: 123: 78:is a field that has been around since the time of 7598: 5414:{\displaystyle c_{1}{\sqrt {x}}(\log x)^{-c_{2}}} 3866:Next we need to find a probable prime divisor of 2821:For completeness, we will provide an overview of 2054:Atkin–Morain elliptic curve primality test (ECPP) 1552:{\displaystyle b\equiv y^{2}-x^{3}-ax{\pmod {N}}} 9703: 7379: 6978:{\displaystyle m={\frac {x^{3}-y^{2}}{x}}\mod N} 6529: 2816: 2067:where the number of points is easy to compute. 1042: 461:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{*}} 8553: 8189:Elliptic Curves: Number Theory and Cryptography 5295:such that the amount of primes in the interval 4875: 4868:= (140, 147), and so, by Morain's proposition, 4491:and we know our elliptic curve is of the form: 3762:{\displaystyle 4\cdot (167)=25^{2}+(43)(1^{2})} 3460: 3096:splits as the product of two elements. Now if 2128:can be written as the product of two elements 1405:), then the same method calculated modulo  9113: 8205:Introduction to Number Theory and Cryptography 8133:The Top Twenty: Elliptic Curve Primality Proof 8093: 8048: 8046: 8044: 6792:{\displaystyle \left({\frac {x}{N}}\right)=-1} 3274:. We have the cardinality of these curves as 1951: 1469: 508:{\displaystyle E(\mathbb {Z} /n\mathbb {Z} ),} 222:{\displaystyle O((\log n)^{5+\varepsilon })\,} 9099: 8539: 7984:satisfies the condition of Theorem 4, and so 2589:{\displaystyle \left({\frac {D}{N}}\right)=1} 2435:{\displaystyle \left({\frac {D}{N}}\right)=1} 2401:to split into the two elements, we need that 1645:, this algorithm (Koblitz and others suggest 1401:is defined and not equal to 0 (mod  713:{\displaystyle \left({\sqrt{N}}+1\right)^{2}} 531:be the set which is defined by the equation 8180: 8178: 4568:{\displaystyle y^{2}=x^{3}+3kc^{2}x+2kc^{3}} 1924:then our previous proposition tells us that 592:{\displaystyle y^{2}=x^{3}+ax+b{\bmod {N}}.} 8251:Blake, I.; Seroussi, G.; Smart, N. (1999). 8052: 8041: 7832:, by Theorem 3, and therefore the order of 5970:{\displaystyle k\in \mathbb {Z} ,k\geq 2,n} 5727: 5669:{\displaystyle k,n\in \mathbb {Z} ,k\geq 2} 2470:{\displaystyle \left({\frac {D}{N}}\right)} 1756:to start over. The idea here is to find an 634:{\displaystyle \mathbb {Z} /N\mathbb {Z} ,} 105:required at least partial factorization of 9106: 9092: 8546: 8532: 8376: 8374: 8342:Almost All Primes Can Be Quickly Certified 8334: 6370:, and this will require one more theorem: 6036:{\displaystyle |E(\mathbb {F} _{p})|=p+1.} 4225:, and so we need only check the values of 4165:'s are 11 and 13. First, it is clear that 4102:{\displaystyle (m/p_{i})P\neq P_{\infty }} 2527:is 1. This happens for only 13 values of 2275:{\displaystyle \mathbb {Z} /N\mathbb {Z} } 1764:. This prime is a few digits smaller than 1760:that is divisible by a large prime number 1132:{\displaystyle uq\equiv 1{\bmod {m_{p}}}.} 8422: 8381:Tsumura, Yu (2009). "Primality tests for 8310: 8308: 8199: 8197: 8175: 8070: 7500:is composite. Otherwise, proceed to (3). 7020:{\displaystyle m\not \equiv 0{\pmod {N}}} 6971: 6970: 6813: 6741: 6625:{\displaystyle S_{k}\equiv 0{\pmod {p}},} 6506:is a prime if and only if there exists a 6303: 6285: 6160: 6145: 6127: 6082: 6064: 6003: 5945: 5811: 5650: 5575: 5539:{\displaystyle O((\log N)^{6+\epsilon })} 4596: 3381: 3368: 3309: 3296: 3088:) linear factors, based on the fact that 2655: 2520:{\displaystyle \mathbb {Q} ({\sqrt {D}})} 2500: 2383: 2317: 2304: 2268: 2255: 2221: 2071:is key in the construction of the curve. 649:, and write 0 for the neutral element on 624: 611: 495: 482: 444: 431: 218: 7595:is composite. This completes the test. 7548:{\displaystyle S_{k}\equiv 0{\pmod {N}}} 7211:is composite, otherwise proceed to (2). 4218:{\displaystyle 143>(167^{1/4}+1)^{2}} 769:is composite, then there exists a prime 49:in 1986 and turned into an algorithm by 8380: 8371: 8277: 8055:"Elliptic Curves and Primality Proving" 8017:Henri Cohen, Gerhard Frey, ed. (2006). 8012: 8010: 8008: 7991:There is an algorithm as well for when 7623:is a quadratic nonresidue. We can say 5241:Suppose there exist positive constants 2949:, which has roots corresponding to the 2902:) classes of the order of discriminant 1748:, for example), then we do not discard 1653:which is the number of points on curve 1348:is calculated using the same method as 14: 9704: 9529:Clifford's theorem on special divisors 8314: 8305: 8246: 8244: 8194: 8087: 3465:We construct an example to prove that 2063:, their idea was to construct a curve 1968:whose number of points is of the form 1478:, is prime. This is done as follows: 9087: 8527: 8452: 8442:Elliptic Curves and Primality Proving 8285:Efficient Algorithms in Number Theory 8147: 8145: 8037:http://www.math.rug.nl/~top/atkin.pdf 8021:. Boca Raton: Chapman & Hall/CRC. 7953:Now, if the algorithm concludes that 6339:First we will present the case where 4994:be the number of primes smaller than 3930:{\displaystyle q>(N^{1/4}+1)^{2}.} 3874:. It must satisfy the condition that 401:{\displaystyle 5^{104824}+104824^{5}} 338:is trivial to factor over the group. 8053:Atkin, A. O. L.; Morain, F. (1993). 8005: 7911:. Therefore, if (1) concludes that 7415:{\displaystyle \gcd({S_{i},N})>1} 6343:is relatively small with respect to 5879:{\displaystyle p\equiv 3{\bmod {4}}} 5479:{\displaystyle O(\log ^{10+c_{2}}n)} 4116:on our yet to be constructed curve. 4012:{\displaystyle s>(N^{1/4}+1)^{2}} 2783:{\displaystyle q>(N^{1/4}+1)^{2}} 2105:, doing so in a way that allows for 1847:would become 0 on multiplication by 660:be an integer. If there is a prime 258:. This exponent may be decreased to 8514:library for Linux with ECPP support 8241: 7537: 7244:as the sequence with initial value 7009: 6837: 6611: 4794: 4707: 4671: 4470: 4448: 4382: 4360: 2659:{\displaystyle a^{2}+|D|b^{2}=4N\,} 2225:{\displaystyle a^{2}+|D|b^{2}=4N\,} 2159:{\displaystyle D=\pi {\bar {\pi }}} 1776:will be easier to prove prime than 1541: 24: 9687:Vector bundles on algebraic curves 9621:Weber's theorem (Algebraic curves) 9218:Hasse's theorem on elliptic curves 9208:Counting points on elliptic curves 8457:"Elliptic Curve Primality Proving" 8142: 8109:10.1016/B978-0-444-88071-0.50017-5 6565:{\displaystyle \gcd {(S_{i},p)}=1} 5007: 4844: 4609:{\displaystyle \mathbb {F} _{167}} 4094: 1389:This contradicts (2), because if ( 898:Hasse's theorem on elliptic curves 292:and showing its size is such that 25: 9723: 8755:Special number field sieve (SNFS) 8749:General number field sieve (GNFS) 8435: 6748:{\displaystyle x\in \mathbb {Z} } 6659:is a sequence with initial value 4855:{\displaystyle 143P=P_{\infty }.} 3685:{\displaystyle (D/N)=(-43/167)=1} 3590:{\displaystyle 4N=a^{2}+|D|b^{2}} 2913:Next create the monic polynomial 1859:and starts over with a different 1855:= 0, then the algorithm discards 1481:Choose three integers at random, 1459:{\displaystyle (m/q)P_{p}\neq 0.} 792:{\displaystyle p\leq {\sqrt {N}}} 251:{\displaystyle \varepsilon >0} 64:, in 1993. The concept of using 8340:Goldwasser, Shafi, Kilian, Joe, 8033:Elliptic Curve Primality Proving 7946:. Thus, if (2) or (3) conclude 7121:{\displaystyle E:y^{2}=x^{3}-mx} 6696: 2681:have been discovered, calculate 2669:This part can be verified using 1630:{\displaystyle y^{2}=x^{3}+ax+b} 155:Elliptic curve primality proving 84:become unwieldy with large input 66:elliptic curves in factorization 18:Elliptic curve primality proving 9309:Hurwitz's automorphisms theorem 8357: 8293: 8253:Elliptic Curves in Cryptography 7950:is composite, it is composite. 7530: 7473:{\displaystyle 1\leq i\leq k-1} 7002: 6966: 6830: 6721:, perform the following steps: 6604: 6436: 6430: 5236: 4787: 4700: 4664: 4583:is as described previously and 4463: 4441: 4375: 4353: 4270: 4264: 3859:{\displaystyle m=167+1-25=143.} 1534: 1076:{\displaystyle \gcd(q,m_{p})=1} 9534:Gonality of an algebraic curve 9445:Differential of the first kind 8210: 8191:, Chapman & Hall/CRC, 2003 8125: 8025: 7607:is picked, along with a point 7599:Justification of the algorithm 7541: 7531: 7403: 7382: 7060: 7048: 7013: 7003: 6841: 6831: 6615: 6605: 6552: 6533: 6295: 6280: 6137: 6122: 6074: 6059: 6017: 6013: 5998: 5991: 5790:{\displaystyle y^{2}=x^{3}-mx} 5565:{\displaystyle \epsilon >0} 5533: 5518: 5505: 5502: 5473: 5441: 5392: 5379: 5330: 5305: 5217: 5204: 5181: 5168: 5076: 5070: 5061: 5045: 4981: 4975: 4798: 4788: 4711: 4701: 4675: 4665: 4474: 4464: 4452: 4442: 4386: 4376: 4364: 4354: 4285: 4271: 4249: 4235: 4206: 4178: 4080: 4059: 4000: 3972: 3915: 3887: 3780:The next step is to calculate 3756: 3743: 3740: 3734: 3715: 3709: 3673: 3656: 3650: 3636: 3573: 3565: 3512: 3498: 3389: 3385: 3364: 3357: 3317: 3313: 3292: 3285: 3063: 3057: 3020: 3014: 2980: 2974: 2936: 2930: 2771: 2743: 2632: 2624: 2514: 2504: 2356: 2325: 2321: 2300: 2293: 2198: 2190: 2150: 2033: 1983: 1961:and Atkin to Schoof's method. 