Knowledge

Elitzur–Vaidman bomb tester

Source 📝

1152:
experiment works, it is important to know that unlike a dud, a live bomb is a kind of observer and that an encounter between the photon and a live bomb is a kind of observation. It can therefore collapse the photon's superposition, in which the photon is travelling along both the upper and lower paths. When it reaches the live bomb, or the detectors, however, it can only have been on one or the other. But, like the radioactive material in the box with Schrödinger's famous cat, upon its encounter with the half-silvered mirror at the beginning of the experiment, the photon, paradoxically does and does not interact with the bomb. According to the authors, the bomb both explodes and does not explode. This is only in the case of a live bomb, however. In any event, once observed by the detectors, it will have only traveled one of the paths.
1209:
interferometer is constructed, a photon going through the second mirror from the lower path towards detector D will have a phase shift of half a wavelength compared to a photon being reflected from the upper path towards that same detector, while a photon coming from the upper path and towards detector C would have the same phase as one being reflected from the lower path towards that detector, so if the photon went through both paths, only detector C would be able to detect the photon. Thus, Detector D is able to detect a photon only in the event of a lone photon going through the second mirror (see figure 6). In other words, if the photon is in a superposition at the time it arrives at the second half-silvered mirror, it will always arrive at detector C and never at detector D.
1197: 1161: 1144: 1136: 1036: 2771:
measurement or not) can be propagated to other devices (such as the final detectors) through a mode which, in the quantum account, is in the vacuum quantum state. In particular, in the case of the Elitzur-Vaidman bomb-tester, it is what opens up the possibility that information about whether the bomb is functional or faulty can be propagated to the final detectors through the physical state of the R mode even though in the quantum account the R mode is in the vacuum quantum state.
1176:. They can either strengthen each other by "constructive interference", or weaken each other by "destructive interference". This is true whether the wave is in water, or a single photon in a superposition. So even though there is only one photon in the experiment, because of its encounter with the first half-silvered mirror, it acts like two. When "it" or "they" are reflected off the ordinary mirrors, it will interfere with itself as if it were two different photons. 3795: 1328: 31: 1106: 1025: 1252:: This will always be the outcome if a bomb is a dud, however, there is a 25% chance that this will be the outcome if the bomb is live. If the bomb is a dud, this is because the photon remained in its superposition until it reached the second half-silvered mirror and constructively interfered with itself. If the bomb is live, this is because the photon in fact took the upper path and passed through the second half-silvered mirror. 1010:" by observing it, at which time its location (or other measured property) at the moment of observation is definite. Information can then be gleaned not only about the actual state of the particle, but also other states or locations in which it "existed" before the collapse. This gleaning of information is possible even if the particle was never factually in any of the particular states or locations that are of interest. 1117:, which allows a photon to either pass through it, or be reflected off it at a 90-degree angle (see figure 3). There is equal probability it will do either. The photon enters a superposition, in which it does both. The single particle both passes through, and is reflected off the half-silvered mirror. From that moment on, the single photon exists in two different locations. 1055:, the light is absorbed and the bomb explodes. The triggers on the dud bombs have no sensor, so any light incident on the bomb will not be absorbed and will instead pass straight through. The dud bomb will not detect any photon and will not detonate. Is it possible to determine which bombs are functional and which are duds without detonating all of the live ones? 1006:". In this state, some properties of the particle, for example, its location, are not definite. While in a superposition, any and all possibilities are equally real. So, if the particle could feasibly exist in more than one location, in certain senses that are experimentally useful, it exists in all of them simultaneously. The particle's wave can later be " 1213:
mirror. At which point it will, again, have a 50/50 chance of passing through it or being reflected off it, and, subsequently, it will be detected at either of the two detectors with the same probability. This is what makes it possible for the experiment to verify the bomb is live without actually blowing it up.
975:. The idea of getting information about an object without interacting with it is not a new one. For example, there are two boxes, one of which contains something, the other of which contains nothing. If you open one box and see nothing, you know that the other contains something, without ever opening it. 2180:
devised a method, using a sequence of polarising devices, that efficiently increases the yield rate to a level arbitrarily close to one. The key idea is to split a fraction of the photon beam into a large number of beams of very small amplitude and reflect all of them off the mirror, recombining them
1212:
If the bomb is live, there is a 50/50 chance that the photon took the upper path. If it "factually" did so, then it "counter-factually" took the lower path (see figure 7). That counter-factual event destroyed that photon and left only the photon on the upper path to arrive at the second half-silvered
1216:
In other words, since if the bomb is live there is no possibility of interference between the two paths, a photon will always be detected in either of the two detectors, while if the bomb is a dud there will be interference which can only cause detector C to be activated, so activation of detector D
2770:
Specifically, even if the occupation number of a mode is 0, there are two possible values that its discrete phase might take, and hence such a mode can still encode one bit of information. This is what opens up the possibility that information about a device (e.g., whether it implements a which-way
1151:
A light-sensitive bomb is placed along the lower path. If the bomb is live, when a photon arrives, it will explode and both will be destroyed. If it is a dud, the photon will pass by unaffected (see figure 4), i.e., it will remain in superposition until it reaches a detector. To understand how this
1200:
Figure 7: If the bomb is live, and the photon took the upper path, there is no chance of interference at the second half-silvered mirror, and so, just as was the case at the first, it has an equal chance of reflecting off it or passing through it and arriving at either detector C or D. This is the
1208:
The two detectors and the second half-silvered mirror are precisely aligned with one another. Detector C is positioned to detect the particle if the bomb is a dud and the particle traveled both paths in its superposition and then constructively interfered with itself. Due to the way in which the
1083:
The bomb in question: the bomb is placed inside the box beforehand on the "lower path". If the bomb is live and comes into contact with a photon, it will detonate and destroy itself and the photon. If, however, the bomb is a dud, the photon passes it by and continues on its way along the lower
1120:
Along both the upper and lower path, the particle will encounter an ordinary mirror, positioned to redirect the two routes toward one another. They then intersect at a second half-silvered mirror. On the other side, a pair of detectors are placed such that the photon can be detected by either
1270:
With this process 25% of live bombs can be identified without being detonated, 50% will be detonated and 25% remain uncertain. By repeating the process with the uncertain ones, the ratio of identified non-detonated live bombs approaches 33% of the initial population of bombs. See
1183:
When it reaches the second half-silvered mirror, if the photon in the experiment is behaving like a particle (in other words, if it is not in a superposition), then it has a fifty-fifty chance it will pass through or be reflected and be detected by one or the other detector.
1121:
detector, but never by both. It is also possible that it will not be detected by either. Based on this outcome, with a live bomb, there is a 50% chance it will explode, a 25% chance it will be identified as good without exploding and a 25% chance there will be no result.
