Knowledge

Miller–Rabin primality test

Source 📝

2826: 1869: 1568: 2430: 1660: 2821:{\displaystyle {\begin{aligned}\Pr(\lnot P\mid M\!R_{k})&={\frac {\Pr(\lnot P\land M\!R_{k})}{\Pr(\lnot P\land M\!R_{k})+\Pr(P\land M\!R_{k})}}\\&={\frac {1}{1+{\frac {\Pr(M\!R_{k}\mid P)}{\Pr(M\!R_{k}\mid \lnot P)}}{\frac {\Pr(P)}{\Pr(\lnot P)}}}}\\&={\frac {1}{1+{\frac {1}{\Pr(M\!R_{k}\mid \lnot P)}}{\frac {\Pr(P)}{1-\Pr(P)}}}}\end{aligned}}} 1359: 4959: 1864:{\displaystyle {\begin{aligned}a^{{s^{0}}d}{\text{ mod }}n\rightarrow &137^{{2^{0}}55}{\text{ mod }}221\equiv 137^{55}\equiv 188{\text{. Since }}188\neq 1{\text{ and }}188\neq n-1{\text{, we continue.}}\\&137^{{2^{1}}55}{\text{ mod }}221\equiv 137^{110}\equiv 205\neq n-1\end{aligned}}} 1563:{\displaystyle {\begin{aligned}a^{{s^{0}}d}{\text{ mod }}n\rightarrow &174^{{2^{0}}55}{\text{ mod }}221\equiv 174^{55}\equiv 47{\text{. Since }}47\neq 1{\text{ and }}47\neq n-1{\text{, we continue.}}\\&174^{{2^{1}}55}{\text{ mod }}221\equiv 174^{110}\equiv 220=n-1\end{aligned}}} 4065:
In order to find factors more often, the same ideas can also be applied to the square roots of −1 (or any other number). This strategy can be implemented by exploiting knowledge from previous rounds of the Miller–Rabin test. In those rounds we may have identified a square root modulo
4752: 4443: 2963: 685:
However, a pre-selected set of a few small bases guarantees the identification of all composites up to a pre-computed maximum. This maximum is generally quite large compared to the bases. This gives very fast deterministic tests for small enough
4659: 588:
to an arbitrarily small rate, by combining the outcome of as many independently chosen bases as necessary to achieve the said rate. This is the Miller–Rabin test. There seems to be diminishing returns in trying many bases, because if
5157: 4561: 3768:). Hence, if factoring is a goal, these gcd calculations can be inserted into the algorithm at little additional computational cost. This leads to the following pseudocode, where the added or changed code is highlighted: 3559:
Other criteria of this sort, often more efficient (fewer bases required) than those shown above, exist. They give very fast deterministic primality tests for numbers in the appropriate range, without any assumptions.
553:). However no simple way of finding a witness is known. A naïve solution is to try all possible bases, which yields an inefficient deterministic algorithm. The Miller test is a more efficient variant of this (see 1123: 1873:
Hence 137 is a witness for the compositeness of 221, and 174 was in fact a strong liar. Note that this tells us nothing about the factors of 221 (which are 13 and 17). However, the example with 341 in
864: 95:
Similarly to the Fermat and Solovay–Strassen tests, the Miller–Rabin primality test checks whether a specific property, which is known to hold for prime values, holds for the number under testing.
2435: 1665: 1364: 1225: 1019: 281: 4954:{\displaystyle \Pr(\lnot P\mid M\!R_{k})<\Pr(M\!R_{k}\mid \lnot P)\left({\tfrac {1}{\Pr(P)}}-1\right)\leq 4^{-k}\left({\tfrac {\ln 2}{2}}b-1+{\mathcal {O}}\left(b^{-1}\right)\right).} 4298: 1607: 5019: 465: 6592: 3019: 2418: 2350: 3571:‐bit numbers). However, no finite set of bases is sufficient for all composite numbers. Alford, Granville, and Pomerance have shown that there exist infinitely many composite numbers 217: 1265: 549:
Thankfully, no composite number is a strong pseudoprime to all bases at the same time (contrary to the Fermat primality test for which Fermat pseudoprimes to all bases exist: the
335: 4317: 2845: 1323: 384: 2972:
of the input number. In the general case, as said earlier, this distribution is controlled by a cryptographic adversary, thus unknown, so we cannot deduce much about
4744: 3353:
which give results that do not rely on unproven assumptions. For theoretical purposes requiring a deterministic polynomial time algorithm, it was superseded by the
1653: 1352: 1178: 5211:
For instance, in 1995, Arnault gives a 397-digit composite number for which all bases less than 307 are strong liars; this number was reported to be prime by the
6596: 4567: 4157:
The Miller–Rabin test can be used to generate strong probable primes, simply by drawing integers at random until one passes the test. This algorithm terminates
3380:
is not necessary, as much smaller sets of potential witnesses are known to suffice. For example, Pomerance, Selfridge, Wagstaff and Jaeschke have verified that
1627: 1285: 4307:
As any prime number passes the test, the probability of being prime gives a coarse lower bound to the probability of passing the test. If we draw odd integers
2226:, whose worst‐case error bound is 2. Moreover, the Miller–Rabin test is strictly stronger than the Solovay–Strassen test in the sense that for every composite 6104: 5077: 2831:
In the last equation, we simplified the expression using the fact that all prime numbers are correctly reported as strong probable primes (the test has no
4470: 6137: 3346: 6072: 5859:"Sequence A014233 (Smallest odd number for which Miller–Rabin primality test on bases <= n-th prime does not reveal compositeness)" 2420:: the probability that a number which has been declared as a strong probable prime is in fact composite. These two probabilities are related by 5235:, composite numbers that these libraries declared prime, thus demonstrating that they were not implemented with an adversarial context in mind. 2253:, the probability for a composite number to be declared probably prime is often significantly smaller than 4. For instance, for most numbers 1889: 3312:
The full power of the generalized Riemann hypothesis is not needed to ensure the correctness of the test: as we deal with subgroups of even
3065:
of the input. To improve the running time, the challenge is then to lower the limit as much as possible while keeping the test reliable.
65:
deterministic primality test. Its probabilistic variant remains widely used in practice, as one of the simplest and fastest tests known.
2175:
The error made by the primality test is measured by the probability that a composite number is declared probably prime. The more bases
2968:
Hence this conditional probability is related not only to the error measure discussed above — which is bounded by 4 — but also to the
675:, choosing bases at random is essential, as we don't know the distribution of witnesses and strong liars among the numbers 2, 3, ..., 6461: 6097: 5864: 3497: 1027: 5998: 6329: 3345:
gives sufficient confidence while running much faster. It is also slower in practice than commonly used proof methods such as
1141:. At the end, either one of the terms is congruent to −1, or all of them are congruent to 1, and in particular the last term, 5934: 5502: 17: 1125:
is a square root of the previous term. Since the first term is congruent to 1, the second term is a square root of 1 modulo
778: 6271: 6090: 3327: 2154: 6200: 5590: 4054:
is a pseudoprime base 2, but not a strong pseudoprime base 2. By computing a gcd at this stage, we find a factor of 341:
2223: 55: 6377: 3341:
The Miller test is not used in practice. For most purposes, proper use of the probabilistic Miller–Rabin test or the
2289:
adversary might send a carefully chosen pseudoprime in order to defeat the primality test. In such contexts, only the
390:
For each value of r, the value of the expression may be calculated using the value obtained for the previous value of
5464: 761: 1183: 962: 224: 6324: 6286: 6261: 6175: 5327:
Artjuhov, M. M. (1966–1967), "Certain criteria for primality of numbers connected with the little Fermat theorem",
5258: 3597: 2296:
The above error measure is the probability for a composite number to be declared as a strong probable prime after
6466: 6357: 6276: 6266: 6168: 4252: 1575: 4971: 415: 6294: 6142: 3342: 2975: 2374: 2306: 173: 6547: 4308: 6542: 6509: 6471: 6372: 1230: 6067: 4438:{\displaystyle \Pr(M\!R_{k})>\Pr(P)={\frac {\pi \left(2^{b}\right)-\pi \left(2^{b-1}\right)}{2^{b-2}}}} 4241:
is infinite, since the outer loop may never terminate, but that happens with probability zero. As per the
3532:
Sorenson and Webster verify the above and calculate precise results for these larger than 64‐bit results:
6423: 3495:
Using the work of Feitsma and Galway enumerating all base 2 pseudoprimes in 2010, this was extended (see
3119: 2958:{\displaystyle \Pr(\lnot P\mid M\!R_{k})<\Pr(M\!R_{k}\mid \lnot P)\left({\tfrac {1}{\Pr(P)}}-1\right)} 76: 5227:
For instance, in 2018, Albrecht et al. were able to construct, for many cryptographic libraries such as
297: 6588: 6578: 6537: 6313: 6307: 6281: 6152: 6077: 6047: 2357: 2105: 409: 6573: 6514: 3114:)*, one of them must lie outside the said subgroup, hence must be a witness for the compositeness of 3100: 1908:
determines the accuracy of the test. The greater the number of rounds, the more accurate the result.
1290: 340: 6652: 6476: 6349: 6195: 6147: 5024:
Using the fact that the Miller–Rabin test itself often has an error bound much smaller than 4 (see
4161:(since at each iteration there is a chance to draw a prime number). The pseudocode for generating 3350: 2969: 2282: 565: 4664:
Hence we can expect the generator to run no more Miller–Rabin tests than a number proportional to
619: 6491: 5579: 5218:
function, because it implemented the Miller–Rabin test with the specific bases 2, 3, 5, 7 and 11.
4449: 3618: 2301: 2136: 72: 68: 6382: 6657: 6602: 6552: 6532: 5950: 5364: 4242: 2132: 1138: 5794:"Finding primes & proving primality — 2.3: Strong probable-primality and a practical test" 593:
is a pseudoprime to some base, then it seems more likely to be a pseudoprime to another base.
6612: 6253: 6228: 6157: 5818:
Zhang, Zhenxiang & Tang, Min (2003), "Finding strong pseudoprimes to several bases. II",
4238: 3995: 508: 51: 4720: 6607: 6499: 6481: 6456: 6418: 6162: 6013: 5983: 5827: 5755: 5736:
Sorenson, Jonathan; Webster, Jonathan (2015). "Strong Pseudoprimes to Twelve Prime Bases".
5624: 5580:
Martin R. Albrecht; Jake Massimo; Kenneth G. Paterson; Juraj Somorovsky (15 October 2018).
5547: 5444: 5340: 4710:
The error measure of this generator is the probability that it outputs a composite number.
4654:{\displaystyle {\tfrac {1}{\Pr(P)}}={\tfrac {\ln 2}{2}}b+{\mathcal {O}}\left(b^{-1}\right)} 4457: 4453: 1632: 1331: 1157: 757: 84: 8: 6617: 6583: 6504: 6408: 6367: 6362: 6339: 6243: 3320: 3313: 2131:
is the number of rounds performed; thus this is an efficient, polynomial-time algorithm.