1545: 1535: 1437: 1423: 1264: 1250: 1228: 1214: 1064: 1045: 750:is defined and not equal to 0 499: 478: 449: 427: 415: 277:{\displaystyle 4+\varepsilon } 215: 200: 187: 184: 13: 1: 9677:Birkhoff–Grothendieck theorem 9387:Nagata's conjecture on curves 9258:Schoof–Elkies–Atkin algorithm 9132:Five points determine a conic 7998: 7362:{\displaystyle 1,2,3,...,k-1} 6396:{\displaystyle \lambda >1} 5744:as our elliptic curve, where 4960: 3453:and the prime in doubt,  3424: 2817:Complex multiplication method 9248:Supersingular elliptic curve 8713:Lenstra elliptic curve (ECM) 8504:, a free ECPP implementation 6196:depending on whether or not 4876:Complexity and running times 3461:Example of Atkin–Morain ECPP 1940:depends on the primality of 1083:and there exists an integer 7: 9455:Riemann's existence theorem 9382:Hilbert's sixteenth problem 9274:Elliptic curve cryptography 9187:Fundamental pair of periods 8218:"Queen's University Canada" 7603:In (1), an elliptic curve, 5924:{\displaystyle p+1=2^{k}n,} 3870:, which was referred to as 3629:is chosen. This is because 3040:is prime, CM tells us that 2534: 1952:Problems with the algorithm 1470:Goldwasser–Kilian algorithm 527:be a positive integer, and 10: 9728: 9585:Moduli of algebraic curves 9020:Exponentiation by squaring 8703:Continued fraction (CFRAC) 8059:Mathematics of Computation 7957:is prime, then that means 5623:{\displaystyle N=2^{k}n-1} 4130:So in our case, we choose 2543:in sequence of increasing 869:as the order of the group 834:but evaluated modulo  103:Pocklington primality test 92:Baillie–PSW primality test 27:Methods to check primality 9667: 9629: 9598: 9562: 9511: 9504: 9478: 9410: 9327: 9291: 9266: 9200: 9169: 9160: 9122: 9067: 9002: 8964: 8931: 8888: 8832: 8789: 8693: 8655: 8564: 8492:(binary for Linux 64-bit) 8097:Algorithms and Complexity 4815:Now, utilizing the point 4138:= 143. Thus our possible 3784:. This is easily done as 3270:, one for each choice of 2109:(the number of points on 1936:, where the primality of 1831:is not prime, because if 720:and there exists a point 165:worst-case execution time 9352:Cayley–Bacharach theorem 9279:Elliptic curve primality 8417:using elliptic curves". 8410:{\displaystyle 2^{k}n-1} 8261:10.1017/CBO9781107360211 8207:, 2nd Ed, Springer, 1994 7066:{\displaystyle Q'=(x,y)} 6235:a quadratic non-residue 5715:{\displaystyle 2^{k}n-1} 5348:{\displaystyle ,x\geq 2} 5223:{\displaystyle O(k^{4})} 5194:that can be verified in 5187:{\displaystyle O(k^{2})} 4823:it can be verified that 3069:{\displaystyle H_{D}(X)} 3026:{\displaystyle H_{D}(X)} 2986:{\displaystyle H_{D}(X)} 2942:{\displaystyle H_{D}(X)} 2883:{\displaystyle D\neq -4} 2854:{\displaystyle D\neq -3} 1917:{\displaystyle kP\neq 0} 1820:{\displaystyle mP\neq 0} 1356:rather than modulo  838:rather than modulo  760: 159:It is a general-purpose 9611:Riemann–Hurwitz formula 9575:Gromov–Witten invariant 9435:Compact Riemann surface 9223:Mazur's torsion theorem 8933:Greatest common divisor 8185:Washington, Lawrence C. 7805:has order divisible by 6685:{\displaystyle S_{0}=x} 5428:in an expected time of 5143:for sufficiently large 4987:{\displaystyle \pi (x)} 4616:. So we can begin with 3815:{\displaystyle m=N+1-a} 3524:{\displaystyle (D/N)=1} 3259:is either 0 or 1. 2712:{\displaystyle m=N+1-a} 2098:, must also be found.) 1740:is a small integer and 1733:{\displaystyle k\geq 2} 1409:instead of modulo  1379:{\displaystyle p\mid N} 1087:with the property that 131:in order to prove that 9228:Modular elliptic curve 9044:Modular exponentiation 8411: 8153:Samuel S. Wagstaff Jr. 7978: 7940: 7905: 7860: 7859:{\displaystyle 2^{k}d} 7826: 7788: 7589: 7575:is prime. Otherwise, 7569: 7549: 7494: 7474: 7436: 7416: 7363: 7308: 7285: 7258: 7238: 7205: 7185: 7184:{\displaystyle Q\in E} 7159: 7122: 7067: 7021: 6979: 6912: 6849: 6793: 6749: 6715: 6686: 6653: 6626: 6566: 6492: 6397: 6364: 6330: 6264: 6190: 6106: 6037: 5971: 5925: 5880: 5844: 5791: 5716: 5670: 5624: 5576:Primes of special form 5566: 5540: 5480: 5415: 5349: 5289: 5262: 5224: 5188: 5134: 4988: 4948: 4856: 4806: 4723: 4610: 4569: 4482: 4397: 4307: 4219: 4159: 4103: 4040: 4013: 3931: 3860: 3816: 3763: 3694:Cornacchia's algorithm 3686: 3623: 3591: 3525: 3485: 3415: 3343: 3235: 3070: 3027: 2987: 2957:) values. Note, that 2943: 2884: 2855: 2823:complex multiplication 2784: 2713: 2671:Cornacchia's algorithm 2660: 2590: 2521: 2471: 2436: 2388: 2276: 2239:. If we can describe 2226: 2160: 2094:and the curve itself, 2090:. (Of course, a point 2069:Complex multiplication 2040: 1918: 1889: 1821: 1734: 1708: 1631: 1553: 1460: 1380: 1342: 1341:{\displaystyle mP_{p}} 1309: 1198: 1163: 1133: 1077: 1026: 890: 863: 824: 793: 714: 668:, and is greater than 635: 593: 509: 462: 402: 332: 306: 278: 252: 223: 145: 125: 124:{\displaystyle N\pm 1} 68:had been developed by 9142:Rational normal curve 8771:Shanks's square forms 8695:Integer factorization 8670:Sieve of Eratosthenes 8412: 8283:Lenstra, Hendrik W., 7979: 7977:{\displaystyle S_{1}} 7941: 7939:{\displaystyle 2^{k}} 7906: 7904:{\displaystyle 2^{k}} 7861: 7827: 7825:{\displaystyle 2^{k}} 7789: 7590: 7570: 7550: 7495: 7475: 7437: 7417: 7364: 7309: 7286: 7284:{\displaystyle S_{i}} 7259: 7239: 7237:{\displaystyle S_{i}} 7206: 7186: 7160: 7158:{\displaystyle Q=nQ'} 7123: 7068: 7022: 6980: 6913: 6850: 6794: 6750: 6716: 6687: 6654: 6652:{\displaystyle S_{i}} 6627: 6567: 6493: 6398: 6365: 6363:{\displaystyle 2^{k}} 6331: 6265: 6263:{\displaystyle 2^{k}} 6191: 6107: 6038: 5972: 5926: 5881: 5845: 5792: 5722:using Elliptic Curves 5717: 5671: 5625: 5567: 5541: 5481: 5416: 5350: 5290: 5288:{\displaystyle c_{2}} 5263: 5261:{\displaystyle c_{1}} 5225: 5189: 5135: 4989: 4949: 4857: 4807: 4724: 4611: 4570: 4483: 4398: 4308: 4220: 4160: 4158:{\displaystyle p_{i}} 4104: 4041: 4039:{\displaystyle p_{i}} 4014: 3932: 3861: 3817: 3764: 3687: 3624: 3622:{\displaystyle D=-43} 3592: 3526: 3486: 3484:{\displaystyle N=167} 3416: 3344: 3236: 3071: 3028: 2988: 2944: 2885: 2856: 2785: 2714: 2661: 2591: 2522: 2472: 2437: 2389: 2277: 2227: 2161: 2041: 1919: 1890: 1843:, and any element of 1822: 1735: 1709: 1632: 1578:, where we have that 1554: 1461: 1381: 1352:, except modulo  1343: 1310: 1199: 1197:{\displaystyle E_{p}} 1164: 1162:{\displaystyle P_{p}} 1134: 1078: 1027: 891: 889:{\displaystyle E_{p}} 864: 862:{\displaystyle m_{p}} 825: 823:{\displaystyle E_{p}} 794: 715: 636: 594: 510: 463: 403: 333: 307: 279: 253: 224: 146: 126: 9682:Stable vector bundle 9554:Weil reciprocity law 9544:Riemann–Roch theorem 9524:Brill–Noether theory 9460:Riemann–Roch theorem 9377:Genus–degree formula 9238:Mordell–Weil theorem 9213:Division polynomials 9049:Montgomery reduction 8923:Function field sieve 8898:Baby-step giant-step 8744:Quadratic sieve (QS) 8483:"The ECPP home page" 8385: 8158:The Joy of Factoring 8103:. pp. 673–715. 7961: 7923: 7888: 7840: 7809: 7630: 7579: 7559: 7510: 7484: 7446: 7426: 7376: 7317: 7295: 7268: 7248: 7221: 7195: 7169: 7135: 7077: 7034: 6989: 6925: 6859: 6803: 6759: 6731: 6705: 6663: 6636: 6584: 6526: 6409: 6381: 6347: 6274: 6270:in the cyclic group 6247: 6239:. Then the order of 6116: 6053: 5987: 5935: 5890: 5854: 5801: 5752: 5690: 5634: 5592: 5550: 5496: 5435: 5359: 5302: 5272: 5245: 5198: 5162: 5004: 4969: 4887: 4827: 4739: 4623: 4591: 4498: 4413: 4330: 4232: 4169: 4142: 4056: 4023: 3963: 3878: 3826: 3788: 3700: 3633: 3604: 3539: 3495: 3469: 3353: 3281: 3249:quadratic nonresidue 3123: 3044: 3001: 2961: 2917: 2865: 2836: 2734: 2685: 2607: 2559: 2496: 2446: 2405: 2289: 2251: 2173: 2132: 1980: 1899: 1888:{\displaystyle mP=0} 1870: 1802: 1718: 1707:{\displaystyle m=kq} 1689: 1649:) produces a number 1586: 1492: 1420: 1364: 1322: 1211: 1181: 1146: 1094: 1039: 907: 873: 846: 807: 773: 672: 607: 535: 472: 424: 372: 316: 296: 262: 236: 178: 135: 109: 9505:Structure of curves 9397:Quartic plane curve 9319:Hyperelliptic curve 9299:De Franchis theorem 9243:Nagell–Lutz theorem 9059:Trachtenberg system 9025:Integer square root 8966:Modular square root 8685:Wheel factorization 8637:Quadratic Frobenius 8617:Lucas–Lehmer–Riesel 8315:Morain, F. (1988). 