1456: 1246:: The bomb exploded and destroyed the photon before it could be detected. This is because the photon in fact took the lower path and triggered the bomb, destroying itself in the process. There is a 50% chance that this will be the outcome if the bomb is live. 2018:
The authors state that the ability to obtain information about the bomb's functionality without ever "touching" it appears to be a paradox that, they argue, is based on the assumption that there is only a single "real" result. But according to the
2188:
In 2016, Carsten Robens, Wolfgang Alt, Clive Emary, Dieter Meschede, and Andrea Alberti demonstrated that the Elitzur–Vaidman bomb testing experiment can be recast in a rigorous test of the macro-realistic worldview based on the violation of the
1258:: The bomb is live but unexploded. That is because the photon in fact took the upper path and reflected off the second half-silvered mirror, something possible only because there was no photon from the lower path with which it could interfere. 1090:
A second beam splitter: identical to the initial one. This beam splitter is positioned opposite the first, at the intersection between the lower path and upper path (after they have been redirected by the ordinary mirrors), at the exit of the
1647: 1262:
If this is the outcome, the experiment has successfully verified that the bomb is live despite the fact that the photon never "factually" encountered the bomb itself. There is a 25% chance that this will be the outcome if the bomb is
129: 2193:
using ideal negative measurements. In their experiment they perform the bomb test with a single atom trapped in a polarization-synthesized optical lattice. This optical lattice enables interaction-free measurements by
2008: 1935: 1781: 1087:
A pair of ordinary mirrors: one mirror is located on each beam path. They are positioned to redirect the photon so that the two paths intersect one another at the same position as the second beam splitter.
1164:
Figure 6: The second half-silvered mirror and the two detectors are positioned so that the photon will only arrive at Detector C if there is wave interference. This is only possible if the bomb is a dud.
1188:
If the bomb "observed" the photon, it detonated and destroyed the photon on the lower path, therefore only the photon that takes the upper path will be detected, either at Detector C or Detector D.
1839: 2023:, each possible state of a particle's superposition is real. The authors therefore argue that the particle does actually interact with the bomb and it does explode, just not in our "world". 1373: 1495: 2798:
Hosten, Onur; Rakher, Matthew T.; Barreiro, Julio T.; Peters, Nicholas A.; Kwiat, Paul G. (February 23, 2006). "Counterfactual quantum computation through quantum interrogation".
1701: 1267:
If the result is 2, the experiment is repeated. If the photon continues to be observed at C and the bomb does not explode, it can eventually be concluded that the bomb is a dud.
1080:". The photon will either pass through the mirror and travel along the "lower path" inside the box, or be reflected at a 90-degree angle and travel along the box's "upper path". 2125:
state is not interpreted as the non-existence of the photon, but is instead a photon in a "vacuum quantum state." This photon can interact with a detector and show up as
2151: 2123: 2095: 2067: 1368: 1096:
A pair of photon detectors: located outside the box, they are aligned with the second beam-splitter. The photon can be detected at either or neither, but never both.
1545: 1283:
The probability of exploding the bomb can be made arbitrarily small by repeating the interaction several times. It can be modelled in a convenient way with the
2995:. Asia-Pacific Physics Conference. Proceedings of the 8th Asia-Pacific Physics Conference, Taipei, Taiwan, 7–10 August 2000. River Edge, NJ: World Scientific. 2718:
Catani, Lorenzo; Leifer, Matthew; Schmid, David; Spekkens, Robert W. (2023-09-25). "Why interference phenomena do not capture the essence of quantum theory".
2571:
Pinto, Vinícius Pereira; Pereira de Oliveira, Bruno; Mitsue Yasuoka, Fátima Maria; Courteille, Philippe Wilhelm; Caiado de Castro Neto, Jarbas (2023-09-24).
1516: 2170: 1109:
Figure 3: Once the photon encounters the beam splitter it enters a superposition wherein it both passes through and reflects off the half-silvered mirror
34:
Bomb-testing problem diagram. A – photon emitter, B – bomb to be tested, C, D – photon detectors. Mirrors in the lower left and upper right corners are
3039: 3819: 990:. The behavior of elementary particles is very different from what we experience in our macroscopic world. Their observed behavior can be that of a 1139:
Figure 4: If the bomb is live, it will absorb the photon and detonate. If it is a dud, the photon is unaffected and continues along the lower path.
59: 3592: 17: 3829: 3240: 395: 1147:
Figure 5 As in Figure 4, the photon travels the lower path toward the bomb, but in a superposition, where it also travels the upper path.
896: 1940: 1867: 3763: 1714: 2476: 3089: 147: 3775: 603: 2173:, and Thomas Herzog performed an equivalent of the above experiment, proving interaction-free measurements are indeed possible. 3459: 3032: 987: 376: 1180:
A live bomb will absorb the photon when it explodes and there will be no opportunity for the photon to interfere with itself.
3393: 2646: 559: 2037:, suggesting that it is a less dramatic illustration of non-classicality than other quantum phenomena like the violation of 3824: 3316: 2216: 1792: 482: 1287:. Assume that a box which potentially contains a bomb is defined to operate on a single probe qubit in the following way: 1451:{\textstyle {\begin{pmatrix}\cos {\epsilon }&-\sin {\epsilon }\\\sin {\epsilon }&\cos {\epsilon }\end{pmatrix}}} 2525: 3062: 3025: 3000: 142: 3172: 2357:
F. Kaiser, T. Coudreau, P. Milman, D.B. Ostroswsky and S. Tanzilli, Entanglement-Enabled Delayed-Choice Experiment
932:. Since their publication, real-world experiments have confirmed that their theoretical method works as predicted. 231: 2181:
with the original beam afterwards. It can also be argued that this revised construction is simply equivalent to a
3730: 3434: 3157: 1173: 1029: 1019: 889: 338: 186: 3742: 3414: 2182: 578: 308: 1462: 3720: 3497: 3419: 3202: 3072: 618: 356: 256: 2299:
P. G. Kwiat; H. Weinfurter; T. Herzog; A. Zeilinger; M. A. Kasevich (1995). "Interaction-free Measurement".
3839: 3454: 3388: 3383: 3354: 3067: 972: 963:
triggering its detonation, although there is still a 50% chance that the bomb will detonate in the effort.
921: 554: 549: 520: 371: 152: 3834: 3522: 3429: 2365: 2211: 2190: 1658: 588: 333: 323: 3798: 3560: 3368: 3339: 2351:
A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu and J.L. O'Brien, A Quantum Delayed-Choice Experiment,
2345:
Z. Blanco-Garcia and O. Rosas-Ortiz, Interaction-Free Measurements of Optical Semitransparent Objects,
2020: 882: 534: 505: 3582: 3449: 3373: 3334: 3291: 3265: 3222: 3115: 2041:. The argument from Spekkens toy model involves the detector being able to detect a photon as either 1842: 1275:
below for a modified experiment that can identify the live bombs with a yield rate approaching 100%.
999: 952: 539: 500: 453: 428: 351: 211: 2857:
Carsten Robens; Wolfgang Alt; Clive Emary; Dieter Meschede & Andrea Alberti (19 December 2016).
2321: 2268: 3649: 3629: 3619: 3609: 3565: 3140: 2797: 2346: 623: 2990: 1864:
iterations, and thus correctly identifying that there is a bomb without exploding it, is given by
3344: 3270: 2390: 1003: 792: 510: 418: 3758: 3306: 2128: 2100: 2072: 2044: 983: 468: 366: 132: 3669: 3444: 3424: 3349: 3217: 2316: 2263: 1346: 1007: 979: 924:
to verify that a bomb is functional without having to detonate it. It was conceived in 1993 by
797: 515: 343: 313: 276: 3260: 2153:
yet still carry information, allowing the bomb test to be interpreted in classical terms.