1130: 753: 475: 6017: 5913: 5831: 5759: 5628: 5551: 5487: 6448: 6395: 6392: 6233: 6182: 6132: 5901: 5771: 5745: 5718: 5678: 5642: 5563: 5532: 5368: 5278: 3354: 1612: 1270: 529: 164: 6189: 6061: 5974: 5392: 5355: 3042:
The Miller–Rabin algorithm can be made deterministic by trying all possible values of
3029:), the distribution is chosen by the generator itself, so we can exploit this result. 725:, always yield 1. It remains to show that there are no other square roots of 1 modulo 6568: 6524: 6238: 6215: 6044: 5930: 5498: 5460: 5360: 5314: 5152:{\displaystyle \left({\frac {1}{7}}b^{\frac {15}{4}}2^{-{\frac {b}{2}}}\right)4^{-k}} 3125: 886: 550: 5921:, Lecture Notes in Computer Science, vol. 877, Springer-Verlag, pp. 1–16, 5722: 5713: 5696: 5282: 3563:
There is a small list of potential witnesses for every possible input size (at most
1137:. If it is congruent to −1, we are done. Otherwise, it is congruent to 1 and we can 6413: 6021: 5969: 5922: 5905: 5835: 5775: 5763: 5708: 5668: 5632: 5594: 5555: 5440: 5420: 5387: 5310: 5298: 5270: 5212: 5040:
derived several error bounds for the generator, with various classes of parameters
141: 80: 6026: 5840: 4556:{\displaystyle \Pr(P)={\tfrac {2}{\ln 2}}b^{-1}+{\mathcal {O}}\left(b^{-3}\right)} 6403: 6302: 5979: 5336: 3317: 62: 5520: 5409:"Constructing Carmichael Numbers Which Are Strong Pseudoprimes to Several Bases" 5063:≥ 51, while Ronald Burthe Jr. completed the proof with the remaining values 2 ≤ 5029: 3505:), with the first result later shown using different methods in Jiang and Deng: 6433: 6334: 6319: 6223: 6124: 5909: 5589:. ACM SIGSAC Conference on Computer and Communications Security 2018. Toronto: 5528: 5524: 5452: 5356: 5037: 5033: 4668:. Taking into account the worst-case complexity of each Miller–Rabin test (see 4246: 3134: 2832: 2371:
rounds. We are often interested instead in the inverse conditional probability
2110: 585: 487: 155: 47: 39: 6082: 6078:
Miller–Rabin primality test in JavaScript using arbitrary precision arithmetic
5483: 1609:, either 221 is prime, or 174 is a strong liar for 221. We try another random 6646: 6428: 6113: 6042: 5926: 5793: 4158: 3058:
trials, hence the running time would be exponential with respect to the size
2421: 519:
However, this property is not an exact characterization of prime numbers. If
5954: 5598: 3122:(ERH), it is known that the group is generated by its elements smaller than 6438: 5495:
Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography
5425: 5408: 5194:
The Miller–Rabin test is often incorrectly said to have been discovered by
4746:(shown just before), this error measure can be given a coarse upper bound: 3621:
calculations into the above algorithm, we can sometimes obtain a factor of
2286: 2261:
which invalidate this upper bound vanishes as we consider larger values of
737: 5274: 4169:
strong probable primes (with the most significant bit set) is as follows:
2269:
case has a much better accuracy than 4, a fact which can be exploited for
5854: 2836: 5767: 3141:. This leads to the following primality testing algorithm, known as the 2179:
are tried, the better the accuracy of the test. It can be shown that if
5682: 5646: 5581: 5567: 5448: 2235: 1901: 730: 5615:(1990), "Explicit bounds for primality testing and related problems", 6116: 6052: 5948: 5659:
Jaeschke, Gerhard (1993), "On strong pseudoprimes to several bases",
5612: 3138: 43: 5673: 5637: 5559: 2277:). However, such improved error bounds should not be relied upon to 523:
is composite, it may nonetheless be a strong probable prime to base
5880: 5750: 5583:
Prime and Prejudice: Primality Testing Under Adversarial Conditions
5067:≤ 50). Again this simple bound can be improved for large values of 3081: 4713:
Using the relation between conditional probabilities (shown in an
3133:, which was already noted by Miller. The constant involved in the 5533:"Average case error estimates for the strong probable prime test" 5232: 5228: 5198:
as soon as 1967; a reading of Artjuhov's paper (particularly his
5048:. These error bounds allow an implementor to choose a reasonable 564:
Another solution is to pick a base at random. This yields a fast
572:
is composite, most bases are witnesses, so the test will detect
1877:
shows how these calculations can sometimes produce a factor of
760:
than its degree (this theorem follows from the existence of an
6062:
Interactive Online Implementation of the Deterministic Variant
5202:) shows that he actually discovered the Solovay–Strassen test. 5071:. For instance, another bound derived by the same authors is: 3998:
algorithm because it is only able to find factors for numbers
2257:, this probability is bounded by 8; the proportion of numbers 5515: 5513: 5459:(3rd ed.). MIT Press and McGraw-Hill. pp. 968–971. 3551:< 3,317,044,064,679,887,385,961,981, it is enough to test 312: 71:
discovered the test in 1976. Miller's version of the test is
5999:"Further investigations with the strong probable prime test" 3021:. However, in the case when we use the Miller–Rabin test to 923:
is an odd prime, then it is a strong probable prime to base
5912:(1994), "On the difficulty of finding reliable witnesses", 5881:"Deterministic variants of the Miller–Rabin primality test" 5858: 3540:< 318,665,857,834,031,151,167,461, it is enough to test 3501: 1118:{\displaystyle a^{2^{s}d},a^{2^{s-1}d},\dots ,a^{2d},a^{d}} 132:
is an odd positive integer. Let’s consider an integer 
5510: 5439: 4672:), the expected running time of the generator with inputs 3524:< 18,446,744,073,709,551,616 = 2, it is enough to test 404:
is an odd prime, it passes the test because of two facts:
5301:(1980), "Probabilistic algorithm for testing primality", 4166: 3583:. They also argue heuristically that the smallest number 5900: 5519: 5261:(1976), "Riemann's Hypothesis and Tests for Primality", 956:
is an odd positive integer, by Fermat's little theorem:
691: 6633:
indicate that algorithm is for numbers of special forms
2367:
is the event that it passes the Miller–Rabin test with
752:, of the more general fact that a polynomial over some 103:
The property is the following. For a given odd integer
5853: 4976: 4884: 4829: 4598: 4572: 4490: 4257: 3360: 2922: 859:{\displaystyle (x-1)(x+1)=x^{2}-1\equiv 0{\pmod {n}}.} 764:). Here follows a more elementary proof. Suppose that 5080: 4974: 4755: 4723: 4570: 4473: 4320: 4255: 3555:= 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, and 41. 3513:< 3,825,123,056,546,413,051, it is enough to test 2978: 2848: 2433: 2377: 2309: 1663: 1635: 1615: 1578: 1362: 1334: 1293: 1273: 1233: 1186: 1160: 1030: 965: 781: 576:
as composite with a reasonably high probability (see
418: 343: 300: 227: 176: 61:
It is of historical significance in the search for a
5697:"Strong pseudoprimes to the first eight prime bases" 5055:
One of these error bounds is 4, which holds for all
3357:, which also does not rely on unproven assumptions. 2300:
rounds of testing; in mathematical words, it is the
710:is a prime, then the only square roots of 1 modulo 5151: 5013: 4953: 4738: 4653: 4555: 4437: 4292: 4020:). For other numbers, the algorithm only returns “ 3778:> 2, an odd integer to be tested for primality 3752:are nontrivial (not necessarily prime) factors of 3155:> 2, an odd integer to be tested for primality 3013: 2957: 2820: 2412: 2344: 1918:> 2, an odd integer to be tested for primality 1863: 1647: 1621: 1601: 1562: 1346: 1317: 1279: 1259: 1219: 1172: 1117: 1013: 858: 467:(this property alone defines the weaker notion of 459: 378: 329: 275: 211: 4800: 4774: 4330: 4272: 3575:whose smallest compositeness witness is at least 3544:= 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37. 3528:= 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37. 2997: 2893: 2867: 2747: 2646: 2615: 2564: 2532: 2498: 2456: 2396: 2319: 2215:iterations of the Miller–Rabin test will declare 1874: 6644: 4835: 4791: 4756: 4724: 4578: 4474: 4347: 4321: 4263: 4152: 3316:, it suffices to assume the validity of GRH for 2979: 2928: 2884: 2849: 2796: 2776: 2738: 2689: 2675: 2637: 2606: 2549: 2514: 2480: 2438: 2378: 2310: 729:. This is a special case, here applied with the 652:is odd, for the same reason. That is why random 6112: 5735: 3612: 3487:< 341,550,071,728,321, it is enough to test 1884:For a practical guide to choosing the value of 5787: 5785: 5400: 1220:{\displaystyle n-1{\text{ as }}2^{2}\times 55} 1014:{\displaystyle a^{2^{s}d}\equiv 1{\pmod {n}}.