6580: âˆ’ 1 and 5728:Group structure of 5686:Primality Test for 3092:was chosen so that 3076:splits modulo  2723:has a prime factor 2673:. Once acceptable 2600:can be written as: 2539:Pick discriminants 1934:recursive algorithm 331:{\displaystyle p-1} 167:is not known. ECPP 9512:Divisors on curves 9304:Faltings's theorem 9253:Schoof's algorithm 9233:Modularity theorem 8951:Extended Euclidean 8890:Discrete logarithm 8819:Schönhage–Strassen 8675:Sieve of Pritchard 8454:Weisstein, Eric W. 8407: 8351:2011-07-18 at the 7974: 7936: 7901: 7856: 7822: 7784: 7585: 7565: 7545: 7490: 7470: 7432: 7412: 7359: 7307:{\displaystyle i=} 7304: 7281: 7254: 7234: 7201: 7181: 7155: 7118: 7063: 7017: 6975: 6908: 6845: 6789: 6745: 6711: 6682: 6649: 6622: 6562: 6488: 6393: 6360: 6326: 6260: 6186: 6102: 6033: 5967: 5921: 5876: 5840: 5787: 5712: 5666: 5620: 5562: 5536: 5476: 5411: 5345: 5285: 5258: 5220: 5184: 5130: 4984: 4944: 4852: 4802: 4719: 4717: 4606: 4565: 4478: 4393: 4303: 4215: 4155: 4099: 4036: 4009: 3927: 3856: 3812: 3759: 3682: 3619: 3587: 3535:can be written as 3521: 3481: 3433:. Once we find a 3411: 3339: 3231: 3080:into a product of 3066: 3023: 2983: 2939: 2880: 2851: 2832:Assume first that 2780: 2709: 2656: 2586: 2517: 2492:) of the order in 2467: 2432: 2384: 2272: 2222: 2156: 2036: 1914: 1885: 1817: 1730: 1704: 1647:Schoof's algorithm 1627: 1549: 1456: 1376: 1338: 1305: 1194: 1159: 1129: 1073: 1022: 886: 859: 820: 789: 710: 643:usual addition law 631: 589: 505: 458: 398: 341:ECPP generates an 328: 302: 274: 248: 219: 141: 121: 9699: 9698: 9695: 9694: 9606:Hasse–Witt matrix 9549:Weierstrass point 9496:Smooth completion 9465:TeichmĂŒller space 9367:Cubic plane curve 9287: 9286: 9201:Arithmetic theory 9182:Elliptic integral 9177:Elliptic function 9081: 9080: 8680:Sieve of Sundaram 8481:François Morain, 8168:978-1-4704-1048-3 8131:Caldwell, Chris. 7754: 7714: 7693: 7689: 7645: 7588:{\displaystyle N} 7568:{\displaystyle N} 7493:{\displaystyle N} 7435:{\displaystyle i} 7257:{\displaystyle Q} 7204:{\displaystyle N} 6964: 6896: 6774: 6714:{\displaystyle N} 6466: 6445: 6434: 6428: 6424: 6202:quadratic residue 5724:, by Yu Tsumura. 5586:Lucas–Lehmer test 5377: 5355:is larger than 5328: 5128: 5100: 5059: 4957:of prime inputs. 4936: 4438: 4268: 3951:, we look for an 3226: 3202: 3201: where  2574: 2512: 2461: 2420: 2359: 2153: 2046:, which contains 2031: 2006: 1839:would have order 1827:it is clear that 1173:evaluated modulo 997: 959: 943: 787: 691: 305:{\displaystyle p} 144:{\displaystyle N} 96:Miller–Rabin test 76:Primality testing 39:primality testing 16:(Redirected from 9719: 9539:Jacobian variety 9509: 9508: 9412:Riemann surfaces 9402:Real plane curve 9362:Cramer's paradox 9342:BĂ©zout's theorem 9167: 9166: 9116:algebraic curves 9108: 9101: 9094: 9085: 9084: 9030:Integer relation 9003:Other algorithms 8908:Pollard kangaroo 8799:Ancient Egyptian 8657:Prime-generating 8642:Solovay–Strassen 8555:Number-theoretic 8548: 8541: 8534: 8525: 8524: 8470:Chris Caldwell, 8467: 8466: 8429: 8428: 8426: 8416: 8414: 8413: 8408: 8397: 8396: 8378: 8369: 8368: 8361: 8355: 8338: 8332: 8331: 8321: 8312: 8303: 8297: 8291: 8281: 8275: 8274: 8248: 8239: 8238: 8236: 8235: 8229: 8223:. Archived from 8222: 8214: 8208: 8201: 8192: 8182: 8173: 8172: 8149: 8140: 8129: 8123: 8122: 8102: 8091: 8085: 8084: 8074: 8050: 8039: 8029: 8023: 8022: 8014: 7988:is truly prime. 7983: 7981: 7980: 7975: 7973: 7972: 7945: 7943: 7942: 7937: 7935: 7934: 7910: 7908: 7907: 7902: 7900: 7899: 7865: 7863: 7862: 7857: 7852: 7851: 7831: 7829: 7828: 7823: 7821: 7820: 7793: 7791: 7790: 7785: 7759: 7755: 7750: 7749: 7748: 7736: 7735: 7725: 7719: 7715: 7707: 7698: 7694: 7685: 7684: 7683: 7671: 7670: 7660: 7659: 7650: 7646: 7638: 7615:, such that the 7594: 7592: 7591: 7586: 7574: 7572: 7571: 7566: 7554: 7552: 7551: 7546: 7544: 7522: 7521: 7499: 7497: 7496: 7491: 7479: 7477: 7476: 7471: 7441: 7439: 7438: 7433: 7421: 7419: 7418: 7413: 7402: 7395: 7394: 7368: 7366: 7365: 7360: 7313: 7311: 7310: 7305: 7290: 7288: 7287: 7282: 7280: 7279: 7263: 7261: 7260: 7255: 7243: 7241: 7240: 7235: 7233: 7232: 7210: 7208: 7207: 7202: 7190: 7188: 7187: 7182: 7164: 7162: 7161: 7156: 7154: 7127: 7125: 7124: 7119: 7108: 7107: 7095: 7094: 7072: 7070: 7069: 7064: 7044: 7026: 7024: 7023: 7018: 7016: 6984: 6982: 6981: 6976: 6965: 6960: 6959: 6958: 6946: 6945: 6935: 6917: 6915: 6914: 6909: 6901: 6897: 6892: 6891: 6890: 6878: 6877: 6867: 6854: 6852: 6851: 6846: 6844: 6816: 6798: 6796: 6795: 6790: 6779: 6775: 6767: 6754: 6752: 6751: 6746: 6744: 6720: 6718: 6717: 6712: 6691: 6689: 6688: 6683: 6675: 6674: 6658: 6656: 6655: 6650: 6648: 6647: 6631: 6629: 6628: 6623: 6618: 6596: 6595: 6571: 6569: 6568: 6563: 6555: 6545: 6544: 6497: 6495: 6494: 6489: 6484: 6483: 6478: 6474: 6467: 6465: 6457: 6446: 6441: 6435: 6432: 6429: 6420: 6419: 6402: 6400: 6399: 6394: 6369: 6367: 6366: 6361: 6359: 6358: 6335: 6333: 6332: 6327: 6322: 6321: 6317: 6316: 6306: 6294: 6293: 6288: 6269: 6267: 6266: 6261: 6259: 6258: 6243:is divisible by 6195: 6193: 6192: 6187: 6185: 6184: 6180: 6179: 6163: 6154: 6153: 6148: 6136: 6135: 6130: 6111: 6109: 6108: 6103: 6101: 6100: 6096: 6095: 6085: 6073: 6072: 6067: 6042: 6040: 6039: 6034: 6020: 6012: 6011: 6006: 5994: 5976: 5974: 5973: 5968: 5948: 5930: 5928: 5927: 5922: 5914: 5913: 5885: 5883: 5882: 5877: 5875: 5874: 5849: 5847: 5846: 5841: 5836: 5835: 5814: 5796: 5794: 5793: 5788: 5777: 5776: 5764: 5763: 5721: 5719: 5718: 5713: 5702: 5701: 5675: 5673: 5672: 5667: 5653: 5629: 5627: 5626: 5621: 5610: 5609: 5582:Mersenne numbers 5571: 5569: 5568: 5563: 5545: 5543: 5542: 5537: 5532: 5531: 5485: 5483: 5482: 5477: 5466: 5465: 5464: 5463: 5420: 5418: 5417: 5412: 5410: 5409: 5408: 5407: 5378: 5373: 5371: 5370: 5354: 5352: 5351: 5346: 5329: 5321: 5294: 5292: 5291: 5286: 5284: 5283: 5267: 5265: 5264: 5259: 5257: 5256: 5229: 5227: 5226: 5221: 5216: 5215: 5193: 5191: 5190: 5185: 5180: 5179: 5139: 5137: 5136: 5131: 5129: 5127: 5120: 5119: 5118: 5117: 5102: 5101: 5096: 5094: 5093: 5083: 5060: 5055: 5032: 5031: 5019: 5018: 4993: 4991: 4990: 4985: 4953: 4951: 4950: 4945: 4943: 4939: 4938: 4937: 4935: 4915: 4861: 4859: 4858: 4853: 4848: 4847: 4811: 4809: 4808: 4803: 4801: 4770: 4769: 4757: 4756: 4728: 4726: 4725: 4720: 4718: 4714: 4678: 4615: 4613: 4612: 4607: 4605: 4604: 4599: 4587:a non-square in 4574: 4572: 4571: 4566: 4564: 4563: 4542: 4541: 4523: 4522: 4510: 4509: 4487: 4485: 4484: 4479: 4477: 4455: 4439: 4437: 4423: 4406:Next we compute 4402: 4400: 4399: 4394: 4389: 4367: 4351: 4350: 4312: 4310: 4309: 4304: 4281: 4269: 4266: 4245: 4224: 4222: 4221: 4216: 4214: 4213: 4198: 4197: 4193: 4164: 4162: 4161: 4156: 4154: 4153: 4108: 4106: 4105: 4100: 4098: 4097: 4079: 4078: 4069: 4045: 4043: 4042: 4037: 4035: 4034: 4018: 4016: 4015: 4010: 4008: 4007: 3992: 3991: 3987: 3936: 3934: 3933: 3928: 3923: 3922: 3907: 3906: 3902: 3865: 3863: 3862: 3857: 3821: 3819: 3818: 3813: 3768: 3766: 3765: 3760: 3755: 3754: 3730: 3729: 3692:and also, using 3691: 3689: 3688: 3683: 3669: 3646: 3628: 3626: 3625: 3620: 3600:For our example 3596: 3594: 3593: 3588: 3586: 3585: 3576: 3568: 3560: 3559: 3530: 3528: 3527: 3522: 3508: 3490: 3488: 3487: 3482: 3420: 3418: 3417: 3412: 3392: 3384: 3376: 3371: 3360: 3348: 3346: 3345: 3340: 3320: 3312: 3304: 3299: 3288: 3240: 3238: 3237: 3232: 3227: 3225: 3211: 3203: 3200: 3195: 3194: 3170: 3169: 3148: 3147: 3135: 3134: 3075: 3073: 3072: 3067: 3056: 3055: 3032: 3030: 3029: 3024: 3013: 3012: 2995:class polynomial 2992: 2990: 2989: 2984: 2973: 2972: 2948: 2946: 2945: 2940: 2929: 2928: 2889: 2887: 2886: 2881: 2860: 2858: 2857: 2852: 2805:. Note that if 2789: 2787: 2786: 2781: 2779: 2778: 2763: 2762: 2758: 2718: 2716: 2715: 2710: 2665: 2663: 2662: 2657: 2645: 2644: 2635: 2627: 2619: 2618: 2595: 2593: 2592: 2587: 2579: 2575: 2567: 2526: 2524: 2523: 2518: 2513: 2508: 2503: 2476: 2474: 2473: 2468: 2466: 2462: 2454: 2441: 2439: 2438: 2433: 2425: 2421: 2413: 2393: 2391: 2390: 2385: 2361: 2360: 2352: 2328: 2320: 2312: 2307: 2296: 2281: 2279: 2278: 2273: 2271: 2263: 2258: 2231: 2229: 2228: 2223: 2211: 2210: 2201: 2193: 2185: 2184: 2165: 2163: 2162: 2157: 2155: 2154: 2146: 2045: 2043: 2042: 2039:{\displaystyle } 2037: 2032: 2027: 2007: 2002: 1923: 1921: 1920: 1915: 1894: 1892: 1891: 1886: 1835:were prime then 1826: 1824: 1823: 1818: 1739: 1737: 1736: 1731: 1713: 1711: 1710: 1705: 1681:If we can write 1636: 1634: 1633: 1628: 1611: 1610: 1598: 1597: 1574:) is a point on 1558: 1556: 1555: 1550: 1548: 1523: 1522: 1510: 1509: 1465: 1463: 1462: 1457: 1449: 1448: 1433: 1385: 1383: 1382: 1377: 1347: 1345: 1344: 1339: 1337: 1336: 1314: 1312: 1311: 1306: 1295: 1294: 1276: 1275: 1260: 1240: 1239: 1224: 1203: 1201: 1200: 1195: 1193: 1192: 1168: 1166: 1165: 1160: 1158: 1157: 1138: 1136: 1135: 1130: 1125: 1124: 1123: 1122: 1082: 1080: 1079: 1074: 1063: 1062: 1031: 1029: 1028: 1023: 1015: 1014: 1009: 1005: 998: 996: 988: 977: 976: 971: 967: 960: 955: 944: 939: 919: 918: 