1642:{\textstyle R_{\epsilon }^{T}|0\rangle =\cos(T\epsilon )|0\rangle +\sin(T\epsilon )|1\rangle } 423: 3694: 3207: 3187: 1937:, which is arbitrarily close to 1. The probability of the bomb having exploded until then is 1196: 956: 266: 251: 2859:"Atomic "bomb testing": the Elitzur–Vaidman experiment violates the Leggett–Garg inequality" 3725: 3654: 3599: 3329: 3152: 3110: 2953: 2880: 2807: 2737: 2405: 2308: 2255: 2195: 583: 495: 221: 178: 827: 8: 3710: 3679: 3624: 3604: 3512: 3469: 3324: 3250: 3177: 3167: 3079: 2480: 2185:
and the result looks much less shocking in this language; see Watanabe and Inoue (2000).
948: 936: 682: 490: 408: 236: 216: 168: 2957: 2884: 2811: 2741: 2668: 2409: 2312: 2259: 1160: 3770: 3639: 3537: 3245: 3192: 3084: 2977: 2943: 2901: 2870: 2858: 2839: 2761: 2727: 2680: 2626: 2421: 2417: 2281: 2245: 2034: 917: 403: 328: 261: 173: 2358: 2352: 3780: 3689: 3659: 3587: 3550: 3545: 3527: 3492: 3482: 3197: 3162: 3145: 3048: 3006: 2996: 2969: 2906: 2831: 2823: 2765: 2753: 2700: 2642: 2592: 2521: 2334: 2038: 2030: 914: 837: 812: 752: 747: 647: 613: 593: 191: 50: 2981: 2856: 2425: 2285: 1076:
An initial half-silvered mirror: the photon enters the box when it encounters this "
3507: 3502: 3359: 3255: 2961: 2896: 2888: 2843: 2815: 2745: 2690: 2634: 2584: 2413: 2326: 2273: 1501: 925: 842: 832: 822: 722: 702: 687: 657: 525: 413: 2965: 2573:"Exploring Quantum Comprehension Through the Elitzur-Vaidman Bomb Testing Problem" 3737: 3664: 3644: 3614: 3577: 3572: 3477: 3301: 2162: 1284: 1143: 1067:
A photon emitter: it produces a single photon for the purposes of the experiment.
867: 737: 717: 463: 303: 2638: 2570: 2330: 1135: 1035: 3715: 3684: 3674: 3296: 3286: 3120: 2749: 2588: 2388: 802: 762: 742: 712: 692: 642: 608: 458: 448: 241: 2892: 3813: 3634: 3487: 3378: 3212: 3182: 3135: 3010: 2827: 2757: 2704: 2622: 2596: 2572: 2230: 2026: 1114: 1077: 862: 857: 787: 757: 727: 598: 544: 271: 246: 124:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 35: 2695: 3517: 3130: 3125: 2973: 2910: 2835: 2389:
Paul G. Kwiat; H. Weinfurter; T. Herzog; A. Zeilinger; M. Kasevich (1994).
2338: 2199: 2033:. It has also been argued that the bomb test can be constructed within the 852: 847: 782: 767: 732: 226: 2992:
Experimental demonstration of two dimensional interaction free measurement
1522:
At the end of the circuit, the probe qubit is measured. If the outcome is
3555: 1239:
These correspond with the following conditions of the bomb being tested:
929: 817: 772: 707: 662: 2819: 1324:
The following quantum circuit can be used to test if a bomb is present:
2277: 2250: 2166: 2029:
offered an interpretation of the Elitzur–Vaidman bomb test in terms of
1327: 807: 777: 697: 672: 667: 652: 2669:"Is the Quantum State Real? An Extended Review of ψ-ontology Theorems" 2515: 1217:
can only occur if the bomb is live, whether the bomb exploded or not.
1105: 3409: 3105: 2781: 2779: 1341:
is the box/bomb system, which measures the qubit if a bomb is present
1130: 1024: 298: 30: 3017: 1064:
A light-sensitive bomb: it is not known whether it is live or a dud.
2875: 2732: 1711:
When there is a bomb, the qubit will be transformed into the state
995: 944: 677: 2948: 2776: 2685: 2003:{\textstyle 1-\cos ^{2T}(\epsilon )\approx {\frac {\pi ^{2}}{4T}}} 1930:{\textstyle \cos ^{2T}(\epsilon )\approx 1-{\frac {\pi ^{2}}{4T}}} 959:, it is possible for the experiment to verify that the bomb works 1542:
When there is no bomb, the qubit evolves prior to measurement as
1201:
only way it can arrive at D, signifying a live (unexploded) bomb.
2554: 2552: 2539: 2537: 2499: 2497: 2458: 2456: 2443: 2441: 1776:{\textstyle \cos(\epsilon )|0\rangle +\sin(\epsilon )|1\rangle } 1070:
A photon: after being emitted, it travels through the box below.
2516:
Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1965).
1172:
collide, the process by which they affect each other is called
1052: 940: 982:
and other, more complex concepts which inspired it, including
2549: 2534: 2494: 2453: 2438: 2391:"Experimental realization of "interaction-free" measurements" 1260:
This is the only way that a photon can ever be detected at D.
1113:
A superposition in the bomb tester is created with an angled
2928:
The Road to Reality: A Complete Guide to the Laws of Physics
1783:, then measured by the box. The probability of measuring as 1205:
Detector D is the key to confirming that the bomb is live.
1169: 1044: 991: 2717: 1155: 935:
The bomb tester takes advantage of two characteristics of
1291:
If there is no bomb, the qubit passes through unaffected.
1278: 1048: 1225:
With a live bomb, there can be three possible outcomes:
2934:
G. S. Paraoanu (2006). "Interaction-free Measurement".
2633:, Springer International Publishing, pp. 129–197, 1943: 1870: 1834:{\textstyle \sin ^{2}(\epsilon )\approx \epsilon ^{2}} 1795: 1717: 1661: 1548: 1504: 1465: 1382: 1376: 1349: 1051:. When their triggers detect any light, even a single 2989:
Watanabe, H.; Inoue, S. (2000). Yeong-Der Yao (ed.).