} 584:). We can quickly reduce the probability of a 276:{\displaystyle a^{2^{r}d}\equiv -1{\pmod {n}}} 6098: 6064:(stepping through the algorithm step-by-step) 5326: 4187:, the number of rounds of testing to perform 3818:is otherwise found to be composite, “ 3786:, the number of rounds of testing to perform 3476:< 3,474,749,660,383, it is enough to test 3465:< 2,152,302,898,747, it is enough to test 3454:< 1,122,004,669,633, it is enough to test 3326:The running time of the algorithm is, in the 2219:probably prime with a probability at most 4. 1926:, the number of rounds of testing to perform 75:, but its correctness relies on the unproven 5174:/4. This bound is smaller than 4 as soon as 4460:), we can approximate this probability when 5782: 4293:{\displaystyle {\tfrac {1}{\Pr(M\!R_{k})}}} 3629:is composite. This occurs for example when 3145:, which is deterministic assuming the GRH: 2360:that the number being tested is prime, and 1602:{\displaystyle 220\equiv -1{\text{ mod }}n} 1133:, it is congruent to either 1 or −1 modulo 46:which determines whether a given number is 6105: 6091: 5996: 5406: 5014:{\displaystyle {\tfrac {\ln 2}{2}}4^{-k}b} 460:{\displaystyle a^{n-1}\equiv 1{\pmod {n}}} 6025: 5973: 5865:On-Line Encyclopedia of Integer Sequences 5839: 5817: 5749: 5712: 5694: 5672: 5636: 5424: 5391: 3871:is always a probable prime to base 1 and 3443:< 4,759,123,141, it is enough to test 3432:< 3,215,031,751, it is enough to test 3032: 3014:{\displaystyle \Pr(\lnot P\mid M\!R_{k})} 2413:{\displaystyle \Pr(\lnot P\mid M\!R_{k})} 2345:{\displaystyle \Pr(M\!R_{k}\mid \lnot P)} 1991:is always a probable prime to base 1 and 98: 5658: 5478: 5476: 5253: 5251: 3648:is a nontrivial square root of 1 modulo 3637:but not a strong probable prime to base 2127:is the number tested for primality, and 2108:, the running time of this algorithm is 893:is prime, it divides one of the factors 721:Certainly 1 and −1, when squared modulo 400:The idea beneath this test is that when 212:{\displaystyle a^{d}\equiv 1{\pmod {n}}} 90: 5942: 5293: 5291: 5263:Journal of Computer and System Sciences 3587:such that every composite number below 494:is not a strong probable prime to base 83:modified it to obtain an unconditional 14: 6645: 6048:"Rabin-Miller Strong Pseudoprime Test" 5990: 5482: 5257: 3760:is odd, these factors are coprime and 3591:has a compositeness witness less than 3421:< 25,326,001, it is enough to test 911:is congruent to either 1 or −1 modulo 294:This simplifies to first checking for 6086: 6043: 5878: 5473: 5351: 5349: 5297: 5248: 5021:. However, much better bounds exist. 3932:# nontrivial square root of 1 modulo 3517:= 2, 3, 5, 7, 11, 13, 17, 19, and 23. 3410:< 9,080,191, it is enough to test 3399:< 1,373,653, it is enough to test 3264:# nontrivial square root of 1 modulo 2293:error bound of 4 can be relied upon. 2051:# nontrivial square root of 1 modulo 1260:{\displaystyle s=2{\text{ and }}d=55} 618:, because the congruence relation is 471:, on which the Fermat test is based); 5791: 5695:Jiang, Yupeng; Deng, Yingpu (2014). 5611: 5288: 5059:≥ 2 (the authors only showed it for 4200:True: pick a random odd integer 3843:# by factoring out powers of 2 from 3193:# by factoring out powers of 2 from 3095:)*, which means that if we test all 2835:). By dropping the left part of the 1964:# by factoring out powers of 2 from 1895: 5591:Association for Computing Machinery 5488:"Four primality testing algorithms" 4179:, the number of bits of the result 3625:instead of merely determining that 3361:Testing against small sets of bases 2139:) can decrease the running time to 1890:Testing against small sets of bases 1000: 845: 694:Testing against small sets of bases 656:are usually chosen in the interval 544: 449: 265: 201: 24: 5346: 4968:, this error measure is less than 4917: 4814: 4762: 4625: 4527: 4208:the Miller–Rabin test with inputs 3369:to be tested is small, trying all 3338:(using FFT‐based multiplication). 2985: 2907: 2855: 2839:, we derive a simple upper bound: 2761: 2695: 2660: 2520: 2486: 2444: 2384: 2333: 762:Euclidean division for polynomials 330:{\displaystyle a^{d}{\bmod {n}}=1} 25: 6669: 6314:Special number field sieve (SNFS) 6308:General number field sieve (GNFS) 6073:Miller–Rabin primality test in C# 6036: 5975:10.1090/S0025-5718-1980-0583518-6 5393:10.1090/S0025-5718-1980-0572872-7 4717:) and the asymptotic behavior of 4702:using FFT-based multiplication). 4464:grows towards infinity. We find: 3388:< 2,047, it is enough to test 2249:In addition, for large values of 394:by squaring under the modulus of 2222:This is an improvement over the 1900:The algorithm can be written in 1154:Suppose we wish to determine if 554: 5894: 5872: 5847: 5811: 5729: 5714:10.1090/S0025-5718-2014-02830-5 5688: 5652: 5605: 5573: 5413:Journal of Symbolic Computation 5221: 4669: 4232: 4024:” with no further information. 3072:is composite, the strong liars 3026: 2274: 1318:{\displaystyle 2\leq a\leq n-2} 993: 838: 527:, in which case it is called a 442: 258: 194: 56:Solovay–Strassen primality test 5997:Burthe Jr., Ronald J. (1996), 5497:, Cambridge University Press, 5433: 5320: 5205: 5188: 4844: 4838: 4820: 4794: 4785: 4759: 4733: 4727: 4587: 4581: 4483: 4477: 4356: 4350: 4341: 4324: 4283: 4266: 4089:, we can compare the value of 4002:which are pseudoprime to base 3046:below a certain limit. Taking 3037: 3008: 2982: 2937: 2931: 2913: 2887: 2878: 2852: 2805: 2799: 2785: 2779: 2767: 2741: 2701: 2692: 2684: 2678: 2666: 2640: 2632: 2609: 2575: 2552: 2543: 2517: 2509: 2483: 2467: 2441: 2407: 2381: 2339: 2313: 2230:, the set of strong liars for 1698: 1397: 1267:. We randomly select a number 1004: 994: 849: 839: 809: 797: 794: 782: 671:For testing arbitrarily large 620:compatible with exponentiation 453: 443: 379:{\displaystyle a^{2^{r}d}=n-1} 269: 259: 205: 195: 13: 1: 6027:10.1090/S0025-5718-96-00695-3 5841:10.1090/S0025-5718-03-01545-X 5242: 5025: 4714: 4705: 4301: 4153:Generation of probable primes 4006:(in other words, for numbers 3491:= 2, 3, 5, 7, 11, 13, and 17. 2099: 938:is an odd prime and we write 768:is a square root of 1 modulo 577: 502:is definitely composite, and 6272:Lenstra elliptic curve (ECM) 5315:10.1016/0022-314X(80)90084-0 4311:in the range , then we get: 3633:is a probable prime to base 3613:Variants for finding factors 3118:. Assuming the truth of the 7: 3120:extended Riemann hypothesis 2285:is not controlled, since a 2183:is composite, then at most 2170: 1938:is found to be composite, “ 77:extended Riemann hypothesis 36:Rabin–Miller primality test 32:Miller–Rabin primality test 10: 6674: 6579:Exponentiation by squaring 6262:Continued fraction (CFRAC) 6006:Mathematics of Computation 5962:Mathematics of Computation 5855:Sloane, N. J. A. 5820:Mathematics of Computation 5738:Mathematics of Computation 5701:Mathematics of Computation 5661:Mathematics of Computation 5617:Mathematics of Computation 5540:Mathematics of Computation 5457:Introduction to Algorithms 5407:F. Arnault (August 1995). 5380:Mathematics of Computation 4456:of π (an extension of the 4191:: a strong probable prime 4145:are nontrivial factors of 3343:Baillie–PSW primality test 3080:are contained in a proper 2234:is a subset of the set of 2211:is composite then running 1904:as follows. The parameter 1149: 1024:Each term of the sequence 952:is a positive integer and 128:is a positive integer and 6626: 6561: 6523: 6490: 6447: 6391: 6348: 6252: 6214: 6123: 5915:Algorithmic Number Theory 3800:) if a nontrivial factor 3722:From this we deduce that 3480:= 2, 3, 5, 7, 11, and 13; 3458:= 2, 13, 23, and 1662803; 3050:as the limit would imply 919:Here is a proof that, if 706:Here is a proof that, if 701: 512:for the compositeness of 386:for successive values of 5927:10.1007/3-540-58691-1_36 5303:Journal of Number Theory 5181: 5052:for a desired accuracy. 4964:Hence, for large enough 4300:(reusing notations from 2970:probability distribution 2283:probability distribution 2246:, the subset is proper. 