895: 893: 892: 887: 885: 884: 868: 866: 865: 860: 858: 857: 829: 827: 826: 821: 819: 818: 798: 796: 795: 790: 788: 783: 719: 717: 716: 711: 709: 708: 703: 699: 692: 690: 682: 640: 638: 637: 632: 627: 619: 614: 598: 596: 595: 590: 585: 584: 560: 559: 547: 546: 514: 512: 511: 506: 498: 490: 485: 467: 465: 464: 459: 457: 456: 447: 439: 434: 407: 405: 404: 399: 397: 396: 384: 383: 353:of primality by 337: 335: 334: 329: 311: 309: 308: 303: 283: 281: 280: 275: 257: 255: 254: 249: 228: 226: 225: 220: 214: 213: 150: 148: 147: 142: 130: 128: 127: 122: 63: 43:Shafi Goldwasser 21: 9727: 9726: 9722: 9721: 9720: 9718: 9717: 9716: 9712:Primality tests 9702: 9701: 9700: 9691: 9663: 9654:Delta invariant 9625: 9594: 9558: 9519:Abel–Jacobi map 9500: 9474: 9470:Torelli theorem 9440:Dessin d'enfant 9420:Belyi's theorem 9406: 9392:PlĂŒcker formula 9323: 9314:Hurwitz surface 9283: 9262: 9196: 9170:Analytic theory 9162:Elliptic curves 9156: 9137:Projective line 9124:Rational curves 9118: 9112: 9082: 9077: 9063: 8998: 8960: 8927: 8884: 8828: 8785: 8689: 8651: 8624:Proth's theorem 8566:Primality tests 8560: 8552: 8488:Marcel Martin, 8438: 8433: 8432: 8392: 8388: 8386: 8383: 8382: 8379: 8372: 8363: 8362: 8358: 8353:Wayback Machine 8339: 8335: 8319: 8313: 8306: 8300:ECPP Comes Back 8298: 8294: 8282: 8278: 8271: 8249: 8242: 8233: 8231: 8227: 8220: 8216: 8215: 8211: 8203:Koblitz, Neal, 8202: 8195: 8183: 8176: 8169: 8150: 8143: 8130: 8126: 8119: 8100: 8092: 8088: 8072:10.2307/2152935 8051: 8042: 8030: 8026: 8015: 8006: 8001: 7968: 7964: 7962: 7959: 7958: 7930: 7926: 7924: 7921: 7920: 7895: 7891: 7889: 7886: 7885: 7847: 7843: 7841: 7838: 7837: 7816: 7812: 7810: 7807: 7806: 7744: 7740: 7731: 7727: 7726: 7724: 7720: 7706: 7702: 7679: 7675: 7666: 7662: 7661: 7658: 7654: 7637: 7633: 7631: 7628: 7627: 7619:-coordinate of 7601: 7580: 7577: 7576: 7560: 7557: 7556: 7529: 7517: 7513: 7511: 7508: 7507: 7485: 7482: 7481: 7447: 7444: 7443: 7427: 7424: 7423: 7390: 7386: 7385: 7377: 7374: 7373: 7318: 7315: 7314: 7296: 7293: 7292: 7275: 7271: 7269: 7266: 7265: 7249: 7246: 7245: 7228: 7224: 7222: 7219: 7218: 7196: 7193: 7192: 7170: 7167: 7166: 7147: 7136: 7133: 7132: 7103: 7099: 7090: 7086: 7078: 7075: 7074: 7037: 7035: 7032: 7031: 7001: 6990: 6987: 6986: 6954: 6950: 6941: 6937: 6936: 6934: 6926: 6923: 6922: 6886: 6882: 6873: 6869: 6868: 6866: 6862: 6860: 6857: 6856: 6829: 6812: 6804: 6801: 6800: 6766: 6762: 6760: 6757: 6756: 6740: 6732: 6729: 6728: 6706: 6703: 6702: 6699: 6670: 6666: 6664: 6661: 6660: 6643: 6639: 6637: 6634: 6633: 6603: 6591: 6587: 6585: 6582: 6581: 6540: 6536: 6532: 6527: 6524: 6523: 6479: 6461: 6456: 6455: 6451: 6450: 6440: 6431: 6418: 6410: 6407: 6406: 6382: 6379: 6378: 6354: 6350: 6348: 6345: 6344: 6312: 6308: 6307: 6302: 6301: 6289: 6284: 6283: 6275: 6272: 6271: 6254: 6250: 6248: 6245: 6244: 6169: 6165: 6164: 6159: 6158: 6149: 6144: 6143: 6131: 6126: 6125: 6117: 6114: 6113: 6091: 6087: 6086: 6081: 6080: 6068: 6063: 6062: 6054: 6051: 6050: 6016: 6007: 6002: 6001: 5990: 5988: 5985: 5984: 5944: 5936: 5933: 5932: 5909: 5905: 5891: 5888: 5887: 5870: 5866: 5855: 5852: 5851: 5831: 5827: 5810: 5802: 5799: 5798: 5772: 5768: 5759: 5755: 5753: 5750: 5749: 5748:is of the form 5738: 5735: 5697: 5693: 5691: 5688: 5687: 5649: 5635: 5632: 5631: 5605: 5601: 5593: 5590: 5589: 5578: 5551: 5548: 5547: 5521: 5517: 5497: 5494: 5493: 5459: 5455: 5448: 5444: 5436: 5433: 5432: 5403: 5399: 5395: 5391: 5372: 5366: 5362: 5360: 5357: 5356: 5320: 5303: 5300: 5299: 5279: 5275: 5273: 5270: 5269: 5252: 5248: 5246: 5243: 5242: 5239: 5211: 5207: 5199: 5196: 5195: 5175: 5171: 5163: 5160: 5159: 5113: 5109: 5108: 5104: 5103: 5095: 5089: 5085: 5084: 5082: 5054: 5027: 5023: 5014: 5010: 5005: 5002: 5001: 4970: 4967: 4966: 4963: 4919: 4914: 4907: 4903: 4899: 4888: 4885: 4884: 4878: 4843: 4839: 4828: 4825: 4824: 4786: 4765: 4761: 4752: 4748: 4740: 4737: 4736: 4716: 4715: 4699: 4689: 4680: 4679: 4663: 4653: 4644: 4643: 4633: 4626: 4624: 4621: 4620: 4600: 4595: 4594: 4592: 4589: 4588: 4559: 4555: 4537: 4533: 4518: 4514: 4505: 4501: 4499: 4496: 4495: 4462: 4440: 4427: 4422: 4414: 4411: 4410: 4374: 4352: 4346: 4342: 4331: 4328: 4327: 4277: 4267: and  4265: 4241: 4233: 4230: 4229: 4209: 4205: 4189: 4185: 4181: 4170: 4167: 4166: 4149: 4145: 4143: 4140: 4139: 4112:for some point 4093: 4089: 4074: 4070: 4065: 4057: 4054: 4053: 4030: 4026: 4024: 4021: 4020: 4003: 3999: 3983: 3979: 3975: 3964: 3961: 3960: 3918: 3914: 3898: 3894: 3890: 3879: 3876: 3875: 3827: 3824: 3823: 3789: 3786: 3785: 3750: 3746: 3725: 3721: 3701: 3698: 3697: 3696:, we know that 3665: 3642: 3634: 3631: 3630: 3605: 3602: 3601: 3581: 3577: 3572: 3564: 3555: 3551: 3540: 3537: 3536: 3504: 3496: 3493: 3492: 3470: 3467: 3466: 3463: 3427: 3388: 3380: 3372: 3367: 3356: 3354: 3351: 3350: 3316: 3308: 3300: 3295: 3284: 3282: 3279: 3278: 3215: 3210: 3199: 3187: 3183: 3162: 3158: 3143: 3139: 3130: 3126: 3124: 3121: 3120: 3051: 3047: 3045: 3042: 3041: 3008: 3004: 3002: 2999: 2998: 2968: 2964: 2962: 2959: 2958: 2924: 2920: 2918: 2915: 2914: 2908:complex numbers 2866: 2863: 2862: 2837: 2834: 2833: 2819: 2774: 2770: 2754: 2750: 2746: 2735: 2732: 2731: 2686: 2683: 2682: 2640: 2636: 2631: 2623: 2614: 2610: 2608: 2605: 2604: 2566: 2562: 2560: 2557: 2556: 2537: 2507: 2499: 2497: 2494: 2493: 2479:Legendre symbol 2453: 2449: 2447: 2444: 2443: 2412: 2408: 2406: 2403: 2402: 2351: 2350: 2324: 2316: 2308: 2303: 2292: 2290: 2287: 2286: 2267: 2259: 2254: 2252: 2249: 2248: 2206: 2202: 2197: 2189: 2180: 2176: 2174: 2171: 2170: 2145: 2144: 2133: 2130: 2129: 2056: 2026: 2001: 1981: 1978: 1977: 1954: 1900: 1897: 1896: 1871: 1868: 1867: 1803: 1800: 1799: 1719: 1716: 1715: 1690: 1687: 1686: 1678:is acceptable. 1664: 1641:. Applied to 1606: 1602: 1593: 1589: 1587: 1584: 1583: 1533: 1518: 1514: 1505: 1501: 1493: 1490: 1489: 1472: 1444: 1440: 1429: 1421: 1418: 1417: 1365: 1362: 1361: 1332: 1328: 1323: 1320: 1319: 1290: 1286: 1271: 1267: 1256: 1235: 1231: 1220: 1212: 1209: 1208: 1188: 1184: 1182: 1179: 1178: 1153: 1149: 1147: 1144: 1143: 1118: 1114: 1113: 1109: 1095: 1092: 1091: 1058: 1054: 1040: 1037: 1036: 1010: 992: 987: 986: 982: 981: 972: 954: 953: 949: 948: 938: 914: 910: 908: 905: 904: 880: 876: 874: 871: 870: 853: 849: 847: 844: 843: 814: 810: 808: 805: 804: 782: 774: 771: 770: 763: 704: 686: 681: 680: 676: 675: 673: 670: 669: 623: 615: 610: 608: 605: 604: 580: 576: 555: 551: 542: 538: 536: 533: 532: 494: 486: 481: 473: 470: 469: 468:is replaced by 452: 448: 443: 435: 430: 425: 422: 421: 418: 392: 388: 379: 375: 373: 370: 369: 349:–Kilian–Morain 317: 314: 313: 297: 294: 293: 286:primality tests 263: 260: 259: 237: 234: 233: 203: 199: 179: 176: 175: 157: 136: 133: 132: 110: 107: 106: 57: 55:François Morain 28: 23: 22: 15: 12: 11: 5: 9725: 9715: 9714: 9697: 9696: 9693: 9692: 9690: 9689: 9684: 9679: 9673: 9671: 9669:Vector bundles 9665: 9664: 9662: 9661: 9656: 9651: 9646: 9641: 9635: 9633: 9627: 9626: 9624: 9623: 9618: 9613: 9608: 9602: 9600: 9596: 9595: 9593: 9592: 9587: 9582: 9577: 9572: 9566: 9564: 9560: 9559: 9557: 9556: 9551: 9546: 9541: 9536: 9531: 9526: 9521: 9515: 9513: 9506: 9502: 9501: 9499: 9498: 9493: 9488: 9482: 9480: 9476: 9475: 9473: 9472: 9467: 9462: 9457: 9452: 9447: 9442: 9437: 9432: 9427: 9422: 9416: 9414: 9408: 9407: 9405: 9404: 9399: 9394: 9389: 9384: 9379: 9374: 9369: 9364: 9359: 9354: 9349: 9344: 9339: 9333: 9331: 9325: 9324: 9322: 9321: 9316: 9311: 9306: 9301: 9295: 9293: 9289: 9288: 9285: 9284: 9282: 9281: 9276: 9270: 9268: 9264: 9263: 9261: 9260: 9255: 9250: 9245: 9240: 9235: 9230: 9225: 9220: 9215: 9210: 9204: 9202: 9198: 9197: 9195: 9194: 9189: 9184: 9179: 9173: 9171: 9164: 9158: 9157: 9155: 9154: 9149: 9147:Riemann sphere 9144: 9139: 9134: 9128: 9126: 9120: 9119: 9111: 9110: 9103: 9096: 9088: 9079: 9078: 9076: 9075: 9068: 9065: 9064: 9062: 9061: 9056: 9051: 9046: 9041: 9027: 9022: 9017: 9012: 9006: 9004: 9000: 8999: 8997: 8996: 8991: 8986: 8984:Tonelli–Shanks 8981: 8976: 8970: 8968: 8962: 8961: 8959: 8958: 8953: 8948: 8943: 8937: 8935: 8929: 8928: 8926: 8925: 8920: 8918:Index calculus 8915: 8913:Pohlig–Hellman 8910: 8905: 8900: 8894: 8892: 8886: 8885: 8883: 8882: 8877: 8872: 8867: 8865:Newton-Raphson 8862: 8857: 8852: 8847: 8841: 8839: 8830: 8829: 8827: 8826: 8821: 8816: 8811: 8806: 8801: 8795: 8793: 8791:Multiplication 8787: 8786: 8784: 8783: 8778: 8776:Trial division 8773: 8768: 8763: 8761:Rational sieve 8758: 8751: 8746: 8741: 8733: 8725: 8720: 8715: 8710: 8705: 8699: 8697: 8691: 8690: 8688: 8687: 8682: 8677: 8672: 8667: 8665:Sieve of Atkin 8661: 8659: 8653: 8652: 8650: 8649: 8644: 8639: 8634: 8627: 8620: 8613: 8606: 8601: 8596: 8591: 8589:Elliptic curve 8586: 8581: 8576: 8570: 8568: 8562: 8561: 8551: 8550: 8543: 8536: 8528: 8522: 8521: 8515: 8505: 8499: 8493: 8486: 8479: 8468: 8449: 8437: 8436:External links 8434: 8431: 8430: 8406: 8403: 8400: 8395: 8391: 8370: 8356: 8333: 8304: 8292: 8276: 8269: 8240: 8209: 8193: 8174: 8167: 8141: 8124: 8117: 8086: 8065:(203): 29–68. 