2366:"Applications of Quantum Search, Quantum Zeno Effect" 2131: 2103: 2075: 2047: 62: 2603: 1028:
Figure 1: An illustration of the experiment using a
1002:), their wave-like behavior implies what is called " 2477:"Can Schrodinger's Cat Collapse the Wavefunction?" 2231:"Quantum mechanical interaction-free measurements" 2145: 2117: 2089: 2061: 2002: 1929: 1833: 1775: 1695: 1641: 1510: 1489: 1450: 1362: 123: 3811: 2558: 2543: 2503: 2462: 2447: 2228: 2933: 1186:But that is only possible if the bomb is live. 3033: 2988: 2785: 2298: 1294:If there is a bomb, the qubit gets measured: 890: 2474: 2140: 2112: 2084: 2056: 1770: 1741: 1636: 1604: 1572: 1191: 1100: 118: 92: 1178:But that is only true if the bomb is a dud. 3040: 3026: 2229:Elitzur, Avshalom C.; Lev Vaidman (1993). 1235:The photon was detected at D (25% chance). 1232:The photon was detected at C (25% chance). 897: 883: 2947: 2900: 2874: 2731: 2694: 2684: 2320: 2267: 2249: 1851:and the circuit will continue iterating. 1528:, there is a bomb, and if the outcome is 1490:{\textstyle \epsilon ={\frac {\pi }{2T}}} 1043:Consider a collection of light-sensitive 3820:Thought experiments in quantum mechanics 2621: 2609: 2382: 2363: 1845:. Otherwise, the qubit will collapse to 1326: 1195: 1159: 1142: 1134: 1104: 1034: 1023: 29: 2518:The Feynman Lectures on Physics, Vol. 3 1156:Part 3: The second half-silvered mirror 14: 3812: 2791: 2666: 2509: 2398:Fundamental Problems in Quantum Theory 1655:(the correct answer) with probability 1279:Improving probabilities via repetition 3047: 3021: 2850: 2660: 2615: 2468: 2347:J. Phys.: Conf. Ser. 698:012013, 2016 978:This experiment has its roots in the 3830:Interpretations of quantum mechanics 2217:Renninger negative-result experiment 1854:The probability of obtaining result 1696:{\textstyle \sin ^{2}(T\epsilon )=1} 1229:No photon was detected (50% chance). 27:Quantum mechanics thought experiment 2667:Leifer, Matthew Saul (2014-11-05). 2520:. US: Addison-Wesley. p. 1.5. 1124: 988:Wheeler's delayed-choice experiment 24: 2920: 2418:10.1111/j.1749-6632.1995.tb38981.x 2013: 1537: 429:Sum-over-histories (path integral) 115: 89: 45:Part of a series of articles about 25: 3851: 2631:Making Sense of Quantum Mechanics 66: 3794: 3793: 1272: 2711: 1706: 1013: 955:. By placing the particle in a 3743:Relativistic quantum mechanics 2564: 2364:Vazirani, Umesh (2005-11-13). 2156: 2133: 2105: 2077: 2049: 2010:, which is arbitrarily small. 1972: 1966: 1893: 1887: 1815: 1809: 1763: 1759: 1753: 1734: 1730: 1724: 1684: 1675: 1629: 1625: 1616: 1597: 1593: 1584: 1565: 1312:If the measurement outcome is 1297:If the measurement outcome is 579:Relativistic quantum mechanics 111: 104: 85: 13: 1: 3721:Quantum statistical mechanics 3498:Quantum differential calculus 3420:Delayed-choice quantum eraser 3203:Symmetry in quantum mechanics 2966:10.1103/PhysRevLett.97.180406 2222: 1058: 966: 922:interaction-free measurements 619:Quantum statistical mechanics 2627:"The de Broglie–Bohm Theory" 2577:Brazilian Journal of Physics 1256:The photon was detected at D 1250:The photon was detected at C 973:interaction-free measurement 7: 3825:Quantum information science 3523:Quantum stochastic calculus 3513:Quantum measurement problem 3435:Mach–Zehnder interferometer 2639:10.1007/978-3-319-25889-8_5 2475:Keith Bowden (1997-03-15). 2331:10.1103/PhysRevLett.74.4763 2212:Counterfactual definiteness 2205: 1039:Figure 2: Legend for Fig. 1 1030:Mach–Zehnder interferometer 1020:Mach–Zehnder interferometer 911:Elitzur–Vaidman bomb-tester 589:Quantum information science 18:Elitzur–Vaidman bomb-tester 10: 3856: 2750:10.22331/q-2023-09-25-1119 2589:10.1007/s13538-023-01366-x 2146:{\displaystyle |0\rangle } 2118:{\displaystyle |0\rangle } 2090:{\displaystyle |1\rangle } 2062:{\displaystyle |0\rangle } 2021:many-worlds interpretation 1363:{\textstyle R_{\epsilon }} 1220: 1128: 1017: 3789: 3751: 3703: 3583:Quantum complexity theory 3561:Quantum cellular automata 3536: 3468: 3402: 3315: 3279: 3266:Path integral formulation 3233: 3098: 3055: 2893:10.1007/s00340-016-6581-y 2359:Science 338:637–640, 2012 2353:Science 338:634–637, 2012 1843:small-angle approximation 1192:Part 4: Detectors C and D 1101:Part 1: The superposition 3650:Quantum machine learning 3630:Quantum key distribution 3620:Quantum image processing 3610:Quantum error correction 3460:Wheeler's delayed choice 2930:. Jonathan Cape, London. 2376: 1649:, which will measure as 1073:A "box" which contains: 624:Quantum machine learning 377:Wheeler's delayed-choice 3566:Quantum finite automata 2696:10.12743/quanta.v3i1.22 2202:and position of atoms. 2191:Leggett–Garg inequality 334:Leggett–Garg inequality 3670:Quantum neural network 2238:Foundations of Physics 2147: 2119: 2091: 2063: 2004: 1931: 1835: 1777: 1697: 1643: 1512: 1491: 1452: 1370:is the unitary matrix 1364: 1331: 1244:No photon was detected 1202: 1165: 1148: 1140: 1110: 1040: 1032: 980:double-slit experiment 125: 39: 3695:Quantum teleportation 3223:Wave–particle duality 2788:, pp. 4763–4766. 2148: 2120: 2092: 2064: 2005: 1932: 1836: 1778: 1698: 1644: 1513: 1492: 1453: 1365: 1330: 1285:quantum circuit model 1199: 1163: 1146: 1138: 1129:Further information: 1108: 1038: 1027: 1000:wave–particle duality 957:quantum superposition 953:wave–particle duality 319:Elitzur–Vaidman 309:Davisson–Germer 126: 33: 3726:Quantum field theory 3655:Quantum metamaterial 3600:Quantum cryptography 3330:Consistent histories 2926:Penrose, R. (2004). 