469:probable prime to base a 6492:Greatest common divisor 5951:Samuel S. Wagstaff, Jr. 5599:10.1145/3243734.3243787 5365:Samuel S. Wagstaff, Jr. 4450:prime-counting function 4239:worst-case running time 3619:greatest common divisor 2302:conditional probability 2207:. As a consequence, if 2137:Harvey-Hoeven algorithm 2135:-based multiplication ( 410:Fermat's little theorem 85:probabilistic algorithm 6603:Modular exponentiation 5426:10.1006/jsco.1995.1042 5153: 5015: 4955: 4740: 4739:{\displaystyle \Pr(P)} 4655: 4557: 4439: 4294: 4243:geometric distribution 4027:For example, consider 3033:Deterministic variants 3015: 2959: 2822: 2414: 2346: 1865: 1649: 1623: 1603: 1564: 1348: 1319: 1281: 1261: 1221: 1174: 1119: 1015: 860: 461: 380: 331: 277: 213: 99:Strong probable primes 6330:Shanks's square forms 6254:Integer factorization 6229:Sieve of Eratosthenes 5879:Izykowski, Wojciech. 5445:Leiserson, Charles E. 5369:"The pseudoprimes to 5275:10.1145/800116.803773 5154: 5016: 4956: 4741: 4656: 4558: 4440: 4295: 4056:gcd(32 − 1, 341) = 31 4050:. This tells us that 3835:odd > 0 such that 3469:= 2, 3, 5, 7, and 11; 3184:odd > 0 such that 3068:If the tested number 3016: 2960: 2823: 2415: 2347: 2273:probable primes (see 2224:Solovay–Strassen test 2203:are strong liars for 1955:odd > 0 such that 1866: 1650: 1648:{\displaystyle a=137} 1629:, this time choosing 1624: 1604: 1565: 1349: 1347:{\displaystyle a=174} 1320: 1282: 1262: 1222: 1175: 1173:{\displaystyle n=221} 1139:iterate the reasoning 1120: 1016: 861: 462: 381: 332: 278: 214: 91:Mathematical concepts 52:Fermat primality test 6608:Montgomery reduction 6482:Function field sieve 6457:Baby-step giant-step 6303:Quadratic sieve (QS) 5955:"Lucas Pseudoprimes" 5593:. pp. 281–298. 5162:which holds for all 5078: 4972: 4753: 4721: 4568: 4471: 4458:prime number theorem 4454:asymptotic expansion 4318: 4253: 3321:Dirichlet characters 3137:was reduced to 2 by 2976: 2846: 2431: 2375: 2307: 1661: 1633: 1613: 1576: 1360: 1332: 1291: 1271: 1231: 1184: 1158: 1028: 963: 873:divides the product 779: 637:holds trivially for 607:holds trivially for 416: 341: 298: 225: 174: 165:congruence relations 6618:Trachtenberg system 6584:Integer square root 6525:Modular square root 6244:Wheel factorization 6196:Quadratic Frobenius 6176:Lucas–Lehmer–Riesel 6018:1996MaCom..65..373B 5832:2003MaCom..72.2085Z 5760:2015arXiv150900864S 5629:1990MaCom..55..355B 5552:1993MaCom..61..177D 4680:is then bounded by 4249:number of draws is 3595:should be of order 1180:is prime. We write 38:is a probabilistic 6510:Extended Euclidean 6449:Discrete logarithm 6378:Schönhage–Strassen 6234:Sieve of Pritchard 6045:Weisstein, Eric W. 5968:(152): 1391–1417. 5868:. OEIS Foundation. 5707:(290): 2915–2924. 5386:(151): 1003–1026. 5149: 5011: 4993: 4951: 4901: 4849: 4736: 4651: 4615: 4592: 4553: 4507: 4435: 4290: 4288: 4204:in the range 3355:AKS primality test 3011: 2955: 2942: 2818: 2816: 2410: 2342: 1861: 1859: 1645: 1619: 1599: 1560: 1558: 1344: 1315: 1277: 1257: 1227:, so that we have 1217: 1170: 1129:. By the previous 1115: 1011: 932: 856: 719: 566:probabilistic test 551:Carmichael numbers 530:strong pseudoprime 457: 376: 327: 273: 209: 48:likely to be prime 6640: 6639: 6239:Sieve of Sundaram 5936:978-3-540-58691-3 5826:(44): 2085–2097, 5792:Caldwell, Chris. 5768:10.1090/mcom/3134 5744:(304): 985–1003. 5504:978-0-521-80854-5 5449:Rivest, Ronald L. 5441:Cormen, Thomas H. 5361:John L. Selfridge 5299:Rabin, Michael O. 5127: 5108: 5094: 4992: 4900: 4848: 4614: 4591: 4506: 4433: 4287: 3436:= 2, 3, 5, and 7; 3099:from a set which 2941: 2812: 2809: 2771: 2708: 2705: 2670: 2579: 2106:repeated squaring 1896:Miller–Rabin test 1821: 1789: 1769: 1755: 1728: 1693: 1622:{\displaystyle a} 1594: 1520: 1488: 1468: 1454: 1427: 1392: 1280:{\displaystyle a} 1246: 1199: 930: 717: 50:, similar to the 18:Miller–Rabin test 16:(Redirected from 6665: 6589:Integer relation 6562:Other algorithms 6467:Pollard kangaroo 6358:Ancient Egyptian 6216:Prime-generating 6201:Solovay–Strassen 6114:Number-theoretic 6107: 6100: 6093: 6084: 6083: 6058: 6057: 6031: 6030: 6029: 6012:(213): 373–381, 6003: 5994: 5988: 5987: 5977: 5959: 5953:(October 1980). 5949:Robert Baillie; 5946: 5940: 5939: 5920: 5898: 5892: 5891: 5889: 5887: 5876: 5870: 5869: 5851: 5845: 5844: 5843: 5815: 5809: 5808: 5806: 5804: 5789: 5780: 5779: 5753: 5733: 5727: 5726: 5716: 5692: 5686: 5685: 5676: 5667:(204): 915–926, 5656: 5650: 5649: 5640: 5623:(191): 355–380, 5609: 5603: 5602: 5588: 5577: 5571: 5570: 5546:(203): 177–194, 5537: 5517: 5508: 5507: 5492: 5480: 5471: 5470: 5437: 5431: 5430: 5428: 5404: 5398: 5397: 5395: 5377: 5372: 5353: 5344: 5343: 5329:Acta Arithmetica 5324: 5318: 5317: 5295: 5286: 5285: 5255: 5236: 5225: 5219: 5217: 5209: 5203: 5201: 5197: 5192: 5158: 5156: 5155: 5150: 5148: 5147: 5135: 5131: 5130: 5129: 5128: 5120: 5110: 5109: 5101: 5095: 5087: 5020: 5018: 5017: 5012: 5007: 5006: 4994: 4988: 4977: 4960: 4958: 4957: 4952: 4947: 4943: 4942: 4938: 4937: 4921: 4920: 4902: 4896: 4885: 4877: 4876: 4861: 4857: 4850: 4847: 4830: 4810: 4809: 4784: 4783: 4745: 4743: 4742: 4737: 4701: 4690: 4660: 4658: 4657: 4652: 4650: 4646: 4645: 4629: 4628: 4616: 4610: 4599: 4593: 4590: 4573: 4562: 4560: 4559: 4554: 4552: 4548: 4547: 4531: 4530: 4521: 4520: 4508: 4505: 4491: 4444: 4442: 4441: 4436: 4434: 4432: 4431: 4416: 4415: 4411: 4410: 4385: 4381: 4380: 4363: 4340: 4339: 4299: 4297: 4296: 4291: 4289: 4286: 4282: 4281: 4258: 4144: 4128: 4088: 4061: 4057: 4049: 4045: 4041: 4019: 3994:a probabilistic 3954: 3809: 3756:(in fact, since 3751: 3736: 3717: 3710: 3704:does not divide 3699: 3685: 3666: 3609: 3582: 3504: 3379: 3365:When the number 3337: 3208:the range : 3132: 3064: 3057: 3020: 3018: 3017: 3012: 3007: 3006: 2964: 2962: 2961: 2956: 2954: 2950: 2943: 2940: 2923: 2903: 2902: 2877: 2876: 2827: 2825: 2824: 2819: 2817: 2813: 2811: 2810: 2808: 2788: 2774: 2772: 2770: 2757: 2756: 2733: 2721: 2713: 2709: 2707: 2706: 2704: 2687: 2673: 2671: 2669: 2656: 2655: 2635: 2625: 2624: 2604: 2592: 2584: 2580: 2578: 2574: 2573: 2542: 2541: 2512: 2508: 2507: 2478: 2466: 2465: 2419: 2417: 2416: 2411: 2406: 2405: 2351: 2349: 2348: 2343: 2329: 2328: 2198: 2196: 2195: 2192: 2189: 2166: 2122: 1870: 1868: 1867: 1862: 1860: 1838: 1837: 1822: 1819: 1817: 1816: 1812: 1811: 1810: 1794: 1790: 1787: 1770: 1767: 1756: 1753: 1745: 1744: 1729: 1726: 1724: 1723: 1719: 1718: 1717: 1694: 1691: 1689: 1688: 1684: 1683: 1682: 1654: 1652: 1651: 1646: 1628: 1626: 1625: 1620: 1608: 1606: 1605: 1600: 1595: 1592: 1569: 1567: 1566: 1561: 1559: 1537: 1536: 1521: 1518: 1516: 1515: 1511: 1510: 1509: 1493: 1489: 1486: 1469: 1466: 1455: 1452: 1444: 1443: 1428: 1425: 1423: 1422: 1418: 1417: 1416: 1393: 1390: 1388: 1387: 1383: 1382: 1381: 1353: 1351: 1350: 1345: 1324: 1322: 1321: 1316: 1286: 1284: 1283: 1278: 1266: 1264: 1263: 1258: 1247: 1244: 1226: 1224: 1223: 1218: 1210: 1209: 1200: 1197: 1179: 1177: 1176: 1171: 1124: 1122: 1121: 1116: 1114: 1113: 1101: 1100: 1079: 1078: 1074: 1073: 1050: 1049: 1045: 1044: 1020: 1018: 1017: 1012: 1007: 985: 984: 980: 979: 947: 906: 899: 884: 869:In other words, 865: 863: 862: 857: 852: 824: 823: 751: 735: 681: 674: 667: 655: 651: 647: 636: 617: 606: 545:Choices of bases 466: 464: 463: 458: 456: 434: 433: 385: 383: 382: 377: 363: 362: 358: 357: 336: 334: 333: 328: 320: 319: 310: 309: 289: 282: 280: 279: 274: 272: 247: 246: 242: 241: 218: 216: 215: 210: 208: 186: 185: 163:if one of these 152:is said to be a 123: 116: 109: 81:Michael O. Rabin 21: 6673: 6672: 6668: 6667: 6666: 6664: 6663: 6662: 6653:Primality tests 6643: 6642: 6641: 6636: 6622: 6557: 6519: 6486: 6443: 6387: 6344: 6248: 6210: 6183:Proth's theorem 6125:Primality tests 6119: 6111: 6068:Applet (German) 6039: 6034: 6001: 5995: 5991: 5957: 5947: 5943: 5937: 5918: 5899: 5895: 5885: 5883: 5877: 5873: 5852: 5848: 5816: 5812: 5802: 5800: 5798:The Prime Pages 5790: 5783: 5734: 5730: 5693: 5689: 5674:10.2307/2153262 5657: 5653: 5638:10.2307/2008811 5610: 5606: 5586: 5578: 5574: 5560:10.2307/2152945 5535: 5518: 5511: 5505: 5490: 5481: 5474: 5467: 5455:(2009) . "31". 