8040: 8024: 8003: 8002: 8000: 7997: 7971: 7967: 7933: 7929: 7898: 7894: 7855: 7850: 7846: 7819: 7815: 7795: 7794: 7783: 7780: 7777: 7774: 7771: 7768: 7765: 7762: 7758: 7753: 7747: 7743: 7739: 7734: 7730: 7723: 7718: 7713: 7710: 7705: 7701: 7697: 7692: 7688: 7682: 7678: 7674: 7669: 7665: 7657: 7653: 7649: 7644: 7641: 7636: 7600: 7597: 7584: 7564: 7543: 7540: 7536: 7533: 7528: 7525: 7520: 7516: 7489: 7469: 7466: 7463: 7460: 7457: 7454: 7451: 7431: 7411: 7408: 7405: 7401: 7398: 7393: 7389: 7384: 7381: 7358: 7355: 7352: 7349: 7346: 7343: 7340: 7337: 7334: 7331: 7328: 7325: 7322: 7303: 7300: 7278: 7274: 7253: 7231: 7227: 7200: 7180: 7177: 7174: 7153: 7150: 7146: 7143: 7140: 7117: 7114: 7111: 7106: 7102: 7098: 7093: 7089: 7085: 7082: 7062: 7059: 7056: 7053: 7050: 7047: 7043: 7040: 7015: 7012: 7008: 7005: 7000: 6997: 6994: 6974: 6969: 6963: 6957: 6953: 6949: 6944: 6940: 6933: 6930: 6907: 6904: 6900: 6895: 6889: 6885: 6881: 6876: 6872: 6865: 6843: 6840: 6836: 6833: 6828: 6825: 6822: 6819: 6815: 6811: 6808: 6788: 6785: 6782: 6778: 6773: 6770: 6765: 6743: 6739: 6736: 6710: 6698: 6695: 6694: 6693: 6681: 6678: 6673: 6669: 6646: 6642: 6621: 6617: 6614: 6610: 6607: 6602: 6599: 6594: 6590: 6561: 6558: 6554: 6551: 6548: 6543: 6539: 6535: 6531: 6500: 6499: 6498: 6487: 6482: 6477: 6473: 6470: 6464: 6460: 6454: 6449: 6444: 6439: 6427: 6423: 6417: 6414: 6392: 6389: 6386: 6357: 6353: 6337: 6336: 6325: 6320: 6315: 6311: 6305: 6300: 6297: 6292: 6287: 6282: 6279: 6257: 6253: 6209: 6208: 6183: 6178: 6175: 6172: 6168: 6162: 6157: 6152: 6147: 6142: 6139: 6134: 6129: 6124: 6121: 6099: 6094: 6090: 6084: 6079: 6076: 6071: 6066: 6061: 6058: 6044: 6043: 6032: 6029: 6026: 6023: 6019: 6015: 6010: 6005: 6000: 5997: 5993: 5966: 5963: 5960: 5957: 5954: 5951: 5947: 5943: 5940: 5920: 5917: 5912: 5908: 5904: 5901: 5898: 5895: 5886:is prime, and 5873: 5869: 5865: 5862: 5859: 5839: 5834: 5830: 5826: 5823: 5820: 5817: 5813: 5809: 5806: 5786: 5783: 5780: 5775: 5771: 5767: 5762: 5758: 5737: 5733: 5726: 5711: 5708: 5705: 5700: 5696: 5665: 5662: 5659: 5656: 5652: 5648: 5645: 5642: 5639: 5619: 5616: 5613: 5608: 5604: 5600: 5597: 5577: 5574: 5573: 5572: 5561: 5558: 5555: 5535: 5530: 5527: 5524: 5520: 5516: 5513: 5510: 5507: 5504: 5501: 5487: 5486: 5475: 5472: 5469: 5462: 5458: 5454: 5451: 5447: 5443: 5440: 5422: 5421: 5406: 5402: 5398: 5394: 5390: 5387: 5384: 5381: 5376: 5369: 5365: 5344: 5341: 5338: 5335: 5332: 5327: 5324: 5319: 5316: 5313: 5310: 5307: 5282: 5278: 5255: 5251: 5238: 5235: 5219: 5214: 5210: 5206: 5203: 5183: 5178: 5174: 5170: 5167: 5141: 5140: 5126: 5123: 5116: 5112: 5107: 5099: 5092: 5088: 5081: 5078: 5075: 5072: 5069: 5066: 5063: 5058: 5053: 5050: 5047: 5044: 5041: 5038: 5035: 5030: 5026: 5022: 5017: 5013: 5009: 4983: 4980: 4977: 4974: 4962: 4959: 4955: 4954: 4942: 4934: 4931: 4928: 4925: 4922: 4918: 4913: 4910: 4906: 4902: 4898: 4895: 4892: 4877: 4874: 4851: 4846: 4842: 4838: 4835: 4832: 4813: 4812: 4800: 4797: 4793: 4790: 4785: 4782: 4779: 4776: 4773: 4768: 4764: 4760: 4755: 4751: 4747: 4744: 4730: 4729: 4713: 4710: 4706: 4703: 4698: 4695: 4692: 4690: 4688: 4685: 4682: 4681: 4677: 4674: 4670: 4667: 4662: 4659: 4656: 4654: 4652: 4649: 4646: 4645: 4642: 4639: 4636: 4634: 4632: 4629: 4628: 4603: 4598: 4577: 4576: 4562: 4558: 4554: 4551: 4548: 4545: 4540: 4536: 4532: 4529: 4526: 4521: 4517: 4513: 4508: 4504: 4489: 4488: 4476: 4473: 4469: 4466: 4461: 4458: 4454: 4451: 4447: 4444: 4436: 4433: 4430: 4426: 4421: 4418: 4404: 4403: 4392: 4388: 4385: 4381: 4378: 4373: 4370: 4366: 4363: 4359: 4356: 4349: 4345: 4341: 4338: 4335: 4314: 4313: 4302: 4299: 4296: 4293: 4290: 4287: 4284: 4280: 4276: 4273: 4263: 4260: 4257: 4254: 4251: 4248: 4244: 4240: 4237: 4212: 4208: 4204: 4201: 4196: 4192: 4188: 4184: 4180: 4177: 4174: 4152: 4148: 4110: 4109: 4096: 4092: 4088: 4085: 4082: 4077: 4073: 4068: 4064: 4061: 4046:which divides 4033: 4029: 4006: 4002: 3998: 3995: 3990: 3986: 3982: 3978: 3974: 3971: 3968: 3955:which divides 3939:In this case, 3926: 3921: 3917: 3913: 3910: 3905: 3901: 3897: 3893: 3889: 3886: 3883: 3855: 3852: 3849: 3846: 3843: 3840: 3837: 3834: 3831: 3811: 3808: 3805: 3802: 3799: 3796: 3793: 3758: 3753: 3749: 3745: 3742: 3739: 3736: 3733: 3728: 3724: 3720: 3717: 3714: 3711: 3708: 3705: 3681: 3678: 3675: 3672: 3668: 3664: 3661: 3658: 3655: 3652: 3649: 3645: 3641: 3638: 3618: 3615: 3612: 3609: 3584: 3580: 3575: 3571: 3567: 3563: 3558: 3554: 3550: 3547: 3544: 3520: 3517: 3514: 3511: 3507: 3503: 3500: 3480: 3477: 3474: 3462: 3459: 3426: 3423: 3422: 3421: 3410: 3407: 3404: 3401: 3398: 3395: 3391: 3387: 3383: 3379: 3375: 3370: 3366: 3363: 3359: 3338: 3335: 3332: 3329: 3326: 3323: 3319: 3315: 3311: 3307: 3303: 3298: 3294: 3291: 3287: 3242: 3241: 3230: 3224: 3221: 3218: 3214: 3209: 3206: 3198: 3193: 3190: 3186: 3182: 3179: 3176: 3173: 3168: 3165: 3161: 3157: 3154: 3151: 3146: 3142: 3138: 3133: 3129: 3112:we can define 3100:is one of the 3065: 3062: 3059: 3054: 3050: 3022: 3019: 3016: 3011: 3007: 2982: 2979: 2976: 2971: 2967: 2938: 2935: 2932: 2927: 2923: 2879: 2876: 2873: 2870: 2850: 2847: 2844: 2841: 2818: 2815: 2791: 2790: 2777: 2773: 2769: 2766: 2761: 2757: 2753: 2749: 2745: 2742: 2739: 2708: 2705: 2702: 2699: 2696: 2693: 2690: 2667: 2666: 2654: 2651: 2648: 2643: 2639: 2634: 2630: 2626: 2622: 2617: 2613: 2585: 2582: 2578: 2573: 2570: 2565: 2536: 2533: 2516: 2511: 2506: 2502: 2465: 2460: 2457: 2452: 2431: 2428: 2424: 2419: 2416: 2411: 2395: 2394: 2382: 2379: 2376: 2373: 2370: 2367: 2364: 2358: 2355: 2349: 2346: 2343: 2340: 2337: 2334: 2331: 2327: 2323: 2319: 2315: 2311: 2306: 2302: 2299: 2295: 2270: 2266: 2262: 2257: 2233: 2232: 2220: 2217: 2214: 2209: 2205: 2200: 2196: 2192: 2188: 2183: 2179: 2152: 2149: 2143: 2140: 2137: 2074:Now, given an 2055: 2052: 2035: 2030: 2025: 2022: 2019: 2016: 2013: 2010: 2005: 2000: 1997: 1994: 1991: 1988: 1985: 1953: 1950: 1913: 1910: 1907: 1904: 1884: 1881: 1878: 1875: 1816: 1813: 1810: 1807: 1746:primality test 1729: 1726: 1723: 1703: 1700: 1697: 1694: 1660: 1626: 1623: 1620: 1617: 1614: 1609: 1605: 1601: 1596: 1592: 1582:is defined by 1560: 1559: 1547: 1544: 1540: 1537: 1532: 1529: 1526: 1521: 1517: 1513: 1508: 1504: 1500: 1497: 1471: 1468: 1467: 1466: 1455: 1452: 1447: 1443: 1439: 1436: 1432: 1428: 1425: 1375: 1372: 1369: 1335: 1331: 1327: 1316: 1315: 1304: 1301: 1298: 1293: 1289: 1285: 1282: 1279: 1274: 1270: 1266: 1263: 1259: 1255: 1252: 1249: 1246: 1243: 1238: 1234: 1230: 1227: 1223: 1219: 1216: 1191: 1187: 1156: 1152: 1140: 1139: 1128: 1121: 1117: 1112: 1108: 1105: 1102: 1099: 1072: 1069: 1066: 1061: 1057: 1053: 1050: 1047: 1044: 1033: 1032: 1021: 1018: 1013: 1008: 1004: 1001: 995: 991: 985: 980: 975: 970: 966: 963: 958: 952: 947: 942: 937: 934: 931: 928: 925: 922: 917: 913: 883: 879: 856: 852: 817: 813: 786: 781: 778: 762: 759: 707: 702: 698: 695: 689: 685: 679: 664:which divides 630: 626: 622: 618: 613: 588: 583: 579: 575: 572: 569: 566: 563: 558: 554: 550: 545: 541: 504: 501: 497: 493: 489: 484: 480: 477: 455: 451: 446: 442: 438: 433: 429: 417: 414: 395: 391: 387: 382: 378: 327: 324: 321: 301: 288:do, finding a 273: 270: 267: 247: 244: 241: 230: 229: 217: 212: 209: 206: 202: 198: 195: 192: 189: 186: 183: 171:runs in time: 156: 153: 140: 120: 117: 114: 51:A. O. L. Atkin 37:elliptic curve 26: 9: 6: 4: 3: 2: 9724: 9713: 9710: 9709: 9707: 9688: 9685: 9683: 9680: 9678: 9675: 9674: 9672: 9670: 9666: 9660: 9657: 9655: 9652: 9650: 9647: 9645: 9642: 9640: 9637: 9636: 9634: 9632: 9631:Singularities 9628: 9622: 9619: 9617: 9614: 9612: 9609: 9607: 9604: 9603: 9601: 9597: 9591: 9588: 9586: 9583: 9581: 9578: 9576: 9573: 9571: 9568: 9567: 9565: 9561: 9555: 9552: 9550: 9547: 9545: 9542: 9540: 9537: 9535: 9532: 9530: 9527: 9525: 9522: 9520: 9517: 9516: 9514: 9510: 9507: 9503: 9497: 9494: 9492: 9489: 9487: 9484: 9483: 9481: 9479:Constructions 9477: 9471: 9468: 9466: 9463: 9461: 9458: 9456: 9453: 9451: 9450:Klein quartic 9448: 9446: 9443: 9441: 9438: 9436: 9433: 9431: 9430:Bolza surface 9428: 9426: 9425:Bring's curve 9423: 9421: 9418: 9417: 9415: 9413: 9409: 9403: 9400: 9398: 9395: 9393: 9390: 9388: 9385: 9383: 9380: 9378: 9375: 9373: 9370: 9368: 9365: 9363: 9360: 9358: 9357:Conic section 9355: 9353: 9350: 9348: 9345: 9343: 9340: 9338: 9337:AF+BG theorem 9335: 9334: 9332: 9330: 9326: 9320: 9317: 9315: 9312: 9310: 9307: 9305: 9302: 