2559:Elitzur Vaidman 1993 2544:Elitzur Vaidman 1993 2504:Elitzur Vaidman 1993 2463:Elitzur Vaidman 1993 2448:Elitzur Vaidman 1993 2129: 2101: 2073: 2045: 1941: 1868: 1793: 1715: 1659: 1546: 1534:, there is no bomb. 1502: 1463: 1374: 1347: 1318:, the bomb explodes. 1115:half-silvered mirror 1047:, of which some are 971:The bomb test is an 937:elementary particles 584:Quantum field theory 496:Consistent histories 133:Schrödinger equation 60: 3840:Quantum measurement 3711:Quantum fluctuation 3680:Quantum programming 3640:Quantum logic gates 3625:Quantum information 3605:Quantum electronics 3080:Classical mechanics 2958:2006PhRvL..97r0406P 2885:2017ApPhB.123...12R 2820:10.1038/nature04523 2812:2006Natur.439..949H 2742:2023Quant...7.1119C 2410:1995NYASA.755..383K 2313:1995PhRvL..74.4763K 2260:1993FoPh...23..987E 1563: 1518:is a large integer. 372:Stern–Gerlach 169:Classical mechanics 3835:1993 introductions 3764:in popular culture 3546:Quantum algorithms 3394:Von Neumann–Wigner 3374:Objective collapse 3085:Old quantum theory 2786:Kwiat, et al. 1995 2278:10.1007/BF00736012 2143: 2115: 2087: 2059: 2035:Spekkens toy model 2000: 1927: 1831: 1773: 1693: 1639: 1549: 1508: 1487: 1448: 1442: 1360: 1332: 1303:, the box returns 1273:§ Experiments 1203: 1166: 1149: 1141: 1111: 1041: 1033: 918:thought experiment 560:Von Neumann–Wigner 540:Objective-collapse 339:Mach–Zehnder 329:Leggett inequality 324:Franck–Hertz 174:Old quantum theory 121: 40: 3807: 3806: 3781:Quantum mysticism 3759:Schrödinger's cat 3690:Quantum simulator 3660:Quantum metrology 3588:Quantum computing 3551:Quantum amplifier 3528:Quantum spacetime 3493:Quantum cosmology 3483:Quantum chemistry 3198:Scattering theory 3146:Zero-point energy 3141:Degenerate levels 3049:Quantum mechanics 2863:Applied Physics B 2806:(7079): 949–952. 2648:978-3-319-25887-4 2307:(24): 4763–4766. 2171:Harald Weinfurter 2039:Bell inequalities 2031:Bohmian mechanics 1998: 1925: 1789:and exploding is 1485: 984:Schrödinger's cat 915:quantum mechanics 907: 906: 614:Scattering theory 594:Quantum computing 367:Schrödinger's cat 299:Bell's inequality 107: 82: 51:Quantum mechanics 16:(Redirected from 3847: 3797: 3796: 3508:Quantum geometry 3503:Quantum dynamics 3360:Superdeterminism 3256:Matrix mechanics 3111:Bra–ket notation 3042: 3035: 3028: 3019: 3018: 3014: 2985: 2951: 2915: 2914: 2904: 2878: 2854: 2848: 2847: 2795: 2789: 2783: 2774: 2773: 2735: 2715: 2709: 2708: 2698: 2688: 2664: 2658: 2657: 2656: 2655: 2619: 2613: 2607: 2601: 2600: 2568: 2562: 2556: 2547: 2541: 2532: 2531: 2513: 2507: 2501: 2492: 2491: 2489: 2488: 2479:. Archived from 2472: 2466: 2460: 2451: 2445: 2436: 2435: 2433: 2432: 2395: 2386: 2372: 2371:. EECS Berkeley. 2370: 2342: 2324: 2295: 2293: 2292: 2271: 2253: 2235: 2152: 2150: 2149: 2144: 2136: 2124: 2122: 2121: 2116: 2108: 2096: 2094: 2093: 2088: 2080: 2068: 2066: 2065: 2060: 2052: 2009: 2007: 2006: 2001: 1999: 1997: 1989: 1988: 1979: 1962: 1961: 1936: 1934: 1933: 1928: 1926: 1924: 1916: 1915: 1906: 1883: 1882: 1859: 1858: 1850: 1849: 1840: 1838: 1837: 1832: 1830: 1829: 1805: 1804: 1788: 1787: 1782: 1780: 1779: 1774: 1766: 1737: 1702: 1700: 1699: 1694: 1671: 1670: 1654: 1653: 1648: 1646: 1645: 1640: 1632: 1600: 1568: 1562: 1557: 1533: 1532: 1527: 1526: 1517: 1515: 1514: 1509: 1496: 1494: 1493: 1488: 1486: 1484: 1473: 1457: 1455: 1454: 1449: 1447: 1446: 1439: 1426: 1411: 1395: 1369: 1367: 1366: 1361: 1359: 1358: 1340: 1317: 1316: 1308: 1307: 1302: 1301: 1125:Part 2: The bomb 926:Avshalom Elitzur 899: 892: 885: 526:Superdeterminism 179:Bra–ket notation 130: 128: 127: 122: 114: 109: 108: 100: 88: 83: 81: 70: 42: 41: 36:semi-transparent 21: 3855: 3854: 3850: 3849: 3848: 3846: 3845: 3844: 3810: 3809: 3808: 3803: 3785: 3771:Wigner's friend 3747: 3738:Quantum gravity 3699: 3685:Quantum sensing 3665:Quantum network 3645:Quantum machine 3615:Quantum imaging 3578:Quantum circuit 3573:Quantum channel 3532: 3478:Quantum biology 3464: 3440:Elitzur–Vaidman 3415:Davisson–Germer 3398: 3350:Hidden-variable 3340:de Broglie–Bohm 3317:Interpretations 3311: 3275: 3229: 3116:Complementarity 3094: 3051: 3046: 3003: 2936:Phys. Rev. Lett 2923: 2921:Further reading 2918: 2855: 2851: 2796: 2792: 2784: 2777: 2716: 2712: 2665: 2661: 2653: 2651: 2649: 2620: 2616: 2608: 2604: 2569: 2565: 2557: 2550: 2542: 2535: 2528: 2514: 2510: 2502: 2495: 2486: 2484: 2473: 2469: 2461: 2454: 2446: 2439: 2430: 2428: 2393: 2387: 2383: 2379: 2368: 2322:10.1.1.561.6205 2301:Phys. Rev. Lett 2290: 2288: 2269:10.1.1.263.5508 2233: 2225: 2208: 2183:resonant cavity 2176:In 1996, Kwiat 2163:Anton Zeilinger 2159: 2132: 2130: 2127: 2126: 2104: 2102: 2099: 2098: 2076: 2074: 2071: 2070: 2048: 2046: 2043: 2042: 2016: 2014:Interpretations 1990: 1984: 1980: 1978: 1954: 1950: 1942: 1939: 1938: 1917: 1911: 1907: 1905: 1875: 1871: 1869: 1866: 1865: 1857:|0⟩ 1856: 1855: 1848:|0⟩ 1847: 1846: 1825: 1821: 1800: 1796: 1794: 1791: 1790: 1786:|1⟩ 1785: 1784: 1762: 1733: 1716: 1713: 1712: 1709: 1666: 1662: 1660: 1657: 1656: 1652:|1⟩ 1651: 1650: 1628: 1596: 1564: 1558: 1553: 1547: 1544: 1543: 