5453:Stein, Clifford 5438: 5434: 5405: 5401: 5375: 5370: 5354: 5347: 5325: 5321: 5296: 5289: 5259:Miller, Gary L. 5256: 5249: 5245: 5240: 5239: 5226: 5222: 5215: 5210: 5206: 5199: 5195: 5193: 5189: 5184: 5140: 5136: 5119: 5115: 5111: 5100: 5096: 5086: 5085: 5081: 5079: 5076: 5075: 4999: 4995: 4978: 4975: 4973: 4970: 4969: 4930: 4926: 4922: 4916: 4915: 4886: 4883: 4882: 4878: 4869: 4865: 4834: 4828: 4827: 4823: 4805: 4801: 4779: 4775: 4754: 4751: 4750: 4722: 4719: 4718: 4715:earlier section 4708: 4692: 4681: 4638: 4634: 4630: 4624: 4623: 4600: 4597: 4577: 4571: 4569: 4566: 4565: 4540: 4536: 4532: 4526: 4525: 4513: 4509: 4495: 4489: 4472: 4469: 4468: 4448:where π is the 4421: 4417: 4400: 4396: 4392: 4376: 4372: 4368: 4364: 4362: 4335: 4331: 4319: 4316: 4315: 4277: 4273: 4262: 4256: 4254: 4251: 4250: 4235: 4230: 4195: 4155: 4130: 4114: 4075: 4059: 4055: 4047: 4043: 4036: 4011: 3988: 3937: 3823: 3791: 3738: 3723: 3712: 3705: 3700:, we know that 3690: 3672: 3667:, we know that 3657: 3615: 3596: 3576: 3496: 3447:= 2, 7, and 61; 3370: 3363: 3331: 3310: 3172: 3167:is composite, “ 3123: 3059: 3051: 3040: 3035: 3002: 2998: 2977: 2974: 2973: 2927: 2921: 2920: 2916: 2898: 2894: 2872: 2868: 2847: 2844: 2843: 2815: 2814: 2789: 2775: 2773: 2752: 2748: 2737: 2732: 2725: 2720: 2711: 2710: 2688: 2674: 2672: 2651: 2647: 2636: 2620: 2616: 2605: 2603: 2596: 2591: 2582: 2581: 2569: 2565: 2537: 2533: 2513: 2503: 2499: 2479: 2477: 2470: 2461: 2457: 2434: 2432: 2429: 2428: 2401: 2397: 2376: 2373: 2372: 2365: 2324: 2320: 2308: 2305: 2304: 2242:, and for many 2193: 2190: 2187: 2186: 2184: 2173: 2140: 2109: 2102: 2097: 1943: 1898: 1875:a later section 1858: 1857: 1833: 1829: 1820: mod  1818: 1806: 1802: 1801: 1800: 1796: 1792: 1791: 1786: 1768: and  1766: 1752: 1740: 1736: 1727: mod  1725: 1713: 1709: 1708: 1707: 1703: 1701: 1692: mod  1690: 1678: 1674: 1673: 1672: 1668: 1664: 1662: 1659: 1658: 1634: 1631: 1630: 1614: 1611: 1610: 1593: mod  1591: 1577: 1574: 1573: 1557: 1556: 1532: 1528: 1519: mod  1517: 1505: 1501: 1500: 1499: 1495: 1491: 1490: 1485: 1467: and  1465: 1451: 1439: 1435: 1426: mod  1424: 1412: 1408: 1407: 1406: 1402: 1400: 1391: mod  1389: 1377: 1373: 1372: 1371: 1367: 1363: 1361: 1358: 1357: 1333: 1330: 1329: 1292: 1289: 1288: 1272: 1269: 1268: 1245: and  1243: 1232: 1229: 1228: 1205: 1201: 1196: 1185: 1182: 1181: 1159: 1156: 1155: 1152: 1147: 1109: 1105: 1093: 1089: 1063: 1059: 1058: 1054: 1040: 1036: 1035: 1031: 1029: 1026: 1025: 992: 975: 971: 970: 966: 964: 961: 960: 939: 917: 901: 894: 874: 837: 819: 815: 780: 777: 776: 740: 733: 704: 676: 672: 657: 653: 649: 638: 623: 608: 597: 547: 441: 423: 419: 417: 414: 413: 353: 349: 348: 344: 342: 339: 338: 315: 311: 305: 301: 299: 296: 295: 284: 257: 237: 233: 232: 228: 226: 223: 222: 193: 181: 177: 175: 172: 171: 118: 111: 104: 101: 93: 63:polynomial-time 28: 23: 22: 15: 12: 11: 5: 6671: 6661: 6660: 6655: 6638: 6637: 6635: 6634: 6627: 6624: 6623: 6621: 6620: 6615: 6610: 6605: 6600: 6586: 6581: 6576: 6571: 6565: 6563: 6559: 6558: 6556: 6555: 6550: 6545: 6543:Tonelli–Shanks 6540: 6535: 6529: 6527: 6521: 6520: 6518: 6517: 6512: 6507: 6502: 6496: 6494: 6488: 6487: 6485: 6484: 6479: 6477:Index calculus 6474: 6472:Pohlig–Hellman 6469: 6464: 6459: 6453: 6451: 6445: 6444: 6442: 6441: 6436: 6431: 6426: 6424:Newton-Raphson 6421: 6416: 6411: 6406: 6400: 6398: 6389: 6388: 6386: 6385: 6380: 6375: 6370: 6365: 6360: 6354: 6352: 6350:Multiplication 6346: 6345: 6343: 6342: 6337: 6335:Trial division 6332: 6327: 6322: 6320:Rational sieve 6317: 6310: 6305: 6300: 6292: 6284: 6279: 6274: 6269: 6264: 6258: 6256: 6250: 6249: 6247: 6246: 6241: 6236: 6231: 6226: 6224:Sieve of Atkin 6220: 6218: 6212: 6211: 6209: 6208: 6203: 6198: 6193: 6186: 6179: 6172: 6165: 6160: 6155: 6150: 6148:Elliptic curve 6145: 6140: 6135: 6129: 6127: 6121: 6120: 6110: 6109: 6102: 6095: 6087: 6081: 6080: 6075: 6070: 6065: 6059: 6038: 6037:External links 6035: 6033: 6032: 5989: 5941: 5935: 5893: 5871: 5846: 5810: 5781: 5728: 5687: 5651: 5604: 5572: 5509: 5503: 5472: 5465: 5432: 5419:(2): 151–161. 5399: 5357:Carl Pomerance 5345: 5319: 5309:(1): 128–138, 5287: 5269:(3): 300–317, 5246: 5244: 5241: 5238: 5237: 5220: 5204: 5196:M. M. Artjuhov 5186: 5185: 5183: 5180: 5160: 5159: 5146: 5143: 5139: 5134: 5126: 5123: 5118: 5114: 5107: 5104: 5099: 5093: 5090: 5084: 5010: 5005: 5002: 4998: 4991: 4987: 4984: 4981: 4962: 4961: 4950: 4946: 4941: 4936: 4933: 4929: 4925: 4919: 4914: 4911: 4908: 4905: 4899: 4895: 4892: 4889: 4881: 4875: 4872: 4868: 4864: 4860: 4856: 4853: 4846: 4843: 4840: 4837: 4833: 4826: 4822: 4819: 4816: 4813: 4808: 4804: 4799: 4796: 4793: 4790: 4787: 4782: 4778: 4773: 4770: 4767: 4764: 4761: 4758: 4735: 4732: 4729: 4726: 4707: 4704: 4662: 4661: 4649: 4644: 4641: 4637: 4633: 4627: 4622: 4619: 4613: 4609: 4606: 4603: 4596: 4589: 4586: 4583: 4580: 4576: 4563: 4551: 4546: 4543: 4539: 4535: 4529: 4524: 4519: 4516: 4512: 4504: 4501: 4498: 4494: 4488: 4485: 4482: 4479: 4476: 4446: 4445: 4430: 4427: 4424: 4420: 4414: 4409: 4406: 4403: 4399: 4395: 4391: 4388: 4384: 4379: 4375: 4371: 4367: 4361: 4358: 4355: 4352: 4349: 4346: 4343: 4338: 4334: 4329: 4326: 4323: 4285: 4280: 4276: 4271: 4268: 4265: 4261: 4237:Of course the 4234: 4231: 4218:probably prime 4196: 4171: 4154: 4151: 4048:32 mod 341 = 1 4044:2 mod 341 = 32 3985:probably prime 3824: 3820:probably prime 3770: 3720: 3719: 3687: 3614: 3611: 3557: 3556: 3545: 3530: 3529: 3518: 3493: 3492: 3481: 3470: 3459: 3448: 3437: 3426: 3425:= 2, 3, and 5; 3415: 3404: 3393: 3362: 3359: 3173: 3147: 3135:Big O notation 3084:of the group ( 3039: 3036: 3034: 3031: 3010: 3005: 3001: 2996: 2993: 2990: 2987: 2984: 2981: 2966: 2965: 2953: 2949: 2946: 2939: 2936: 2933: 2930: 2926: 2919: 2915: 2912: 2909: 2906: 2901: 2897: 2892: 2889: 2886: 2883: 2880: 2875: 2871: 2866: 2863: 2860: 2857: 2854: 2851: 2833:false negative 2829: 2828: 2807: 2804: 2801: 2798: 2795: 2792: 2787: 2784: 2781: 2778: 2769: 2766: 2763: 2760: 2755: 2751: 2746: 2743: 2740: 2736: 2731: 2728: 2724: 2719: 2716: 2714: 2712: 2703: 2700: 2697: 2694: 2691: 2686: 2683: 2680: 2677: 2668: 2665: 2662: 2659: 2654: 2650: 2645: 2642: 2639: 2634: 2631: 2628: 2623: 2619: 2614: 2611: 2608: 2602: 2599: 2595: 2590: 2587: 2585: 2583: 2577: 2572: 2568: 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2540: 2536: 2531: 2528: 2525: 2522: 2519: 2516: 2511: 2506: 2502: 2497: 2494: 2491: 2488: 2485: 2482: 2476: 2473: 2471: 2469: 2464: 2460: 2455: 2452: 2449: 2446: 2443: 2440: 2437: 2436: 2409: 2404: 2400: 2395: 2392: 2389: 2386: 2383: 2380: 2363: 2341: 2338: 2335: 2332: 2327: 2323: 2318: 2315: 2312: 2172: 2169: 2101: 2098: 2094:probably prime 1944: 1940:probably prime 1910: 1897: 1894: 1856: 1853: 1850: 1847: 1844: 1841: 1836: 1832: 1828: 1825: 1815: 1809: 1805: 1799: 1795: 1793: 1788:, we continue. 1785: 1782: 1779: 1776: 1773: 1765: 1762: 1759: 1751: 1748: 1743: 1739: 1735: 1732: 1722: 1716: 1712: 1706: 1702: 1700: 1697: 1687: 1681: 1677: 1671: 1667: 1666: 1644: 1641: 1638: 1618: 1598: 1590: 1587: 1584: 1581: 1555: 1552: 1549: 1546: 1543: 1540: 1535: 1531: 1527: 1524: 1514: 1508: 1504: 1498: 1494: 1492: 1487:, we continue. 1484: 1481: 1478: 1475: 1472: 1464: 1461: 1458: 1450: 1447: 1442: 1438: 1434: 1431: 1421: 1415: 1411: 1405: 1401: 1399: 1396: 1386: 1380: 1376: 1370: 1366: 1365: 1343: 1340: 1337: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1276: 1256: 1253: 1250: 1242: 1239: 1236: 1216: 1213: 1208: 1204: 1198: as  1195: 1192: 1189: 1169: 1166: 1163: 1151: 1148: 1112: 1108: 1104: 1099: 1096: 1092: 1088: 1085: 1082: 1077: 1072: 1069: 1066: 1062: 1057: 1053: 1048: 1043: 1039: 1034: 1022: 1021: 1010: 1006: 1003: 999: 996: 991: 988: 983: 978: 974: 969: 929: 907:implying that 887:Euclid's lemma 867: 866: 855: 851: 848: 844: 841: 836: 833: 830: 827: 822: 818: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 784: 716: 714:are 1 and −1. 