9300: 9297: 9296: 9294: 9290: 9280: 9277: 9275: 9272: 9271: 9269: 9265: 9259: 9256: 9254: 9251: 9249: 9246: 9244: 9241: 9239: 9236: 9234: 9231: 9229: 9226: 9224: 9221: 9219: 9216: 9214: 9211: 9209: 9206: 9205: 9203: 9199: 9193: 9190: 9188: 9185: 9183: 9180: 9178: 9175: 9174: 9172: 9168: 9165: 9163: 9159: 9153: 9152:Twisted cubic 9150: 9148: 9145: 9143: 9140: 9138: 9135: 9133: 9130: 9129: 9127: 9125: 9121: 9117: 9109: 9104: 9102: 9097: 9095: 9090: 9089: 9086: 9073: 9070: 9069: 9066: 9060: 9057: 9055: 9052: 9050: 9047: 9045: 9042: 9039: 9035: 9031: 9028: 9026: 9023: 9021: 9018: 9016: 9013: 9011: 9008: 9007: 9005: 9001: 8995: 8992: 8990: 8987: 8985: 8982: 8980: 8979:Pocklington's 8977: 8975: 8972: 8971: 8969: 8967: 8963: 8957: 8954: 8952: 8949: 8947: 8944: 8942: 8939: 8938: 8936: 8934: 8930: 8924: 8921: 8919: 8916: 8914: 8911: 8909: 8906: 8904: 8901: 8899: 8896: 8895: 8893: 8891: 8887: 8881: 8878: 8876: 8873: 8871: 8868: 8866: 8863: 8861: 8858: 8856: 8853: 8851: 8848: 8846: 8843: 8842: 8840: 8838: 8835: 8831: 8825: 8822: 8820: 8817: 8815: 8812: 8810: 8807: 8805: 8802: 8800: 8797: 8796: 8794: 8792: 8788: 8782: 8779: 8777: 8774: 8772: 8769: 8767: 8764: 8762: 8759: 8757: 8756: 8752: 8750: 8747: 8745: 8742: 8740: 8738: 8734: 8732: 8730: 8726: 8724: 8723:Pollard's rho 8721: 8719: 8716: 8714: 8711: 8709: 8706: 8704: 8701: 8700: 8698: 8696: 8692: 8686: 8683: 8681: 8678: 8676: 8673: 8671: 8668: 8666: 8663: 8662: 8660: 8658: 8654: 8648: 8645: 8643: 8640: 8638: 8635: 8633: 8632: 8628: 8626: 8625: 8621: 8619: 8618: 8614: 8612: 8611: 8607: 8605: 8602: 8600: 8597: 8595: 8592: 8590: 8587: 8585: 8582: 8580: 8577: 8575: 8572: 8571: 8569: 8567: 8563: 8559: 8556: 8549: 8544: 8542: 8537: 8535: 8530: 8529: 8526: 8519: 8516: 8513: 8509: 8506: 8503: 8500: 8497: 8494: 8491: 8487: 8484: 8480: 8477: 8473: 8469: 8464: 8463: 8458: 8455: 8450: 8447: 8443: 8440: 8439: 8425: 8420: 8404: 8401: 8398: 8393: 8389: 8377: 8375: 8366: 8360: 8354: 8350: 8347: 8343: 8337: 8329: 8325: 8318: 8311: 8309: 8302:algo.inria.fr 8301: 8296: 8290: 8286: 8280: 8272: 8270:9780521653749 8266: 8262: 8258: 8254: 8247: 8245: 8230:on 2016-03-04 8226: 8219: 8213: 8206: 8200: 8198: 8190: 8186: 8181: 8179: 8170: 8164: 8160: 8159: 8154: 8148: 8146: 8138: 8134: 8128: 8120: 8118:9780444880710 8114: 8110: 8106: 8099: 8098: 8090: 8082: 8078: 8073: 8068: 8064: 8060: 8056: 8049: 8047: 8045: 8038: 8034: 8028: 8020: 8013: 8011: 8009: 8004: 7996: 7994: 7989: 7987: 7969: 7965: 7956: 7951: 7949: 7931: 7927: 7918: 7914: 7896: 7892: 7883: 7879: 7874: 7872: 7868: 7853: 7848: 7844: 7835: 7817: 7813: 7804: 7800: 7781: 7778: 7775: 7772: 7769: 7766: 7763: 7760: 7756: 7751: 7745: 7741: 7737: 7732: 7728: 7721: 7716: 7711: 7708: 7703: 7699: 7695: 7690: 7686: 7680: 7676: 7672: 7667: 7663: 7655: 7651: 7647: 7642: 7639: 7634: 7626: 7625: 7624: 7622: 7618: 7614: 7610: 7606: 7596: 7582: 7562: 7538: 7534: 7526: 7523: 7518: 7514: 7505: 7501: 7487: 7467: 7464: 7461: 7458: 7455: 7452: 7449: 7429: 7409: 7406: 7399: 7396: 7391: 7387: 7370: 7356: 7353: 7350: 7347: 7344: 7341: 7338: 7335: 7332: 7329: 7326: 7323: 7320: 7301: 7298: 7276: 7272: 7264:. Calculate 7251: 7229: 7225: 7216: 7212: 7198: 7178: 7175: 7172: 7151: 7148: 7144: 7141: 7138: 7129: 7115: 7112: 7109: 7104: 7100: 7096: 7091: 7087: 7083: 7080: 7057: 7054: 7051: 7045: 7041: 7038: 7028: 7010: 7006: 6998: 6995: 6992: 6972: 6967: 6961: 6955: 6951: 6947: 6942: 6938: 6931: 6928: 6919: 6905: 6902: 6898: 6893: 6887: 6883: 6879: 6874: 6870: 6863: 6838: 6834: 6826: 6823: 6820: 6817: 6809: 6806: 6786: 6783: 6780: 6776: 6771: 6768: 6763: 6737: 6734: 6726: 6722: 6708: 6697:The algorithm 6679: 6676: 6671: 6667: 6644: 6640: 6619: 6612: 6608: 6600: 6597: 6592: 6588: 6579: 6575: 6559: 6556: 6549: 6546: 6541: 6537: 6521: 6517: 6513: 6509: 6505: 6501: 6485: 6480: 6475: 6471: 6468: 6462: 6458: 6452: 6447: 6442: 6437: 6425: 6421: 6415: 6412: 6405: 6404: 6390: 6387: 6384: 6376: 6373: 6372: 6371: 6355: 6351: 6342: 6323: 6318: 6313: 6309: 6298: 6290: 6277: 6255: 6251: 6242: 6238: 6234: 6231:be such that 6230: 6226: 6222: 6218: 6214: 6211: 6210: 6206: 6203: 6199: 6181: 6176: 6173: 6170: 6166: 6155: 6150: 6140: 6132: 6119: 6097: 6092: 6088: 6077: 6069: 6056: 6049: 6046: 6045: 6030: 6027: 6024: 6021: 6008: 5995: 5983: 5980: 5979: 5978: 5964: 5961: 5958: 5955: 5952: 5949: 5941: 5938: 5918: 5915: 5910: 5906: 5902: 5899: 5896: 5893: 5871: 5863: 5860: 5857: 5837: 5832: 5824: 5821: 5818: 5815: 5807: 5804: 5784: 5781: 5778: 5773: 5769: 5765: 5760: 5756: 5747: 5743: 5731: 5725: 5723: 5709: 5706: 5703: 5698: 5694: 5683: 5679: 5663: 5660: 5657: 5654: 5646: 5643: 5640: 5637: 5617: 5614: 5611: 5606: 5602: 5598: 5595: 5587: 5583: 5559: 5556: 5553: 5528: 5525: 5522: 5514: 5511: 5508: 5499: 5492: 5491: 5490: 5470: 5467: 5460: 5456: 5452: 5449: 5445: 5438: 5431: 5430: 5429: 5427: 5404: 5400: 5396: 5388: 5385: 5382: 5374: 5367: 5363: 5342: 5339: 5336: 5333: 5325: 5322: 5317: 5314: 5311: 5308: 5298: 5297: 5296: 5280: 5276: 5253: 5249: 5234: 5231: 5212: 5208: 5201: 5176: 5172: 5165: 5157: 5154:is of length 5153: 5148: 5146: 5124: 5121: 5114: 5110: 5105: 5097: 5090: 5086: 5079: 5073: 5067: 5064: 5056: 5051: 5048: 5042: 5039: 5036: 5033: 5028: 5024: 5020: 5015: 5011: 5000: 4999: 4998: 4997: 4978: 4972: 4958: 4940: 4932: 4929: 4926: 4923: 4920: 4916: 4911: 4908: 4904: 4900: 4896: 4893: 4890: 4883: 4882: 4881: 4873: 4871: 4867: 4862: 4849: 4840: 4836: 4833: 4830: 4822: 4818: 4795: 4791: 4783: 4780: 4777: 4774: 4771: 4766: 4762: 4758: 4753: 4749: 4745: 4742: 4735: 4734: 4733: 4732:which yields 4708: 4704: 4696: 4693: 4691: 4686: 4683: 4672: 4668: 4660: 4657: 4655: 4650: 4647: 4640: 4637: 4635: 4630: 4619: 4618: 4617: 4601: 4586: 4582: 4560: 4556: 4552: 4549: 4546: 4543: 4538: 4534: 4530: 4527: 4524: 4519: 4515: 4511: 4506: 4502: 4494: 4493: 4492: 4471: 4467: 4459: 4456: 4449: 4445: 4434: 4431: 4428: 4424: 4419: 4416: 4409: 4408: 4407: 4390: 4383: 4379: 4371: 4368: 4361: 4357: 4347: 4343: 4339: 4336: 4333: 4326: 4325: 4324: 4323: 4319: 4300: 4297: 4294: 4291: 4288: 4282: 4278: 4274: 4261: 4258: 4255: 4252: 4246: 4242: 4238: 4228: 4227: 4226: 4210: 4202: 4199: 4194: 4190: 4186: 4182: 4175: 4172: 4150: 4146: 4137: 4133: 4128: 4126: 4122: 4117: 4115: 4090: 4086: 4083: 4075: 4071: 4066: 4062: 4052: 4051: 4050: 4049: 4031: 4027: 4004: 3996: 3993: 3988: 3984: 3980: 3976: 3969: 3966: 3958: 3954: 3950: 3946: 3942: 3937: 3924: 3919: 3911: 3908: 3903: 3899: 3895: 3891: 3884: 3881: 3873: 3869: 3853: 3850: 3847: 3844: 3841: 3838: 3835: 3832: 3829: 3822:which yields 3809: 3806: 3803: 3800: 3797: 3794: 3791: 3783: 3778: 3776: 3772: 3751: 3747: 3737: 3731: 3726: 3722: 3718: 3712: 3706: 3703: 3695: 3679: 3676: 3670: 3666: 3662: 3659: 3653: 3647: 3643: 3639: 3616: 3613: 3610: 3607: 3598: 3582: 3578: 3569: 3561: 3556: 3552: 3548: 3545: 3542: 3534: 3518: 3515: 3509: 3505: 3501: 3478: 3475: 3472: 3458: 3456: 3452: 3448: 3444: 3440: 3436: 3432: 3408: 3405: 3402: 3399: 3396: 3393: 3377: 3373: 3361: 3336: 3333: 3330: 3327: 3324: 3321: 3305: 3301: 3289: 3277: 3276: 3275: 3273: 3269: 3265: 3262:Given a root 3260: 3258: 3254: 3250: 3246: 3228: 3222: 3219: 3216: 3212: 3207: 3204: 3196: 3191: 3188: 3184: 3180: 3177: 3174: 3171: 3166: 3163: 3159: 3155: 3152: 3149: 3144: 3140: 3136: 3131: 3127: 3119: 3118: 3117: 3115: 3111: 3107: 3103: 3099: 3095: 3091: 3087: 3083: 3079: 3060: 3052: 3048: 3039: 3034: 3017: 3009: 3005: 2996: 2977: 2969: 2965: 2956: 2952: 2933: 2925: 2921: 2911: 2909: 2905: 2901: 2897: 2893: 2877: 2874: 2871: 2868: 2848: 2845: 2842: 2839: 2830: 2828: 2824: 2814: 2813:can be made. 2812: 2808: 2804: 2800: 2796: 2775: 2767: 2764: 2759: 2755: 2751: 2747: 2740: 2737: 2730: 2729: 2728: 2726: 2722: 2706: 2703: 2700: 2697: 2694: 2691: 2688: 2680: 2676: 2672: 2652: 2649: 2646: 2641: 2637: 2628: 2620: 2615: 2611: 2603: 2602: 2601: 2599: 2596:and whether 4 2583: 2580: 2576: 2571: 2568: 2563: 2554: 2551:). For each 2550: 2546: 2542: 2532: 2530: 2509: 2491: 2487: 2484: 2480: 2463: 2458: 2455: 2450: 2429: 2426: 2422: 2417: 2414: 2409: 2400: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2353: 2347: 2344: 2341: 2338: 2335: 2332: 2329: 2313: 2309: 2297: 2285: 2284: 2283: 2264: 2260: 2246: 2242: 2238: 2218: 2215: 2212: 2207: 2203: 2194: 2186: 2181: 2177: 2169: 2168: 2167: 2147: 2141: 2138: 2135: 2127: 2123: 2119: 2114: 2112: 2108: 2104: 2099: 2097: 2093: 2089: 2085: 2081: 2077: 2072: 2070: 2066: 2062: 2051: 2049: 2028: 2023: 2020: 2017: 2014: 2011: 2008: 2003: 1998: 1995: 1992: 1989: 1986: 1975: 1971: 1967: 1962: 1959: 1949: 1947: 1943: 1939: 1935: 1931: 1927: 1911: 1908: 1905: 1902: 1882: 1879: 1876: 1873: 1864: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1814: 