1540: 1538:Case 1: No bomb 1531:|1⟩ 1530: 1529: 1525:|0⟩ 1524: 1523: 1503: 1500: 1499: 1477: 1472: 1464: 1461: 1460: 1441: 1440: 1435: 1427: 1422: 1413: 1412: 1407: 1396: 1391: 1378: 1377: 1375: 1372: 1371: 1354: 1350: 1348: 1345: 1344: 1338: 1315:|1⟩ 1314: 1313: 1306:|0⟩ 1305: 1304: 1300:|0⟩ 1299: 1298: 1281: 1223: 1194: 1158: 1133: 1127: 1103: 1061: 1022: 1016: 969: 903: 874: 873: 872: 637: 629: 628: 574: 573:Advanced topics 566: 565: 564: 516:Hidden-variable 506:de Broglie–Bohm 485: 483:Interpretations 475: 474: 473: 443: 435: 434: 433: 391: 383: 382: 381: 348: 304:CHSH inequality 293: 285: 284: 283: 212:Complementarity 206: 198: 197: 196: 164: 135: 110: 99: 98: 84: 74: 69: 61: 58: 57: 28: 23: 22: 15: 12: 11: 5: 3853: 3843: 3842: 3837: 3832: 3827: 3822: 3805: 3804: 3802: 3801: 3790: 3787: 3786: 3784: 3783: 3778: 3773: 3768: 3767: 3766: 3755: 3753: 3749: 3748: 3746: 3745: 3740: 3735: 3734: 3733: 3723: 3718: 3716:Casimir effect 3713: 3707: 3705: 3701: 3700: 3698: 3697: 3692: 3687: 3682: 3677: 3675:Quantum optics 3672: 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3596: 3595: 3585: 3580: 3575: 3570: 3569: 3568: 3558: 3553: 3548: 3542: 3540: 3534: 3533: 3531: 3530: 3525: 3520: 3515: 3510: 3505: 3500: 3495: 3490: 3485: 3480: 3474: 3472: 3466: 3465: 3463: 3462: 3457: 3452: 3450:Quantum eraser 3447: 3442: 3437: 3432: 3427: 3422: 3417: 3412: 3406: 3404: 3400: 3399: 3397: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3365: 3364: 3363: 3362: 3347: 3342: 3337: 3332: 3327: 3321: 3319: 3313: 3312: 3310: 3309: 3304: 3299: 3294: 3289: 3283: 3281: 3277: 3276: 3274: 3273: 3268: 3263: 3258: 3253: 3248: 3243: 3237: 3235: 3231: 3230: 3228: 3227: 3226: 3225: 3220: 3210: 3205: 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3149: 3148: 3143: 3138: 3133: 3123: 3121:Density matrix 3118: 3113: 3108: 3102: 3100: 3096: 3095: 3093: 3092: 3087: 3082: 3077: 3076: 3075: 3065: 3059: 3057: 3053: 3052: 3045: 3044: 3037: 3030: 3022: 3016: 3015: 3001: 2986: 2942:(18): 180406. 2931: 2922: 2919: 2917: 2916: 2849: 2790: 2775: 2710: 2659: 2647: 2623:Bricmont, Jean 2614: 2602: 2563: 2561:, p. 994. 2548: 2546:, p. 990. 2533: 2527:978-0201021189 2526: 2508: 2506:, p. 992. 2493: 2467: 2465:, p. 991. 2452: 2450:, p. 988. 2437: 2380: 2378: 2375: 2374: 2373: 2361: 2355: 2349: 2343: 2296: 2251:hep-th/9305002 2244:(7): 987–997. 2224: 2221: 2220: 2219: 2214: 2207: 2204: 2158: 2155: 2142: 2139: 2135: 2114: 2111: 2107: 2086: 2083: 2079: 2058: 2055: 2051: 2015: 2012: 1996: 1993: 1987: 1983: 1977: 1974: 1971: 1968: 1965: 1960: 1957: 1953: 1949: 1946: 1923: 1920: 1914: 1910: 1904: 1901: 1898: 1895: 1892: 1889: 1886: 1881: 1878: 1874: 1828: 1824: 1820: 1817: 1814: 1811: 1808: 1803: 1799: 1772: 1769: 1765: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1736: 1732: 1729: 1726: 1723: 1720: 1708: 1705: 1692: 1689: 1686: 1683: 1680: 1677: 1674: 1669: 1665: 1638: 1635: 1631: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1606: 1603: 1599: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1567: 1561: 1556: 1552: 1539: 1536: 1520: 1519: 1511:{\textstyle T} 1507: 1497: 1483: 1480: 1476: 1471: 1468: 1458: 1445: 1438: 1434: 1431: 1428: 1425: 1421: 1418: 1415: 1414: 1410: 1406: 1403: 1400: 1397: 1394: 1390: 1387: 1384: 1383: 1381: 1357: 1353: 1342: 1322: 1321: 1320: 1319: 1310: 1292: 1280: 1277: 1265: 1264: 1253: 1247: 1237: 1236: 1233: 1230: 1222: 1219: 1193: 1190: 1157: 1154: 1126: 1123: 1102: 1099: 1098: 1097: 1094: 1093: 1092: 1088: 1085: 1081: 1071: 1068: 1065: 1060: 1057: 1015: 1012: 968: 965: 905: 904: 902: 901: 894: 887: 879: 876: 875: 871: 870: 865: 860: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 639: 638: 635: 634: 631: 630: 627: 626: 621: 616: 611: 609:Density matrix 606: 601: 596: 591: 586: 581: 575: 572: 571: 568: 567: 563: 562: 557: 552: 547: 542: 537: 532: 531: 530: 529: 528: 513: 508: 503: 498: 493: 487: 486: 481: 480: 477: 476: 472: 471: 466: 461: 456: 451: 445: 444: 441: 440: 437: 436: 432: 431: 426: 421: 416: 411: 406: 400: 399: 398: 392: 389: 388: 385: 384: 380: 379: 374: 369: 363: 362: 361: 360: 359: 357:Delayed-choice 352:Quantum eraser 347: 346: 341: 336: 331: 326: 321: 316: 311: 306: 301: 295: 294: 291: 290: 287: 286: 282: 281: 280: 279: 269: 264: 259: 254: 249: 244: 242:Quantum number 239: 234: 229: 224: 219: 214: 208: 207: 204: 203: 200: 199: 195: 194: 189: 183: 182: 181: 176: 171: 165: 162: 161: 158: 157: 156: 155: 150: 145: 137: 136: 131: 120: 117: 113: 106: 103: 97: 94: 91: 87: 80: 77: 73: 68: 65: 54: 53: 47: 46: 26: 9: 6: 4: 3: 2: 3852: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3817: 3815: 3800: 3792: 3791: 3788: 3782: 3779: 3777: 3774: 3772: 3769: 3765: 3762: 3761: 3760: 3757: 3756: 3754: 3750: 3744: 3741: 3739: 3736: 3732: 3729: 3728: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3708: 3706: 3702: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3636: 3635:Quantum logic 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3594: 3591: 3590: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3567: 3564: 3563: 3562: 3559: 3557: 3554: 3552: 3549: 3547: 3544: 3543: 3541: 3539: 3535: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3488:Quantum chaos 3486: 3484: 3481: 3479: 3476: 3475: 3473: 3471: 3467: 3461: 3458: 3456: 3455:Stern–Gerlach 