703: 700: 586:false positive 546: 543: 488:contraposition 484: 483: 472: 455: 452: 448: 445: 440: 437: 432: 429: 426: 422: 375: 372: 369: 366: 361: 356: 352: 347: 326: 323: 318: 314: 308: 304: 292: 291: 271: 268: 264: 261: 256: 253: 250: 245: 240: 236: 231: 220: 207: 204: 200: 197: 192: 189: 184: 180: 156:probable prime 110:, let’s write 100: 97: 92: 89: 69:Gary L. Miller 40:primality test 27:Primality test 26: 9: 6: 4: 3: 2: 6670: 6659: 6658:Finite fields 6656: 6654: 6651: 6650: 6648: 6632: 6629: 6628: 6625: 6619: 6616: 6614: 6611: 6609: 6606: 6604: 6601: 6598: 6594: 6590: 6587: 6585: 6582: 6580: 6577: 6575: 6572: 6570: 6567: 6566: 6564: 6560: 6554: 6551: 6549: 6546: 6544: 6541: 6539: 6538:Pocklington's 6536: 6534: 6531: 6530: 6528: 6526: 6522: 6516: 6513: 6511: 6508: 6506: 6503: 6501: 6498: 6497: 6495: 6493: 6489: 6483: 6480: 6478: 6475: 6473: 6470: 6468: 6465: 6463: 6460: 6458: 6455: 6454: 6452: 6450: 6446: 6440: 6437: 6435: 6432: 6430: 6427: 6425: 6422: 6420: 6417: 6415: 6412: 6410: 6407: 6405: 6402: 6401: 6399: 6397: 6394: 6390: 6384: 6381: 6379: 6376: 6374: 6371: 6369: 6366: 6364: 6361: 6359: 6356: 6355: 6353: 6351: 6347: 6341: 6338: 6336: 6333: 6331: 6328: 6326: 6323: 6321: 6318: 6316: 6315: 6311: 6309: 6306: 6304: 6301: 6299: 6297: 6293: 6291: 6289: 6285: 6283: 6282:Pollard's rho 6280: 6278: 6275: 6273: 6270: 6268: 6265: 6263: 6260: 6259: 6257: 6255: 6251: 6245: 6242: 6240: 6237: 6235: 6232: 6230: 6227: 6225: 6222: 6221: 6219: 6217: 6213: 6207: 6204: 6202: 6199: 6197: 6194: 6192: 6191: 6187: 6185: 6184: 6180: 6178: 6177: 6173: 6171: 6170: 6166: 6164: 6161: 6159: 6156: 6154: 6151: 6149: 6146: 6144: 6141: 6139: 6136: 6134: 6131: 6130: 6128: 6126: 6122: 6118: 6115: 6108: 6103: 6101: 6096: 6094: 6089: 6088: 6085: 6079: 6076: 6074: 6071: 6069: 6066: 6063: 6060: 6055: 6054: 6049: 6046: 6041: 6040: 6028: 6023: 6019: 6015: 6011: 6007: 6000: 5993: 5985: 5981: 5976: 5971: 5967: 5963: 5956: 5952: 5945: 5938: 5932: 5928: 5924: 5917: 5916: 5911: 5910:Pomerance, C. 5907: 5906:Granville, A. 5903: 5902:Alford, W. R. 5897: 5882: 5875: 5867: 5866: 5860: 5856: 5850: 5842: 5837: 5833: 5829: 5825: 5821: 5814: 5799: 5795: 5788: 5786: 5777: 5773: 5769: 5765: 5761: 5757: 5752: 5747: 5743: 5739: 5732: 5724: 5720: 5715: 5710: 5706: 5702: 5698: 5691: 5684: 5680: 5675: 5670: 5666: 5662: 5655: 5648: 5644: 5639: 5634: 5630: 5626: 5622: 5618: 5614: 5608: 5600: 5596: 5592: 5585: 5584: 5576: 5569: 5565: 5561: 5557: 5553: 5549: 5545: 5541: 5534: 5530: 5529:Pomerance, C. 5526: 5522: 5516: 5514: 5506: 5500: 5496: 5489: 5485: 5479: 5477: 5468: 5466:0-262-03384-4 5462: 5458: 5454: 5450: 5446: 5442: 5436: 5427: 5422: 5418: 5414: 5410: 5403: 5394: 5389: 5385: 5381: 5374: 5367:(July 1980). 5366: 5362: 5358: 5352: 5350: 5342: 5338: 5334: 5330: 5323: 5316: 5312: 5308: 5304: 5300: 5294: 5292: 5284: 5280: 5276: 5272: 5268: 5264: 5260: 5254: 5252: 5247: 5234: 5230: 5224: 5214: 5208: 5191: 5187: 5179: 5177: 5173: 5169: 5165: 5144: 5141: 5137: 5132: 5124: 5121: 5116: 5112: 5105: 5102: 5097: 5091: 5088: 5082: 5074: 5073: 5072: 5070: 5066: 5062: 5058: 5053: 5051: 5047: 5043: 5039: 5035: 5031: 5027: 5022: 5008: 5003: 5000: 4996: 4989: 4985: 4982: 4979: 4967: 4948: 4944: 4939: 4934: 4931: 4927: 4923: 4912: 4909: 4906: 4903: 4897: 4893: 4890: 4887: 4879: 4873: 4870: 4866: 4862: 4858: 4854: 4851: 4841: 4831: 4824: 4817: 4811: 4806: 4802: 4797: 4788: 4780: 4776: 4771: 4768: 4765: 4749: 4748: 4747: 4730: 4716: 4711: 4703: 4699: 4696: 4688: 4685: 4679: 4675: 4671: 4667: 4647: 4642: 4639: 4635: 4631: 4620: 4617: 4611: 4607: 4604: 4601: 4594: 4584: 4574: 4564: 4549: 4544: 4541: 4537: 4533: 4522: 4517: 4514: 4510: 4502: 4499: 4496: 4492: 4486: 4480: 4467: 4466: 4465: 4463: 4459: 4455: 4451: 4428: 4425: 4422: 4418: 4412: 4407: 4404: 4401: 4397: 4393: 4389: 4386: 4382: 4377: 4373: 4369: 4365: 4359: 4353: 4344: 4336: 4332: 4327: 4314: 4313: 4312: 4310: 4305: 4303: 4278: 4274: 4269: 4259: 4248: 4244: 4240: 4229: 4226: 4223: 4219: 4215: 4211: 4207: 4203: 4199: 4194: 4190: 4186: 4182: 4178: 4174: 4170: 4168: 4164: 4160: 4159:almost surely 4150: 4148: 4142: 4138: 4134: 4126: 4122: 4118: 4112: 4108: 4104: 4100: 4096: 4092: 4086: 4082: 4078: 4074:. Then, when 4073: 4069: 4063: 4060:341 = 11 × 31 4053: 4039: 4035:= 2. We have 4034: 4030: 4025: 4023: 4018: 4014: 4009: 4005: 4001: 3997: 3996:factorization 3993: 3986: 3982: 3978: 3974: 3971: 3967: 3964: 3961: 3957: 3952: 3948: 3944: 3940: 3936: 3935: 3930: 3926: 3922: 3918: 3914: 3911: 3908: 3904: 3900: 3896: 3893: 3890: 3887: 3883: 3879: 3876: 3874: 3870: 3864: 3860: 3856: 3853: 3850: 3846: 3842: 3838: 3834: 3830: 3827: 3821: 3817: 3813: 3807: 3803: 3799: 3795: 3789: 3785: 3781: 3777: 3773: 3769: 3767: 3763: 3759: 3755: 3749: 3745: 3741: 3734: 3730: 3726: 3715: 3708: 3703: 3697: 3693: 3688: 3683: 3679: 3675: 3670: 3664: 3660: 3655: 3654: 3653: 3651: 3647: 3642: 3640: 3636: 3632: 3628: 3624: 3620: 3617:By inserting 3610: 3607: 3603: 3599: 3594: 3590: 3586: 3580: 3574: 3570: 3566: 3561: 3554: 3550: 3546: 3543: 3539: 3535: 3534: 3533: 3527: 3523: 3519: 3516: 3512: 3508: 3507: 3506: 3503: 3499: 3490: 3486: 3482: 3479: 3475: 3471: 3468: 3464: 3460: 3457: 3453: 3449: 3446: 3442: 3438: 3435: 3431: 3427: 3424: 3420: 3416: 3413: 3409: 3405: 3402: 3398: 3394: 3391: 3387: 3383: 3382: 3381: 3377: 3373: 3368: 3358: 3356: 3352: 3348: 3344: 3339: 3335: 3329: 3324: 3322: 3319: 3315: 3308: 3304: 3300: 3296: 3293: 3289: 3286: 3283: 3279: 3275: 3271: 3268: 3267: 3262: 3258: 3254: 3250: 3246: 3243: 3240: 3236: 3232: 3228: 3225: 3222: 3219: 3215: 3211: 3207: 3204: 3201: 3198: 3196: 3191: 3187: 3183: 3179: 3176: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3144: 3140: 3136: 3130: 3127: 3121: 3117: 3113: 3110: 3106: 3102: 3098: 3094: 3091: 3087: 3083: 3079: 3075: 3071: 3066: 3063: 3055: 3049: 3045: 3030: 3028: 3024: 3003: 2999: 2994: 2991: 2988: 2971: 2951: 2947: 2944: 2934: 2924: 2917: 2910: 2904: 2899: 2895: 2890: 2881: 2873: 2869: 2864: 2861: 2858: 2842: 2841: 2840: 2838: 2834: 2802: 2793: 2790: 2782: 2764: 2758: 2753: 2749: 2744: 2734: 2729: 2726: 2722: 2717: 2715: 2698: 2681: 2663: 2657: 2652: 2648: 2643: 2629: 2626: 2621: 2617: 2612: 2600: 2597: 2593: 2588: 2586: 2570: 2566: 2561: 2558: 2555: 2546: 2538: 2534: 2529: 2526: 2523: 2504: 2500: 2495: 2492: 2489: 2474: 2472: 2462: 2458: 2453: 2450: 2447: 2427: 2426: 2425: 2423: 2402: 2398: 2393: 2390: 2387: 2370: 2366: 2359: 2355: 2336: 2330: 2325: 2321: 2316: 2303: 2299: 2294: 2292: 2288: 2287:cryptographic 2284: 2281:primes whose 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2247: 2245: 2241: 2237: 2233: 2229: 2225: 2220: 2218: 2214: 2210: 2206: 2202: 2199:of the bases 2182: 2178: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2138: 2134: 2130: 2126: 2120: 2116: 2112: 2107: 2095: 2091: 2087: 2083: 2080: 2076: 2073: 2070: 2066: 2062: 2058: 2055: 2054: 2049: 2045: 2041: 2037: 2033: 2030: 2027: 2023: 2019: 2015: 2012: 2009: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1975: 1972: 1969: 1967: 1962: 1958: 1954: 1950: 1947: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1907: 1903: 1893: 1891: 1887: 1882: 1880: 1876: 1871: 1854: 1851: 1848: 1845: 1842: 1839: 1834: 1830: 1826: 1823: 1813: 1807: 1803: 1797: 1783: 1780: 1777: 1774: 1771: 1763: 1760: 1757: 1754:. Since  1749: 1746: 1741: 1737: 1733: 1730: 1720: 1714: 1710: 1704: 1695: 1685: 1679: 1675: 1669: 1656: 1642: 1639: 1636: 1616: 1596: 1588: 1585: 1582: 1579: 1570: 1553: 1550: 1547: 1544: 1541: 1538: 1533: 1529: 1525: 1522: 1512: 1506: 1502: 1496: 1482: 1479: 1476: 1473: 1470: 1462: 1459: 1456: 1453:. Since  1448: 1445: 1440: 1436: 1432: 1429: 1419: 1413: 1409: 1403: 1394: 1384: 1378: 1374: 1368: 1355: 1341: 1338: 1335: 1326: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1274: 1254: 1251: 1248: 1240: 1237: 1234: 1214: 1211: 1206: 1202: 1193: 1190: 1187: 1167: 1164: 1161: 1146: 1144: 1140: 1136: 1132: 1128: 1110: 1106: 1102: 1097: 1094: 1090: 1086: 1083: 1080: 1075: 1070: 1067: 1064: 1060: 1055: 1051: 1046: 1041: 1037: 1032: 1008: 1001: 997: 989: 986: 981: 976: 972: 967: 959: 958: 957: 955: 951: 946: 942: 937: 928: 926: 922: 916: 914: 910: 904: 897: 892: 888: 882: 878: 872: 853: 846: 842: 834: 831: 828: 825: 820: 816: 812: 806: 803: 800: 791: 788: 785: 775: 774: 773: 771: 767: 763: 759: 755: 750: 747: 743: 739: 732: 728: 724: 715: 713: 709: 699: 697: 695: 689: 683: 679: 669: 665: 661: 645: 641: 634: 630: 626: 621: 615: 611: 604: 600: 594: 592: 587: 583: 581: 575: 571: 567: 562: 560: 558: 552: 542: 540: 536: 532: 531: 526: 522: 517: 515: 511: 510: 505: 501: 497: 493: 489: 482:are 1 and −1. 