1811: 1808: 1805: 1796: 1794: 1790: 1786: 1781: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1727: 1724: 1721: 1701: 1698: 1695: 1692: 1684: 1679: 1677: 1673: 1669: 1665: 1663: 1656: 1652: 1648: 1644: 1640: 1624: 1621: 1618: 1615: 1612: 1607: 1603: 1599: 1594: 1590: 1581: 1577: 1573: 1569: 1565: 1542: 1538: 1530: 1527: 1524: 1519: 1515: 1511: 1506: 1502: 1498: 1495: 1488: 1487: 1486: 1484: 1479: 1477: 1453: 1450: 1445: 1441: 1434: 1430: 1426: 1416: 1415: 1414: 1412: 1408: 1404: 1400: 1396: 1392: 1387: 1373: 1370: 1367: 1359: 1355: 1351: 1333: 1329: 1325: 1302: 1299: 1296: 1291: 1287: 1283: 1280: 1277: 1272: 1268: 1261: 1257: 1253: 1247: 1244: 1241: 1236: 1232: 1225: 1221: 1217: 1207: 1206: 1205: 1189: 1185: 1176: 1172: 1169:be the point 1154: 1150: 1126: 1119: 1115: 1106: 1103: 1100: 1097: 1090: 1089: 1088: 1086: 1070: 1067: 1059: 1055: 1051: 1048: 1019: 1016: 1011: 1006: 1002: 999: 993: 989: 983: 978: 973: 968: 964: 961: 956: 950: 945: 940: 935: 932: 929: 926: 923: 920: 915: 911: 903: 902: 901: 899: 881: 877: 854: 850: 841: 837: 833: 815: 811: 802: 799:that divides 784: 779: 776: 768: 758: 756: 751: 749: 745: 741: 736: 734: 729: 727: 723: 705: 700: 696: 693: 687: 683: 677: 667: 663: 659: 654: 652: 648: 644: 628: 620: 616: 602: 586: 581: 573: 570: 567: 564: 561: 556: 552: 548: 543: 539: 530: 526: 521: 518: 502: 491: 487: 475: 453: 440: 436: 413: 411: 393: 389: 385: 380: 376: 366: 364: 360: 356: 352: 348: 344: 339: 325: 322: 319: 299: 291: 287: 271: 268: 265: 245: 242: 239: 210: 207: 204: 196: 193: 190: 181: 174: 173: 172: 170: 169:heuristically 166: 162: 152: 138: 118: 115: 112: 104: 99: 97: 93: 89: 85: 81: 77: 73: 71: 70:H. W. Lenstra 67: 61: 56: 52: 48: 44: 40: 38: 33: 19: 9616:Prym variety 9590:Stable curve 9580:Hodge bundle 9570:ELSV formula 9372:Fermat curve 9329:Plane curves 9292:Higher genus 9278: 9267:Applications 9192:Modular form 9071: 8753: 8736: 8728: 8647:Miller–Rabin 8629: 8622: 8615: 8610:Lucas–Lehmer 8608: 8588: 8460: 8359: 8341: 8336: 8295: 8284: 8279: 8252: 8232:. Retrieved 8225:the original 8212: 8204: 8188: 8157: 8127: 8096: 8089: 8062: 8058: 8032: 8027: 8018: 7992: 7990: 7985: 7954: 7952: 7947: 7916: 7912: 7881: 7877: 7875: 7870: 7866: 7833: 7802: 7798: 7796: 7620: 7616: 7612: 7608: 7604: 7602: 7503: 7502: 7371: 7214: 7213: 7130: 7029: 6920: 6799:, and find 6724: 6723: 6700: 6577: 6576:= 1, 2, ..., 6573: 6522:, such that 6519: 6515: 6511: 6507: 6503: 6403:and suppose 6374: 6340: 6338: 6240: 6236: 6232: 6228: 6224: 6220: 6216: 6212: 6204: 6197: 6047: 5981: 5745: 5741: 5739: 5729: 5685: 5681: 5677: 5579: 5488: 5425: 5423: 5240: 5237:Conjecture 2 5232: 5155: 5151: 5149: 5144: 5142: 4995: 4964: 4956: 4879: 4869: 4865: 4863: 4820: 4816: 4814: 4731: 4584: 4580: 4578: 4490: 4405: 4317: 4315: 4135: 4131: 4129: 4124: 4120: 4118: 4113: 4111: 4047: 3956: 3952: 3948: 3944: 3940: 3938: 3871: 3867: 3781: 3779: 3774: 3770: 3599: 3532: 3464: 3454: 3450: 3446: 3442: 3438: 3434: 3430: 3428: 3271: 3267: 3263: 3261: 3256: 3252: 3244: 3243: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3085: 3081: 3077: 3037: 3035: 2954: 2950: 2912: 2903: 2899: 2895: 2892:j-invariants 2831: 2826: 2820: 2810: 2806: 2802: 2798: 2797:and a point 2794: 2792: 2724: 2720: 2678: 2674: 2668: 2597: 2552: 2548: 2544: 2540: 2538: 2528: 2489: 2485: 2483:class number 2477:denotes the 2398: 2396: 2244: 2240: 2236: 2234: 2125: 2124:, such that 2121: 2118:discriminant 2115: 2110: 2106: 2102: 2100: 2095: 2091: 2087: 2083: 2079: 2075: 2073: 2064: 2060: 2057: 2047: 1973: 1969: 1965: 1963: 1957: 1955: 1945: 1941: 1937: 1929: 1925: 1865: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1797: 1792: 1788: 1784: 1782: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1741: 1685:in the form 1682: 1680: 1675: 1671: 1667: 1661: 1658: 1654: 1650: 1642: 1638: 1579: 1575: 1571: 1567: 1563: 1561: 1482: 1480: 1475: 1473: 1413:will yield: 1410: 1406: 1402: 1398: 1394: 1390: 1388: 1357: 1353: 1349: 1317: 1174: 1170: 1141: 1084: 1034: 839: 835: 831: 800: 766: 764: 754: 752: 747: 743: 739: 737: 732: 730: 725: 721: 665: 661: 657: 655: 650: 646: 600: 528: 524: 522: 516: 419: 409: 367: 340: 231: 158: 100: 87: 74: 35: 29: 9491:Polar curve 8903:Pollard rho 8860:Goldschmidt 8594:Pocklington 8584:Baillie–PSW 8476:Prime Pages 8448:and Morain. 8424:0912.5279v1 8137:Prime Pages 8031:Top, Jaap, 7876:This means 7442:, where 4819:= (6,6) on 4322:J-invariant 1666:, provided 1318:by (1), as 1177:. Thus, on 416:Proposition 363:class field 351:certificate 58: [ 32:mathematics 9486:Dual curve 9114:Topics in 9015:Cornacchia 9010:Chakravala 8558:algorithms 8234:2010-01-22 7999:References 7919:has order 7884:has order 7801:is prime, 7131:Calculate 6855:such that 6755:such that 6375:Theorem 4. 6213:Theorem 3. 6048:Theorem 2. 5982:Theorem 1. 4961:Conjecture 4872:is prime. 4127:is prime. 3531:, and if 4 3425:Discussion 2719:. Now if 842:. Define 803:. Define 757:is prime. 728:such that 347:Goldwasser 47:Joe Kilian 9599:Morphisms 9347:Bitangent 8989:Berlekamp 8946:Euclidean 8834:Euclidean 8814:Toom–Cook 8809:Karatsuba 8510:, a free 8462:MathWorld 8402:− 8328:118191463 8135:from the 7797:Thus, if 7779:− 7770:⋅ 7764:− 7738:− 7673:− 7524:≡ 7465:− 7459:≤ 7453:≤ 7354:− 7176:∈ 7110:− 6948:− 6880:− 6810:∈ 6784:− 6738:∈ 6598:≡ 6438:λ 6426:λ 6416:≤ 6385:λ 6377:Choose a 6299:≅ 6174:− 6156:⊕ 6141:≅ 6078:≅ 5956:≥ 5942:∈ 5861:≡ 5808:∈ 5779:− 5707:− 5661:≥ 5647:∈ 5615:− 5554:ϵ 5546:for some 5529:ϵ 5512:⁡ 5468:⁡ 5397:− 5386:⁡ 5340:≥ 5122:⁡ 5080:≥ 5068:π 5065:− 5043:π 5008:∃ 4973:π 4930:⁡ 4924:⁡ 4909:− 4894:− 4845:∞ 4694:≡ 4658:≡ 4457:≡ 4432:− 4369:≡ 4340:− 4337:≡ 4095:∞ 4087:≠ 3845:− 3807:− 3773:= 25 and 3769:and thus 3707:⋅ 3660:− 3614:− 3334:− 3220:− 3150:− 2875:− 2872:≠ 2846:− 2843:≠ 2704:− 2555:check if 2375:− 2357:¯ 2354:π 2348:− 2345:π 2342:− 2235:For some 2151:¯ 2148:π 2142:π 1996:− 1909:≠ 1812:≠ 1754:(a, x, y) 1725:≥ 1525:− 1512:− 1499:≡ 1451:≠ 1371:∣ 1104:≡ 1035:and thus 979:≤ 921:≤ 780:≤ 599:Consider 454:∗ 355:recursion 323:− 272:ε 240:ε 232:for some 211:ε 194:⁡ 161:algorithm 116:± 9706:Category 8956:Lehmer's 8850:Chunking 8837:division 8766:Fermat's 8502:GMP-ECPP 8349:Archived 8155:(2013). 7152:′ 7042:′ 6996:≢ 6824:≢ 6237:modulo p 6205:modulo p 5822:≢ 5740:We take 3110:modulo N 3108:) roots 3036:Now, if 2727:of size 2535:The test 1863:triple. 1485:and set 1204:we have 900:we know 641:use the 9659:Tacnode 9644:Crunode 9072:Italics 8994:Kunerth 8974:Cipolla 8855:Fourier 8824:FĂŒrer's 8718:Euler's 8708:Dixon's 8631:PĂ©pin's 8496:PARI/GP 8490:"Primo" 8474:at the 8081:2152935 7422:for an 6727:Choose 3247:is any 2993:is the 2894:of the 2442:(where 1866:Now if 1861:a, x, y 1483:a, x, y 94:or the 9639:Acnode 9563:Moduli 9054:Schoof 8941:Binary 8845:Binary 8781:Shor's 8599:Fermat 8326:  8267:  8165:  8115:  8079:  7165:. If 7073:is on 6921:Take 6632:where 5850:where 5630:where 4579:where 3255:, and 1851:. If 1714:where 896:. By 390:104824 381:104824 80:Fermat 8875:Short 8604:Lucas 8508:LiDIA 8446:Atkin 8419:arXiv 8324:S2CID 8320:(PDF) 8228:(PDF) 8221:(PDF) 8101:(PDF) 8077:JSTOR 7555:then 7480:then 7191:then 7030:Then 6518:) on 6502:Then 6227:) on 6200:is a 5977:odd. 5931:with 3777:= 1. 3449:, an 1772:) so 1657:over 1360:(and 761:Proof 753:Then 738:(2) ( 603:over 343:Atkin 290:group 62:] 9649:Cusp 8870:Long 8804:Long 8265:ISBN 8163:ISBN 8113:ISBN 7407:> 7291:for 7217:Set 6985:and 6572:for 6448:> 6388:> 6215:Let 5797:for 5557:> 5268:and 5034:> 4965:Let 4429:1728 4176:> 3970:> 3885:> 3854:143. 3251:mod 3223:1728 3116:as: 2861:and 2741:> 2677:and 2397:For 2237:a, b 2082:and 1895:and 1787:and 1768:(or 1562:Now 1142:Let 1017:< 735:= 0 731:(1) 656:Let 523:Let 515:and 243:> 45:and 9034:LLL 8880:SRT 8739:+ 1 8731:− 1 8579:APR 8574:AKS 8512:C++ 8444:by 8257:doi 8105:doi 8067:doi 7882:nQ' 7836:is 7611:on 7535:mod 7506:If 7504:(3) 7380:gcd 7372:If 7215:(2) 7007:mod 6968:mod 6835:mod 6725:(1) 6609:mod 6530:gcd 6510:= ( 6433:and 6219:= ( 6112:or 5868:mod 5829:mod 5509:log 5446:log 5383:log 5106:log 4927:log 4921:log 4831:143 4796:167 4792:mod 4784:149 4775:140 4709:167 4705:mod 4697:149 4673:167 4669:mod 4661:140 4602:167 4472:167 4468:mod 4460:158 4450:167 4446:mod 4384:167 4380:mod 4372:107 4362:167 4358:mod 4344:960 4275:143 4239:143 4183:167 4173:143 4119:If 3836:167 3713:167 3671:167 3479:167 3349:or 2906:as 2247:on 1798:If 1566:= ( 1539:mod 1386:). 1111:mod 1043:gcd 765:If 724:on 645:on 578:mod 359:CPU 191:log 30:In 9708:: 9038:KZ 9036:; 8518:CM 8459:. 8373:^ 8344:, 8322:. 8307:^ 8287:, 8263:. 8255:. 8243:^ 8196:^ 8187:, 8177:^ 8144:^ 8111:. 8075:. 8063:61 8061:. 8057:. 8043:^ 8035:, 8007:^ 7880:= 7873:. 