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3407: 3405: 3401: 3395: 3392: 3390: 3389:Transactional 3387: 3385: 3382: 3380: 3379:Quantum logic 3377: 3375: 3372: 3370: 3367: 3361: 3358: 3357: 3356: 3353: 3352: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3322: 3320: 3318: 3314: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3284: 3282: 3278: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3238: 3236: 3232: 3224: 3221: 3219: 3216: 3215: 3214: 3213:Wave function 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3188:Superposition 3186: 3184: 3183:Quantum state 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3147: 3144: 3142: 3139: 3137: 3136:Excited state 3134: 3132: 3129: 3128: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3103: 3101: 3097: 3091: 3088: 3086: 3083: 3081: 3078: 3074: 3071: 3070: 3069: 3066: 3064: 3061: 3060: 3058: 3054: 3050: 3043: 3038: 3036: 3031: 3029: 3024: 3023: 3020: 3012: 3008: 3004: 3002:9789810245573 2998: 2994: 2993: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2950: 2945: 2941: 2937: 2932: 2929: 2925: 2924: 2912: 2908: 2903: 2898: 2894: 2890: 2886: 2882: 2877: 2872: 2868: 2864: 2860: 2853: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2794: 2787: 2782: 2780: 2772: 2767: 2763: 2759: 2755: 2751: 2747: 2743: 2739: 2734: 2729: 2725: 2721: 2714: 2706: 2702: 2697: 2692: 2687: 2682: 2678: 2674: 2670: 2663: 2650: 2644: 2640: 2636: 2632: 2628: 2624: 2618: 2611: 2610:Vazirani 2005 2606: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2567: 2560: 2555: 2553: 2545: 2540: 2538: 2529: 2523: 2519: 2512: 2505: 2500: 2498: 2483:on 2007-10-16 2482: 2478: 2471: 2464: 2459: 2457: 2449: 2444: 2442: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2392: 2385: 2381: 2367: 2362: 2360: 2356: 2354: 2350: 2348: 2344: 2340: 2336: 2332: 2328: 2323: 2318: 2314: 2310: 2306: 2302: 2297: 2287: 2283: 2279: 2275: 2270: 2265: 2261: 2257: 2252: 2247: 2243: 2239: 2232: 2227: 2226: 2218: 2215: 2213: 2210: 2209: 2203: 2201: 2197: 2192: 2186: 2184: 2179: 2174: 2172: 2168: 2164: 2154: 2137: 2109: 2081: 2053: 2040: 2036: 2032: 2028: 2027:Jean Bricmont 2024: 2022: 2011: 1994: 1991: 1985: 1981: 1975: 1969: 1963: 1958: 1955: 1951: 1947: 1944: 1921: 1918: 1912: 1908: 1902: 1899: 1896: 1890: 1884: 1879: 1876: 1872: 1863: 1852: 1844: 1826: 1822: 1818: 1812: 1806: 1801: 1797: 1767: 1756: 1750: 1747: 1744: 1738: 1727: 1721: 1718: 1704: 1690: 1687: 1681: 1678: 1672: 1667: 1663: 1633: 1622: 1619: 1613: 1610: 1607: 1601: 1590: 1587: 1581: 1578: 1575: 1569: 1559: 1554: 1550: 1535: 1505: 1498: 1481: 1478: 1474: 1469: 1466: 1459: 1443: 1436: 1432: 1429: 1423: 1419: 1416: 1408: 1404: 1401: 1398: 1392: 1388: 1385: 1379: 1355: 1351: 1343: 1337: 1336: 1335: 1329: 1325: 1311: 1296: 1295: 1293: 1290: 1289: 1288: 1286: 1276: 1274: 1268: 1261: 1257: 1254: 1251: 1248: 1245: 1242: 1241: 1240: 1234: 1231: 1228: 1227: 1226: 1218: 1214: 1210: 1206: 1198: 1189: 1187: 1181: 1179: 1175: 1171: 1162: 1153: 1145: 1137: 1132: 1122: 1118: 1116: 1107: 1095: 1089: 1086: 1082: 1079: 1078:beam splitter 1075: 1074: 1072: 1069: 1066: 1063: 1062: 1056: 1054: 1050: 1046: 1037: 1031: 1026: 1021: 1011: 1009: 1005: 1004:superposition 1001: 997: 993: 989: 985: 981: 976: 974: 964: 962: 958: 954: 950: 946: 942: 938: 933: 931: 927: 923: 919: 916: 912: 900: 895: 893: 888: 886: 881: 880: 878: 877: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 640: 633: 632: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 599:Quantum chaos 597: 595: 592: 590: 587: 585: 582: 580: 577: 576: 570: 569: 561: 558: 556: 555:Transactional 553: 551: 548: 546: 545:Quantum logic 543: 541: 538: 536: 533: 527: 524: 523: 522: 519: 518: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 488: 484: 479: 478: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 446: 439: 438: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 401: 397: 394: 393: 387: 386: 378: 375: 373: 370: 368: 365: 364: 358: 355: 354: 353: 350: 349: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 296: 289: 288: 278: 275: 274: 273: 272:Wave function 270: 268: 265: 263: 260: 258: 255: 253: 252:Superposition 250: 248: 245: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 209: 202: 201: 193: 190: 188: 185: 184: 180: 177: 175: 172: 170: 167: 166: 160: 159: 154: 151: 149: 146: 144: 141: 140: 139: 138: 134: 101: 95: 78: 75: 71: 63: 56: 55: 52: 49: 48: 44: 43: 37: 32: 19: 3518:Quantum mind 3439: 3430:Franck–Hertz 3292:Klein–Gordon 3241:Formulations 3234:Formulations 3163:Interference 3153:Entanglement 3131:Ground state 3126:Energy level 3099:Fundamentals 3063:Introduction 2991: 2939: 2935: 2927: 2866: 2862: 2852: 2803: 2799: 2793: 2769: 2723: 2719: 2713: 2676: 2672: 2662: 2652:, retrieved 2630: 2617: 2605: 2580: 2576: 2566: 2517: 2511: 2485:. Retrieved 2481:the original 2470: 2429:. Retrieved 2401: 2397: 2384: 2304: 2300: 2289:. Retrieved 2241: 2237: 2187: 2177: 2175: 2160: 2097:, where the 2025: 2017: 1861: 1853: 1710: 1707:Case 2: Bomb 1541: 1521: 1333: 1323: 1282: 1269: 1266: 1259: 1255: 1249: 1243: 1238: 1224: 1215: 1211: 1207: 1204: 1185: 1182: 1177: 1174:interference 1167: 1150: 1119: 1112: 1042: 1014:How it works 977: 970: 960: 934: 910: 908: 454:Klein–Gordon 390:Formulations 318: 227:Energy level 222:Entanglement 205:Fundamentals 192:Interference 143:Introduction 3776:EPR paradox 3556:Quantum bus 3425:Double-slit 3403:Experiments 3369:Many-worlds 3307:Schrödinger 3271:Phase space 3261:Schrödinger 3251:Interaction 3208:Uncertainty 3178:Nonlocality 3173:Measurement 3168:Decoherence 3158:Hamiltonian 2404:: 383–393. 