481: 477: 473: 470: 450: 446: 438: 435: 430: 427: 424: 420: 411: 407: 406: 405: 403: 398: 397: 393: 389: 373: 370: 367: 364: 359: 354: 350: 345: 324: 321: 316: 306: 302: 288: 266: 262: 254: 251: 248: 243: 238: 234: 229: 221: 202: 198: 190: 187: 182: 178: 170: 169: 168: 166: 162: 161: 157: 151: 147: 143: 139: 135: 131: 127: 122: 114: 107: 96: 88: 86: 82: 78: 74: 73:deterministic 70: 66: 64: 59: 57: 53: 49: 45: 41: 37: 33: 19: 6630: 6312: 6295: 6287: 6206:Miller–Rabin 6205: 6188: 6181: 6174: 6169:Lucas–Lehmer 6167: 6051: 6009: 6005: 5992: 5965: 5961: 5944: 5914: 5896: 5886:February 24, 5884:. Retrieved 5874: 5862: 5849: 5823: 5819: 5813: 5803:February 24, 5801:. Retrieved 5797: 5741: 5737: 5731: 5704: 5700: 5690: 5664: 5660: 5654: 5620: 5616: 5607: 5582: 5575: 5543: 5539: 5525:Landrock, P. 5494: 5484:Schoof, René 5456: 5435: 5416: 5412: 5402: 5383: 5379: 5332: 5328: 5322: 5306: 5302: 5266: 5262: 5223: 5207: 5190: 5175: 5171: 5167: 5163: 5161: 5068: 5064: 5060: 5056: 5054: 5049: 5045: 5041: 5023: 4965: 4963: 4712: 4709: 4697: 4694: 4686: 4683: 4677: 4673: 4665: 4663: 4461: 4447: 4306: 4236: 4227: 4224: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4192: 4188: 4184: 4180: 4176: 4172: 4162: 4156: 4146: 4140: 4136: 4132: 4124: 4120: 4116: 4110: 4106: 4102: 4098: 4094: 4090: 4084: 4080: 4076: 4071: 4067: 4064: 4051: 4040:− 1 = 85 × 4 4037: 4032: 4028: 4026: 4021: 4016: 4012: 4007: 4003: 3999: 3991: 3989: 3984: 3980: 3976: 3972: 3969: 3965: 3962: 3959: 3955: 3950: 3946: 3942: 3938: 3933: 3931: 3928: 3924: 3920: 3916: 3912: 3909: 3906: 3902: 3898: 3894: 3891: 3888: 3885: 3881: 3877: 3872: 3868: 3866: 3862: 3861:← random(2, 3858: 3854: 3851: 3848: 3844: 3840: 3836: 3832: 3828: 3825: 3822:” otherwise 3819: 3815: 3811: 3805: 3801: 3797: 3793: 3787: 3783: 3779: 3775: 3771: 3765: 3761: 3757: 3753: 3747: 3743: 3739: 3732: 3728: 3724: 3721: 3713: 3706: 3701: 3695: 3691: 3681: 3677: 3673: 3668: 3662: 3658: 3649: 3645: 3643: 3638: 3634: 3630: 3626: 3622: 3616: 3605: 3601: 3592: 3588: 3584: 3578: 3572: 3568: 3564: 3562: 3558: 3552: 3548: 3541: 3537: 3531: 3525: 3521: 3514: 3510: 3494: 3488: 3484: 3477: 3473: 3466: 3462: 3455: 3451: 3444: 3440: 3433: 3429: 3422: 3418: 3414:= 31 and 73; 3411: 3407: 3400: 3396: 3389: 3385: 3375: 3371: 3366: 3364: 3340: 3333: 3325: 3311: 3306: 3302: 3298: 3294: 3291: 3287: 3284: 3281: 3277: 3273: 3269: 3265: 3263: 3260: 3256: 3252: 3248: 3244: 3241: 3238: 3234: 3230: 3226: 3223: 3220: 3217: 3213: 3209: 3205: 3202: 3199: 3194: 3192: 3189: 3185: 3181: 3177: 3174: 3171:” otherwise 3168: 3164: 3160: 3156: 3152: 3148: 3142: 3128: 3115: 3111: 3108: 3104: 3096: 3092: 3089: 3085: 3077: 3073: 3069: 3067: 3061: 3053: 3047: 3043: 3041: 3025:primes (see 3022: 2967: 2830: 2368: 2361: 2353: 2297: 2295: 2290: 2278: 2270: 2266: 2265:. Hence the 2262: 2258: 2254: 2250: 2248: 2243: 2239: 2231: 2227: 2221: 2216: 2212: 2208: 2204: 2200: 2180: 2176: 2174: 2162: 2158: 2150: 2146: 2142: 2128: 2124: 2118: 2114: 2103: 2093: 2089: 2085: 2081: 2078: 2074: 2071: 2068: 2064: 2060: 2056: 2052: 2050: 2047: 2043: 2039: 2035: 2031: 2028: 2025: 2021: 2017: 2013: 2010: 2007: 2004: 2000: 1996: 1992: 1988: 1984: 1983:← random(2, 1980: 1976: 1973: 1970: 1965: 1963: 1960: 1956: 1952: 1948: 1945: 1942:” otherwise 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1911: 1905: 1899: 1885: 1883: 1878: 1872: 1657: 1571: 1356: 1327: 1153: 1142: 1134: 1126: 1023: 953: 949: 944: 940: 935: 933: 924: 920: 918: 912: 908: 902: 895: 890: 880: 876: 870: 868: 769: 765: 756:has no more 748: 745: 741: 738:finite field 726: 722: 720: 711: 707: 705: 693: 687: 684: 677: 670: 663: 659: 643: 639: 632: 628: 624: 613: 609: 602: 598: 595: 590: 579: 573: 569: 563: 556: 548: 538: 534: 528: 524: 520: 518: 513: 507: 506:is called a 503: 499: 495: 491: 485: 479: 478:of 1 modulo 476:square roots 468: 401: 399: 395: 391: 387: 293: 286: 159: 153: 149: 145: 137: 133: 129: 125: 120: 112: 105: 102: 94: 67: 60: 35: 31: 29: 6462:Pollard rho 6419:Goldschmidt 6153:Pocklington 6143:Baillie–PSW 5521:Damgård, I. 5335:: 355–364, 4452:. Using an 4101:is neither 4070:of −1, say 3943:multiple of 3831:> 0 and 3794:multiple of 3567:values for 3180:> 0 and 3143:Miller test 3076:coprime to 3038:Miller test 2837:denominator 2236:Euler liars 1951:> 0 and 557:Miller test 539:strong liar 285:0 ≤ r < 140:, which is 136:, called a 6647:Categories 6574:Cornacchia 6569:Chakravala 6117:algorithms 5751:1509.00864 5613:Bach, Eric 5243:References 4233:Complexity 4058:. Indeed, 4031:= 341 and 4010:such that 3897:: 3694:≢ ±1 (mod 3403:= 2 and 3; 3374:< 2(ln 3330:notation, 3276:” 3229:: 2422:Bayes' law 2291:worst‐case 2271:generating 2100:Complexity 2063:” 2016:: 1902:pseudocode 1287:such that 731:polynomial 642:≡ −1 (mod 631:≡ −1 (mod 596:Note that 486:Hence, by 6548:Berlekamp 6505:Euclidean 6393:Euclidean 6373:Toom–Cook 6368:Karatsuba 6053:MathWorld 5216:isprime() 5200:Theorem E 5166:≥ 21 and 5142:− 5117:− 5038:Pomerance 5001:− 4983:⁡ 4932:− 4907:− 4891:⁡ 4871:− 4863:≤ 4852:− 4815:¬ 4812:∣ 4769:∣ 4763:¬ 4640:− 4605:⁡ 4542:− 4515:− 4500:⁡ 4426:− 4405:− 4390:π 4387:− 4366:π 4309:uniformly 4216:returns “ 4022:composite 3977:composite 3812:composite 3808:is found, 3661:≡ 1 (mod 3318:quadratic 3299:composite 3274:composite 3161:composite 3139:Eric Bach 3101:generates 2992:∣ 2986:¬ 2945:− 2908:¬ 2905:∣ 2862:∣ 2856:¬ 2794:− 2762:¬ 2759:∣ 2696:¬ 2661:¬ 2658:∣ 2627:∣ 2559:∧ 2527:∧ 2521:¬ 2493:∧ 2487:¬ 2451:∣ 2445:¬ 2391:∣ 2385:¬ 2334:¬ 2331:∣ 2086:composite 2061:composite 1932:composite 1852:− 1846:≠ 1840:≡ 1827:≡ 1781:− 1775:≠ 1761:≠ 1747:≡ 1734:≡ 1699:→ 1586:− 1583:≡ 1551:− 1539:≡ 1526:≡ 1480:− 1474:≠ 1460:≠ 1446:≡ 1433:≡ 1398:→ 1310:− 1304:≤ 1298:≤ 1212:× 1191:− 1084:… 1068:− 987:≡ 832:≡ 826:− 789:− 736:over the 612:≡ 1 (mod 601:≡ 1 (mod 474:the only 436:≡ 428:− 371:− 337:and then 283:for some 252:− 249:≡ 188:≡ 87:in 1980. 44:algorithm 6515:Lehmer's 6409:Chunking 6396:division 6325:Fermat's 5723:33599405 5531:(1993), 5486:(2004), 5283:10690396 5034:Landrock 4706:Accuracy 4247:expected 4181:Input #2 4173:Input #1 4093:against 4015:≡ 1 mod 3990:This is 3919:≠ 1 and 3915:= 1 and 3780:Input #2 3772:Input #1 3671:divides 3604:log log 3251:≠ 1 and 3247:= 1 and 3082:subgroup 3023:generate 2171:Accuracy 2149:log log 2123:, where 2038:≠ 1 and 2034:= 1 and 1995:− 1 1987:− 2) # 1920:Input #2 1912:Input #1 889:, since 772:. Then: 692:section 580:Accuracy 578:section 555:section 158:to base 148:. Then, 54:and the 6631:Italics 6553:Kunerth 6533:Cipolla 6414:Fourier 6383:Fürer's 6277:Euler's 6267:Dixon's 6190:Pépin's 6014:Bibcode 5984:0583518 5857:(ed.). 5828:Bibcode 5776:6955806 5756:Bibcode 5683:2153262 5647:2008811 5625:Bibcode 5568:2152945 5548:Bibcode 5371:25 ⋅ 10 5341:0213289 5233:GNU GMP 5229:OpenSSL 5030:Damgård 5026:earlier 4670:earlier 4302:earlier 4113:, then 4042:. Then 3945:”, gcd( 3839:− 1 = 2 3676:− 1 = ( 3502:A014233 3500::  3332:Õ((log 3200:for all 3188:− 1 = 2 2356:is the 2267:average 2197:⁠ 2185:⁠ 1959:− 1 = 2 1150:Example 658:1 < 568:. When 509:witness 498:, then 167:holds: 154:strong 142:coprime 6613:Schoof 6500:Binary 6404:Binary 6340:Shor's 6158:Fermat 5982:  5933:  5774:  5721:  5681:  5645:  5566:  5527:& 5501:  5463:  5339:  5281:  5178:≥ 32. 4245:, the 4225:return 4189:Output 3981:return 3973:return 3939:return 3889:repeat 3865:− 2) 3857:: 3849:repeat 3788:Output 3742:= gcd( 3727:= gcd( 3689:since 3656:since 3347:APR-CL 3328:soft-O 3303:return 3295:return 3270:return 3221:repeat 3157:Output 2352:where 2279:verify 2104:Using 2090:return 2082:return 2057:return 2008:repeat 1979:: 1971:repeat 1928:Output 1572:Since 1145:, is. 948:where 943:− 1= 2 702:Proofs 648:since 622:. And 533:, and 124:where 108:> 2 6434:Short 6163:Lucas 6002:(PDF) 5958:(PDF) 5919:(PDF) 5772:S2CID 5746:arXiv 5719:S2CID 5679:JSTOR 5643:JSTOR 5587:(PDF) 5564:JSTOR 5536:(PDF) 5491:(PDF) 5376:(PDF) 5279:S2CID 5213:Maple 5182:Notes 4198:while 4097:: if 3949:− 1, 3895:times 3855:times 3814:” if 3746:+ 1, 3731:− 1, 3680:− 1)( 3600:(log 3314:index 3307:prime 3227:times 3169:prime 3163:” if 3149:Input 3027:below 2358:event 2275:below 2014:times 1977:times 1934:” if 1131:lemma 931:Proof 885:. By 879:− 1)( 758:roots 754:field 734:X − 1 718:Proof 696:below 690:(see 662:< 582:below 559:below 537:is a 490:, if 42:: an 6429:Long 6363:Long 5931:ISBN 5888:2019 5863:The 5805:2019 5499:ISBN 5461:ISBN 5231:and 5044:and 5036:and 4789:< 4691:(or 4676:and 4345:> 4222:then 4212:and 4131:gcd( 4129:and 4115:gcd( 4105:nor 4079:mod 4046:and 3970:then 3968:≠ 1 3929:then 3927:− 1 3905:mod 3884:mod 3847:− 1 3737:and 3711:nor 3684:+ 1) 3577:(ln 3498:OEIS 3392:= 2; 3351:ECPP 3349:and 3292:then 3290:≠ 1 3261:then 3259:− 1 3237:mod 3216:mod 3060:log 2882:< 2238:for 2161:log 2153:) = 2145:log 2117:log 2079:then 2077:≠ 1 2048:then 2046:− 1 2024:mod 2003:mod 1888:see 1328:Say 905:+ 1, 883:+ 1) 138:base 30:The 6593:LLL 6439:SRT 6298:+ 1 6290:− 1 6138:APR 6133:AKS 6022:doi 5970:doi 5923:doi 5836:doi 5764:doi 5709:doi 5669:doi 5633:doi 5595:doi 5556:doi 5421:doi 5388:doi 5311:doi 5271:doi 5028:), 4304:). 