7869:| 7834:Q' 7803:Q' 7782:1. 7369:. 7128:. 7027:. 6918:. 6031:1. 5732:(F 5676:, 5450:10 5230:. 5147:. 4295:11 4283:13 4259:13 4247:11 4134:= 3959:, 3848:25 3738:43 3723:25 3663:43 3617:43 3597:. 3457:. 2120:, 1970:kq 1853:kP 1789:kP 1785:mP 1780:. 1454:0. 1350:mP 733:mP 653:. 412:. 410:CM 60:de 34:, 9107:e 9100:t 9093:v 9040:) 9032:( 8737:p 8729:p 8547:e 8540:t 8533:v 8478:. 8465:. 8427:. 8421:: 8405:1 8399:n 8394:k 8390:2 8367:. 8330:. 8273:. 8259:: 8237:. 8171:. 8139:. 8121:. 8107:: 8083:. 8069:: 7993:n 7986:N 7970:1 7966:S 7955:N 7948:N 7932:k 7928:2 7917:Q 7913:N 7897:k 7893:2 7878:Q 7871:n 7867:d 7854:d 7849:k 7845:2 7818:k 7814:2 7799:N 7776:= 7773:1 7767:1 7761:= 7757:) 7752:N 7746:2 7742:y 7733:3 7729:x 7722:( 7717:) 7712:N 7709:x 7704:( 7700:= 7696:) 7691:N 7687:x 7681:2 7677:y 7668:3 7664:x 7656:( 7652:= 7648:) 7643:N 7640:m 7635:( 7621:Q 7617:x 7613:E 7609:Q 7605:E 7583:N 7563:N 7542:) 7539:N 7532:( 7527:0 7519:k 7515:S 7488:N 7468:1 7462:k 7456:i 7450:1 7430:i 7410:1 7404:) 7400:N 7397:, 7392:i 7388:S 7383:( 7357:1 7351:k 7348:, 7345:. 7342:. 7339:. 7336:, 7333:3 7330:, 7327:2 7324:, 7321:1 7302:= 7299:i 7277:i 7273:S 7252:Q 7230:i 7226:S 7199:N 7179:E 7173:Q 7149:Q 7145:n 7142:= 7139:Q 7116:x 7113:m 7105:3 7101:x 7097:= 7092:2 7088:y 7084:: 7081:E 7061:) 7058:y 7055:, 7052:x 7049:( 7046:= 7039:Q 7014:) 7011:N 7004:( 6999:0 6993:m 6973:N 6962:x 6956:2 6952:y 6943:3 6939:x 6932:= 6929:m 6906:1 6903:= 6899:) 6894:N 6888:2 6884:y 6875:3 6871:x 6864:( 6842:) 6839:2 6832:( 6827:0 6821:y 6818:, 6814:Z 6807:y 6787:1 6781:= 6777:) 6772:N 6769:x 6764:( 6742:Z 6735:x 6709:N 6692:. 6680:x 6677:= 6672:0 6668:S 6645:i 6641:S 6620:, 6616:) 6613:p 6606:( 6601:0 6593:k 6589:S 6578:k 6574:i 6560:1 6557:= 6553:) 6550:p 6547:, 6542:i 6538:S 6534:( 6520:E 6516:y 6514:, 6512:x 6508:Q 6504:p 6486:. 6481:2 6476:) 6472:1 6469:+ 6463:4 6459:p 6453:( 6443:p 6422:p 6413:n 6391:1 6356:k 6352:2 6341:n 6324:. 6319:n 6314:k 6310:2 6304:Z 6296:) 6291:p 6286:F 6281:( 6278:E 6256:k 6252:2 6241:Q 6233:x 6229:E 6225:y 6223:, 6221:x 6217:Q 6207:. 6198:m 6182:n 6177:1 6171:k 6167:2 6161:Z 6151:2 6146:Z 6138:) 6133:p 6128:F 6123:( 6120:E 6098:n 6093:k 6089:2 6083:Z 6075:) 6070:p 6065:F 6060:( 6057:E 6028:+ 6025:p 6022:= 6018:| 6014:) 6009:p 6004:F 5999:( 5996:E 5992:| 5965:n 5962:, 5959:2 5953:k 5950:, 5946:Z 5939:k 5919:, 5916:n 5911:k 5907:2 5903:= 5900:1 5897:+ 5894:p 5872:4 5864:3 5858:p 5838:, 5833:p 5825:0 5819:m 5816:, 5812:Z 5805:m 5785:x 5782:m 5774:3 5770:x 5766:= 5761:2 5757:y 5746:E 5742:E 5736:) 5734:N 5730:E 5710:1 5704:n 5699:k 5695:2 5682:n 5678:n 5664:2 5658:k 5655:, 5651:Z 5644:n 5641:, 5638:k 5618:1 5612:n 5607:k 5603:2 5599:= 5596:N 5560:0 5534:) 5526:+ 5523:6 5519:) 5515:N 5506:( 5503:( 5500:O 5474:) 5471:n 5461:2 5457:c 5453:+ 5442:( 5439:O 5426:N 5405:2 5401:c 5393:) 5389:x 5380:( 5375:x 5368:1 5364:c 5343:2 5337:x 5334:, 5331:] 5326:x 5323:2 5318:+ 5315:x 5312:, 5309:x 5306:[ 5281:2 5277:c 5254:1 5250:c 5218:) 5213:4 5209:k 5205:( 5202:O 5182:) 5177:2 5173:k 5169:( 5166:O 5156:k 5152:N 5145:x 5125:x 5115:1 5111:c 5098:x 5091:2 5087:c 5077:) 5074:x 5071:( 5062:) 5057:x 5052:+ 5049:x 5046:( 5040:: 5037:0 5029:2 5025:c 5021:, 5016:1 5012:c 4996:x 4982:) 4979:x 4976:( 4941:) 4933:n 4917:1 4912:N 4905:2 4901:( 4897:O 4891:1 4870:N 4866:P 4850:. 4841:P 4837:= 4834:P 4821:E 4817:P 4799:) 4789:( 4781:+ 4778:x 4772:+ 4767:3 4763:x 4759:= 4754:2 4750:y 4746:: 4743:E 4712:) 4702:( 4687:k 4684:2 4676:) 4666:( 4651:k 4648:3 4641:0 4638:= 4631:r 4597:F 4585:c 4581:k 4575:, 4561:3 4557:c 4553:k 4550:2 4547:+ 4544:x 4539:2 4535:c 4531:k 4528:3 4525:+ 4520:3 4516:x 4512:= 4507:2 4503:y 4475:) 4465:( 4453:) 4443:( 4435:j 4425:j 4420:= 4417:k 4391:. 4387:) 4377:( 4365:) 4355:( 4348:3 4334:j 4318:P 4301:. 4298:P 4292:= 4289:P 4286:) 4279:/ 4272:( 4262:P 4256:= 4253:P 4250:) 4243:/ 4236:( 4211:2 4207:) 4203:1 4200:+ 4195:4 4191:/ 4187:1 4179:( 4151:i 4147:p 4136:m 4132:s 4125:N 4121:s 4114:P 4091:P 4084:P 4081:) 4076:i 4072:p 4067:/ 4063:m 4060:( 4048:s 4032:i 4028:p 4005:2 4001:) 3997:1 3994:+ 3989:4 3985:/ 3981:1 3977:N 3973:( 3967:s 3957:m 3953:s 3949:m 3945:q 3941:m 3925:. 3920:2 3916:) 3912:1 3909:+ 3904:4 3900:/ 3896:1 3892:N 3888:( 3882:q 3872:q 3868:m 3851:= 3842:1 3839:+ 3833:= 3830:m 3810:a 3804:1 3801:+ 3798:N 3795:= 3792:m 3782:m 3775:b 3771:a 3757:) 3752:2 3748:1 3744:( 3741:) 3735:( 3732:+ 3727:2 3719:= 3716:) 3710:( 3704:4 3680:1 3677:= 3674:) 3667:/ 3657:( 3654:= 3651:) 3648:N 3644:/ 3640:D 3637:( 3611:= 3608:D 3583:2 3579:b 3574:| 3570:D 3566:| 3562:+ 3557:2 3553:a 3549:= 3546:N 3543:4 3533:N 3519:1 3516:= 3513:) 3510:N 3506:/ 3502:D 3499:( 3476:= 3473:N 3455:q 3451:m 3447:E 3443:q 3439:q 3435:q 3431:q 3409:a 3406:+ 3403:1 3400:+ 3397:N 3394:= 3390:| 3386:) 3382:Z 3378:N 3374:/ 3369:Z 3365:( 3362:E 3358:| 3337:a 3331:1 3328:+ 3325:N 3322:= 3318:| 3314:) 3310:Z 3306:N 3302:/ 3297:Z 3293:( 3290:E 3286:| 3272:r 3268:E 3264:j 3257:r 3253:N 3245:c 3229:, 3217:j 3213:j 3208:= 3205:k 3197:, 3192:r 3189:3 3185:c 3181:k 3178:2 3175:+ 3172:x 3167:r 3164:2 3160:c 3156:k 3153:3 3145:3 3141:x 3137:= 3132:2 3128:y 3114:E 3106:D 3104:( 3102:h 3098:j 3094:N 3090:D 3086:D 3084:( 3082:h 3078:N 3064:) 3061:X 3058:( 3053:D 3049:H 3038:N 3021:) 3018:X 3015:( 3010:D 3006:H 2981:) 2978:X 2975:( 2970:D 2966:H 2955:D 2953:( 2951:h 2937:) 2934:X 2931:( 2926:D 2922:H 2904:D 2900:D 2898:( 2896:h 2878:4 2869:D 2849:3 2840:D 2827:D 2811:D 2807:m 2803:N 2799:P 2795:E 2776:2 2772:) 2768:1 2765:+ 2760:4 2756:/ 2752:1 2748:N 2744:( 2738:q 2725:q 2721:m 2707:a 2701:1 2698:+ 2695:N 2692:= 2689:m 2679:a 2675:D 2653:N 2650:4 2647:= 2642:2 2638:b 2633:| 2629:D 2625:| 2621:+ 2616:2 2612:a 2598:N 2584:1 2581:= 2577:) 2572:N 2569:D 2564:( 2553:D 2549:D 2547:( 2545:h 2541:D 2529:D 2515:) 2510:D 2505:( 2501:Q 2490:D 2488:( 2486:h 2464:) 2459:N 2456:D 2451:( 2430:1 2427:= 2423:) 2418:N 2415:D 2410:( 2399:N 2381:. 2378:a 2372:1 2369:+ 2366:N 2363:= 2339:1 2336:+ 2333:N 2330:= 2326:| 2322:) 2318:Z 2314:N 2310:/ 2305:Z 2301:( 2298:E 2294:| 2269:Z 2265:N 2261:/ 2256:Z 2245:E 2241:N 2219:N 2216:4 2213:= 2208:2 2204:b 2199:| 2195:D 2191:| 2187:+ 2182:2 2178:a 2139:= 2136:D 2126:D 2122:D 2111:E 2107:m 2103:E 2096:E 2092:P 2088:N 2084:q 2080:m 2076:N 2065:E 2061:m 2048:m 2034:] 2029:p 2024:2 2021:+ 2018:1 2015:+ 2012:p 2009:, 2004:p 1999:2 1993:1 1990:+ 1987:p 1984:[ 1974:E 1966:E 1958:E 1946:q 1942:q 1938:N 1930:q 1926:N 1912:0 1906:P 1903:k 1883:0 1880:= 1877:P 1874:m 1857:E 1849:m 1845:E 1841:m 1837:E 1833:N 1829:N 1815:0 1809:P 1806:m 1793:N 1778:N 1774:q 1770:N 1766:m 1762:q 1758:m 1750:E 1742:q 1728:2 1722:k 1702:q 1699:k 1696:= 1693:m 1683:m 1676:E 1672:N 1668:N 1662:N 1659:F 1655:E 1651:m 1643:E 1639:E 1625:b 1622:+ 1619:x 1616:a 1613:+ 1608:3 1604:x 1600:= 1595:2 1591:y 1580:E 1576:E 1572:y 1570:, 1568:x 1564:P 1546:) 1543:N 1536:( 1531:x 1528:a 1520:3 1516:x 1507:2 1503:y 1496:b 1476:N 1446:p 1442:P 1438:) 1435:q 1431:/ 1427:m 1424:( 1411:N 1407:p 1403:N 1399:P 1397:) 1395:q 1393:/ 1391:m 1374:N 1368:p 1358:N 1354:p 1334:p 1330:P 1326:m 1303:, 1300:0 1297:= 1292:p 1288:P 1284:m 1281:u 1278:= 1273:p 1269:P 1265:) 1262:q 1258:/ 1254:m 1251:( 1248:q 1245:u 1242:= 1237:p 1233:P 1229:) 1226:q 1222:/ 1218:m 1215:( 1190:p 1186:E 1175:p 1171:P 1155:p 1151:P 1127:. 1120:p 1116:m 1107:1 1101:q 1098:u 1085:u 1071:1 1068:= 1065:) 1060:p 1056:m 1052:, 1049:q 1046:( 1020:q 1012:2 1007:) 1003:1 1000:+ 994:4 990:N 984:( 974:2 969:) 965:1 962:+ 957:p 951:( 946:= 941:p 936:2 933:+ 930:1 927:+ 924:p 916:p 912:m 882:p 878:E 855:p 851:m 840:N 836:p 832:E 816:p 812:E 801:N 785:N 777:p 767:N 755:N 748:P 746:) 744:q 742:/ 740:m 726:E 722:P 706:2 701:) 697:1 694:+ 688:4 684:N 678:( 666:m 662:q 658:m 651:E 647:E 629:, 625:Z 621:N 617:/ 612:Z 601:E 587:. 582:N 574:b 571:+ 568:x 565:a 562:+ 557:3 553:x 549:= 544:2 540:y 529:E 525:N 517:E 503:, 500:) 496:Z 492:n 488:/ 483:Z 479:( 476:E 450:) 445:Z 441:n 437:/ 432:Z 428:( 394:5 386:+ 377:5 345:– 326:1 320:p 300:p 269:+ 266:4 246:0 216:) 208:+ 205:5 201:) 197:n 188:( 185:( 182:O 139:N 119:1 113:N 88:N 20:)

Index

Elliptic curve primality proving
mathematics
elliptic curve
Shafi Goldwasser
Joe Kilian
A. O. L. Atkin
François Morain
de
elliptic curves in factorization
H. W. Lenstra
Primality testing
Fermat
become unwieldy with large input
Baillie–PSW primality test
Miller–Rabin test
Pocklington primality test
algorithm
worst-case execution time
heuristically
primality tests
group
Atkin
Goldwasser
certificate
recursion
CPU
class field
usual addition law
Hasse's theorem on elliptic curves
Schoof's algorithm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