2157:Experiments 949:nonlocality 930:Lev Vaidman 843:von Neumann 828:Schrödinger 604:EPR paradox 535:Many-worlds 469:Schrödinger 424:Schrödinger 419:Phase-space 409:Interaction 314:Double-slit 292:Experiments 267:Uncertainty 237:Nonlocality 232:Measurement 217:Decoherence 187:Hamiltonian 3814:Categories 3704:Extensions 3538:Technology 3384:Relational 3335:Copenhagen 3246:Heisenberg 3193:Tunnelling 3056:Background 2876:1609.06218 2733:2111.13727 2654:2021-02-23 2583:(6): 152. 2487:2007-12-08 2431:2012-05-07 2291:2014-04-01 2223:References 2196:entangling 2167:Paul Kwiat 1059:Components 1018:See also: 967:Background 939:, such as 920:that uses 838:Sommerfeld 753:Heisenberg 748:Gutzwiller 688:de Broglie 636:Scientists 550:Relational 501:Copenhagen 404:Heisenberg 262:Tunnelling 163:Background 3410:Bell test 3280:Equations 3106:Born rule 3011:261335173 2949:0804.0523 2869:(1): 12. 2828:0028-0836 2766:244715049 2758:2521-327X 2705:1314-7374 2686:1409.1570 2679:(1): 67. 2597:1678-4448 2317:CiteSeerX 2264:CiteSeerX 2161:In 1994, 2141:⟩ 2113:⟩ 2085:⟩ 2057:⟩ 1982:π 1976:≈ 1970:ϵ 1964:⁡ 1948:− 1909:π 1903:− 1897:≈ 1891:ϵ 1885:⁡ 1823:ϵ 1819:≈ 1813:ϵ 1807:⁡ 1771:⟩ 1757:ϵ 1751:⁡ 1742:⟩ 1728:ϵ 1722:⁡ 1682:ϵ 1673:⁡ 1637:⟩ 1623:ϵ 1614:⁡ 1605:⟩ 1591:ϵ 1582:⁡ 1573:⟩ 1555:ϵ 1475:π 1467:ϵ 1437:ϵ 1433:⁡ 1424:ϵ 1420:⁡ 1409:ϵ 1405:⁡ 1399:− 1393:ϵ 1389:⁡ 1356:ϵ 1168:When two 1131:Cat state 1008:collapsed 945:electrons 868:Zeilinger 713:Ehrenfest 442:Equations 119:⟩ 116:Ψ 105:^ 93:⟩ 90:Ψ 67:ℏ 3799:Category 3593:Timeline 3345:Ensemble 3325:Bayesian 3218:Collapse 3090:Glossary 3073:Timeline 2982:24376135 2974:17155523 2911:32214686 2836:16495993 2726:: 1119. 2625:(2016), 2426:84867106 2339:10058593 2286:18707734 2206:See also 996:particle 994:or of a 793:Millikan 718:Einstein 703:Davisson 658:Blackett 643:Aharonov 511:Ensemble 491:Bayesian 396:Overview 277:Collapse 257:Symmetry 148:Glossary 3752:Related 3731:History 3470:Science 3302:Rydberg 3068:History 2954:Bibcode 2902:7064022 2881:Bibcode 2844:3042464 2808:Bibcode 2738:Bibcode 2720:Quantum 2406:Bibcode 2309:Bibcode 2256:Bibcode 1841:by the 1334:Where: 1221:Results 961:without 941:photons 833:Simmons 823:Rydberg 788:Moseley 768:Kramers 758:Hilbert 743:Glauber 738:Feynman 723:Everett 693:Compton 464:Rydberg 153:History 3445:Popper 3009:  2999:  2980:  2972:  2909:  2899:  2842:  2834:  2826:  2800:Nature 2764:  2756:  2703:  2673:Quanta 2645:  2595:  2524:  2424:  2337:  2319:  2284:  2266:  2178:et al. 1860:after 1053:photon 986:, and 863:Zeeman 858:Wigner 808:Planck 778:Landau 763:Jordan 414:Matrix 344:Popper 3355:Local 3297:Pauli 3287:Dirac 2978:S2CID 2944:arXiv 2871:arXiv 2840:S2CID 2762:S2CID 2728:arXiv 2681:arXiv 2422:S2CID 2394:(PDF) 2377:Notes 2369:(PDF) 2282:S2CID 2246:arXiv 2234:(PDF) 1263:live. 1170:waves 1084:path. 1045:bombs 998:(see 913:is a 818:Raman 803:Pauli 798:Onnes 733:Fermi 708:Debye 698:Dirac 663:Bloch 653:Bethe 521:Local 459:Pauli 449:Dirac 247:State 3007:OCLC 2997:ISBN 2970:PMID 2907:PMID 2832:PMID 2824:ISSN 2754:ISSN 2701:ISSN 2643:ISBN 2593:ISSN 2522:ISBN 2335:PMID 2200:spin 2198:the 2069:and 1091:box. 1049:duds 992:wave 951:and 928:and 909:The 853:Wien 848:Weyl 813:Rabi 783:Laue 773:Lamb 728:Fock 683:Bose 678:Born 673:Bohr 668:Bohm 648:Bell 2962:doi 2897:PMC 2889:doi 2867:123 2816:doi 2804:439 2746:doi 2691:doi 2635:doi 2585:doi 2414:doi 2402:755 2327:doi 2274:doi 1952:cos 1873:cos 1798:sin 1748:sin 1719:cos 1664:sin 1611:sin 1579:cos 1430:cos 1417:sin 1402:sin 1386:cos 943:or 3816:: 3005:. 2976:. 2968:. 2960:. 2952:. 2940:97 2938:. 2905:. 2895:. 2887:. 2879:. 2865:. 2861:. 2838:. 2830:. 2822:. 2814:. 2802:. 2778:^ 2768:. 2760:. 2752:. 2744:. 2736:. 2722:. 2699:. 2689:. 2675:. 2671:. 2641:, 2629:, 2591:. 2581:53 2579:. 2575:. 2551:^ 2536:^ 2496:^ 2455:^ 2440:^ 2420:. 2412:. 2400:. 2396:. 2333:. 2325:. 2315:. 2305:74 2303:. 2280:. 2272:. 2262:. 2254:. 2242:23 2240:. 2236:. 2169:, 2165:, 1703:. 947:: 3041:e 3034:t 3027:v 3013:. 2984:. 2964:: 2956:: 2946:: 2913:. 2891:: 2883:: 2873:: 2846:. 2818:: 2810:: 2748:: 2740:: 2730:: 2724:7 2707:. 2693:: 2683:: 2677:3 2637:: 2612:. 2599:. 2587:: 2530:. 2490:. 2434:. 2416:: 2408:: 2341:. 2329:: 2311:: 2294:. 2276:: 2258:: 2248:: 2138:0 2134:| 2110:0 2106:| 2082:1 2078:| 2054:0 2050:| 1995:T 1992:4 1986:2 1973:) 1967:( 1959:T 1956:2 1945:1 1922:T 1919:4 1913:2 1900:1 1894:) 1888:( 1880:T 1877:2 1862:T 1827:2 1816:) 1810:( 1802:2 1768:1 1764:| 1760:) 1754:( 1745:+ 1739:0 1735:| 1731:) 1725:( 1691:1 1688:= 1685:) 1679:T 1676:( 1668:2 1634:1 1630:| 1626:) 1620:T 1617:( 1608:+ 1602:0 1598:| 1594:) 1588:T 1585:( 1576:= 1570:0 1566:| 1560:T 1551:R 1506:T 1482:T 1479:2 1470:= 1444:) 1380:( 1352:R 1339:B 1309:. 898:e 891:t 884:v 112:| 102:H 96:= 86:| 79:t 76:d 72:d 64:i 38:. 20:)

Index

Elitzur–Vaidman bomb-tester

semi-transparent
Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality
CHSH inequality
Davisson–Germer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.