4167:bit 4087:− 1 3992:not 3875:− 1 3826:let 3804:of 3796:”, 3716:+ 1 3709:− 1 3644:If 3547:if 3536:if 3520:if 3509:if 3483:if 3472:if 3461:if 3450:if 3439:if 3428:if 3417:if 3406:if 3395:if 3384:if 3197:− 1 3175:let 3159:: “ 3124:O(( 2133:FFT 1968:− 1 1946:let 1930:: “ 1843:205 1835:110 1831:137 1824:221 1798:137 1772:188 1758:188 1750:188 1738:137 1731:221 1705:137 1643:137 1580:220 1542:220 1534:110 1530:174 1523:221 1497:174 1437:174 1430:221 1404:174 1342:174 1168:221 998:mod 934:If 900:or 898:− 1 843:mod 698:). 680:− 2 666:− 1 561:). 447:mod 408:by 313:mod 263:mod 199:mod 144:to 117:as 115:− 1 34:or 6649:: 6597:KZ 6595:; 6050:. 6020:, 6010:65 6008:, 6004:, 5980:MR 5978:. 5966:35 5964:. 5960:. 5929:, 5908:; 5904:; 5861:. 5834:, 5824:72 5822:, 5796:. 5784:^ 5770:. 5762:. 5754:. 5742:86 5740:. 5717:. 5705:83 5703:. 5699:. 5677:, 5665:61 5663:, 5641:, 5631:, 5621:55 5619:, 5562:, 5554:, 5544:61 5542:, 5538:, 5523:; 5512:^ 5493:, 5475:^ 5451:; 5447:; 5443:; 5417:20 5415:. 5411:. 5384:35 5382:. 5378:. 5363:; 5359:; 5348:^ 5337:MR 5333:12 5331:, 5307:12 5305:, 5290:^ 5277:, 5267:13 5265:, 5250:^ 5170:≥ 5103:15 5032:, 4980:ln 4888:ln 4836:Pr 4792:Pr 4757:Pr 4725:Pr 4693:Õ( 4682:O( 4602:ln 4579:Pr 4497:ln 4475:Pr 4348:Pr 4322:Pr 4264:Pr 4220:” 4206:if 4183:: 4175:: 4149:. 4139:, 4135:+ 4123:, 4119:− 4083:= 4062:. 3987:” 3979:” 3963:if 3958:← 3953:)) 3941:(“ 3923:≠ 3910:if 3901:← 3880:← 3867:# 3792:(“ 3790:: 3782:: 3774:: 3766:AB 3764:= 3652:, 3641:. 3608:). 3336:)) 3323:. 3309:” 3301:” 3285:if 3280:← 3255:≠ 3242:if 3233:← 3212:← 3206:in 3151:: 3131:)) 3126:ln 3052:O( 2980:Pr 2929:Pr 2885:Pr 2850:Pr 2797:Pr 2777:Pr 2739:Pr 2690:Pr 2676:Pr 2638:Pr 2607:Pr 2550:Pr 2515:Pr 2481:Pr 2439:Pr 2424:: 2379:Pr 2362:MR 2311:Pr 2167:. 2141:O( 2096:” 2088:” 2072:if 2067:← 2042:≠ 2029:if 2020:← 1999:← 1922:: 1914:: 1892:. 1881:. 1814:55 1742:55 1721:55 1655:: 1513:55 1471:47 1457:47 1449:47 1441:55 1420:55 1354:: 1325:. 1255:55 1215:55 927:. 915:. 682:. 668:. 627:= 541:. 516:. 412:, 396:n. 388:r. 79:. 58:. 6599:) 6591:( 6296:p 6288:p 6106:e 6099:t 6092:v 6056:. 6024:: 6016:: 5986:. 5972:: 5925:: 5890:. 5838:: 5830:: 5807:. 5778:. 5766:: 5758:: 5748:: 5725:. 5711:: 5671:: 5635:: 5627:: 5601:. 5597:: 5558:: 5550:: 5469:. 5429:. 5423:: 5396:. 5390:: 5373:" 5313:: 5273:: 5176:b 5172:b 5168:k 5164:b 5145:k 5138:4 5133:) 5125:2 5122:b 5113:2 5106:4 5098:b 5092:7 5089:1 5083:( 5069:b 5065:b 5061:b 5057:b 5050:k 5046:k 5042:b 5009:b 5004:k 4997:4 4990:2 4986:2 4966:b 4949:. 4945:) 4940:) 4935:1 4928:b 4924:( 4918:O 4913:+ 4910:1 4904:b 4898:2 4894:2 4880:( 4874:k 4867:4 4859:) 4855:1 4845:) 4842:P 4839:( 4832:1 4825:( 4821:) 4818:P 4807:k 4803:R 4798:M 4795:( 4786:) 4781:k 4777:R 4772:M 4766:P 4760:( 4734:) 4731:P 4728:( 4700:) 4698:b 4695:k 4689:) 4687:b 4684:k 4678:k 4674:b 4666:b 4648:) 4643:1 4636:b 4632:( 4626:O 4621:+ 4618:b 4612:2 4608:2 4595:= 4588:) 4585:P 4582:( 4575:1 4550:) 4545:3 4538:b 4534:( 4528:O 4523:+ 4518:1 4511:b 4503:2 4493:2 4487:= 4484:) 4481:P 4478:( 4462:b 4429:2 4423:b 4419:2 4413:) 4408:1 4402:b 4398:2 4394:( 4383:) 4378:b 4374:2 4370:( 4360:= 4357:) 4354:P 4351:( 4342:) 4337:k 4333:R 4328:M 4325:( 4284:) 4279:k 4275:R 4270:M 4267:( 4260:1 4228:n 4214:k 4210:n 4202:n 4193:n 4185:k 4177:b 4165:‐ 4163:b 4147:n 4143:) 4141:n 4137:R 4133:x 4127:) 4125:n 4121:R 4117:x 4111:R 4109:− 4107:n 4103:R 4099:x 4095:R 4091:x 4085:n 4081:n 4077:x 4072:R 4068:n 4052:n 4038:n 4033:a 4029:n 4017:n 4013:a 4008:n 4004:a 4000:n 3983:“ 3975:“ 3966:y 3960:y 3956:x 3951:n 3947:x 3934:n 3925:n 3921:x 3917:x 3913:y 3907:n 3903:x 3899:y 3892:s 3886:n 3882:a 3878:x 3873:n 3869:n 3863:n 3859:a 3852:k 3845:n 3841:d 3837:n 3833:d 3829:s 3816:n 3810:“ 3806:n 3802:m 3798:m 3784:k 3776:n 3762:n 3758:n 3754:n 3750:) 3748:n 3744:x 3740:B 3735:) 3733:n 3729:x 3725:A 3718:. 3714:x 3707:x 3702:n 3698:) 3696:n 3692:x 3686:; 3682:x 3678:x 3674:x 3669:n 3665:) 3663:n 3659:x 3650:n 3646:x 3639:a 3635:a 3631:n 3627:n 3623:n 3606:n 3602:n 3598:Θ 3593:w 3589:n 3585:w 3581:) 3579:n 3573:n 3569:b 3565:b 3553:a 3549:n 3542:a 3538:n 3526:a 3522:n 3515:a 3511:n 3489:a 3485:n 3478:a 3474:n 3467:a 3463:n 3456:a 3452:n 3445:a 3441:n 3434:a 3430:n 3423:a 3419:n 3412:a 3408:n 3401:a 3397:n 3390:a 3386:n 3378:) 3376:n 3372:a 3367:n 3334:n 3305:“ 3297:“ 3288:y 3282:y 3278:x 3272:“ 3266:n 3257:n 3253:x 3249:x 3245:y 3239:n 3235:x 3231:y 3224:s 3218:n 3214:a 3210:x 3203:a 3195:n 3190:d 3186:n 3182:d 3178:s 3165:n 3153:n 3129:n 3116:n 3112:Z 3109:n 3107:/ 3105:Z 3103:( 3097:a 3093:Z 3090:n 3088:/ 3086:Z 3078:n 3074:a 3070:n 3062:n 3056:) 3054:n 3048:n 3044:a 3009:) 3004:k 3000:R 2995:M 2989:P 2983:( 2952:) 2948:1 2938:) 2935:P 2932:( 2925:1 2918:( 2914:) 2911:P 2900:k 2896:R 2891:M 2888:( 2879:) 2874:k 2870:R 2865:M 2859:P 2853:( 2806:) 2803:P 2800:( 2791:1 2786:) 2783:P 2780:( 2768:) 2765:P 2754:k 2750:R 2745:M 2742:( 2735:1 2730:+ 2727:1 2723:1 2718:= 2702:) 2699:P 2693:( 2685:) 2682:P 2679:( 2667:) 2664:P 2653:k 2649:R 2644:M 2641:( 2633:) 2630:P 2622:k 2618:R 2613:M 2610:( 2601:+ 2598:1 2594:1 2589:= 2576:) 2571:k 2567:R 2562:M 2556:P 2553:( 2547:+ 2544:) 2539:k 2535:R 2530:M 2524:P 2518:( 2510:) 2505:k 2501:R 2496:M 2490:P 2484:( 2475:= 2468:) 2463:k 2459:R 2454:M 2448:P 2442:( 2408:) 2403:k 2399:R 2394:M 2388:P 2382:( 2369:k 2364:k 2354:P 2340:) 2337:P 2326:k 2322:R 2317:M 2314:( 2298:k 2263:n 2259:n 2255:n 2251:n 2244:n 2240:n 2232:n 2228:n 2217:n 2213:k 2209:n 2205:n 2201:a 2194:4 2191:/ 2188:1 2181:n 2177:a 2165:) 2163:n 2159:k 2157:( 2155:Õ 2151:n 2147:n 2143:k 2129:k 2125:n 2121:) 2119:n 2115:k 2113:( 2111:O 2092:“ 2084:“ 2075:y 2069:y 2065:x 2059:“ 2053:n 2044:n 2040:x 2036:x 2032:y 2026:n 2022:x 2018:y 2011:s 2005:n 2001:a 1997:x 1993:n 1989:n 1985:n 1981:a 1974:k 1966:n 1961:d 1957:n 1953:d 1949:s 1936:n 1924:k 1916:n 1906:k 1886:a 1879:n 1855:1 1849:n 1808:1 1804:2 1784:1 1778:n 1764:1 1715:0 1711:2 1696:n 1686:d 1680:0 1676:s 1670:a 1640:= 1637:a 1617:a 1597:n 1589:1 1554:1 1548:n 1545:= 1507:1 1503:2 1483:1 1477:n 1463:1 1414:0 1410:2 1395:n 1385:d 1379:0 1375:s 1369:a 1339:= 1336:a 1313:2 1307:n 1301:a 1295:2 1275:a 1252:= 1249:d 1241:2 1238:= 1235:s 1207:2 1203:2 1194:1 1188:n 1165:= 1162:n 1143:a 1135:n 1127:n 1111:d 1107:a 1103:, 1098:d 1095:2 1091:a 1087:, 1081:, 1076:d 1071:1 1065:s 1061:2 1056:a 1052:, 1047:d 1042:s 1038:2 1033:a 1009:. 1005:) 1002:n 995:( 990:1 982:d 977:s 973:2 968:a 954:d 950:s 945:d 941:n 936:n 925:a 921:n 913:n 909:x 903:x 896:x 891:n 881:x 877:x 875:( 871:n 854:. 850:) 847:n 840:( 835:0 829:1 821:2 817:x 813:= 810:) 807:1 804:+ 801:x 798:( 795:) 792:1 786:x 783:( 770:n 766:x 749:Z 746:n 744:/ 742:Z 727:n 723:n 712:n 708:n 688:n 678:n 673:n 664:n 660:a 654:a 650:d 646:) 644:n 640:a 635:) 633:n 629:a 625:a 616:) 614:n 610:a 605:) 603:n 599:a 591:n 574:n 570:n 535:a 525:a 521:n 514:n 504:a 500:n 496:a 492:n 480:n 454:) 451:n 444:( 439:1 431:1 425:n 421:a 402:n 392:r 374:1 368:n 365:= 360:d 355:r 351:2 346:a 325:1 322:= 317:n 307:d 303:a 290:. 287:s 270:) 267:n 260:( 255:1 244:d 239:r 235:2 230:a 219:; 206:) 203:n 196:( 191:1 183:d 179:a 160:a 150:n 146:n 134:a 130:d 126:s 121:d 119:2 113:n 106:n 20:)

Index

Miller–Rabin test
primality test
algorithm
likely to be prime
Fermat primality test
Solovay–Strassen primality test
polynomial-time
Gary L. Miller
deterministic
extended Riemann hypothesis
Michael O. Rabin
probabilistic algorithm
coprime
probable prime
congruence relations
Fermat's little theorem
square roots
contraposition
witness
strong pseudoprime
Carmichael numbers
section Miller test below
probabilistic test
section Accuracy below
false positive
compatible with exponentiation
section Testing against small sets of bases below
polynomial
finite field
field

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.